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Abstract

We consider the problem of overcoming (Distributed) Denial of Service (DoS) attacks by realistic

adversaries that have knowledge of their attack’s successfulness, e.g., by observing service perfor-

mance degradation, or by eavesdropping on messages or parts thereof. A solution for this problem in

a high-speed network environment necessitates lightweight mechanisms for differentiating between

valid traffic and the attacker’s packets. The main challenge in presenting such a solution is to exploit

existing packet filtering mechanisms in a way that allows fast processing of packets, but is complex

enough so that the attacker cannot efficiently craft packets that pass the filters. We show a proto-

col that mitigates DoS attacks by adversaries that can eavesdrop and (with some delay) adapt their

attacks accordingly. The protocol uses only available, efficient packet filtering mechanisms based

mainly on (addresses and) port numbers. Our protocol avoids the use of fixed ports, and instead per-

forms ‘pseudo-random port hopping’. We model the underlying packet-filtering services and define

measures for the capabilities of the adversary and for the success rate of the protocol. Using these,

we provide a novel rigorous analysis of the impact of DoS on an end-to-end protocol, and show that

our protocol provides effective DoS prevention for realistic attack and deployment scenarios.
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1 Introduction

Denial of service (DoS) attacks have proliferated in recent years, causing severe service disruptions [6].

The most devastating attacks stem from distributed denial of service (DDoS), where an attacker utilizes

multiple machines (often thousands) to generate excessive traffic [15]. Due to the acuteness of such

attacks, various commercial solutions and off-the-shelf products addressing this problem have emerged.

The main goal of all solutions is to provide lightweight packet-filtering mechanisms that are adequate

for use in high-speed networks, where per-packet analysis must be efficient.

The most common solution uses an existing firewall/router (or protocol stack) to perform rate-

limiting of traffic, and to filter messages according to header fields like address and port number. Such

mechanisms are cheap and readily available, and are therefore very appealing. Nevertheless, rate-limiting

indiscriminately discards messages, and it is easy to spoof (fake) headers that match the filtering criteria:

an attacker can often generate spoofed packets containing correct source and destination IP addresses,

and arbitrarily chosen values for almost all fields used for filtering1. Therefore, the only hope in using

such efficient filtering mechanisms to overcome DoS attacks lies in choosing values that are unknown to

the adversary. E.g., TCP’s use of a random initial sequence number is a simple version of this approach,

but is inadequate if the attacker has some (even limited) eavesdropping capability.

More effective DoS solutions are provided by expensive commercial devices that perform stateful

filtering [17, 18, 19]. These solutions specialize in protecting a handful of commonly-used stateful pro-

tocols, e.g., TCP; they are less effective for stateless traffic such as UDP [19]. Such expensive solutions

are not suitable for all organizations.

Finally, the most effective way to filter out offending traffic is using secure source authentication

with message authentication codes (MAC), as in, e.g., IPSec [3]. However, this requires computing a

MAC for every packet, which can induce significant overhead, and thus, this approach may be even

more vulnerable to DoS attacks. Specifically, it is inadequate for use in high-speed networks with high

volumes of traffic.
1An exception is the TTL field of IP packets, which is automatically decremented by each router. This is used by some

filtering mechanisms, e.g. BGP routers that receive only packets with maximal TTL value (255) to ensure the packets were
sent by a neighboring router, and the Hop Counter Filtering proposal.
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Our goal is to address DoS attacks on end hosts, e.g., in corporate networks, assuming the net-

work leading to the hosts is functional. (A complementary solution protecting the end network can be

deployed at the ISP.) In this paper, we focus on fortifying the basic building block of two-party com-

munication. Specifically, we develop a DoS-resistant datagram protocol, similar to UDP or raw IP. Our

protocol has promising properties, especially in overcoming realistic attack scenarios where attackers

can discover some of the control information included in protocol packets, as described in [1]. We as-

sume that a realistic adversary can detect whether its attack is successful or not, and adjust its behavior

accordingly. However, this adjustment takes some time, as it involves gathering information from the

system, processing it to decide on the proper adjustment, and then notifying all the attacking nodes (mas-

sive attacks employ many nodes). We believe that our ideas, with some practical adjustments, have the

potential to find their way into future DoS protection systems. E.g., these ideas can be integrated into

IPSec [3]. Our formal analysis proves the effectiveness of our ideas, and thus shows that their realization

into a working system is highly beneficial.

The key to exploiting lightweight mechanisms that can filter high-speed traffic is using a dual-layer

approach: On the one hand, we exploit cheap, simple, and readily-available measures at the network

layer. On the other hand, we leverage these network mechanisms at the application layer. The latter

allows for more complex algorithms as it has to deal with significantly fewer packets than the network

layer, and may have closer interaction with the application. The higher layer dynamically changes the

filtering criteria used by the underlying layer, e.g., by closing certain ports and opening others for com-

munication. It is important to note that the use of dynamically changing ports instead of a single well-

known port does not increase the chance of a security breach, as a single application is listening on all

open ports.

The main contribution of our work is in presenting a formal framework for understanding and analyz-

ing the effects of proposed solutions to the DoS problem. The main challenges in attempting to formalize

DoS-resistance for the first time are: coming up with appropriate models for the attacker and the environ-

ment, modeling the functionality that can be provided by underlying mechanisms such as firewalls, and

defining meaningful metrics for evaluating suggested solutions. We capture the functionality of a simple
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network-level DoS-mitigation solution by introducing the abstraction of a port-based rationing channel.

