
Direct Chosen Ciphertext Security from Identity-Based Techniques

Xavier Boyen ∗ Qixiang Mei † Brent Waters ‡

September 21, 2005

An extended abstract of this paper is to appear in the proceedings of the 12th ACM Conference on Computer
and Communications Security—CCS 2005, Alexandria, VA, November 2005. This version is available from
the IACR Cryptology ePrint Archive as Report 2005/288 or at http://www.cs.stanford.edu/~xb/ccs05/.

Abstract

We describe a new encryption technique that is secure in the standard model against adaptive
chosen ciphertext (CCA2) attacks. We base our method on two very efficient Identity-Based
Encryption (IBE) schemes without random oracles due to Boneh and Boyen, and Waters.

Unlike previous CCA2-secure cryptosystems that use IBE as a black box, our approach is
endogenous, very simple, and compact. It makes direct use of the underlying IBE structure,
and requires no cryptographic primitive other than the IBE scheme itself. This conveys several
advantages. We achieve shorter ciphertext size than the best known instantiations of the other
methods, and our technique is as efficient as the Boneh and Katz method (and more so than
that of Canetti, Halevi, and Katz). Further, our method operates nicely on hierarchical IBE,
and since it allows the validity of ciphertexts to be checked publicly, it can be used to construct
systems with non-interactive threshold decryption.

In this paper we describe two main constructions: a full encryption system based on the
Waters adaptive-ID secure IBE, and a KEM based on the Boneh-Boyen selective-ID secure IBE.
Both systems are shown CCA2-secure in the standard model, the latter with a tight reduction.
We discuss several uses and extensions of our approach, and draw comparisons with other
schemes that are provably secure in the standard model.

1 Introduction

The design of a secure encryption scheme is central to any system that strives to provide secure
communication using an untrusted network. In order for a cryptographic scheme to be considered
secure in an adversarial setting, it must be secure against chosen ciphertext attacks. While, there
have been several efficient encryption schemes shown to be heuristically secure in the random oracle
model [3], it wasn’t until fairly recently that Cramer and Shoup [13] designed an encryption scheme
that was both efficient and provably secure in the standard model (without random oracles) against
chosen ciphertext attacks.

Somewhat surprisingly, Canetti Halevi and Katz [11] were able to show how to elegantly con-
struct a CCA2-secure cryptosystem from any identity-based encryption (IBE) scheme secure in the
selective-ID model [10]. A user’s public encryption key is simply a set of IBE public parameters
and the user’s secret key is the corresponding IBE master key. To encrypt a message, M , for such
a user, one first generates the parameters, VK, to a one-time signature scheme; next one hashes

∗Voltage Inc., Palo Alto — xb@boyen.org
†Southwest Jiaotong University — nupfster@gmail.com
‡Stanford University — bwaters@theory.stanford.edu

1

the signature parameters to obtain an “identity”; then one encrypts the message to the identity
calculated from the previous step; one finally signs the partial ciphertext with the one-time sig-
nature private key to get a signature σ and attaches σ as part of the ciphertext. To decrypt a
message, a user first checks the validity of the signature on a ciphertext, and rejects the ciphertext
if the signature is invalid. If the signature is valid, it decrypts the ciphertext from the identity
determined by the one-time signature parameters, VK. Intuitively, to attack a ciphertext, C, in the
chosen ciphertext model, an adversary will need to generate its own set of signature parameters to
obtain a valid signature, σ′, before it can construct a valid ciphertext C ′. However, this will cause
the receiver to attempt decryption with a different identity than the one associated with C, and
by the semantic security of the IBE system this will provide no useful information for decrypting
C. Boneh and Katz [9] further improve the efficiency of this scheme by using a MAC instead of a
one-time signature. One interesting aspect of these schemes is that they seemingly do not fall in
the characterization of previous CCA2-secure schemes given by Elkind and Sahai [16].

Both the CHK and BK techniques are generic. The efficient constructions of both methods come
from instianting them with either one of the Boneh-Boyen [4] identity-based encryption schemes.
A natural question is whether we can construct improved CCA2-secure encryption schemes by
taking advantage of specific properties of the most efficient IBE schemes secure without random
oracles [29, 4]. We answer this question in the affirmative.

In this paper we first show how to build a direct CCA2-secure public key cryptosystem from the
Waters identity-based encryption cryptosystem [29]. We construct a CCA2-secure cryptosystem
in which ciphertexts consist of just three group elements with no attached signatures or MACs.
The basic idea behind our scheme is as follows. As in the CHK method, the public key of a
user will correspond to the public parameters of an IBE scheme. To encrypt a message, M , the
encryption algorithm first creates the first two elements of the ciphertext, which in the Waters
scheme are independent of the identity; next these two elements are hashed to determine a “one-
time identity”; finally the ciphertext is completed by constructing the third element to form an
encryption to the identity determined from the previous step. That is, the identity that we encrypt
to is actually determined by the first two elements of the ciphertext itself. In this manner a “well
formed” ciphertext is self-contained in that we do not need any auxiliary signatures or MACs.

We get our leverage from two properties of the Waters scheme [29]. The first is that since we
work in groups with efficiently computable bilinear maps, we can use the bilinear map to check
that the third element is formed correctly, and thus that the ciphertext is well formed (this is
only necessary for the simulation, as the decryption algorithm can do the check more efficiently).
Secondly, we take advantage of the semantic security of the IBE system in the full adaptive-identity
security model (as opposed to the weaker selective-ID model). When proving security of our scheme,
the simulator will not know until the challenge phase which “identity” the challenge ciphertext will
be for, since the challenge identity depends partially on the adversary’s input. Since the identity
is not determined until well after setup, we need to base our scheme on an adaptive-ID secure IBE
scheme.

Perhaps more surprisingly, we also show that our technique can be used to build a Key Encapsu-
lation Mechanism (KEM) with full CCA2 security based only on the scheme of Boneh and Boyen,1

which is only selective-ID secure (in its basic configuration). Since in a KEM there is no message to
encrypt, in a chosen ciphertext attack the challenge ciphertext can be at once properly distributed
and independent of any adversarial input. Therefore, the challenge ciphertext and the associated

1Although two distinct efficient IBE constructions are given in [4]; in this paper “the Boneh-Boyen scheme” refers
by default to their first scheme, i.e., the (H)IBE scheme based on the Bilinear Diffie-Hellman assumption [4, §4].

2

identity can be chosen before setup when running a security simulation, as in the selective-ID model.
Besides simplicity, the main benefit of this construction is that we get a tight security reduction
from an already very reasonable underlying complexity assumption. The fact that we get a KEM
(as opposed to a complete cryptosystem) is practically irrelevant since public-key encryption is
almost exclusively used to encrypt random session keys in practical applications.

The two CCA2-secure systems we describe have advantages over both the CHK [11] and BK [9]
generic constructions.

First, our ciphertexts are short, consisting of just three group elements (or two for the KEM),
with no attached signature or MAC. For comparison, a ciphertext in the CHK scheme will need to
have attached a one time signature and public key. Typically, fast one time signatures schemes [22]
will have long signatures lengths and thus blow up the ciphertext size. Alternatively, as pointed
out by Boneh et al. [7], we could base one-signature schemes off “full-blown” signature schemes
that use number-theoretic constructions. However, such signatures take longer to both create and
verify, making the CHK method less efficient in both the encryption and decryption stage than
ours.

By contrast, the construction of BK avoids to a large extent the previous drawbacks by replacing
the signature with a MAC, and is much faster since the time to compute a MAC is insignificant
compared to the IBE operations; and indeed, the performance of the BK scheme is roughly the
same as ours (though BK still requires three to five times as many random bits, most of which are
used in the MAC construction).

The main drawback of using a MAC in the BK system is that its verification requires knowledge
of the private key, whereas in our construction the ciphertext validity test may be done with the
public key. This distinction is crucial for the construction of threshold systems (where the private
key is shared amongst decryption servers, each of which can only perform a partial decryption of
a given ciphertext). Public key-only ciphertext verification allows the threshold decryption servers
to operate without interaction, which greatly simplifies the system. Boneh, Boyen, and Halevi [6]
recently described a generic and efficient non-interactive CCA2 threshold system without random
oracles, based on the CHK transformation. Using our technique we are able to construct an even
more efficient (albeit non-generic) fully non-interactive threshold KEM with CCA2 security in the
standard model, by specializing the method of [6].

Finally, if we apply our technique to the last level of the depth-(`+1) hierarchical version of the
Waters or Boneh-Boyen IBE scheme, we immediately obtain a depth-` HIBE with intrinsic CCA2
security.

In summary, our schemes enjoy the efficiency of the BK scheme, can be used in threshold
CCA2-secure systems like CHK, and have shorter ciphertexts than both.

1.1 Related Work

We restrict our comparisons to encryption systems that are CCA2-secure [25] in the standard
model. There are several efficient schemes that can be shown to be secure in the random oracle [3]
model, however, we can only make heuristic arguments for the security of these schemes.

Naor and Yung [24] described a scheme provably secure against lunch-time attacks. These
techniques were later extended by Dolev, Dwork, and Naor [15] and Sahai [26] to protect against
an adaptive adversary in a chosen ciphertext attack. None of the above methods, however, yields
a scheme to be efficient enough to be of practical use.

