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Abstract

In this paper, we show explicitly the classes of elliptic and hyperelliptic
curves of low genera defined over extension fields, which have weak cover-
ings, i.e. their Weil restrictions can be attacked by either index calculus
attacks to hyperelliptic curves or Diem’s recent attack to non-hyperelliptic
curves. In particular, we show how to construct such coverings from these
curves and analyze density of the curves for them such construction is
possible.
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1 Introduction

It is known that besides the square-root algorithms such as Pollard’s rho or
lambda method, there are two generic attacks to algebraic curve based cryp-
tosystems. i.e. the Gaudry and other’s variations of the index calculus attack
[11][8][20][12][18] and the Weil descent attack or cover attack[9] [13][10] [16][5]
[14][15] [21]22][7).

Among the index calculus attacks to curves other than elliptic curves, i.e.
curves with genera greater than one, the double-large-prime variation[12][18] is
the most powerful to hyperelliptic curves. It is known that the hyperelliptic
curves of genera ¢ > 4 but not too large can be attacked by these algorithms
more effectively than the square-root attacks. In spite of a common believing
that non-hyperelliptic curves should be harder to attack than hyperelliptic ones,
Diem recently showed an attack under which non-hyperelliptic curves of low
degrees and genera greater than three are weaker than hyperelliptic curves[6].



In particular, genus three non-hyperelliptic curves over I, represented by degree
4 plane curves can be attacked in an expected time O(q) by the double-large-
prime variation of his attack, while the double-large-prime attack to genus three
hyperelliptic curves cost O(q4/3) and the square-root attacks cost O(q3/2).

In this paper, we show explicitly classes of elliptic curves and hyperelliptic
curves of low genera defined over extension fields, which have weak coverings,
1.e. their Weil restrictions can be attacked effectively by one of the above two
index calculus attacks. In particular, we show how to construct such coverings
from these curves and analyze density of the curves for them such construction
is possible.

We will present results on odd characteristic cases. The even characteristic
case will be reported in the near future.

2 A review of attacks to algebraic curve based
cryptosystems

Below we review attacks to discrete logarithm on algebraic curve based systems
and their complexities.

2.1 Key length and size of ground fields

Let ¢ be a power of a odd prime. k :=F,, k, = Fyn.
Assume the key length of a finite abelian group used in a cryptosystem is

| = 0(2160)

here we use the symbol: O(z) = O(xlog™ ).

Now consider a cryptosystem based on an abelian variety A defined over &
with dimension dim A = g(> 1)

Then one can assume the size of the definition field £ =IF, to be

For A/k,,
-0 (%)

2.2 Square-root Attacks on finite abelian groups

General attacks to discrete logarithm on an arbitraty abelian group, such as
the Baby-step-giant-step attack or Pollard’s rho-method or lambda-method are
“square-root” attacks, i.e., they have computional costs of the square-root of
the group order. For examples, their costs for A with different g are shown as
follows:



ImA=g i 2 [ -] g
Attack cost | O(¢'7?) | O(q) - | O(g?)
In term of { 0(11/2) 0(11/2) e 0(11/2)

2.3 Index calculus attacks on algebraic curve based sys-
tems

Now we consider the case when A is the Jacobian variety of an algebraic curve
C,ie, A= J(C) and C/k is an algebraic curve defined over k, then ¢ equals
to the genus of C'.

(1) When C' is a hyperelliptic curve, the most powerful attack is the double-
large-prime variation of index calculus by Gaudry-Theriault-Thome and Nagao
[12], [18], with complexities as follows.

9=9(C) | 1 2 I

Attack cost | O(¢"?) | O(g) | --- | O(¢°79)
~ ~ ~ 2(g=1)

In termof { | O(Y?) | OWM?) | -~ | O %)

(2) When C is a non-hyperelliptic curve of genus g > 3, one can almost always
find a birational transform over k
birat , 5
C——=C'CP
such that degC" = d > g+ 1. (Notice that when C” is a hyperelliptic curve,
one has deg C" =d > g+ 2).) Then when " is defined over &, the complexity
of Diem’s double-large-prime variation [6] are as follows.

g=9(C) 3 9
Attack cost O(q) O(q2—m)
In term of [ O(1'/3) O(lfd%(;ﬁ_%j)

Whend =g +1 | O(/?) O(156-1)

The last row is when one could transform C/k to C'/k with degree d = g+1.