It is important to note that our use of ports just serves as an example. In fact, any field that appears on

all packets can be used as the filtering criterion, and our analysis and suggested protocol apply to all

such fields. For simplicity, we henceforth use the term ‘port’ to refer to any filtering criterion that can

be dynamically changed by the application level. Our primary metric of an end-to-end communication

protocol’s resistance to DoS attacks is success rate, which is the worst-case expected portion of valid

application messages that successfully reach their destination, under a defined adversary class.

Having defined our model and metrics, we proceed to give a generic analysis of the communication

success rate over a port-based rationing channel in different attack scenarios. We distinguish between

directed attacks, where the adversary knows the port used, and blind attacks, in which the adversary

does not know the port. Not surprisingly, we show that directed attacks are extremely harmful: with as

little as 100 machines (or a sending capacity 100 times that of the protocol) the success rate is virtually

zero. On the other hand, the worst-case success rate that an attacker can cause in blind attacks in realistic

scenarios is well over 90% even with 10,000 machines.

Our goal is therefore to “keep the attacker in the dark”, so that it will have to resort to blind attacks.

Our basic idea is to change the filtering criteria (i.e., ports) in a manner that cannot be predicted by the

attacker. This port-hopping approach mimics the technique of frequency hopping spread spectrum in

radio communication [20]. We assume that the communicating parties share a secret key unknown to the

attacker; they apply a pseudo-random function [8] to this key in order to select the sequence of ports they

will use. Note that such port-hopping has negligible effect on the communication overhead for realistic

intervals between hops, and thus can be used even in high-speed networks. The remaining challenge is

synchronizing the processes, so that the recipient opens the port currently used by the sender. We present

a protocol for doing so in a realistic partially synchronous model, where processes are equipped with

bounded-drift bounded-skew clocks, and message latency is bounded.

The paper proceeds as follows: Section 2 details related work. Section 3 details our models for the

communication channel and the adversary. Section 4 provides generic DoS analysis. Section 5 describes

our port-hopping protocol and analyzes its effectiveness. Section 6 concludes.
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2 Related Work

Our work continues the main line of research on prevention of Distributed Denial of Service attacks,

which focuses on filtering mechanisms to block and discard the offending traffic. Our work is unique in

providing rigorous model and analysis, which constitute the first step in formally modeling and evalu-

ating the effectiveness of possible filtering and rate limiting mechanisms. Since our formal framework

is not restricted to port-based filtering, but rather operates with any filtering based on per-packet fields,

our model and analysis can be used in evaluating future protocols, and may assist in examining and

comparing the solutions that exist now.

Most closely related is the work on SOS [12], followed by the work on Mayday [1]. Both propose

realistic and efficient mechanisms that do not require global adoption, yet allow a server to provide ser-

vices immune to DDoS attacks. These solutions, like ours, utilize efficient packet-filtering mechanisms

between the server and predefined, trusted ‘access point’ hosts. The basic ideas of filtering based on ports

or other simple identifiers (‘keys’), and even of changing them, already appear in [1, 12], but without

analysis and details. Additionally, [1] provides a discussion of attack types and limitations, justifying

much of our model, including the assumption that the exposure of the identifier (port) number may be

possible but not immediate. Furthermore, [1] mentions blind and targeted attacks (where blind attacks

are attacks in which the adversary does not know the valid identifier), and asserts that the damage to the

system is much more severe when targeted attacks are launched. We prove that this is indeed the case,

and give exact quantities for the maximum performance degradation in both attack scenarios. Both SOS

and Mayday require the setup of an overlay network consisting of several nodes, and effectively changes

the prospective attack target to some nodes in the system (called SOAPs). In contrast, our solution does

not require additional hosts, and is simple to construct and maintain.

There are other several proposed methods to filter offending DoS traffic. Some proposals, e.g., [10,

13], filter according to the source IP address. This is convenient and efficient, allowing implementation

in existing packet filtering routers. However, IP addresses are subject to spoofing; furthermore, using a

white-list of source addresses of legitimate clients/peers is difficult, since many hosts may have dynamic

IP addresses due to the use of NAT, DHCP and mobile-IP. Some proposals try to detect spoofed senders,
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using new routing mechanisms such as ‘path markers’ supported by some or all of the routers en route, as

in Pi, SIFF, AITF, and Pushback [21, 22, 2, 14], but global router modification is difficult to achieve. Few

proposals try to detect spoofed senders using only existing mechanisms, such as the hop count (TTL), as

in HCF [9]. However, empirical evaluation of these approaches show rather disappointing results [5].

A different approach is to perform application-specific filtering for pre-defined protocols [11, 16].

Such protection schemes are cumbersome, only work for a handful of well-known protocols, and are

usually restricted to attackers that transmit invalid protocol packets.

In earlier work, we have presented Drum [4], a gossip-based multicast protocol resistant to DoS

attacks. Drum does not make use of pseudo-random port-hopping, and it heavily relies on well-known

ports that can be easily attacked. Therefore, Drum is far less resistant to DoS attacks than the protocol

we present here. Finally, Drum focuses on multicast only, and as a gossip-based protocol, it relies on a

high level of redundancy, whereas the protocol presented herein sends very little redundant information.