3

Cramer and Shoup [13] developed the first practical CCA2-secure scheme that was provably
secure in the standard model. Later, Cramer and Shoup [14] generalized their techniques by
constructing CCA2-secure schemes from “projective hash functions”. Shoup [27] showed how to
make an efficient hybrid scheme by using the original Cramer-Shoup system as a KEM. Kurosawa
and Desmedt [21] further demonstrated an even more efficient CCA2-secure hybrid system by using
a KEM that was not necessarily CCA2-secure; Abe et al. [1] recently generalized their construction.

Canetti, Halevi, and Katz [11] describe a new paradigm for constructing CCA2-secure schemes
from selective-ID secure identity-based encryption systems. Boneh and Katz [9] later improved
upon the efficiency of this result. Both of these methods are generic in that they can be applied to
any selective-ID secure cryptosystem, whereas our method is particular to the Waters [29] adaptive-
ID secure identity-based encryption scheme. For concreteness when comparing the performance of
the schemes we consider their construction applied to the Boneh and Boyen [4] IBE scheme.

1.2 Organization

In Section 2 we give a few preliminaries necessary for our constructions. We describe our fully
secure encryption system in Section 3, and reason about its security. In Section 4 we describe an
alternative key encapsulation scheme with tight security. In Section 5 we mention a few extensions
of practical interest to both constructions. Then, in Section 6, we focus on the qualitative properties
of our schemes, and draw detailed comparisons with related work in the literature. Finally, we state
our conclusions in Section 7.

2 Preliminaries

We briefly review the notions of chosen ciphertext security for encryption and key encapsulation.
We also define bilinear groups and pairings, and state our complexity assumption.

2.1 Secure Encryption

A public key encryption system consists of three (randomized) algorithms that are modeled as
follows.

KeyGen(λ): Takes as input a security parameter λ ∈ Z+. It outputs a public/private key pair.

Encrypt(PK,M): Takes as input a public key PK and a message M . It outputs a ciphertext.

Decrypt(SK, C): Takes as input a private key SK and a ciphertext C. It outputs a plaintext
message or the special symbol ⊥.

The strongest and commonly accepted notion of security for a public key encryption system
is that of indistinguishability against an adaptive chosen ciphertext attack. This notion, denoted
IND-CCA2, is defined using the following game between a challenger and an adversary A. Both
are given the security parameter λ ∈ Z+ as input.

Setup. The challenger runs KeyGen(λ) to obtain a random instance of public and private
key pair (PK,SK). It gives the public key PK to the adversary.

4

Query phase 1. The adversary adaptively issues decryption queries C where C ∈ {0, 1}∗.
The challenger responds with Decrypt(SK, C).

Challenge. The adversary outputs two (equal length) messages M0,M1. The challenger
picks a random b ∈ {0, 1} and sets C∗ = Encrypt(PK,Mb). It gives C∗ to the adversary.

Query phase 2. The adversary continues to issue decryption queries C as in phase 1, with
the added constraint that C 6= C∗. The challenger responds with Decrypt(SK, C).

Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

The above is commonly known as the IND-CCA2 game. We define the advantage of A in this
game as AdvCCAA(λ) = |Pr[b = b′] − 1

2 |. An encryption system is (t, q, ε)-IND-CCA2 secure if
there is no randomized algorithm A that runs in time t, makes at most q decryption queries, and
has advantage at least ε in the IND-CCA2 game.

2.2 Key Encapsulation

A Key Encapsulation Mechanism (KEM) is a cryptographic primitive whose purpose is to securely
convey a random session key to the recipient. Unlike interactive key exchange protocols such
as Diffie-Hellman, the session key is entirely determined by the random bits used by the sender.
Unlike with ordinary encryption as above, the session key is not a message that can be chosen by
the sender. Formally a KEM is modeled by three algorithms:

KeyGen(λ): Takes as input a security parameter λ ∈ Z+. It outputs a public/private key pair.

Encapsulate(PK): Takes as input a public key PK. It outputs a ciphertext and a session key.

Decapsulate(SK, C): Takes as input a private key SK and a ciphertext C. It outputs a session
key or the special symbol ⊥.

The notion of adaptive chosen ciphertext security for key encapsulation is similar to that for
encryption, except that there are no challenge messages to encrypt. Instead, in the challenge phase
the challenger flips a coin b ∈ {0, 1}, and the adversary is given a ciphertext C∗ and a string K∗,
which will be the session key encapsulated by the ciphertext if b = 1, or a random string if b = 0.
The adversary makes adaptive decapsulation queries (except on C∗, once revealed), and eventually
outputs a guess b′ for b.

We refer to this interaction as the KEM-CCA2 game, and define the advantage of A as
AdvCCAA(λ) = |Pr[b = b′] − 1

2 |. A key encapsulation system is (t, q, ε)-KEM-CCA2 secure if
there is no randomized algorithm A that runs in time t, makes at most q decapsulation queries,
and has advantage at least ε in the KEM-CCA2 game.

2.3 Asymmetric Bilinear Groups and Maps

Our constructions make use of bilinear pairings. For the sake of generality, we shall describe them
in the asymmetric bilinear group framework, which provides for two, possibly distinct, isomorphic
groups G and Ĝ, between which a bilinear map is defined. Pairing-based encryption systems
have traditionally been described in the simpler symmetric bilinear setting where these groups are
equal, although there are significant practical benefits to consider the more general case (e.g., a

5

broader choice of elliptic curve implementations, more compact ciphertexts, etc.). The security
of our systems relies on the familiar Bilinear Diffie-Hellman assumption, which we restate in the
asymmetric setting.

Let G and Ĝ be a pair of (possibly distinct) cyclic groups of large prime order p, related by
some homomorphism φ : Ĝ → G. Let g ∈ G∗ and h ∈ Ĝ∗ be generators of G and Ĝ, respectively,
such that φ(h) = g. Let e : G × Ĝ → GT be a function that maps pairs of elements in (G, Ĝ) to
elements of some group GT , where GT has order p (and is distinct from G and Ĝ). Further suppose
that:

– the maps e, φ, and the respective group operations in G, Ĝ, and GT (written multiplicatively),
are all efficiently computable;

– the map e is non-degenerate, in the sense that e(g, h) 6= 1;
– the map e is bilinear, i.e., ∀u ∈ G,∀v ∈ Ĝ,∀a, b ∈ Z, e(ua, vb) = e(u, v)ab.

Then we say that (G, Ĝ) is a bilinear group pair, and that e is a bilinear map or pairing in (G, Ĝ).

We emphasize that, in our formulation, the homomorphism φ is only used in the abstract
definitions, and not in the actual constructions or even the security reductions. The ‘asymmetry’
refers to the non-interchangeability of the arguments of the bilinear map e.

2.4 Bilinear Diffie-Hellman Assumption

The Bilinear Diffie-Hellman (BDH) problem was first proposed in the symmetric setting in [20, 8],
and later generalized to the asymmetric setting in the full version of [4]. The generalization proposed
by Boneh and Boyen differs from other proposals in that it does not require the homomorphism φ
to be efficiently computable, which gives a weaker assumption.

Thus, following Boneh and Boyen, we consider the BDH problem stated for fixed G, Ĝ, GT , e,
as follows:

Given (g, ga, gc, h, ha, hb) ∈ G3 × Ĝ3 for random a, b, c ∈ Zp, h ∈ Ĝ∗, output e(g, h)abc ∈ GT .

Notice that φ and the elements gb and hc are omitted from the statement.

Accordingly, we say that an algorithm A has advantage ε in solving the (computational) BDH
problem in (G, Ĝ) if

Pr
[
A(g, ga, gc, h, ha, hb) = e(g, h)abc

]
≥ ε

where the probability is over the random choice of generators g ∈ G and h ∈ Ĝ∗, the random choice
of exponents a, b, c ∈ Zp, and the random bits used by A.

Similarly, we say that an algorithm B that outputs b ∈ {0, 1} has advantage ε in solving the
decisional BDH problem in (G, Ĝ) if∣∣∣Pr

[
B(g, ga, gc, h, ha, hb, e(g, g)abc) = 0

]
− Pr

[
B(g, ga, gc, h, ha, hb, T) = 0

]∣∣∣ ≥ ε

where the probability is over the random choice of generators g ∈ G and h ∈ Ĝ∗, the random choice
of exponents a, b, c ∈ Zp, the random choice of T ∈ GT , and the random bits used by B.

We say that the (t, ε)-BDH or Decision (t, ε)-BDH assumption holds in (G, Ĝ) if no t-time algo-
rithm has advantage at least ε in solving the BDH or Decision BDH problem in (G, Ĝ), respectively.

6

Observe that we avoid specifying φ in the BDH problem instance by providing selected powers
of both g and h to the adversary. Indeed, providing g and ga would be unnecessary if φ had been
given. We note that, even in the general case, providing both ga and ha may seem redundant, but
it is necessary to preserve the formal equivalence between G and Ĝ; it is also harmless since given
a problem instance it is easy to tell whether (g, ga, h, ha) is a legitimate Diffie-Hellman tuple using
the bilinear map.