2.4 Weil descent or covering attacks

Let C’o/k’n to be an algebraic curve over k, with genus ¢(Cp) > 1.
If there exists an algebraic curve C' defined over k& and

m:C — Oy
is a covering defined over %k, then

. J(C) — Reskn/k((J(CO)))



defines an isogeny over k.
The covering attack as a generalization of the Weil descent attack is to trans-
form the discrete logarithm on J(Cy)/k, to the discrete logarithm on J(C) /k.

2.5 Weil descent or covering attack 4+ Index calculus

In this paper, we show explicit classes of elliptic curves and hyperelliptic curves
of genus two and three defined on extension fields whose Weil restrictions can be
effectively attacked by either of the index calculus algorithms for hyperelliptic
curves and non-hyperelliptic curves.

Using the same symbols of the previous section, let gg := g(Cp), g := g(C) =
ngo. The discrete logarithm on Cy will be attacked by index calculus algorithms
in the following complexities.

2.5.1 When C is a hyperelliptic curve
The double-large-prime attack to hyperelliptic curves costs

<, 9 2 ~ 2ngol

Olg™ ) =0( ™% )
2.5.2 When C is a non-hyperelliptic curve with degree d = ngg + 1
Diem’s double-large-prime variation costs

~ 2(ngg—2)

O(q*~ 70-1) = O(ITvao-Dman )

3 On Scholten forms

We first show some results on the so-called Scholtem forms of elliptic curves as a
preparation of the rest of the paper. Assume hereafter chark # 2. More general
results can also be proved for chark = 2 case but we omit them here.

3.1 Scholten forms over a quadratic extension field &,

A Scholten form is defined as an elliptic curve in the form of [19]

E/kzz vP = axd+ B2+ ple 4 ol (1)
Let
t— A7\’
r = (t—/\)’ A€k \ k (2)
S = -\ 3)

then one obtains a (2,2) covering

2 2
C = E=DPl(2) (4)
2 2

e



where

Clk: S*=at =)+ 30t =Xt =N+ 89t = At =N +ai(t = N)° (5)

3.2 A triangle of equivalences

Let C'/k be an algebraic curve defined over k with genus g(C) = 2, ¢ the bi-
elliptic involution acting on C' defined over ks, o the Frobenius map and ¢ the
hyperelliptic involution. Assume that % = ¢¢.

We can prove the equivalences in the following triangle.

E~C/¢

~ N

{S — forms} (a), (¢

Here (a), (¢) are among the following three cases for the elliptic curves:
Elks:  y* = f(x) deg f(x) =3
(a) : f(x) is irreducible over k»;

(b) : f(x) is a product of a linear factor and a quadratic irreducible factor over

ka;

(¢) : f(z) is a product of three linear factors.

3.2.1 Elliptic curves with (2,2) coverings

Since the following diagram is a (2, 2) covering,

O\,
\Pl(x/

the elliptic curve E has the following form:

Elks: v = ag(e)(x—a)
g(x) € k[z], degg(x)=2, or3
a € ]{72\]{7



3.2.2 The case (a)

In the case (a), one has
E: y* = a(z—10) (x—9q2) (x—9q4)
a € ky 6 € ke \ ko
Lemma 1. Fir an € € k3 \ k, then
JA € GLa(ka), sit. Ae=140

which is unique up to a scalar modulo k. Here Ae denotes a PG Ly action:

A::(i b), A6:2a6+b

d ce+d

Proof: Since PG La(k2) acts on kg\ ks without fixed points, and #{ PG La(k2)} =
#ike \ ka} .

Remark: If one denotes

S
I

ae’ +be+c
a,bye € k2, (a,b)#(0,0)

and

S =rete, reck

then A can be written in an explicit form as

A ( a(ar +¢) — b? aze—bc).
a —b

From the lemma 1, F is ks-isomorphic to

v = dgla)(e—a)

here g(z) = (r—¢€) (v — €9 (x - qu) € k[x]

3.2.3 Transformation from (a), (¢) to Scholten forms

Elliptic curves in forms of (a) or (¢) can be transformed into the Scholten forms
by PGLs actions.
For the case (a), one can use

For the case (¢), the transform is similiar.



3.2.4 Well descent attack on Scholten forms

It is proposed to apply the Weil descent attack to the Scholten forms in [19] [2].
The elliptic curves which have (2,2) covering over ks were classified in [17].

4 Weil restriction obtained by (2,2,...,2) cover-
ings
Assume () is a hyperelliptic curve,
C — Cy -5 Pl (x)
is a (2,2,...,2) covering of degree 2" for r =n or n — 1, and
90 :=9(Co), g:=g(C) = ngo.
Lemma 2. .
(1) ker (J(C’) — Res, /k(J(C'o))) c J(O)[2r—1]
(2) If C is hyperellptic, then the above kernel can be described explicitly.