3 Model and Definitions

We consider a realistic semi-synchronous model, where processes have continuously-increasing local

clocks with bounded drift Φ from real time. Each party may schedule events to occur when its local

clock reaches a specific value (time). There is a bound ∆ on the transmission delay, i.e., every packet

sent either arrives within ∆ time units, or is considered lost. Notice that while we assume messages

always arrive within ∆ time, this is only a simplification, and our results are valid even if a few messages

arrive later than that; therefore, ∆ should really be thought of as the typical maximal round trip time, and

not as an absolute bound on a message’s lifetime (e.g., a second rather than 60 seconds).

Our goal is to send messages from a sender A to a recipient B, in spite of attempts to disrupt this

communication by an adversary. The basic technique available to the adversary is to clog the recipient

by sending many packets. The standard defense deployed by most corporations is to rate-limit and filter

packets, typically by a firewall. We capture this type of defense mechanism using a port-based rationing

channel machine, which models the communication channel between A and B as well as the filtering
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mechanism. To send a message, A invokes a ch send(m) event, a message is received by the channel in a

net recv(m) event, and B receives messages via ch recv(m) events. We assume that the adversary cannot

clog the communication to the channel, and that there is no message loss other than in the channel. The

channel discards messages when it performs rate-limiting and filtering.

The channel machine is formally defined in Appendix A. We now provide an intuitive description of

its functionality. Since we assume that the attacker can spoof packets with valid addresses, we cannot use

these addresses for filtering. Instead, the channel filters packets using port numbers, allowing deployment

using existing, efficient filtering mechanisms. Specifically, let the set of port numbers be {1, . . . , ψ}.

The buffer space of the channel is a critical resource. The channel’s interface includes the alloc action,

which allows B to break the total buffer space of R messages into a separate allocation of Ri messages

per port i ∈ {1, . . . , ψ}, as long as R ≥
∑ψ

i=1Ri. For simplicity, we assume that the buffers are read and

cleared together in a single deliver event, which occurs exactly once on every integer time unit. If the

number of packets sent to port i since the last deliver exceeds Ri, a uniformly distributed random subset

of Ri of them is delivered.

We define several parameters that constrain the adversary’s strength. The most important parameter

is the attack strength, C, which is the maximal number of messages that the adversary may inject to the

channel between two deliver events.

As shown in [1], attackers can utilize different techniques to try to learn the ports numbers expected

by the filters (and used in packets sent by the sender). However, these techniques usually require consid-

erable communication and time. To simplify, we allow the adversary to eavesdrop by exposing messages,

but we assume that the adversary can expose packets no earlier than E time after they are sent, where E

is the exposure delay parameter. The exposure delay reflects the time it takes an attacker to expose the

relevant information, as well as to distribute it to the (many) attacking nodes, possibly using very limited

bandwidth (e.g., if sending from a firewalled network). Our protocol works well with as little as E > 5∆.

Since the adversary may control some behavior of the parties, we take a conservative approach and

let the adversary schedule the app send(m) events in which the application (atA) asks to sendm toB. To

prevent the adversary from abusing these abilities by simply invoking too many app send events before
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a deliver event, we define the throughput, T ≥ 1, as the maximal number of app send events in a single

time unit. We further assume that R ≥ ∆T , i.e. that the capacity of the channel is sufficient to handle

the maximal rate of app send events.

Since we focus on connectionless communication such as UDP, our main metric for resiliency to

DoS attacks is its success rate, namely the probability that a message sent by A is received by B.

Definition 1 (Success rate µ). Let E be any execution of a given two-party protocol operating over a

given port-based rationing channel with parameters Ψ, R, C,Φ,∆, E and T , with adversary ADV . Let

end(E) be the time of the last deliver event in E. Let sent(E) (recv(E)) be the number of messages sent

(resp., received) by the application, in app send (resp., app recv) events duringE, prior to end(E)−∆

(resp, end(E)). The success rate µ of E is defined as µ(E) = recv(E)
sent(E)

. The success rate of adversary

ADV is the average success rate over all executions of ADV . The success rate of the protocol, denoted

µ(Ψ, R, C,Φ,∆, E , T ), is the worst success rate over all adversaries ADV .

Finally, a protocol can increase its success rate by sending redundant information, e.g., multiple

copies or error-correcting codes. We therefore also consider a system’s message (bit) complexity, which

is the number of messages (resp. redundant bits) sent on the channel per each application message.

4 Analyzing the Success Rate in a Single Slot with a Single Port

This section provides generic analysis of the probability of successfully communicating over a port-based

rationing channel under different attacks, when messages are sent to a single open port, p. This analysis

is independent of the timing model and the particular protocol using the channel, and can therefore serve

to analyze different protocols that use such channels, e.g., the one we present in the ensuing section. We

focus on a single deliver event, and analyze the channel’s delivery probability, which is the probability

for a valid message in the channel’s buffer to be delivered, in that event. Since every ch send(m) event

eventually results in m being added to the channel’s buffer, we can use the channel’s delivery probability

to analyze the success rates of higher level protocols.

Let Rp denote the ration allocated to port p in the last alloc event, and let In(p) be the contents of
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the channel’s buffer for port p (see Appendix A for more details). Consider a deliver event of a channel

from A to B, when A sends messages only to port p. We introduce some notations:

Rp = R is the value of the channel’s Rp when deliver occurs.

ap = a is the number of messages whose source is A in the channel’s In(p) when deliver occurs. We

assume a ≤ R. If ap < Rp (i.e., a < R), we say that there is over-provisioning on port p.

cp is the number of messages whose source is not A in In(p) when deliver occurs.