3 Secure Encryption from Adaptive-ID IBE

We now present our scheme which is a direct construction based off the Waters [29] identity-based
encryption scheme. We first describe our construction and then present the intuition behind its
security. The full proof will be given in the appendix.

3.1 Encryption System

Let G and Ĝ be two cyclic groups of prime order, p, between which there exists an efficiently
computable bilinear map into GT . Specifically, let e : G × Ĝ → GT denote the bilinear map, and
let g ∈ G and h ∈ Ĝ be the corresponding generators. The size p of the groups is determined by
the security parameter. We also assume the availability of some collision resistant function family
(but not necessarily one-way). Without any further assumptions, we may use any fixed injective
encoding H0 : GT × G → {0, 1}n, which by a counting argument demands that n ≥ d2 log2(p)e.
However, since the public key size and encryption time will be seen to grow linearly with n, it may
be more economical as an alternative to H0 to substitute a family of collision resistant functions
Hs : GT ×G → {0, 1}n, indexed from some finite set {s}, in which case adequate collision resistance
may be provided with an output size of only n ≈ log2(p).

The following description is written so as to provide the most compact ciphertexts under the
assumption that G’s elements have a shorter representation than Ĝ’s. An example of this is when
the bilinear map is realized as the Weil or Tate pairing on certain algebraic curves, where G and Ĝ
are subgroups of points in the ground field and in an extension field, respectively. If the converse
is true—namely, if the elements of Ĝ have the shorter representation—it suffices to exchange all
occurrences of g and h and then swap the arguments of all pairings e(·, ·) to restore the short
ciphertext property. The same trick can be used if it is desirable to minimize the private key size
rather than the ciphertext. Although this is not true in general, this trick is applicable throughout
this paper because G and Ĝ play equivalent roles in all our constructions.

The cryptosystem is described by the following three algorithms.

Key Generation: A user’s public/private key pair generation algorithm proceeds as follows.
First, a secret α ∈ Zp is chosen at random, from which the values h0 = hα and Z = e(g, h0)
are calculated. Next, the algorithm chooses a random y′ ∈ Zp and a random n-length vector
~y = (y1, . . . , yn), whose elements are chosen at random from Zp. It then calculates u′ = gy′

and ui = gyi for i = 1 to n. Finally, a random seed s for the collision resistant family is
chosen, if needed (for notational convenience, we always write Hs, and peg s = 0 whenever
the injective encoding H0 is used).

The published public key is(
s, Z = e(g, h)α, u′ = gy′ , u1 = gy1 , . . . , un = gyn

)
∈ {s} ×GT ×Gn+1,

7

and the private key is (
h0 = hα, y′, y1, . . . , yn

)
∈ Ĝ× Zn+1

p .

Encryption: A message M ∈ GT is encrypted as follows. First, a value t ∈ Zp is randomly chosen.
Next, the first two elements of the ciphertext are computed: C0 = M · Zt = M · e(g, h)αt

and C1 = gt. Next, a bit string w ∈ {0, 1}n is derived as w = Hs(C0, C1). Let w1w2 . . . wn

denote the binary expansion of w, where each bit wi ∈ {0, 1}. The final step is to compute
C2 = (u′

∏n
i=1 uwi

i)t. The complete ciphertext, C = (C0, C1, C2), consists of the three group
elements (

M · Zt, gt,
(
u′

n∏
i=1

uwi
i

)t) ∈ GT ×G2.

Decryption: Let C = (C0, C1, C2) be a ciphertext and w = Hs(C0, C1). In a well-formed cipher-
text, the quadruple (g, C1, u

′∏n
i=1 uwi

i , C2) ∈ G4 will be a Diffie-Hellman tuple, which can be
efficiently tested by the private key holder as follows.

Given a ciphertext C the algorithm first computes w = Hs(C0, C1), expressed in binary as
w1w2 . . . wn. Next, it raises C1 to the power of w′ = y′ +

∑n
i=1 yiwi mod p, and compares the

result (C1)w′
with C2. If these two values are unequal, then (g, C1, u

′∏n
i=1 uwi

i , C2) is not a
Diffie-Hellman tuple, and the algorithm outputs ⊥.

Otherwise, the ciphertext is valid, and the algorithm decrypts the message as

C0

/
e(C1, h0) = M ∈ GT .

3.2 Analogy to the Waters IBE

The above system bears a strong resemblence to Waters’ adaptive-ID semantically secure IBE [29]:
the public and private keys are essentially identical to the master public and secret parameters in
the IBE system, and the bit string w plays the role of the recipient identity.

Other than notational differences, the distinguishing feature is that the identity is not chosen
by the encryption party but determined by the first two ciphertext elements; it is this feature
that conveys our scheme its chosen ciphertext security. Additionally, all the secret exponents u′,
u1, . . . , un are retained in the private key, which allows for faster validity checking and decryption
than in the IBE system. (In practice, these exponents could be generated from a pseudo random
number generator seeded by h0 in order to reduce the cost of secure storage for the private key.)

Again, we note that while our scheme is derived from the Waters IBE scheme, an IBE private
key is never generated, since it is more efficient to decrypt directly using the “master key”.

3.3 Security

We now give the intuition for the security of our system.

As noted before a ciphertext in our scheme is essentially an IBE ciphertext where the identity
is determined from the first two elements. It is possible to generate ciphertexts this way since in
the Waters scheme only the third ciphertext element depends on the identity.

Our simulation roughly works as follows. For all decryption requests of a ciphertext C the
simulator first checks that the ciphertext is well formed. This amounts to checking the DDH

8

property, which the simulator can do without the private exponents by using the bilinear map. If
the ciphertext is well formed, the simulator creates a private key for the identity string determined
from the first two elements of the ciphertext, and uses this to decrypt the ciphertext. The simulator
will then create a challenge ciphertext C∗ = (C∗

0 , C∗
1 , C∗

2) which will be equivalent to an identity-
based encryption under the identity w∗ = Hs(C∗

0 , C∗
1). Since Hs is collision resistant (or injective),

the adversary will not be able to make any well-formed ciphertext queries that would require the
simulator to use an IBE key for the same identity string w∗. Thus, the security of our scheme
follows by virtue of the underlying IBE security. We emphasize that even though C2 acts only as
a checksum in the regular decryption algorithm, it plays an active role in the decryption process
conducted by the simulator.

We remark that the above argument is not a generic reduction from the underlying IBE. The
problem is that in the challenge phase of the IBE game, the adversary is allowed to choose the iden-
tity it wants to attack, whereas here it is the challenge ciphertext itself that determines the target
identity w∗. Additionally, we note that since C∗

0 depends partially on input from the adversary;
the value of w∗ = Hs(C∗

0 , . . .) cannot be determined at setup time by the simulator as in previous
IBE-to-CCA2 transformations such as CHK [11] and BK [9]. This is the reason why our system
is based on adaptive-identity secure IBE (although we will see in Section 4 that selective-identity
secure IBE is enough if we forgo direct encryption and meander through key encapsulation).

Formally, we have the following result, stated for the fixed injective encoding implementation for
simplicity. Since the formal argument for CCA2 security very much resembles that of Waters [29]
for adaptive-ID security, we defer the proof to the full paper.2

Theorem 3.1. Suppose the (t′, ε′)-Decision BDH assumption holds in (G, Ĝ), and assume that
H0 : GT × G → {0, 1}n is an efficiently computable injection for some n. Then the encryption
system of Section 3.1 is (t, q, ε)-chosen ciphertext (IND-CCA2) secure for any q < p provided that
ε ≥ 32(n+1)qε′ and t ≤ t′−Θ(ε−2 ln(ε−1)λ−1 ln(λ−1)), where λ = 1

8(n+1)q , and where it is assumed
that each exponentiation, pairing, and evaluation of H0 takes constant time.

3.4 Efficiency

Encryption in our scheme requires requires one exponentiation in GT , two exponentiations in G,
and an average of n/2 (at most n) group operations in G which amount to much less than an
exponentiation. If the encryption party is to send multiple messages under the same public key,
then all but one of the above exponentiations can be greatly accelerated by using many well-known
pre-computation techniques for fixed-base exponentiation. (In the same vein, the product

∏
uwi

i

can also be pre-computed and cached factor-by-factor or using fixed-sized windows.)

Decryption requires one exponentiation in G and one bilinear pairing into GT .

4 Tight Key Encapsulation from Selective-ID IBE

It is easy to turn our CCA2-secure encryption system into a CCA2-secure Key Encapsulation
Mechanism (KEM). However, we can get a simpler construction with a tight security reduction if
we take the lesser requirements of the KEM to our advantage and start from the Boneh-Boyen
IBE [4].

2Instead, we give a formal proof for the simpler and equally informative KEM construction of the next section.

9

4.1 KEM Construction

As before, we let G and Ĝ be cyclic groups of prime order, p, generated by g and h, and equipped
with a bilinear map e : G× Ĝ → GT . We also assume the availability of either a collision resistant
family Hs : G → Zp or a fixed injective encoding H0 : G → Zp. Notice that unlike in Section 3 this
time the domain of Hs or H0 is just G, and the range is now Zp. As before we assume that the
elements of G have at least as small a representation as those of Ĝ. The key encapsulation scheme
is described by the following three algorithms.

