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Abstract. In this note, we describe how to achieve a simple yet substantial speed
up of Miller’s algorithm, when not using denominator elimination, and working
over quadratic extension fields.
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1 Introduction

Following a seminal paper by Boneh and Franklin [2] in2001, there has been an explo-
sion of interest in the exploitation of the properties of bilinear pairings on elliptic curves
for cryptographic protocols. Naturally, there has also been much focus on the efficient
implementation of pairings. Victor Miller gave the first algorithm [4] for computing a
bilinear pairing, specifically theWeil pairing. However in practice theTate pairing is
used, as it is computationally less expensive.

In an important paper, Barreto et. al. [1] gave criteria under which divisions in
Miller’s algorithm can be eliminated entirely. According to [5], this reduces the cal-
culation time by almost50%.

In this paper, we show how to speed up the algorithm when we are working over
quadratic extension fields (as we nearly always are for efficiency reasons), when not
using the denominator elimination idea of Barreto et. al. Although denominator elimi-
nation is still slightly faster, we show that the difference is not as large as is generally
thought.

2 Miller’s Algorithm

Miller’s algorithm is described in Algorithm 1, for the case that the first pointP is
defined over the base fieldFp, and the second point is defined over the larger field
Fpk , wherek is the embedding degree of the curve in question. To avoid performing a
division each loop iteration, the divisions are postponed until the end of the loop. To do
this we use two variables in the loop, to effectively replace a division with a squaring
each loop iteration, which is considerably less expensive to compute.

After the main loop one performs the final exponentiation of(pk − 1)/r to obtain a
unique value overFpk , wherer is the prime-order subgroup we are working with. It is
well known that if one implements arithmetic inFpk using quadratic extensions, one can



exponentiate an element in this field to the power ofpk/2 using a simple conjugation.
Conjugation is denoted byx = (a− bi) for an elementx = (a + bi) ∈ Fpk .

Taking advantage of this, it is standard to efficiently compute the final exponenti-
ation asf = f/f followed byf = f (pk/2+1)/r, the latter of which can be computed
efficiently using Lucas Sequences [6].

Algorithm 1 Miller’s algorithm
INPUT: P ∈ E(Fp), Q ∈ E(Fpk ) whereP has orderr.
OUTPUT: 〈P, Q〉r
1: fc ← 1, fd ← 1
2: T ← P
3: for i← blog2(r)c − 1 downto 0 do
4: . Calculate linesl andv in doublingT
5: T ← [2]T
6: fc ← f2

c · l(Q)
7: fd ← f2

d · v(Q)
8: if ri = 1 then
9: . Calculate linesl andv in addingP to T

10: T ← T + P
11: fc ← fc · l(Q)
12: fd ← fd · v(Q)
13: end if
14: end for
15: f ← fc/fd

16: f ← f/f

17: f ← f (pk/2+1)/r

18: return f

3 Our Idea

In this section, we present a way to optimise the final exponentiation for arbitrary pair-
ing calculation over quadratic extension fields. This is analgous to a technique men-
tioned in [3] (section 16.5.2), however we go beyond this and show how we can use our
idea to reduce the arithmetic in the main loop of Miller’s algorithm in a simple way,
when one is not using denominator elimination. We also save a multiplication overFpk

after the loop.
Looking at steps15 and16 after the main loop in Algorithm 1, one can combine

them to get;f = (fcfd)/(fcfd). Then one can eliminate a multiplication by noticing

that the numerator is just the conjugate of the denominator, ie.fcfd = fcfd. Therefore,
we can write the computation after the main loop as;

f = fcfd

f = f/f
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followed by the finalf (pk/2+1)/r exponentiation. So, as the conjugation operation is
effectively free to compute, we have saved a multiplication.

As is mentioned in the previous section, one uses two variablesfc andfd to avoid
divisions in the main loop of Miller’s algorithm. However we can use the formulae
we derived for the final exponentiation to avoid divisions in the main loop and also to
avoid using two variables. As we have effectively replacedf = fc/fd with f = fcfd,
effectively eliminating the division by absorbing it into the powering, we can push the
evaluation off = fcfd back into the main loop in the algorithm.

So, in the main loop we can have just one variablef , and we multiply it by the
functionfc and then by the conjugate of the functionfd. By doing this, we obviously
also eliminate thef = fcfd multiplication at the end. The new algorithm is detailed
in Algorithm 2. Note that simply removing thev(Q) function from the algorithm gives
the exact same algorithm as when one is using denominator elimination.

Therefore, as we have eliminated the variablefd from the pairing calculation, we
save a squaring overFpk each iteration of the loop. This is still not as good as perform-
ing denominator elimination, which would save a multiplication over this again each
iteration, yet it is still a noticeable implementational improvement when one does not
use denominator elimination. It also shows that denominator elimination does not give
quite as big an improvement as is generally thought.

Algorithm 2 An improved Miller’s algorithm
INPUT: P ∈ E(Fp), Q ∈ E(Fpk ) whereP has orderr.
OUTPUT: 〈P, Q〉r
1: f ← 1
2: T ← P
3: for i← blog2(r)c − 1 downto 0 do
4: . Calculate linesl andv in doublingT
5: T ← [2]T
6: f ← f2 · l(Q) · v(Q)
7: if ri = 1 then
8: . Calculate linesl andv in addingP to T
9: T ← T + P

10: f ← f · l(Q) · v(Q)
11: end if
12: end for
13: f ← f/f

14: f ← f (pk/2+1)/r

15: return f

4 Conclusion

We have improved the running time of Miller’s algorithm over quadratic extension fields
by removing a squaring from the main loop, and optimising the final exponentiation
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slightly. These tricks show that using denominator elimination is not quite as efficient as
thought, the speedup gained is likely to be only around30% for elliptic curves compared
to the method in this paper rather than almost50% reported in [5].

Finally, we note that our method may be more efficient than using denominator
elimination for pairing computation on higher genus hyperelliptic curves. This is be-
cause with our method we can choose a divisor consisting of a single point instead of
the more general divisor withg points on it, whereg is the genus of the curve. Using
denominator elimination may force us into using more general divisors, thus increasing
the number of multiplications in the loop.

We would like to thank Mike Scott, Steven Galbraith and Caroline Sheedy for com-
ments on this paper.
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