Assume that 1 ≤ a ≤ R. If cp < R − a + 1 then B receives A’s messages, and the attack does not

affect the communication fromA toB on port p. Let us now examine what happens when cp ≥ R−a+1.

Lemma 1. If cp ≥ R− a+ 1, then the channel’s delivery probability is R
cp+a

.

Proof. The channel delivers m ∈ In(p) if it is part of the R messages read uniformly at random from

the cp + a available messages. Thus, the delivery probability is R
cp+a

.

If the attacker knows that B has opened port p, it can direct all of its power to that port, i.e., cp = C,

where we assume C ≥ R − a + 1. We call this a directed attack.

Corollary 1. In a directed attack at rate C on B’s port p, the delivery probability on the attacked port is

R
C+a

, assuming 1 ≤ a ≤ R and C ≥ R− a+ 1.

Lemma 2. For fixed R and cp such that 1 ≤ a ≤ R and cp ≥ R − a + 1, the probability of B receiving

only invalid messages on port p decreases as a increases.

The proof of this lemma is simple and is omitted due to space considerations.

4.1 Blind Attack

We define a blind attack as a scenario where A sends messages to a single open port, p, and the adversary

cannot distinguish this port from a random one. We now analyze the worst-case delivery probability

under a blind attack.
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In general, an adversary’s strategy is composed both of timing decisions and injected messages. The

timing decisions affect a, the number of messages from A that are in the channel at a given delivery slot.

Given that a is already decided, we define the set of all strategies of an attacker with sending rate C as:

S(C) ,

{

{ci}i∈ψ | ∀i ∈ ψ : ci ∈ N ∪ {0} ∧

ψ
∑

i=1

ci = C
}

Each strategy s ∈ S is composed of the number of messages the attacker sends to each port. Note

that since the adversary wishes to minimize the delivery probability, we restrict the discussion to the set

of attacks that fully utilize the attacker’s capacity for sending messages. We denote by µB(a, C,R) :

S(C)→ [0, 1] the channel’s delivery probability under all possible blind attack strategies with the given

a, C, and R. Since S is a finite set, µB has at least one minimum point, and we define the delivery

probability to be that minimum:

µB(a, C,R) , min
s∈S(C)

µB(a, C,R, s)

We sometimes use µB instead of µB(a, C,R) when a, C, and R are clear from context. We want to find

lower bounds on µB, depending on the attacker’s strength. We say that port pi is attacked in strategy s if

cpi
> 0. We partition S(C) according to the number of ports being attacked, as follows:

Sk , {s ∈ S(C) | Exactly k ports are being attacked in s}

In Appendix B we find a lower bound on µB as follows: We first derive a lower bound on {µB(a, C,R, sk)|sk ∈

Sk}; this lower bound is given as a function of k in Corollary 2. Incidently, the worst degradation occurs

when the attacker divides its power equally among the attacked ports, i.e., when it sends C
k

messages to

each attacked port (this is proven in Lemma 5). Then, we show lower bounds on µB(a, C,R) by finding

the k that yields the minimum value. Finally, we prove the following lemma:
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Lemma 3. µB(a, C,R) is bounded from below by the following function f(a, C,R):

f(a, C,R) =
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(1)

Lemma 3 provides us with some insights of the adversary’s best strategy and of the expected degra-

dation in delivery probability. If no over-provisioning is used (i.e., R = a), then the adversary’s best

strategy is to attack as many ports as possible. This is due to the fact that even a single bogus message

to the correct port degrades the expected delivery probability. When the adversary has enough power to

target all of the available ports with at least one message, it can attack with more messages per attacked

port, and the delivery probability asymptotically degrades much like the function 1
C

. When not all ports

are attacked, the adversary would like to use its remaining resources to attack more ports rather than

target a strict subset of the ports with more than one bogus message per port. The degradation of the

expected delivery probability is then linear as the attacker’s strength increases.

When over-provisioning is used (R > a), it affects the attack and its result in two ways. First, the

attacker’s best strategy may not be to attack as many ports as it can, since a single bogus message per

port does not do any harm now. Second, for an adversary with a given strength, the degradation in

delivery probability is lower when over-provisioning is used than when it is not employed. We can see

in Equation 1 that if the attacker has enough power to attack all the ports, the over-provisioning ratio R
a

is also the ratio by which the delivery probability is increased, compared to the case where R = a.

10



0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

C/R

D
el

iv
er

y 
P

ro
b

ab
ili

ty

Blind, R = a = 1
Directed, R = a = 1

(a) Blind vs. Directed, R = a = 1.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

C/R

D
el

iv
er

y 
P

ro
b

ab
ili

ty

Blind, R = 2a = 2
Blind, R = a = 1

(b) Blind, a = 1.

1 2 3 4 5 6 7 8 9 10
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

R

D
el

iv
er

y 
P

ro
b

ab
ili

ty

Blind, C = 10000
Blind, C/R = 10000

(c) Blind, a = 1.

Figure 1: Delivery probability per slot in various attack scenarios on a single port, ψ = 65536.