Key Generation: A user’s public/private key pair generation algorithm proceeds as follows.
First, a secret α ∈ Zp is chosen at random, from which the values h0 = hα and Z = e(g, h0)
are calculated. Next, the algorithm chooses y1 and y2 at random from Zp. It then calculates
u1 = gy1 and u2 = gy2 . Finally, a random seed s for the collision resistant family is chosen, if
needed (for convenience, we assume that s = 0 whenever the fixed encoding H0 is used).

The published public key is(
s, Z = e(g, h)α, u1 = gy1 , u2 = gy2

)
∈ {s} ×GT ×G2,

and the private key is (
h0 = hα, y1, y2

)
∈ Ĝ× Z2

p.

Encapsulation: The generation and encapsulation of a random session key works as follows.
First, a value t ∈ Zp is randomly chosen, and the algorithm computes the first element of
the ciphertext: C1 = gt. Next, it computes w ∈ Zp as w = Hs(C1), and then the second
ciphertext element: C2 = ut

1u
tw
2 = (u1u

w
2)t. The complete ciphertext, or encapsulated key, C,

consists of the two group elements(
gt, ut

1u
tw
2

)
∈ G2.

The session key, K, is calculated by the sender as the group element K = Zt = e(g, h)αt ∈ GT .

Decapsulation: Let C = (C1, C2) be a ciphertext encapsulating some session key K. Before
recovering K, the algorithm must verify that the ciphertext is legitimate. To do so, the
algorithm computes w = Hs(C1) and w′ = y1 + y2 · w (mod p). It then computes Cw′

1 and
compares it with C2. If these two values are unequal, then (g, C1, u1u

w
2 , C2) is not a Diffie-

Hellman tuple and the ciphertext is invalid. In this case, the algorithm outputs ⊥ and halts.
Otherwise, the algorithm outputs the session key, K, which it obtains by computing

e(C1, h0) = K ∈ GT .

4.2 Analogy to the Boneh-Boyen IBE

The encapsulation algorithm may be viewed as a variant of encryption where the message to be
encrypted is the constant M = 1 ∈ GT . With M = 1, the first ciphertext component would be
C0 = M · Zt, which reduces to the random blinding factor Zt. For key encapsulation, we suppress
this component from the ciphertext output, and instead use it as the randomly generated session
key K.

Aside from the fact that the above algorithms provide only key encapsulation rather than true
encryption, the system bears the same relation to Boneh and Boyen’s selective-ID semantically

10

secure IBE [4] as the system of Section 3.1 did to Waters’ IBE. The two differ mainly in the
construction of the checksum component C2, and the related changes to the public and private
keys, as in one case the hashed identity is used bit by bit and all at once in the other case.

It is easy to hash elements of G to Zp using a family of collision resistant functions Hs. A
difficulty arises in the case where we wish to use a fixed injective encoding H0. Since |G| = |Zp| = p,
it follows that H0 should be an (efficiently computable) bijection, which might not be easy to come
by. In reality, we only need H0 to be injective on most of its domain, as long as we exclude the
rest by using an iterated hashing strategy until we hit the adequate portion of the domain. We
describe how to do this in a couple of concrete elliptic curve implementations in Appendix C.

4.3 Generalized Identity Hashing

A more general way to enable the use of a fixed injective encoding H0 is to generalize the identity-
dependent function in the underlying Boneh-Boyen IBE. Specifically, we can replace all occurrences
of (u1 · uw

2) by (u1 · uw1
2,1u

w2
2,2 · · ·u

wν
2,ν), where w = (w1, w2, . . . , wν)b is the representation of the

“identity” w in radix p (or some fixed radix p′ ≤ p), and u2,1, . . . , u2,ν are random elements of G
we add to the public key. We then select an injection H0 : G → (Zp)ν , which for large enough ν is
trivial to construct. The modifications to the scheme and the security reduction are straightforward.

Note that we did essentially the same thing in Section 3 but with p′ = 2. Here, since p′ ≈ p,
the number ν of group elements in the public key is significantly smaller than its counterpart n in
Section 3 (and the underlying Waters IBE scheme); specifically, we save a factor n

ν ≈ log2 p.

4.4 Security and Efficiency

The security reasoning is similar to that of the encryption system, with one important difference.
Since with key encapsulation there is no message to encrypt, the challenge ciphertext given to the
adversary in the attack game does not depend on input from the adversary. Since the simulator
can choose ahead of time the randomization value t∗ to be used in the challenge ciphertext, it
can therefore determine (in IBE parlance) the challenge “identity” w∗ = Hs(C1) = Hs(gt∗) before
interacting with the adversary. This brings us in a similar situation as in the selective-identity IBE
proof of security of the Boneh-Boyen system, which is the reason why we are able to construct a
KEM using just the equivalent of a selective-ID IBE system.

The security of the KEM follows from that C2 is functionally dependent on C1 via w. The first
role of C2 is thus to act as a checksum preventing the adversary from making decryption queries
on algebraic transformations of the C1 component of the challenge ciphertext. As before, C2 has
a second role, which is to help the simulator answer decryption queries (except on the challenge
ciphertext), by way of the underlying IBE system.

A crucial point to note is that, in the Boneh-Boyen IBE, C1 is based on a generator g that in the
simulation is passed on unchanged to the adversary and does not depend on the target identity.3 In
the KEM, this translates into a chain of maps C1 7→ w 7→ C2 that are preserved in the simulation,
and allow the challenge ciphertext to be constructed without cyclic dependencies.4

3This would not be true of the second Boneh-Boyen IBE (based on the BDHI assumption) [4, §5], in which the
simulator alters the generator given to the adversary in function of the challenge identity.

4Stated differently, our KEM exploits the fact that the first Boneh-Boyen IBE (based on BDH) is secure against an
adversary that may postpone the choice of target ID until the challenger has output “some” of the public parameters.
In the usual selective-ID security model, the adversary much make that choice at the onset of the attack.

11

Precisely, we have the following result, stated in the context of a fixed encoding for simplicity.
The formal proof of security is given in Appendix B.

Theorem 4.1. Suppose the (t′, ε′)-Decision BDH assumption holds in (G, Ĝ), and let H0 : G → Zp

be an efficiently computable injection. Then the KEM system of Section 4.1 is (t, q, ε)-chosen
ciphertext (KEM-CCA2) secure for any q < p, any ε ≥ ε′ + q/2p, and any t ≤ t′ − Θ(q), where it
is assumed that each exponentiation, pairing, and evaluation of H0 takes unit time.

Proof. See Appendix B.

In terms of efficiency, the encapsulation algorithm requires one exponentation in G and one
multi-exponentiation in G. Decapsulation requires one exponentiation in G and one bilinear map.

In summary, compared to the encryption system, the key encapsulation scheme benefits from
these advantages:

• Tight security reduction from the BDH assumption, since the Boneh-Boyen IBE has tight
security in selective-identity attacks;

• Shorter public and private keys, requiring only O(1) components, by contrast to the O(n)
group elements needed in the encryption system.

4.5 From KEM to Full Encryption

Naturally, once we have a KEM, it is easy to obtain a full encryption system, where the sending
party can choose the message it wishes to transmit. This can be done with a hybrid system where
the KEM key is used as a session key for a symmetric cipher with a chosen ciphertext secure
mode of operation (itself possibly constructed using a MAC). The benefit of this construction is
that it retains the tight security reduction of our KEM. The drawback is that the symmetric cipher
requires additional randomness, and for short messages will result in longer ciphertexts overall than
our direct encryption system of the previous section.

5 Practical Extensions

We now describe a few extensions to the encryption and encapsulation schemes of Sections 3 and 4.

5.1 Public Validity Testing

Recall that in both systems, the decryptor needs to verify the ciphertext before attempting to
decrypt or decapsulate it. In our descriptions, this test is efficiently performed using a single
exponentiation in G, but requires knowledge of the private key (the exponents y′, y1, . . . , yn in the
encryption system, or the exponents y1, y2 in the KEM).

In the encryption system of Section 3.1, for example, if the public key had included the Ĝ-
elements hy′ , hy1 , . . . , hyn in addition to the G-elements u′, u1, . . . , un, then the validity test could
have been performed publicly, using additional applications of the bilinear map, by testing whether
the following ratio of bilinear pairings equals the identity element in GT :

e
(
C1, (hy′)

∏n
i=1(hyi)wi

)
e(C2, h)

?= 1.

12

Since under such modification the ciphertext validity test does no longer require the private key,
we refer to it as the public validity testing variant. The principle is the same for the KEM scheme.

Public validity testing still results in chosen ciphertext security,5 but it requires a lengthier
public key. It also increases the decryption burden by an amount of work comparable to a pairing
computation (the public test depends on the computation of a ratio of two pairings, which, in the
case of the Weil and Tate pairings can be done almost as efficiently as a single pairing, by modifying
Miller’s algorithm in a manner akin to multi-exponentiation [23]). Public validity testing is used
below in the direct construction of a provably CCA2-secure non-interactive threshold system.

