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1 Introduction

It is known that besides the square-root algorithms such as Pollard’s rho or lambda
method, there are two generic attacks to algebraic curve based cryptosystems. i.e. the
Gaudry and other’s variations of the index calculus attack [9][6][10][13] and the Weil
descent attack or covering attack[7][5].

Among the index calculus attacks, the double-large-prime variation[10][13] is the most
powerful one to hyperelliptic curves. Recently, Diem showed an attack under which non-
hyperelliptic curves with low degrees are weaker than hyperelliptic curves.[4].

In this paper, we show explicitly the classes of elliptic and hyperelliptic curves of low
genera defined over extension fields, which have weak coverings, i.e. their Weil restrictions
can be attacked by one of the above two index calculus attacks.

We will present results on odd characteristic cases. The even characteristic case will
be reported in the near future.

1.1 Weil descent or Covering attack

Let ¢ be a power of a odd prime. k:=TF,, k, := Fyn.
Let Co/kn to be an algebraic curve over k,, with genus g(Cp) > 1.
If EIC/k: an algebraic curve and

7 —» Co/kn
is a covering defined over k, such that

T J(O) — Reskn/k<(J(CO))>

defines an isogeny over k.
The covering attack as a generalization of the Weil descent attack is to transform
the discrete logarithm problems over J(CO)/kn to the discrete logarithm problems over

J(C) k.



1.2 Key length and size of ground field

Assume the key length of a finite abelian group used in cryptosystem is
| = 0(2160)

here we use the symbol: O(z) := O(xlog™ ).
Now consider a cryptosystem based on A/k: an abelian variety over k£ with dim A =

g(>1)
Then one can assume the size of the definition field £ = F, to be

For A/k,, k, =Fn,
qg= O <lgLn>

1.3 Square-root Attack on finite abelian groups

General attacks to an arbitraty abelian group, such as Baby-step-giant-step attack or
Pollard’s rho-method or lambda-method are “square-root” attack.

dimA =g 1 2 e g
Attack cost O(ql/z) O(q) |- O(qg)
In term of [ | O(Y?) | O(IY?) | --- | O(I'?)

1.4 Index calculus attack on curve-based systems
Now we consider the case when A is the Jacobian variety of an algebraic curve C.

A= J(C),C/k: an algebraic curve

(1) When C is a hyperelliptic curve, the most powerful attack is the double-prime-variation
by Gaudry-Theriault-Thome and Nagao [10], [13]

g=9(C) | 1 2 el 9
Attack cost O(ql/z) Olq) |- 0(92_5)
= - ~  2(g—1)
In term of [ | O(IY2) | O(IY?) |- | O( &)

(2) When (' is a non-hyperelliptic curve of g > 3, one can almost always find a birational
transform over k

birat

C———=C' cP?

such that deg " =d > g+ 1
Notice that when C’ is a hyperelliptic curve, one has deg C' = d(> g + 2)



Then when C'/k

g=9(C) 3 ] 2
Attack cost O(q) - (QQ—W)
In term of [ O(ll/?’) O(l(di(;;(_;—l))

When d =g + 1 O(ll/?’) ON(ZZ;EZ:?;)

The last row is when one could transform C'/k into C'/k with degree d = g + 1.

1.5 Weil descent or Covering Attack

In this paper, we show the weak classes of elliptic and hyperelliptic curves of genus two
and three defined on extension fields against covering attack.
Let Cy/k,, C/k: algebraic curves over k.

Consider a covering over k,
m: C —=

then
T JJ(C) — Reskn/k<J(Co)>

defines an isogeny over k.
Let g := g(C), go := g(Co) = ngo

Then these weak curves Cy will be attacked by index calculus algorithms of the fol-
lowing complexities.

1.5.1 When C is a hyperelliptic curve
The double-large-prime attack costs

2(n—1)

O(g"™ =) = O(l =)

1.5.2 When C is a non-hyperelliptic curve with degree d =n + 1

The Diem’s variation costs

~ 2(n—2)

O(g*w=1) = O(I7==)

2 Review of Scholten form

Assume hereafter chark # 2. In fact, we could obtain more general results but we omit
them here.



2.1 Scholten form over a quadratic extension field %,

A Scholten form is defined as an elliptic curve

E/kz: y2 = oz:z;?’—l—ﬁxz—l—ﬁqx—l—ozq

Let
t—Ag\°
T = t—)\q ., AEk\ K
S o= (t=A)y
then

Clk: 5% = a(t =AM+ B0t =Mt =A) 480t = At =N+t —N)°

One has (2,2) coverings
C -2 E -2 Pla)

2.2 A triangle of equivalences

Let C'/k: an algebraic curve with genus ¢(C) = 2
¢ ~ C: the bi-elliptic involution over ks
o: the Frobenius map
¢: the hyperelliptic involution
b =10

We can prove the equivalences in the following triangle

E:C/qb

{S — form} (a), (c)

Here (a), (¢) are among the following three cases for the elliptic curves:
Efky: y*=f(x)  degf(x)=3
(a) : f(x) is irreducible over ky;
(b) : f(x) is a product of a linear factor and a quadratic irreducible factor over ks;

(¢) : f(x) is a product of three linear factors.