4.2 Actual Values

Figure 1 shows the expected worst-case delivery probabilities for various attack scenarios on a single

port. For directed attacks, we show the actual delivery probability, and for blind attacks, the lower bound

f(a, C,R) is shown. We chose ψ = 65536, the number of ports in common Internet protocols, e.g., UDP.

Figure 1(a) illustrates the major difference between a directed attack and a blind one: even for a relatively

weak attacker (C ≤ 100), the delivery probability under a directed attack approaches 0, whereas under a

blind attack, it virtually remains 1.

Figure 1(b) examines blind attacks by much stronger adversaries (with C up to 10,000 for R = 1,

and up to 20,000 for R = 2). We see that the delivery probability gradually degrades down to a low of

92.5% when R = 1. If we use an over-provisioned channel, i.e., have a = 1 (one message from A) when

R = 2, the delivery probability improves to almost 95% for C = 20,000. (The ratio C
R

is the same for

both curves). Figure 1(c) shows the effect of larger over-provisioning. We see that the cost-effectiveness

of over-provisioning diminishes as R
a

increases.

5 DoS-Resistant Communication

We now describe a protocol that allows for DoS-resistant communication in a partially-synchronous

environment. The protocol’s main component is an ack-based protocol. B sends acknowledgments

(acks) for messages it receives from A, and these acks allow the parties to hop through ports together.
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However, although the ack-based protocol works well as long as the adversary fails to attack the correct

port, once the adversary gets a hold of the port used, it can perform a directed attack that renders the

protocol useless. By attacking the found data port, or simultaneously attacking the found data and ack

ports, the adversary can effectively drop the success rate to 0, and no port hopping will occur. To solve

this matter, there is a time-based proactive reinitialization of the ports used for the ack-based protocol,

independent of any messages passed in the system.

5.1 Ack-Based Port Hopping

We present an ack-based port-hopping protocol, which uses two port-based rationing channels, from B

to A (with rationRBA) and vice versa (with ration RAB). For simplicity we assume RAB = 2RBA = 2R.

B always keeps two open ports for data reception from A, and A keeps one port open for acks from

B. The protocol hops ports upon a successful round-trip on the most recent port used, using a pseudo-

random function, PRF ∗2. In order to avoid hopping upon adversary messages, all protocol messages

carry authentication information, using a second pseudo-random function, PRF , on {0, 1}κ. (We assume

that PRF and PRF ∗ use different parts of A and B’s shared secret key.)

The protocol’s pseudocode appears in Figure 2. Both A and B hold a port counter P , initialized to

some seed (e.g., 1). Each party uses its counter P in order to determine which ports should be open, and

which ports to send messages to. B opens port pold using the (P − 1)th element in the pseudo-random

sequence, and pnew, using P . A sends data messages to the P th port in the sequence, and opens the P th

port in a second pseudo-random sequence designated for acks. When B receives a valid data message

from A on port pold, it sends an ack to the old ack port. When it receives a valid message on port pnew,

it sends an ack to the P th ack port, and then increases P . When A receives a valid ack on port pack, it

increases P . We note that several data messages may be in transit before a port hop takes place, since

it takes at least one round-trip time for a port hop to take effect, and in a high-speed network, multiple

2Intuitively, we say that fkey(data) is pseudo-random function (PRF ∗) if for inputs of sufficient length, it cannot be
distinguished efficiently from a truly random function r over the same domain and range, by a PPT adversary which can
receive g(x) for any values of x, where g = r with probability half and g = f with probability half. For definition and
construction, see [8].
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PROTOCOL FOR SENDER A:

On ack init(seed):
P = seed
pack = PRF ∗

SAB
(P |“ack”)

alloc(pack, RBA)

On app send(data):
m = data|PRFSAB

(P |“data”)
ch send(m,PRF ∗

SAB
(P |“data”))

On ch recv(ack, pack):
if ack.auth = PRFSAB

(P |“ack”) then
alloc(pack, 0)
pack = PRF ∗

SAB
(P + 1|“ack”)

alloc(pack, RBA)
P = P + 1

PROTOCOL FOR RECIPIENT B:

On ack init(seed):
P = seed
pold = PRF ∗

SAB
(P − 1|“data”)

pnew = PRF ∗
SAB

(P |“data”)

alloc(pold, RAB/2)
alloc(pnew, RAB/2)

On ch recv(m, pold):
if m.auth = PRFSAB

(P − 1|“data”) then
app recv(m.data)
ack = PRFSAB

(P − 1|“ack”)
ch send(ack, PRF ∗

SAB
(P − 1|“ack”))

On ch recv(m, pnew):
if m.auth = PRFSAB

(P |“data”) then
app recv(m.data)
alloc(pold, 0)
pold = pnew
pnew = PRF ∗

SAB
(P + 1|“data”)

alloc(pnew, RAB/2)
ack = PRFSAB

(P |“ack”)
ch send(ack, PRF ∗

SAB
(P |“ack”))

P = P + 1

Figure 2: Two-party ack-based port-hopping.

messages are sent within this time span. The proof of the next theorem is given in Appendix C.

Theorem 1. When using the ack-based protocol, the probability that a data message thatA sends to port

p arrives when p is open is 1 up to a polynomially-negligible factor3.