5.2 Threshold Decryption

A k-out-of-m threshold public key encryption system is one that allows the private key to be divided
up into m shares; each share can then be used to obtain a partial decryption of any given ciphertext,
in such a way that the decrypted message can be reconstituted using any k partial decryptions. In
a non-interactive threshold system, no communication is needed amongst the k parties performing
the partial decryptions, other than their (independent) transmission of the decryption shares to
the entity that performs the final reconstitution.

Existing CCA2-secure threshold systems in the standard model, due to Canetti and Gold-
wasser [12], are based on the Cramer-Shoup system [13]; their system requires interaction between
the decryption parties, due to the fact that in the Cramer-Shoup system only parties possessing the
private key can check ciphertext validity, which makes threshold decryption non-trivial. Boneh and
Boyen [4] and Canetti, Halevi, and Katz [11] recently suggested (without details) to use the BB
scheme in combination with the CHK transformation to construct non-interactive CCA2 threshold
cryptosystems without random oracles; the details of such a construction were recently worked
out in [6]. Their approach starts from the Boneh-Boyen IBE system, suitably modified to provide
threshold private key generation; it is then generically transformed into a CCA2-secure threshold
public key system using a generalization of the CHK conversion, taking advantage of the fact that
in the conversion anyone can check that a ciphertext is valid.

By contrast, we propose a direct approach that trades generality for even more efficiency. Indeed,
by applying a simple secret sharing scheme to either the encryption system of Section 3 or the KEM
of Section 4, and using the public validity test of Section 5.1, we directly obtain a CCA2-secure
non-interactive threshold system in the standard model. Although this approach bears a lot of
resemblance to the threshold system from [5] due to its roots in identity-based techniques, we are
able to sidestep the generic IBE-to-CCA2 conversion (and the signing step it requires) by virtue of
the inherently chosen ciphertext security of our underlying public-key construction.

A detailed construction of the key encapsulation version of the threshold system may be found
in Appendix D.

5.3 Hierarchical Identity-Based Encryption and (H)IB-KEM

Since our constructions are based on the Waters and Boneh-Boyen IBE systems, both of which
support hierarchical key generation [19, 18], a natural question to ask is whether the same approach
can be applied to directly obtain CCA2-secure HIBE systems without having to resort to use a

5The feasibility of public testing is actually essential to chosen ciphertext security with our approach, since the
simulator relies on it to properly answer the decryption queries in the proofs of security (see, e.g., Appendix B).

13

signature, a MAC, or any other manner of exogenous integrity check.

It is easy to see that we obtain the desired result very simply, by extending the hierarchy in
either HIBE construction by one level, and setting the “identity” for that last level to be the hash
value of the previous ciphertext components. This gives us (in the Waters case) an adaptive-identity
CCA2-secure HIBE, and (in the Boneh-Boyen case) a selective-identity CCA2-secure HIB-KEM.

With a twist, the same approach can be also used with the constant size ciphertext HIBE
recently proposed by Boneh, Boyen, and Goh [5]. One of the features of their system is that it is
algebraically compatible with the Boneh-Boyen (H)IBE; indeed its authors show how to design a
hybrid of the two systems. In such a hybrid, it is straightforward to design the last level of the
hierarchy to be a “Boneh-Boyen” level, and use it for our “checksum” construction. This results in
a selective-identity, CCA2-secure hierarchical identity-based KEM with short ciphertexts.

6 Discussion and Comparisons

In this section we draw comparisons between our scheme and the other CCA2-secure encryption
schemes built from identity-based encryption. Additionally, we describe qualatative differences
between the methods of deriving a CCA2-secure encryption scheme from IBE and previous methods
that fit under the two-key paradigm as described by Elkind and Sahai [16].

We begin by examining the commonalities between the three CCA2-secure schemes derived
from IBE: CHK [11], BK [9] and ours. All three techniques follow a similar method in their
proof simulation. After the setup phase there are a certain set of well-formed ciphertexts that
the simulator can decrypt corresponding to “identities” that the simulator knows the private keys
for. The simulator is unable to decrypt the remainder of the well-formed ciphertexts; these can
therefore be used as challenge ciphertexts in the simulation. These ciphertexts that the simulator
cannot decrypt correspond to identities for which the simulator does not know the private key.

All three IBE-like methods are fundamentally different from those that fit under the two-key
paradigm [16], where a ciphertext consists of the dual encryption of the same message, accompanied
with some non-interactive zero-knowledge proof that the two messages are the same. In these
systems, the simulator always possesses one of the two keys, and is thus able to decrypt all well-
formed ciphertexts by decrypting one or the other component. Consequently, the adversary must
be challenged on a ciphertext that is not well formed. Using this type of simulation, clearly an
adversary must not be able to tell whether a ciphertext is well formed or not; otherwise, the
adversary could distinguish the challenge ciphertext from a normal one. In contrast, challenge
ciphertexts in IBE-like schemes are always well formed, and (except in BK) anyone is able to tell.

We now focus on the differences between the IBE-like constructions. We just saw that in these,
there are a small fraction of ciphertexts that the simulator cannot decrypt, which correspond to a
set for which the simulator cannot generate private keys; these identities form the “challenge set”.

In the CHK and BK schemes, the challenge set corresponds to a single identity. The well-formed
ciphertexts are defined to be all ciphertexts that include a valid signature (or MAC) on the rest of
the ciphertext, which the simulator uses to check that query ciphertexts are well formed. Thus, the
simulator has to arrange for the identity in the challenge set to match the identity that corresponds
to the challenge it wishes to craft. In both CHK and BK, this is done “externally” by letting the
identity depend on a MAC or signature key.

In our full encryption scheme, the challenge set of identities, for which the simulator does not

14

PKE & Ciphertext overhead Encryption operations Decryption opers. General- Threshold
KEM (#bits, extras...) (#pairings, [m-exp, r-exp, f-exp]:[w/o pre-comp], ...) ity decryption

KD (kem) 2|p| (+hybr. redund.) 0, [0, 0, 4]:[1, 2, 0] 0, [1, 0, 0] — —
CHK/BB1 2|p|, verific. key, sig. 0, [0, 0, 4]:[1, 2, 0], Sign 1, [1, 0, 0], Verify ∀ ibe X
CHK/BB2 2|p|, verific. key, sig. 0, [0, 0, 4]:[1, 2, 0], Sign 1, [0, 1, 1], Verify ∀ ibe X
BK/BB1 2|p|, commitm., mac 0, [0, 0, 4]:[1, 2, 0] 1, [1, 0, 0] ∀ ibe —
BK/BB2 2|p|, commitm., mac 0, [0, 0, 4]:[1, 2, 0] 1, [0, 1, 1] ∀ ibe —
§3: PKE 2|p| 0, [0, 1, 2+1†]:[0, 3+1‡, 0] 1, [0, 1, 0] — X
§4: KEM 2|p| 0, [0, 0, 4]:[1, 2, 0] 1, [0, 1, 0] — X
† With pre-computation, the subset product in §3 can be computed as efficiently as a fixed-base exponentiation.

‡ Without pre-computation, the subset product in §3 is comparable to a regular exponentiation.

Table 1: Summary of the aspects of the various CCA2-secure PK systems from IBE. When applicable, both
the encryption and KEM are considered together. The CHK [11] and BK [9] methods are each instianted with
the main and second Boneh-Boyen IBE schemes (BB1 and BB2) from [4]. The Kurosawa-Desmedt (KD) [21]
KEM/DEM hybrid system is also listed for reference; it incurs some symmetric-key encryption overhead that
should be excluded for comparison purposes. In determining overheads, the size of any message is discounted
to place encryption and KEM on equal footing. In counting numbers of operations, exponentiations are
allocated optimally between regular exponentiations, multi-exponentiations, and exponentiations to a fixed
base, with increasing preference. Tallies that exclude fixed bases are listed to capture situations where pre-
computations are impractical for encryption. Indicative relative timings for the common operations follow:
pairing ≈ 2–5, multi-exponentiation ≥ 1.5, regular exponentiation ≡ 1, fixed-base exponentiation � 0.2.

know the private keys, is larger. Also, rather than being dependent on a MAC or signature key, the
encryption identity is derived from the first two elements of the ciphertext. In our KEM scheme,
we are back to using a challenge set containing a single identity, but instead of using an external
MAC or signature key to select that identity independently of the adversary input, we simply relax
the encryption to a key encapsulation. In both cases, a well-formed ciphertext is one whose some
of the components (including the one that depends on the identity) form a Diffie-Hellman tuple,
which can be easily checked by the simulator using the bilinear map.

Essentially we are able to take advantage of specific properties of the Waters and Boneh-Boyen
IBE constructions, respectively, to test ciphertexts for being well formed without any additional
overhead without having to rely on an external integrity check (such as a signature, a MAC, or an
auxiliary symmetric encryption component in a hybrid system). However, since we take advantage
of the algebraic properties of the underlying IBE scheme, without actually constructing a true
identity-based ciphertext, our approach is not generic.

To wrap up, we have summarized in Table 6 a performance comparison between PK systems
and KEMs constructed using either of the three methods. The table borrows some figures from
Boneh et al. [7], and also includes the Kurosawa-Desmedt [21] hybrid system for reference.