2.2.1 Elliptic curves with (2,2) coverings

Since the following dlagram is a (2,2) covering,
the elliptic curve E has the followmg form:

Elks: y* = ag(x)(z — a)
g(x) € kl[z], degg(z)=2, or3
a € ky\ k.

2.2.2 Case (a)

In the case (), one has
E: o = a(z—0) <x—9q2> <x—9q4>
a € ky 0 € ke \ ko
Lemma 1. Fiz an € € k3 \ k, then
JA € GLy(ky), st A-e=0
which is unique up to a scalar modulo k

Proof:
Since PG Ly(ky) acts on kg \ ko without fixed points, and |PGLy(ky)| = |ke \ k2| . O

Remark: If one denotes

0 = ac’+be+c
a,bc € ky, (a,b)#(0,0)

and

€ =re+e, r.e €k



then A can be written in an explicit form as

_{ alar +¢) — b2 d’e — be
A_< a —b

From the lemma 1, £ is isogenous to

v = d(v—¢€)(v—¢) <:1;—6q2> (x —a)
= dy(z)(x—a)
here g(x) = (v —¢)(x—€) <:1; — 6q2> € klx]

2.2.3 Transformation from (a), (¢) to Scholten forms

1 —af
i=(1 )

For the case (¢), the transform is similiar.

For the case (a), one can use

2.2.4 Welil descent attack on Scholten forms

It is proposed by Arita-Matsuo-Nagao to apply Weil descent attack to the Scholten forms.
These authors also classified completely the elliptic curves which have (2,2) covering over

k. [12].
3 Welil restriction obtained by (2,2,...,2) coverings
Assume () is a hyperelliptic curve,
C —s Cy = P'(2)

is a (2,2,...,2) covering of degree 2" for r =n or n — 1, and

90 :=9(Co), g:=g(C) =ngo.
Lemma 2. .
(1) ker (J(C) — Res /k(J(CO))> C J(O)2r Y
(2) If C is hyperellptic, then the above kernel can be described explicitly.

Below, we classify the types of the covering ' — )y using the Riemann-Hurwitz
formula.



3.1 Casegy=1

Assume Cy = E, an elliptic curve.

3.1.1 When n=3

(i) When the degree of the covering ' — Cy — P!(x) is eight.
In this case, C is a hyperellptic curve of genus three over k, and £ = Cy/ks, which
has C as its (2,2) covering, has the form of

Elks: y* = eg(z)(x —a)(z —a?)
here a € ks \ k,
g(x) € k[z], degg(x)=1or 2,
e €k

Then E become the case (¢) under an isogeny of degree 2 and

# {ks — Isomorphic classes of £} = O(¢*)

Next we show how to explicitly construct C'/k.

C
/ X BN~ ppy B
E' Pi(t)
/
1
P \ (2,2) covering
2

P(x)

First, the bi-elliptic involution ¢ on P!(¢) can be expressed as follows.

)
(8 b
v = (1 —/3)
here 43 = a?
D = (3-p(8-5")
b = D— 3

Denote again the Frobenius map over k as o, one can see that on P*(¢)

6% ="0:6 ="



Now we consider the covering of degree 2:
P' 25 P'(x).
Then P! is defined by
P': Y? = g(a)=ax®*+br+c, abecck, (a,b)#(0,0)
y o= (4 e() ="0(t) =" (1) Y
and
v o= 4 0(1) +B(1) +76(1)

F(t) . ‘
Ni— Ay N() = Nks/k()

Assume that 3 € k3 \ k satisfies the following equation:
B —a+b3—c =0, Jar, b, ¢ € K.
then

Nt—p53) = 2 —at* +bit —¢
F(t) = t4 — 261t2 —|— 8C1t —|— (b% — 4G1C1)

Thus one obtains the following definition equation for C'/k

Clk: 5% = aF{)* +bF(t)N(t —3)+cN(t - 3)*
S = N(t—p)Y

Now we can compare the security of the genus three hyperelliptic curve C'/k under
square-root attacks with the elliptic curve F/k; under the double-large-prime attacks.

Attack to E/ks | O(¢*?) | O(1'?)
Attack to C'/k O(q4/3) O(l4/9)

(ii) When the degree of the covering C' — Cy — P*(z) is four.