Below, we classify the types of the covering C' — Cjy using the Riemann-
Hurwitz formula.

4.1 The case g, =1

Assume Cy = E, an elliptic curve.

4.1.1 When n =3
(i) When the degree of the covering C' — E — P!(z) is eight

In this case, C' is a hyperellptic curve over k of genus three '. E/ks, which
has C' as its (2,2) covering, has the form of

Elks: y* = eg(z)(z—a)(z—ad)
here a € ks \ k,
g(z) € klz], degg(x) =1 or 2,
e € ks

Then E become the case (c) under an isogeny of degree 2 and
# {ks — isomorphic classes of E} = O(¢?)

Next we show how to explicitly construct C/k.

! This was also mentioned in [5] footnote 6



We have a diagram as follows, where E’ is kz-isogenous to £ (of degree two).

C
/ X
B P(t)
/
1
P \ (2,2) covering
2

P (x)

The bi-elliptic involution ¢ on P!(¢) can be expressed as follows.

o= (1 25)

2

here 43 = of
D = (3-p7(5-57)
b = D—p*

Denote again the Frobenius map over k as o, one can see that on P!(t)
¢ b="9-0="0
Now we consider the covering of degree 2:
P2 P (a).
Then P! is defined by
Py Y2 = g(x)=ar?’+br+ec, abecck, (ab)#(0,0)
y = (t+o(t) —76(t) =7 6(t)Y

and

ro= 1+ 6()+B(1) +76(1)
- N(};(i)ﬁ)’ N() = Nk3/k(')
Assume that 8 € ks \ k satisfies the following equation:
B3 —a P+ b3 —c1 =0, Jai,b1,¢1 € k.
then
Nit—p) = ?—at’+bit—c;
F(t) = t*—2bit* + 8cit + (b3 — 4aycy)



Thus one obtains the following defining equation? for C/k

Clk: S? = aF{)?+bF({)N(t — )+ eN(t — B)?
S = N(t-p)Y

The following table shows a comparison of complexities between the square-
root attacks to the elliptic curve E/ks, which is the most effective attacks known
for genus one curves, and the double-large-prime attacks to the genus three
hyperelliptic curve C'/k.

Attack to E/ks | O(¢*/?) | O(Y?)
Attack to C/k | O(¢*®) | O(1*°)

(ii) When the degree of the covering C — E — P!(r) is four

Except for the case that the covering ¢' — FE corresponds to the covering
C' —> E' in the case (i), C' is a non-hyperelliptic curve over k. We will show
how to construct such a C' in the section 5.

The elliptic curves E/ks which have C' as their (2, 2) covering can be divided
into the following two types.>

Type I: E: Yy = (r —a)(zr—a?)(z— ) (xz - 59 (6)

a,B€ks\k, #{a,al, 3,57 =4 (7)

Type 1I: E: y*=(r—a) (x — oﬂa) (x — a9) (x — oﬂ4) (8
OzEk’6\{k’2Uk’3} (

The action of PG Ly(k) on P(x) induces the action on the sets {«, 3} in (6
and {a} in (8), and this action gives elliptic curves of the same type which ar
ks-isomorphic to the original curves.

)
9)
)

Type I:

This elliptice curve E (6) can be transformed by a kg-isomorphism to

E /% y? =z(r—1)(z — A) (10)
) = Bzat)(pi-a) (11)

(B—a)(f7—ad)
The action of PG Lay(k) on ks \ k induces the following action on the set
{o, B}

{a, 5} — {Aa, A}, VA € GLy(k) (12)

2 Another form of the defining equation was obtained by N. Theriault [4] Th.22.10.3
3The equation (6) of Type I was also given as Eq.(10) in [7] as an example.




This action transforms F (6) into a new elliptic curve
Byt = (x—Aa)(x — Aat) (x — AB) (2 — ABY) (13)
which also has a Legandre canonical form as (10) with

(AB — Aa?)(AB? — Aa)
(AB — Aa)(AB7 — Aad)

A/

Then it is easy to see

A= X (15)

or the Legrandre forms are invariant under this action.

Therefore, by transitivity of the action of PG L (k) on kz\ k, the first element
in the pair {a, 3} can be fixed to an € € k3 \ k. Thus, we hereafter consider only
the pairs {¢, 5} and the corresponding values of {A}.