7 Conclusions

We described a CCA2-secure encryption system and a CCA2-secure key encapsulation mechanism
respectively based off the identity-based encryption schemes of Waters, and Boneh and Boyen. Our
method takes advantage of special properties of these systems that we use to improve upon previous
CCA2-secure systems constructed from identity-based encryption schemes [11, 9]. In particular,
we showed that our schemes have advantages in terms of simplicity, ciphertext size, and decryption
time, and are well suited for threshold cryptography.

15

Acknowledgments

The authors wish to thank Eike Kiltz and the anonymous ACM CCS referees for helpful comments.

References

[1] Masayuki Abe, Rosario Gennaro, Kaoru Kurosawa, and Victor Shoup. Tag-KEM/DEM: A new
framework for hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In Advances
in Cryptology—EUROCRYPT 2005, volume 3494 of LNCS, pages 128–146. Springer-Verlag,
2005.

[2] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order.
Cryptology ePrint Archive, Report 2005/133, 2005. http://eprint.iacr.org/.

[3] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM Conference on Computer and Communications Security—CCS
1993, pages 62–73, 1993.

[4] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without
random oracles. In Advances in Cryptology—EUROCRYPT 2004, Lecture Notes in Computer
Science. Springer Verlag, 2004.

[5] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with
constant size ciphertext. In Advances in Cryptology—EUROCRYPT 2005, volume 3494 of
LNCS, pages 440–456. Springer-Verlag, 2005.

[6] Dan Boneh, Xavier Boyen, and Shai Halevi. Chosen ciphertext secure public key threshold
encryption without random oracles. In Proceedings of RSA-CT 2006. Springer-Verlag, 2006.
To appear. Available at http://crypto.stanford.edu/~dabo/abstracts/threshold.html.

[7] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from
identity-based encryption, 2005. Journal submission. Available at http://crypto.stanford.
edu/~dabo/papers/ccaibejour.pdf.

[8] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In
Advances in Cryptology—CRYPTO 2001, pages 213–229. Springer-Verlag, 2001.

[9] Dan Boneh and Jonathan Katz. Improved efficiency for CCA-secure cryptosystems built using
identity based encryption. In Proceedings of RSA-CT 2005. Springer-Verlag, 2005.

[10] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme.
In Advances in Cryptology—EUROCRYPT 2003. Springer-Verlag, 2003.

[11] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based
encryption. In Advances in Cryptology—EUROCRYPT 2004. Springer-Verlag, 2004.

[12] Ron Canetti and Shafi Goldwasser. An efficient threshold public key cryptosystem secure
against adaptive chosen message attack. In Advances in Cryptology—EUROCRYPT 1999,
volume 1592 of LNCS, pages 90–106. Springer-Verlag, 1999.

16

[13] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Advances in Cryptology—CRYPTO 1998, volume 1462
of LNCS, 1998.

[14] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In Advances in Cryptology—EUROCRYPT 2002,
volume 2729 of LNCS, pages 45–64, 2002.

[15] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. In ACM Sym-
posium on Theory of Computing—STOC 1991, pages 542–552. ACM Press, 1991.

[16] Edith Elkind and Amit Sahai. A unified methodology for constructing public-key encryption
schemes secure against adaptive chosen-ciphertext attack. Cryptology ePrint Archive, Report
2002/042, 2002. http://eprint.iacr.org/.

[17] Rosario Gennaro, Stanis law Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key
generation for discrete-log based cryptosystems. In Advances in Cryptology—EUROCRYPT
1999, volume 1592 of LNCS, pages 295–310. Springer-Verlag, 1999.

[18] Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In Advances in
Cryptology—ASIACRYPT 2002, 2002.

[19] Jeremy Horwitz and Ben Lynn. Towards hierarchical identity-based encryption. In Advances
in Cryptology—EUROCRYPT 2002, pages 466–81, 2002.

[20] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. Journal of Cryptology,
17(4):263–276, 2004.

[21] Kaoru Kurosawa and Yvo Desmedt. A new paradigm of hybrid encryption scheme. In Advances
in Cryptology—CRYPTO 2004, LNCS, pages 426–442. Springer-Verlag, 2004.

[22] Leslie Lamport. Constructing digital signatures from a one-way function. Technical Report
CSL-98, SRI International, Palo Alto, 1979.

[23] Victor Miller. The Weil pairing, and its efficient calculation. Journal of Cryptology, 17(4),
2004.

[24] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In ACM Symposium on Theory of Computing—STOC 1990, pages 427–437, 1990.

[25] Charles Rackoff and Daniel Simon. Non-interactive zeroknowledge proof of knowledge and
chosen ciphertext attack. In Advances in Cryptology—CRYPTO 1991, volume 576 of LNCS.
Springer-Verlag, 1991.

[26] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext
security. In IEEE Symposium on Foundations of Computer Science—FOCS 1999, 1999.

[27] Victor Shoup. Using hash functions as a hedge against chosen ciphertext attack. In Advances
in Cryptology—EUROCRYPT 2000, LNCS, pages 275–288. Springer-Verlag, 2000.

[28] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against chosen cipher-
text attack. Journal of Cryptology, 15(2):75–96, 2002.

[29] Brent Waters. Efficient identity based encryption without random oracles. In Advances in
Cryptology—EUROCRYPT 2005, Lecture Notes in Computer Science. Springer Verlag, 2005.

17

A Security Proof Sketch for the Encryption Scheme

We now sketch the proof of Theorem 3.1, considered for simplicity in the case where a fixed injective
encoding H0 : GT ×G → {0, 1}n is used.

Proof sketch. Suppose there exists a (t, q, ε)-adversary A against our scheme. We construct a
simulator, B, to play the decisional BDH game. The simulator takes as input a BDH challenge
(g, ga, gc, h, ha, hb, T) ∈ G3 × Ĝ3 × G × GT , that is sampled either from the distribution of “true”
instances, PBDH , in which T = e(g, h)abc, or from the distribution of “false” instances, RBDH ,
in which T is uniform and independent in GT . The output of the simulator is a guess, β′, as to
whether the challenge is a BDH tuple. The simulator runs A executing the following steps.

Setup. The hash index s is fixed to s = 0 since we have assumed a fixed injective encoding H0.
To generate a key pair, the simulator first sets an integer, m = 4q, and chooses an integer, k,
uniformly at random between 0 and n. It then chooses a random n-length vector, −→x = (xi),
where the elements of −→x are chosen uniformly at random from the integers between 0 and
m− 1 and a value, x′, chosen uniformly at random between 0 and m− 1. Let X∗ denote the
pair (x′,−→x) Additionally, the simulator chooses a random y′ ∈ Zp and an n-length vector,
−→y = (yi), where the elements of −→y are chosen at random in Zp. These values are all kept
internal to the simulator.

For a bit string w ∈ {0, 1}n as returned by Hs, we will let W ⊆ {1, . . . , n} be the set of all
i for which the i-th bit wi = 1. For ease of analysis we define three functions. We define
F (v) = (p−mk) + x′ +

∑
i∈W xi and define J(v) = y′ +

∑
i∈W yi. Finally, we define a binary

function K(v) as

K(v) =

{
0, if x′ +

∑
i∈W xi ≡ 0 (mod m)

1, otherwise.

The simulator assigns g1 = ga and g2 = gb (recall it does not know a or b). It then assigns the
public parameters u′ = gp−km+x′

2 gy′ and ui = gxi
2 gyi for i = 1, . . . , n. From the perspective of

the adversary the distribution of the public parameters is identical to the real construction.

For future internal use, the simulator also assigns h1 = ha and h2 = hb, and computes
v′ = hp−km+x′

2 hy′ and vi = hxi
2 hyi for i = 1, . . . , n.

Phase 1. The adversary, A, will issue decryption queries. Suppose the adversary issues a query for
a ciphertext C = (C0, C1, C2). The simulator determines w = Hs(C0, C1). If K(w) = 0 the
simulator aborts and randomly chooses its guess β′ of the challenger’s value β. Otherwise, the
simulator chooses a random r ∈ Zp. Using the technique described by Boneh and Boyen [4]
it constructs the “private key”, d, that corresponds to the “identity”, w, as

d = (d1, d2) =

(
g
−J(v)
F (w)

1 (u′
∏
i∈W

ui)r, g
−1

F (w)

1 gr

)
.

We note that for r̃ = r − a
F (w) , we have

d1 = g
−J(v)
F (v)

1 (u′
∏
i∈v

ui)r = ga
2(u′

∏
i∈V

ui)r̃, d2 = g
−1

F (v)

1 gr = gr̃.

18

This simulator will be able to perform this computation iff F (v) 6= 0 mod p. For ease
of analysis the simulator will only continue (not abort) in the sufficient condition where
K(v) 6= 0. (If we have K(v) 6= 0 this implies F (v) 6= 0 mod p since we can assume p > nm
for any reasonable values of p, n, and m).

Finally, the simulator responds to the decryption query with

M = C0 · e(C2, d2)
/
e(C1, d1).