Then one can see (' is a non-hyperelliptic curve over k.

The elliptic curves E£/ks which have C' as their (2,2) covering can be divided into the
following two types.

Type 1: E: vy = (2 —a)(z —a?)(x —F)(x — B9)
Type 2: E: y*=(2—a) <:1; — ozq3> (x — af) <:1; — ozq4>

OéEk(;\{kQng}



The Type 1 elliptice curve E can be transformed by a k-isomorphism to
E /zk y?=ex(z —1)(z — \)
{ A= i G
ede (k)
The Type 2 elliptice curve E can be transformed by a k-isomorphism to
y?=ex(z —1)(z — \)

4 3 144°
a? —a? < al—a > +a
- 3

)\ _ af—a
— 2 1
ad—ad a?” —a a?—ad

e <ozq — ozq3>1+q3 € (k;)z

E~
/k

Lemma 3. For g > 41

(]) \V/)\Ek3\k, EIO(,ﬁEkg\k, #{avaqvﬁvﬁq}:Zl

\ = f=a . fi-at

s.t. ot ' Bia

(2) \V/)\Ekg\k ElOéEk(;\{ngkQ}
1+4°
sl A::(j%ﬁ%) '

Theorem 1. If ¢ > (2 x 1953)% and

Elks: y' = ex(x —1)(z —N) A€ ks \ k

Then E is k-isomorphic to an elliptic curve either Type I or I1.
E /2 an elliptic curve of either Type I or Type 1.
k
Furthermore, using an isogeny of degree 2, we have
Corollary 1. The number of ks-isomorphism classes of the elliptic curves defined over

ks which belong to Type I or Type 11 is almost
Ly 13 94
27 31 =51
i.e. such curves have a density of 5/12
Since (' is a degree 4 non-hyperelliptic curve over k, the discrete logarithms on the

above FE and on (' attacked by Diem’s variation have the following complexities.

Attack to E/ks | O(¢*?) | O(1'?)
Attack to C'/k O(q) 0(51/3)

The explicit construction of the covering ' — F will be discussed in the following

section.



3.1.2 When n=35

In this case, the (2,2,2,2) covering C of F is a non-hyperelliptic curve over k. The elliptic
curve F/ks with C as its covering has a form of

E yzz(x—oz)(x—ozq)<x—ozq2> <:1;—ozq3>
o€ ks\k

The number of ks-isomorphism classes of such E=0(¢?)

Assume the degC' = d, the complexity of Diem’s variation to C' is 0(q2_d%2) =
~ 2(d—3
O(17#=3). 1t d = 6 then

Attack to E/ks O(q5/2) O(ll/z)
Attack to C'/k O(q3/2) 0(53/10)

3.2 The case gy =2
3.2.1 When n=2

The curve Cj is of the form

Co: y* = elz—a)g()
a €k \k, g(x)€klz], degg(e)=m=4 or 5

#{k, — isomorphic classes of Cy} = O(q?)

Now we show how to construct the covering C'/k. First define

u o= y+7y
vo= oy ="y) st h=-n  (F0)
t = v
U
a b o nlea —ela?) —(ea + ela?)
¢ d T n(e —e?) —(e+¢€9)
. ¢
GX,)Y) =Y g(?), m := deg g(x)
S = (c(t2 + 772) + dn2t>3 U
then the C'/k can be constructed as follows when m = 4 and 5.

When m =4
C:  5%=(ad—bc)n* x (c(t* +n*) + dn’t) x G(a(t® + %) + bn’t, c(t* + 1) + dn’t)
When m =5
C: 5% =(ad—bc)n* x G(a(t® +n?) + bp’t,c(t* + n°) + dn’t)

10



If one applies the double-large-prime attack to these two genus four hyperelliptic
curves, the complexities will be

Attack to Co/ka | O(¢?) O(l)
Attack to C'/k O(q3/2) O(ZS/S)

3.2.2 When n=3

In this case, C' is a non-hyperelliptic curve over k
The Cy with €' as its covering have the following three forms:

P = (r—a)(z—a?)(z—B) (- F7) (& —7) (x — %)
a,B,v € ks \ k

P = =) e 90 (57 (2 )
a€ks\k, [B€ks\ (kyUks)

C((JS) : y2 = (l' - a) (l‘ — qu) <x — aq3> <$ — oﬂ4> <x _ aq6> <x _ qu7>
a € kg \ k3

# {k3 — isomorphic classese of Céi)} = 0(q%)

If one applies the double-large-prime attack to Cy and Diem’s variation to the non-
hyperelliptic curve €', the complexities are as follows.

Attack to €1 /k, O(¢®) | O(I'?)