From now we assume the Type I curves to be

E: yP=(r—¢)(z— ) (z—8)(x—p9 (16)
E,ﬁEk:«;\k, #{Eagqaﬁaﬁq}:Zl (17)
A= ﬁﬁ__ﬁﬁq : ﬁﬁqq__:q (18)

To count the number of the A in (18), define

el —e
u._<1 _1)/\ (19)
then since A £ 0,1, 00, p #£ €, €4, o0.
Define

—n4 e+l —elte
A::( a ) L ) (20)

and

B:="A%A A. (21)
Then we have

Lemma 3.

1. Given an A, there exists a 3 s.t. (18) holds iff

Ap=p1 (22)
2. The above condition is equivalent to

Bg =p. (23)

Then one can easily find 3 from X\ as solutions of the quadratic equation
obtained from (23), hence find elliptic curves which have the covering C.

10



3. When such a [ exists,

since p # €, €%,

Thus, there are at most two [3’s given one A.
4. Let the discriminant
D = (TrB)? —4(det B) (€ k) (25)

then there exist such B given an A if and only if D € (k)?;

3C e GLa(k), C?
G =Ce

(0 1) moar) (26)

Corollary 1. For the elliptic curves (16) having the covering C or defined by
the X in (18),

#{A} ~ %qS. (27)

Type II:

The Type II elliptice curve E can be transformed by a ksz-isomorphism to

E /%3 y?=ex(x —1)(xz — ) (28)

aq_aqa 14¢°
A= ( i—o ) , (29)
€ = Ny /i, (@2 — a) mod (k5)
We omit the details but just state the conclusion that the correspondence
PGLy(k)\{a} — {A}
is generically 2 : 1. When the correspondence is 1-1,
A € PGLy(k) st Aa=a?

From which such a can be easily found.

Lemma 4. For the elliptic curves (28) having the covering C' or defined by the
Ain (29),

#{\} ~ %q?’. (30)

11



Since C' is a degree 4 non-hyperelliptic curve over k, the attacks to the
above FE/ks by the square-root methods and to C/k by Diem’s double-large-
prime variation have the following complexities.

Attack to E/ks O(q?’/z) 0(11/2)
Attack to C/k | O(q) | O(3)

4.1.2 Whenn=>5

1=

The elliptic curve E/ks with C as its covering has a form of

E: y’=(z—a)(z—a?) (J;—oﬂ2) (J;—oﬂa)
a € ks\ k

In this case, the (2,2,2,2) covering C' of F is a non-hyperelliptic curve over k.

The number of ks-isomorphism classes of such E is equal to O(¢?)

Assume deg(C) = d, the complexity of Diem’s double-large-prime variation
< o2

~  2(d—3)
to C'is O(¢"~4-2) = O(l"(z—@ ). If d = 6 then the complexities for the square-
root attack to E/ks and Diem’s attack to C'/k are as follows.

Attack to E/ks | O(¢°%) | O(Y?)
Attack to C'/k | O(¢%7?) | O(3/10)

4.2 The case gy =2
4.2.1 When n =2

The curve Cj in this case is in the form

Co: v = ez — a)g(x)
a €k \ k, g(x) €klz], degg(ex)=m=4 or b

#{ky — isomorphic classes of Cy} = O(¢*)

Now we show how to construct the covering C'/k. First define

u = y+4%
vo= oy ="y) st =-n  (F0)
t = %
a b - nlea — efad) —(ea+ elal)
( c d ) T ( n(e —e9) —(e+e?) )
G(X)Y) = Ymg(é), m = deg g(x)
S = (c(t2 + %) + dnzt)S u

12



then the C'/k can be constructed as follows when m =4 and 5.

When m =4
C:  S? = (ad—be)n” x (c(t®+0°)+dn°t) x G(a(t®+n7)+bn’t, c(t*+n*)+dn’t)
When m =5

C: 5% =(ad —be)n® x G(a(t® +n?) + byt c(t* + %) + dn*t)

If one applies either the square-root or the double-large-prime attack to
Co/ko and the double-large-prime attack to these two genus four hyperelliptic
curves C'/k, the complexities will be

Attack to Co/ks | O(¢2) | O(7?)
Attack to C/k | O(?) | O(137%)

4.2.2 Whenn=3

In this case, C'is a non-hyperelliptic curve over k
The Cy with C as its covering have the following three forms:

Yy = (—a)(@—al) (@ B) (x— B9 (x —7) (& —77)
a, B,y € ka\ k

C’éz): v = (r—a)(x—a?)(z—73)(x—p9) (x—ﬁqa) (x—ﬁq4)
a€ks\k, F€ks\ (kaUks)

C’éS) oyt = (r—a)(z—aY) (x — aqa) (x — aq4) (l‘ - aqs) (l‘ - aq7)
a € ko \ k3
# {kg — isomorphic classes of C’éi)} = 0(¢°)

If one applies the double-large-prime attack to Céi)/k’g and Diem’s variation
to the non-hyperelliptic curve C/k, the complexities are as follows.