Challenge. The adversary next will submit two messages M0,M1 ∈ GT . The simulator flip
a fair coin, γ, and constructs the first two elements of the challenge: C∗

0 = T · Mγ and
C∗

1 = gc (which was part of the tuple initially given to the simulator). It then evaluates
w∗ = Hs(C∗

0 , C∗
1). If x′ +

∑
i∈W∗ xi 6= km, the simulator aborts and submits a random

guess for β′. Otherwise, we have F (w∗) ≡ 0 (mod p) and the simulator computes the third
ciphertext element: C∗

2 = CJ(v∗). It outputs the challenge ciphertext

C∗ = (C∗
0 , C∗

1 , C∗
2).

We note that C∗ is a valid encryption of Mγ if the simulator was given a BDH tuple. Other-
wise, C∗ is independent of γ in the adversary’s view.

Phase 2. The simulator responds to further decryption queries on any ciphertext C 6= C∗ using
the same method it used in Phase 1.

Guess. Finally, the adversary A outputs a guess γ′ of γ.

Artificial Abort. At this point the simulator is still unable to use the output from the adversary.
An adversary’s probability of success could be correlated with the probability that the simu-
lator needs to abort. This stems from the fact that two different sets of q private key queries
may cause the simulator to abort with different probabilities.

The simulator corrects for this by forcing all possible sets of queries of the adversary to cause
the simulator to abort with (almost) the same probability (1-λ), where (1-λ) is a lower bound
on any set of private key queries causing an abort before this stage.

Let −→w = w1, . . . wq denote the “identities” corresponding to the decryption queries made in
Phase 1 and Phase 2. Let w∗ denote the challenge identity and let W∗ ⊆ {1, . . . , n} be the set
of all i for which w∗

i = 1. (All of these values are defined at this point in the simulation.) First,
we define the function τ(X ′,−→w , w∗), where W ′ is a set of simulation values x′, x1, . . . , xn, as

τ(X ′,−→w , w∗) =

{
0, if (

∧q
i=1 K(wi) = 1) ∧ x′ +

∑
i∈W∗ xi = km

1, otherwise.

The function τ(X ′,−→w , w∗) will evaluate to 0 if the private key and challenge queries −→w , w∗ will
not cause an abort for a given choice of simulation values, X ′. We can now consider the prob-
ability over the simulation values for a given set of queries, −→w , w∗, as η = PrX′ [τ(X ′,−→w , w∗) =
0].

The simulator samples O(ε−2 ln(ε−1)λ−1 ln(λ−1)) times the probability η by choosing a ran-
dom X ′ and evaluating τ(X ′,−→w , w∗) to compute an estimate η′. We emphasize that the
sampling does not involve running the adversary again. Let λ = 1

8nq , be the lower bound on

19

the probability of not aborting for any set of queries. (We show how to calculate λ below.)
Then if η′ ≥ λ the simulator will abort with probability η′−λ

η′ (not abort with probability λ
η′)

and take a random guess β′. Otherwise, the simulator will not abort.

Output. If the simulator has not aborted at this point it will take check to see if the adversary’s
guess, γ′ = γ. If γ′ = γ then the simulator outputs a guess β′ = 1, otherwise it outputs β = 0.

This concludes the description of the simulator. By analogy with the simulator in the Waters IBE
scheme, we refer to [29] for the derivation of the claimed bounds.

B Security Proof for the Key Encapsulation Scheme

We now prove Theorem 4.1 by showing a (tight) reduction from Decision BDH to the KEM security.
For simplicity, we consider the case where a fixed injective encoding H0 : G → Zp is used. (With
the collision resistant family Hs, one would add a correcting term ε′′ to account for the collision
probability.)

We start with the definition of the KEM-CCA2 attack, which was omitted from Section 2.2.

Setup. The challenger runs KeyGen(λ) to obtain a random instance of public and private
key pair (PK,SK). It gives the public key to the adversary.

Query phase 1. The adversary adaptively issues decapsulation queries C where C ∈ {0, 1}∗.
The challenger responds with Decapsulate(SK, C).

Challenge. The adversary signals that it is ready to be challenged. The challenger runs
Encapsulate(PK) to obtain a ciphertext C∗ and a session key K†. It then picks a random
b ∈ {0, 1}. If b = 1 it sets K∗ = K†, otherwise it sets K∗ to a random session key of
equal length. It gives C∗ and K∗ to the adversary.

Query phase 2. The adversary continues to issue decapsulation queries C as in phase 1, with
the added constraint that C 6= C∗. The challenger responds with Decapsulate(SK, C).

Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

Proof of Theorem 4.1. Suppose A has advantage ε in attacking the KEM. We build an algorithm
B that solves the Decision BDH problem in (G, Ĝ) with advantage ε′ ≥ (ε− q/2p). Algorithm B is
given as input a random 7-tuple (g, ga, gc, h, ha, hb, T) ∈ G3× Ĝ3×GT , that is sampled either from
the distribution of “true” instances, PBDH , where T = e(g, h)abc, or from the distribution of “false”
instances, RBDH , where T is uniform and independent in GT . Algorithm B’s goal is to output 1 if
T = e(g, h)abc and 0 otherwise. Algorithm B works by interacting with A in an KEM-CCA2 game
as follows:

Setup. The hash index s is fixed to s = 0 since we have assumed a fixed injective encoding H0.
To generate a key pair, the simulator B starts by calculating w∗ = Hs(gc) from the given gc.
Then, B selects a random δ ∈ Zp and defines

u1 = (ga)−w∗
gδ ∈ G, u2 = (ga) ∈ G,

v1 = (ha)−w∗
hδ ∈ Ĝ, v2 = (ha) ∈ Ĝ,

Z = e(ga, hb) ∈ GT .

20

The simulator B gives to A the public key:
(
s, Z, u1, u2

)
. The corresponding private key is

(h0 = hab, y1 = δ − aw∗, y2 = a), although B cannot compute any of its components.

Phase 1. The adversary A issues up to q decapsulation queries, one at a time. Consider a query
for a ciphertext C = (C1, C2), and let w = Hs(C1). Algorithm B first determines whether
the ciphertext is valid, by checking that, in the group GT ,

e(C1, v1v
w
2)
/

e(C2, h) ?= 1.

If the equality does not hold, then the ciphertext is invalid and B responds to the query with
⊥. Otherwise, the ciphertext is valid, thus C = (C1, C2) = (gt, ut

1u
tw
2) for some unknown

t ∈ Zp.

If w = w∗, then B is unable to respond; in this case, B terminates the simulation with A,
outputs a random bit b ∈ {0, 1}, and halts. If instead w 6= w∗, it computes, in the group GT ,

K =
e
(
C1, (hb)

−δ
w−w∗ v1v

w
2

)
e
(
C2, (hb)

−1
w−w∗ h

) =

(
e(g, h)δ+a(w−w∗)−b δ

w−w∗

e(g, h)δ+a(w−w∗)−b δ
w−w∗−ab w−w∗

w−w∗

)t

= e
(
g, h

)abt = Zt.

The simulator B responds to the query with K, which is the decapsulated session key.

Challenge. When A decides that Phase 1 is over, it signals to B that it is ready to accept the
challenge. In response, B gives A the ciphertext C∗ =

(
gc, (gc)δ

)
∈ G2 and the session key

K∗ = T ∈ GT .

Notice that the challenge ciphertext is valid since C∗ = (gc, uc
1u

cw∗
2) for w∗ = Hs(gc). The

corresponding randomization exponent, c, is unknown to B. The challenge session key, K∗,
will be valid when T = e(g, h)abc, that is, when B’s input is sampled from PBDH ; otherwise,
when B’s input is sampled from RBDH , then K∗ is independent of C∗ in the adversary’s view.

Phase 2. The adversary A continues to issue any remaining queries from its original quota of q.
The simulator B responds as in Phase 1.

Guess. Finally, A outputs a guess b′ ∈ {0, 1}, where b′ = 1 is a guess that K∗ is the correct key.
Algorithm B concludes its own game by forwarding b′ as its own output b, where b = 1 means
that it guesses that T = e(g, h)abc.

To conclude, we observe that as long as the simulator does not abort, the adversary’s view in the
simulation is identical to its view in a real attack. By our hypothesis A must make a correct guess
with probability at least 1

2 + ε. Since for q distinct queries the simulator aborts with probability
q/p, and when this happens makes a wrong guess with probability 1

2 , it follows that B’s success
probability in its own game at least 1

2 +ε− q
2p . Therefore, B’s advantage in the Decision BDH game

is (ε− q/2p) ≥ ε′, which completes the proof of the theorem.

C Concrete Injective Encodings on Curves

We now briefly revisit the issue of devising an efficiently computable injective encoding H0 for the
schemes of Sections 3 and 4.

In the encryption scheme of Section 3, we needed an injective function H0 : GT ×G → {0, 1}n.
Such a function is not difficult construct, if we are allowed to choose a large enough value of n. The

21

only constraint is that n ≥ d2 log2 pe since |GT | = |G| = p. (For example, a trivial construction is
to let H0 return the concatenation of the binary representations of the two input elements.)