In order to compute the throughput that the protocol can support in the absence of a DoS attack (i.e.,

when C = 0), we need to take latency variations into consideration. Since messages sent up to ∆ time

apart can arrive in the same delivery slot, a throughput T ≤ R/∆ ensures a ≤ R. For the rest of this

section, we assume T ≤ R/∆.

We now analyze the protocol’s success rate under DoS attacks. We say that the adversary is in blind

mode if it does not know the ports used by the protocol. We first give a lower bound on the success rate in

blind mode, and then give a lower bound on the probability to be in blind mode at a given time t. Finally,

µ is bounded by the probability to be in blind mode throughout the execution of the protocol, times the

3Namely, for every polynomial g > 0, there is some κg s.t. when κ ≥ κg, then the success rate µ(t) ≥ f(R,C,R)−g(κ).
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success rate in blind mode.

Suppose B opens port p with reception rate Rp, and that a ≤ Rp messages from A are waiting

in its channel, along with cp messages from the adversary (cp ≥ 0). By Lemma 1, the success rate

monotonically non-increases with a. Since the adversary can control a by varying the network delays, it

can set a as high as possible for a delivery slot. Therefore, the worst case occurs when a = T∆. Using

Equation 1, we get that the success rate in blind mode is bounded from below by f(T∆, C, R).

Note that the protocol begins in blind mode. We now analyze the probability that the protocol keeps

the adversary in blind mode. The only way the adversary can learn of a port used by the protocol is using

an expose event E time after a message is sent to that port. This information is only useful for an attack

if the port is still in use. Let us trace the periodic sequence of events that causes the data port to change

(once it changes, acks for the old port are useless). Assume A continuously sends messages m1, m2, . . .

to B starting at time 0, and consider an execution without an attack: (1) By time ∆, B receives a valid

message from the channel and sends an ack to A; (2) By time 2∆, A receives the ack and changes the

sending port; (3) B gets the last message destined for the old port at most at time 3∆.

If E ≥ 3∆, the adversary remains in blind mode. Now let us examine what happens under attack.

In order to prevent the port from changing, the adversary must either prevent B from getting valid data

messages or prevent A from receiving acks. By Lemma 2, the probability that all valid messages are

dropped decreases when a increases. Thus, (as opposed to the previous analysis), in order to increase

the probability that all valid messages are dropped, the adversary should set a ≤ 1 whenever possible.

Denote µB = f(1, C, R), the lower bound on the probability of a single message to be received on a

single port given in Section 4.1.

Lemma 4. If E = 2k∆ for k > 0, and A sends messages to B at least every 2∆ time units, then the

probability that the port changes while the attacker is still blind is at least 1− (1− µ2
B)k.

Proof. The probability that the port does not change in a single round-trip is at most 1 − µ2
B . Since A

sends messages to B every 2∆ time units, at the conclusion of each maximal time round-trip, there is at

least one new message on its own round-trip. In order for the port not to change while the adversary is

still blind, every round-trip needs to fail. Since the attacker can react only after 2k∆ time, there is time

14



for k round-trips in which the attacker is blind, even if none of them succeed. The probability that all of

them fail is less than (1− µ2
B)k. If one succeeds, the port changes. And so, the probability that the port

changes is at least 1− (1− µ2
B)k.

The lower bound above is illustrated in Figure 3(a).
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Figure 3: The effect of E on the ack-based protocol, ψ = 65536.

We now bound the probability to be in blind mode at time t, by assuming that once the attacker leaves

the blind mode it never returns to it. The bound is computed using a Markov chain, where each state

is the number of round-trips that have failed since the last port change. In the last state, all round-trips

have failed before the exposure, and thus the attacker is no longer blind. The Markov chain for E = 4∆

is shown in Figure 3(d). We use the chain’s transition matrix to compute the probability g(t, E , C, R)

for remaining in blind mode at time t. Figure 3(b) shows values of g for E = 4∆. We can see that the

protocol works well only for a limited time.

Finally, we note that the protocol’s message complexity is 2, since it sends an ack for each message,

and its bit complexity is constant: log2(ψ) bits for the port plus κ bits for the authentication code.
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5.2 Adding Proactive Reinitializations

We now introduce a proactive reinitialization mechanism that allows choosing new seeds for the ack-

based protocol depending on time and not on the messages passed in the system. We denote by tA(t)

and tB(t) the local clocks of A and B, resp., where t is the real time. From Section 3 we get that

0 ≤ |tA(t)− t| ≤ Φ, 0 ≤ |tB(t)− t| ≤ Φ. We also assume tA, tB ≥ 0.

If A reinitializes the ack-based protocol and then sends a message to B at time tA(t0), this message

can reach B anywhere in the real time interval (t0, t0 + ∆]. Therefore, the port used by A at tA(t0) must

be open by B at least throughout this interval. To handle the extreme case where A sends a message at

the moment of reinitialization, B must use the appropriate port starting at time tB(t0) − Φ. (We note

that t0 may also be Φ time units apart from tA(t0).) We define δ as the number of time units between

reinitializations of the protocol, and assume for simplicity and effectiveness of resource consumption

that δ > 4Φ + ∆ (see Figure 4 for more details).