Attack to C /ks O(¢%) O(1'/2)
Attack to C/k O(qz—ﬁ) O([a(dd__32)
Attack to C/k,d =7 |  O(¢?) O(l7)

13



4.3 The case go = 3 and (j is a hyperelliptic curve
4.3.1 When n =2

In the case, C' is a hyperelliptic curve over k of genus 6.
The Cy with such C as its covering has the form:
Co: y? = e(x — a)g(x)
a€ky\ k, g(x)€klx], degg(ez)=m=6o0r7
# {k2 — isomorphic classes of Cy} = O(¢°)

The construction of C' is the same as in the case of go = 2,n =2
When one applies the double-large-prime attack to these hyperelliptic curve
Cy/ks and C'/k defined on different fields, one has complexities

Attack to Co/ka | O(¢5/3) | O(1*°)

Attack to C'/k | O(¢3) | O(l1s)

| oy

4.3.2 Whenn=3

The C'is a non-hyperelliptic curve over k.
The Cy with C as its covering has the following four forms.

Yy = (—a)(@—al) (@ B) (x— 09 (x — ) (& —7?) (¢ — ) (z — 69
a,B,7,0 €ks\ k

CF: = w—a)@—a) (@ =) (e - (e =) (@ =79 (2 =7") (¢ =17")
Oz,ﬁEk’g\k’, 76]{6\(]{2Uk’3)

C'((JS): v = (r—a)(r—a?)(z—p)(x—p9 (x—ﬁqa) (x—ﬁq4) (x—ﬁqs) (x—ﬁq7)
a€ks\k, B€ko\ks

084) : y2 = (z—a)(z—a’) (l‘ — oﬂa) (x — oﬂ4) (x — oﬂs) (x _ aq7) (x . aqg) (x B aqlo)
o € kia \ (ke U ka)
# {ks — isomorphic classes of Cp} = 0((]9)

If one applies the double-large-prime variation to the hyperelliptic curve

Céi)/k’g and Diem’s double-large-prime variation on the non-hyperelliptic curve
C/k, the complexities are as follows.

Attack to C3) /ks O(q%) O(14/°)
Attack to C'/k O(g*~ =2 | 0@
Attack to C/k,d =10 | O(q¥) O(1%)

14



5 Construction of covering ' — F for the case
4.1.1(ii

Since €' — Co — P(z) is a (2,2) covering, the action of the bi-elliptic
involution ¢ on H°(C'/ks, Q') can be expressed as

10 0 -1 0 0 -1 0 0
o= 0 -1 0 , 9= 0 1 0 , T¢= 0 -1 0

0 0 1 0 0 -1 0 0 1
le.,

$(w) = w, $(W) = =W, $(Cw) =—"w

If one defines correspondence
w <— line ¢
and uses the canonical embedding of C' into P?, C' can be expressed as
C: al*+a? %4 an 0?4 + 6£2+20 +6q£20+202 + 6q2£202+2 -0
For ¢ > 37, C(k) # 0, then we obtain
Lemma 5. When ¢ > 37,

Va’ﬁekS\k #{a’oﬂ’ﬁ’ﬁq}zzl
dX € ks st Trka/k (a/\4 + 6/\2+2q) -0

According to this lemma, one can use the variable change

L A7

so that it can be assumed that
Trka/k (a+73)=0.
Next, by use of the correspondences
l— X Y+—Y R
one obtains a defining equation of C' over ks
C: aX'4a?Y*+a? 24+ BX2Y2 4 39V222 4 87 Z2X2% = 0

Let

C: a+aly*+ a? 2t 4 By + Bly?2? + ﬁq2z2 =0

15



Then
o(y)=—y,  ¢(2) =—=

Next, let
u =y, vi=z%

then the E/ks can be expressed as
E/ks: o+ a%u? + a? v? + Bu+ Bluv + B0 = 0

szUU

Furthermore, if one defines

then the defining equation of £ becomes
as? +ad 4+ a1 + Os+ pit + 6‘125t =0
h? =t