In the KEM scheme of Section 4, the difficulty is that there is no flexibility to choose the
codomain of H0 : G → Zp. Since |G| = |Zp| = p, the function H0 would have to be a bijection,
which might complicate its contruction given that H0 is required to be be efficiently computable.
However, we can relax these requirements if we take H0 : G → Zp ∪ {⊥} and allow it to assume
the distinguished value ⊥ on some portion of its domain, only requiring it to be injective over the
complement. Then, we can modify the encapsulation algorithm to try new randomization values t
until it finds one that results in H0(C1) = H0(gt) 6= ⊥.

These small modifications can greatly simplify the construction of H0 in the context of bilinear
groups defined on elliptic curves. Let E(Fq) be the group of points on a curve E over some finite
field Fq. Except for the “point at infinity”, all points on the curve are represented by pairs of
coordinates (x, y) ∈ (Fq)2. We mention two cases of practical interest:

1. If E(Fq) has prime order p, as is the case for the recent BN family of pairing-friendly curves [2],
then we take G = E(Fq), and by Hasse’s theorem we know that p ∈ [q +1−2

√
q, q +1+2

√
q].

In this case, the map Y : E(Fq) → Fq : (x, y) 7→ y that merely returns a point’s y coordinate
is injective on an overwhelming fraction of its domain. To obtain H0 : G → Fp ∪ {⊥}, we
start from the map Y and modify it to output ⊥ on any input point (x, y) whose y coordinate
either is greater than p− 1 or admits a second point (x′, y) ∈ E(Fq).

2. If E(Fq) is a supersingular curve of order q + 1 = rp for a large prime p and a tiny cofactor r
(such as r = 12), then the map Y : E(Fq) → Fq : (x, y) 7→ y is a bijection provided that we
remove the point at infinity from the domain. In this case, G will be a subgroup of E(Fp) of
order p, and hence a random point gt ∈ G will have a probability 1/r of satisfying y ≤ p− 1.
To evaluate H0, we use the map Y and change its output to ⊥ whenever it exceeds p− 1.

In the first case, there is hardly any efficiency penalty. The practicality of the method in the second
case will depend on the practicality of conducting the expected r − 1 extra exponentiations in G
(i.e., point multiplications on the curve) for each encapsulation.

As mentioned, we can sidestep these issues with the generalized injective encoding H0 : G → Zν
p

presented in Section 4.3, or a collision resistant family {Hs} as described earlier.

D Direct Non-Interactive Threshold KEM Construction

We now give a detailed description of the non-interactive threshold system constructed using our
identity-based technique, adapted from the IBE-based threshold system of [6]. We give the key
encapsulation version, which has tight CCA2-security against (statically corrupted) coalitions of
malicious decryption (or decapsulation) servers. For simplicity, we only describe the key generation
procedure using a centralized dealer, although it is straightforward to extend it into a distributed
key generation protocol using known methods [17].

We refer to [12, 28] for the formal definition of threshold encryption and the various subtleties of
its security model. The security of our system is based on the Decision BDH assumption, and does
not require random oracles (or even collision resistance). We refer the reader to [6] for precisions
on how to show a security reduction for this type of constructions.

22

Key Generation: For k-out-of-m secret sharing, a user’s key generation proceeds as follows.

First, a secret α0 ∈ Zp is chosen at random, from which the value Z0 = e(g, h)α0 is calculated.
Next, the algorithm chooses y1 and y2 at random from Zp. It then calculates u1 = gy1 and
u2 = gy2 in G, and also calculates v1 = hy1 and v2 = hy2 in Ĝ. Last, a random seed s for the
collision resistant family is chosen (letting s = 0 when a fixed injection H0 is used).

To obtain the m private key shares, select a random polynomial f = α0+α1X+. . .+αk−1X
k−1

of degree k − 1 in Zp[X], where the constant term is α0. Let f(i) ∈ Zp be the value of f
evaluated at i = 1, . . . ,m. The m private key shares respectively given to the m decapsulation
servers are (

h1 = hf(1), . . . , hm = hf(m)
)

∈ Ĝm.

The public key is published as(
s, Z0 = e(g, h)α0 , u1 = gy1 , u2 = gy2 , v1 = hy1 , v2 = hy2

)
∈ {s} ×GT ×G2 × Ĝ2.

Additionally, there is a public verification key, which allows the various parties to verify the
private key shares and decapsulation shares given to them. A random δ ∈ Zp is chosen, and
the verification key is published as(

Z1 = e(g, h)α1 , . . . , Zk−1 = e(g, h)αk−1 ,

` = gδ, `1 = uδ
1, `2 = uδ

2, `′1 = gf(1)δ, . . . , `′m = gf(m)δ
)

∈ Gk−1
T ×G3+m.

Private Share Verification: The i-th decapsulation server can verify that his assigned private
key share hi is correct, using Feldman’s method. To do so, the i-th share holder tests whether

e(g, hi)
?=

k−1∏
j=0

Z
(ij)
j = e(g, h)

Pk−1
j=0 (αjXj)

∣∣
X=i

= e(g, h)f(i).

Encapsulation: The process works essentially as in Section 4.1 (substituting α = α0 and Z = Z0).

First, a value t ∈ Zp is randomly chosen, and the algorithm computes the first component
of the ciphertext: C1 = gt ∈ G. Next, it computes w = Hs(C1) ∈ Zp, and then the second
ciphertext component: C2 = ut

1u
tw
2 ∈ G. The complete ciphertext, C, is the pair(

C1 = gt, C2 = ut
1u

tw
2

)
∈ G2.

The corresponding session key, K, is the group element
(
K = Zt

0

)
∈ GT .

Partial Decapsulation: A ciphertext C = (C1, C2) is partially decapsulated by the holder of the
i-th decapsulation share hi = hf(i) as follows.

First, the algorithm verifies that the ciphertext is well formed, using the v-values in the public
key. To do so, the algorithm computes w = Hs(C1) ∈ Zp, and determines whether, in GT ,

e(C1, v1v
w
2)
/

e(C2, h) ?= 1.

If the two sides are unequal, then (g, C1, u1u
w
2 , C2) is not a Diffie-Hellman tuple, and the

algorithm outputs (i,⊥). Otherwise, the ciphertext is valid, in which case the algorithm
picks a random ri ∈ Zp, computes di = hiv

ri
1 vriw

2 and d′i = hri , and outputs the triple(
i, di = hi v

ri
1 vriw

2 , d′i = hri
)

∈ {1, . . . ,m} × Ĝ2.

23

The pair (di, d
′
i) can be viewed as the i-th share of a (randomized) identity-based private key

tailored to the specific “identity” w of the given ciphertext. The index i is also returned as
it is needed for the final reconstitution.

Decapsulation Share Verification: The combiner can verify that the partial decapsulation of
a given ciphertext C = (C1, C2) by the i-th decapsulation server is correct, as follows. Let
w = Hs(C1). The first task is to test that C is valid, by checking that, in the group GT ,

e(C1, v1v
w
2)
/

e(C2, h) ?= 1.

If C is invalid, then the algorithm outputs valid if the decapsulation share is of the form
(i,⊥), and invalid if not. If the decapsulation share is of the form (i,⊥) even though C is
well formed, the algorithm also outputs invalid.

At this point, we know that C is well formed and that the decapsulation share to verify is of
the form (i, di, d

′
i). The algorithm verifies that, in the group GT ,

e(`′i, h) · e(`1`
w
2 , d′i)

/
e(`, di)

?= 1.

If this holds, the algorithm output valid, otherwise it outputs invalid.

Reconstitution: The session key is reconstituted from k partial decapsulations of a ciphertext
C = (C1, C2) as follows. Let w = Hs(C1). The combiner must first verify that C is a valid
ciphertext, which is done as usual by checking that

e(C1, v1v
w
2)
/

e(C2, h) ?= 1.

Let then S = {(i, di, d
′
i)} be the (indexed) set of available partial decapsulations of C, where

S has size at least k. We require that all indices i in S be distinct, and that all partial decap-
sulations in S be valid for the given ciphertext, which can be checked using the Decapsulation
Share Verification method. Let I be the set of indices i that appear in S. W.l.o.g., we assume
that |S| = |I| = k, as can always discard decapsulation shares in excess.

The reconstitution algorithm first reassembles a complete identity-based private key for the
target ciphertext, as(

d =
∏
i∈I

(di)Λi(0), d′ =
∏
i∈I

(d′i)
Λi(0)

)
∈ Ĝ2, where Λi(x) =

∏
j∈I\{i}

x− j

i− j
∈ Zp.

Then, the session key is reconstituted and output, as

K =
e(C1, d)
e(C2, d′)

∈ GT .

Indeed, the Λi(0) defined above are the Lagrange coefficients for interpolating a (k−1)-degree
polynomial from I to 0. Thus, for any set S of k valid decapsulation shares, we easily find
that

d =
∏
i∈I

(hi v
ri
1 vriw

2)Λi(0) = h0 vr
1 vrw

2 , and d′ =
∏
i∈I

(hri)Λi(0) = hr, for some r ∈ Zp.

Therefore, K = e(gt, d)/e(ut
1u

tw
2 , d′) = e(g, h0)t · e(g, v1v

w
2)rt/e(u1u

w
2 , h)rt = e(g, h0)t · 1 = Zt.

24