Attack to C'/k O(q*~ =) | O(15=2)

Attack to C/k,d=T7| O(q5) | O(l%)

3.3 When gy =3,C) is a hyperelliptic curve
3.3.1 When n=2

In the case, (' is a hyperelliptic curve over k£ of genus 6.
The Cy with such €' as its covering has the form:

Co: y* = elz—a)g(e)
a €k \k, g(x)€klx], degg(x)=m=6or7

11



# {k; — isomorphic classes of Cy} = O(¢°)

The construction of C' is the same as in the case of go = 2,n =2
When one applies the double-large-prime attack to €', one has complexities

Attack to Co/ks | O(¢F) | O(17F)
Attack to C/k | O(¢3) | O(It)

oo“J1

3.3.2 When n=3

The €' is a non-hyperelliptic curve over k.
The Cy with C' as its covering has the following four forms.

Vgt = (e—a)(z—a) (@ —f) (¢ — ) (& =) (x —3") (¢ — §) (¢ — &)
a,3,7,0 € ks \ k

Py = @—a)e—a) (@ = B) (=B (e =) (=) (z=9") (¢ =1")
a, B €ks\k, v €kes\ (kaUks)

&y = wma)e—a)@=B) =) (2 =) (e =5") (x=5") (¢ - 57)
a€ks\k, [BE€kg\ ks

084) oyt = (r—a)(zr—a?) <:1; — ozq3> <:1; — ozq4> <:1; — ozq6> <:1; — ozq7> <:1; — ozq9> <:1; — ozqw)

a & k12 \ (k6 U k4)
# {ks — isomorphic classes of Cy} = O(¢”)

If one applies Diem’s variation on these non-hyperelliptic curves, the complexities are
as follows.

Attack to {7 /ky O(¢") | 0@
Attack to C/k | O(¢~2) | O(st=)
Attack to C'/k,d =10 |  O(q+) O(ls)

4 Construction of covering C' — F for the case 3.1.1.(ii)

Since €' — Cy — P'(z) is a (2,2) covering, the action of the bi-elliptic involution ¢ on
H°(C/ks, Q') can be expressed as

10 0 -1 0 0 -1 0 0
qb: 0 -1 0 ) Uqb: 0 1 0 ) Uqb: 0 -1 0
0 0 -1 0 0 —1 0 0 1

12



ie.
d(w) =w, H(Ww) = =W, (w)=-"w
If one makes correspondence
w < line /

using the canonical embedding of €' into P2, then €' can be expressed as
C . Oé£4 _I_ aq 6%4 _I_ aq2 0264 _I_ ﬁ£2+20 _I_ ﬁq£20+202 _I_ 6q2£202—|—2 — 0
Lemma 4. For g > 41

4 2+2q) _
X € ks st Trks/k (a4 BAFF2) =

According to this lemma, one can always use variable change
(s XY

SO o1ne call assuine

Trks/k (a+08)=0
Next, we use the correspondences
(+— X C+—Y N 7
one obtains a defining equation of €' over k3

C: aX'+aY + a2 4+ BXY2 4+ 3222 + BT 22 X2 =0

Let
Pp— Y Pyp— Z
y= 5 2Ty
C: a+aty+ a® 2t 4 By? + ply*z? + ﬁq222 =0
Then
oY) =y,  ¢z)=—=z
Next, let

a2 - -
u =y, vi= 27, wi=yz

then the F/ks can be expressed as

FE/ks: o+ afu? —|—ozq2v2 —|—ﬁu—|—ﬁquv—|—[3q2v2 =0

szUU

13



Furthermore, if one uses

then the defining equation of £ becomes

E: ass+a?+ al’ 12 + Bs+ 8% + ﬁq23t =0
h* =1t
Now according the condition Trk /k(oz + ) = 0, one can assume
s=14L0t-1)
then

. a(l =0 +5(1 = 1)+ af
B al? + 32( + o

If one define
S = <oz€2 + ﬁq2€ + ozq2> h

Then the defining equation of F becomes
E: $t= (w NN o oﬂ2> {a(1 =02 +B(1 =)+ a"}

Now define
D = * — 4ottt

We consider two cases according to whether D is a quadratic residue or not.

4.1 Case D€ (k‘§<)2
E~ y?=ex(z —1)(z — \)

ee € <k§>2

_ 2048487 +/D—V/D7 _ 2045437 —/D4/Di
T 2040449 —/D—V/D1  20+p+39 +/D+V/ D4

e:<2a+6+6q2—@+\/ﬁ> <2a+6+ﬁq2+@—\/ﬁ>

4.2 Case D ¢ (k‘?f)Q

FE~ y? = ex(x — 1)(x —n't)

ee € <k§>2

_ 2048487 +v/D-/D3
= et s /DD

6:<2a+ﬁ+ﬁq2—\/ﬁ—l—\/ﬁ>l+q

3

14
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