E:

Now according the condition Trk /k(a + ) =0, one can assume
3

s=1+ ﬁ(t — 1)
then
‘ a(l =024 B(1—£) + a4
al? 4+ pPPf 4+ od®
If one defines
S = (aﬁz 4870 oﬂ2) h

Then the defining equation of E becomes

B §= (azz 870+ acf) {a(1 =02+ (1= 0) + ot}

Now define
D= 62 — 4alte

We consider two cases according to whether D is a quadratic residue or not. *

5.1 The case D € <k§>2

B~ y? =ex(x —1)(z —A)
/k
e = e mod (k;)z
here A= 2046469 +v/D-\/DP. . 2046+69 —/D+\V/ D>
2a+ﬁ+ﬁq2_\/5—\/D? 2°‘+ﬁ+ﬁq2+\/ﬁ+\/[)?

e = (204 3+ 57 = VD +VDP) (2a+ g+ 7 + VD VD7)

4The case 5.1 is also studied by K.Nagao with certain conditions.

16



2
5.2 The case D ¢ (kJ)
i ¥ = cala— 1)(x — n'*0")
e = e mod (k’;)z
here — 20+ 8+ +VD-\/Da*
K 20484 p9° —/D-+/De*
2 -\ 1+d°
€= (2a+6+6q —VD+ VD1 )
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Appendix 1 : Proof of Lemma 3

Proof of Lemma3. 1:

From (18)
/\_ﬁ—eq g1 — ¢
T h-c pi-a
0 = (1=X)8"7 4 (Ne— )B4+ (Ae? — ) + (1 — A)e' T4
Since A # 0,1, 0
Ae — ¢ Ae?d — ¢
— 1+q _ q _
0 =5 A—1 A—1
Define
€ —e?
= (5T )
el —¢
v o= (1 _1)/\
Then
0 = 61""1—#6‘1—1/6—1—61""1
BUB —p) — v+t
54 Vﬁ_€1+q
B—p

v —elte
B ( 1~ ) 0
On the other hand, from the defintions of p, v
el —e 1 —e
1 -1 1 —e )t
_ -1 e+ €
= 0 I e

= —ptetel

<
|

Therefore, if one defines

then a § exists for a given A iff

19

6 + €1+q



Remark 1.
Ae =, Ae? = ¢

Proof of Lemma 3, 2:
(23)<= (22): Easy.
(23)= (22):
Assume the two solutions of (23) are {3, ~v}

BG=p, By=7
Since
CATA AR =B
AT A48 =
02A UAﬁq — A_lﬁq
02A 74 A(A_lﬁq) — A_lﬁq
B(A™1pY) = A1
Therefore, either
ATlpt =3 i.e. Ap = p9
or
ATIBT =~ i.e. Ay = pe.
The latter case is when the action of A exchanges two solutions. i.e.
Ay=p1, Ag=+1
Then
A AB="A N = (Ay)? =BT
TAAAB=T"A BT = (AP)T =+
This means
B =~ i.e. g=x

Proof of Lemma 3.3: (This is quite long so omitted here.)

Proof of Lemma 3.4, 5
Let

then 3 are solutions of

(45)



Hence, there exist at most two 3.

Let
D = (TrB)? —4(det B) (€ k)
Then
#{p)=2 = De (k") (52)
#6}=1 <<= D=0 (53)
#{6}=0 <= D¢ K*) (54)

Now consider the case when D = 0.
Define the matrix mapping 3 to € as C' € GLy(k), which is unique modulo
k*. Denote the image of € under C' as v, i.e.:

N C e PGLa(k), st. CB=¢ Ce=:v (55)

Then
cp?t = (Ch) =€ (56)
Cel = (Ce)?=+~1 (57)

Thus under the action of C', one obtains another elliptic curve isomorphic to E

By = (2= ) - ) - 7)(x — 77) (58)

1.e. with the same A.
When D = 0, there is only one 3 is possible so one has vy = 3.
Thus

B = ¢ Ce=p (59)
c?p = p (60)

Since 3 € k3 \ k
c? = ( - ) (mod k) (61)

Thus Tr(C) = 0.

Denote
a b
=(¢ %)
When ¢ = 0, one can assume a = 1, the number of § = Ce = —e — b 18
#{b ek} =q.
When ¢ # 0, the number of
b
f=ce= 27 (62)
€—a

is #£{(a,b) € k?|a®> + b # 0} = ¢(¢ — 1).
Thus the number of 3 when D = 0 is ¢2.
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