Every δ time units, A feeds a new seed to the ack-based protocol, and B anticipates it by creating a

new instance of the protocol, which waits on the new expected ports. Once communication is established

using the new protocol instance, or once it is clear that the old instance is not going to be used anymore,

the old instance is terminated. The pseudocode for the proactive reinitialization mechanism can be found

in Figure 4. Due to space considerations we do not detail the change in port rations at the recipient’s side

as protocol instances are created or terminated. We also note that there is a negligible probability that

more than one ack-based protocol instance will share the same port. Even if this happens, differentiating

between instances can be easily done by adding the instance number (i.e., the total number of times a

reinitialization was performed) to each message. The proof of the next theorem is given in Appendix D.

Theorem 2. When using the ack-based protocol with proactive reinitializations, the probability that a

data message that A sends to port p arrives when p is open is 1 up to a polynomially-negligible factor.

Proactive reinitialization every δ time units allows us to limit the expected degradation in success

rate for a single ack-based protocol instance. Choosing δ is therefore an important part of the combined

protocol. A small δ allows us to maintain high success rate in the ack-based protocol, but increases the
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PROTOCOL ADD-ON FOR SENDER A:

Whenever tA(t) ∈ {0, δ, 2δ, . . .}:
ack init(tA(t)/δ)

PROTOCOL ADD-ON FOR RECIPIENT B:

When tB(t) = 0:
Create the first ack-based protocol instance
For that instance, ack init(0)

PROTOCOL ADD-ON FOR RECIPIENT B (CONTINUED):

Whenever (tB(t) + 2Φ) ∈ {δ, 2δ, 3δ, . . .}:
Create a new ack-based protocol instance
For that instance, ack init((tB(t) + 2Φ)/δ)

4Φ + ∆ time after creating a new ack-based protocol instance
or ∆ time after receiving the first msg for this new instance:

Terminate all older protocol instances

Figure 4: Proactive reinitialization of the ack-based protocol.

average number of ports that are open in every time unit (due to running several protocol instances in

parallel). When several ports are used the ration for each one of them is decreased, and so might the

success rate. On the other hand, choosing a high δ entails lower success rate between reinitializations.

We conclude the discussion above and the results presented in Section 5.1 with the following theorem:

Theorem 3. The success rate of the proactively reinitialized ack-based protocol with throughput T ≤

R/∆ and reinitialization periods of length δ is bounded from below by: g(δ+∆, E , C, R) · f(T∆, C, R)

up to a polynomially-negligible factor.

Figure 3(c) shows the value of g(δ+1, E , 10000, 1) ·f(1, 10000, 1, 1). We can see that the proactively

reinitialized protocol’s success rate stays over 90% even for δ = 100∆, i.e., even for relatively long

periods between reinitializations.

6 Conclusions and Directions for Future Work

We have presented a model for port-based rationing channels, and a protocol robust to DoS attacks, for

communication over such channels. Our protocol is simple and efficient, and hence can sustain high

loads of traffic, as happens, e.g., in high-speed networks. At the same time, our analysis shows that the

protocol is highly effective in mitigating the effects of DoS attacks. Our formal framework and suggested

protocol apply not only to port-based filtering, but to a much broader category of filtering based on any

packet identifier. Thus, our work constitutes the first step in evaluating existing filtering and rate-limiting

mechanisms.
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As the important field of application-level DoS mitigation is relatively new, there is much research

space to explore. While our worst case analysis is valuable, it can be followed by simulations, experi-

ments, and common case analysis. Moreover, the system aspects of deploying such a protocol in today’s

Internet are yet to be dealt with. We now describe several exemplary future research directions.

Our model is realistic, as it only requires the underlying channel to provide port-based filtering;

therefore, it can be efficiently implemented using existing mechanisms, typically at a gateway firewall

or router. This raises an interesting question regarding the trade-off between the cost and the possible

added value of implementing additional functionality by the channel (e.g., at the firewall). We hope that

future work will take further strides towards defining realistic yet tractable models of the channel and the

adversary that will aid in answering this question.

This work has focused on two parties only. It would be interesting to extend it to multiparty scenarios,

such as client-sever and multicast. These scenarios may require a somewhat different approach, and will

obviously necessitate analyses of their own. Furthermore, we required the parties to share a secret key;

we believe we can extend the solution to establish this key using additional parties, e.g., a key distribution

center, or using ‘proof of work’ [7].

Our work has focused on resisting DoS attacks; however, it could impact the performance and reli-

ability properties of the connection; in fact, it is interesting to explore combinations between our model

and problem, and the classical problems of reliable communication over unreliable channels and net-

works. Furthermore, since our work requires a shared secret key, it may be desirable to merge it with

protocols using shared secret key for confidentiality and authentication, such as SSL/TLS and IP-Sec.
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A Model and Specification of Port-Based Rationing Channel

VARIABLES: rcvd, initially 0 // Number of last received message (for FIFO)
m(i)i∈N, initially ∅ // ith message sent
port(i)i∈N, initially ∅ // port of ith message
t(i)i∈N, initially ∅ // time when ith message was sent
time, initially 0 // Current time
{ In(port) }port∈{1,...,ψ}, initially ∅ // Buffer of messages to processor q, per port
{ Rport }port∈{1,...,ψ} // Ration of each port, set by recipient
sent, initially 0 // Count of messages sent
inj, initially 0 // Count of messages injected since last deliver

HANDLING OF EVENTS:
On ch send(m, port): m(++sent)← m, port(sent)← port, t(sent)← time
On net recv: add m(++rcvd) to In(port(rcvd))

On alloc(port, r): if (R ≥ r −Rport +
∑ψ

i=1Ri) then Rport ← r
On deliver : inj ← 0

for port ∈ {1, . . . , ψ} do: // Deliver up to Rport messages from In(port)
let M be random Rport messages from In(port)
for m ∈M do: ch recv(m, port)
In(port)← ∅ // Clear buffer

On inj(m, port): if inj + + ≤ C then add m to In(port)
On expose(i): if time ≥ t(i) + E then return 〈m(i), port(i)〉
On advance(δ): time← min{time+ |δ|, t(rcvd) + ∆}

Figure 5: Port-based rationing channel for given Ψ, R, C,Φ,∆, E .

We model the system as a collection of interacting state machines. Each state machine is defined by

its state (variables), set of possible initial states, and deterministic state transitions associated with input

and output events. To allow machines to make random choices, initial states include random tapes.

We model the adversary as one of the deterministic state machines of which the system is composed.

The adversary controls, among other things, the scheduling of events. That is, it defines the next event

that will occur in any system state, as well as the progress of time (via the advance event). Thus, an

execution of the system is completely defined by its initial state and number of steps4. The possible

choices of random tapes define a probability space on executions.

A port-based rationing channel models a FIFO-ordered rate-limited communication channel with

port-based message filtering. Figure 5 provides specifications for a channel from A to B; we assume an

equivalent channel is used from B to A. The net recv event models the arrival of the next message from

4We encapsulate all non-determinism and randomness in the choice of random tapes.
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A (in FIFO order) to the channel’s buffer, allowing the adversary control of network latency (up to ∆).

The recipient uses the alloc operation to designate ration values Ri for ports i ∈ {1, . . . , ψ}. If

Ri > 0 we say that port i is open. We use In(i) to denote the set of messages in the input buffer

designated with port i. The channel delivers all messages from In(i) if |In(i)| ≤ Ri, and a random

subset of Ri messages from In(i) if |In(i)| > Ri.

The adversary can inject messages directly into the buffer using inj events, and can snoop on the

contents of messages using expose events, under the restrictions above.

B Channel Delivery Probability Analysis – Proofs of Lemmas

We now prove the lemmas from Section 4. Since a,C, andR are constants, denote µB(sk) = µB(a, C,R, sk).

For brevity, denote sk = (cp1, cp2, . . . , cpk
) as the strategy where p1, p2, . . . , pk are the ports that the

attacker attacks at rates of cp1 , cp2, . . . , cpk
messages, resp., where

∑k
i=1 cpi

= C, cpi
> 0. Assume that

∀i cpi
≥ R− a+ 1 (otherwise, even if pi = p, the probability of B receiving A’s messages is exactly 1).

Proposition 1. For fixed k, a, C, R, and sk as defined above, µB(a, C,R, sk) = ψ−k
ψ

+ 1
ψ

∑k

i=1
R

cpi
+a

.

Proof. The probability that B does not deliver A’s message is:
∑k

i=1 Pr[pi = p] ·
(

1− R
cpi

+a

)

=

1
ψ

∑k
i=1

(

1− R
cpi

+a

)

= k
ψ
− 1

ψ

∑k
i=1

R
cpi

+a
. Thus, the delivery probability is ψ−k

ψ
+ 1

ψ

∑k
i=1

R
cpi

+a
.

Lemma 5. Under a blind attack with strategy sk = (cp1, cp2, . . . , cpk
) for fixed k, a, C, and R, the worst

(i.e., minimal) expected delivery probability of the system is achieved when ∀i cpi
= C

k
.

Proof. By Proposition 1, µB(sk) = ψ−k
ψ

+ 1
ψ

∑k

i=1
R

cpi
+a

. Calculating the partial derivatives of µB(sk)

we get that ∂µB(sk)
∂cpi

= 1
ψ
· −R

(cpi
+a)2

, i.e., µB(sk) is monotonically decreasing as we increase cpi
and keep

cpj
the same for j 6= i. Thus, the attacker wants to increase cpi

to decrease the delivery probability of the

communication channel. However, we have the constraint
∑k

i=1 cpi
= C. Integrating this constraint into

our delivery probability function using a Lagrange coefficient denoted by β gives:

µB′(sk) =
ψ − k

ψ
+

1

ψ

k
∑

i=1

R

cpi
+ a

+ β(
k
∑

i=1

cpi
− C)
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We now look for an extremum point by comparing the partial derivatives of µB′(sk) to zero:

∂µB′(sk)

∂cpi

= 0

1

ψ
·
−R

(cpi
+ a)2

+ β = 0

β =
R

ψ(cpi
+ a)2

(cpi
+ a)2 =

R

ψβ

cpi
=

√

R

ψβ
− a

Putting the values of cpi
into the constraint equation C =

∑k

i=1 cpi
gives:

C =
k
∑

i=1

(
√

R

ψβ
− a

)

C = k

(
√

R

ψβ
− a

)

(

C

k
+ a

)2

=
R

ψβ

β =
R

ψ
(

C
k

+ a
)2

Going back to the equation for cpi
we get:

cpi
=

√

√

√

√

R

ψ · R

ψ(C
k

+a)
2

− a =

√

(

C

k
+ a

)2

− a =
C

k

This result also fits our constraint cpi
> 0, and we have an extremum point for µB(sk) at cpi

= C
k

. (We

note that C
k

might not be an integer, but since we want a lower bound, this does not make a difference.)

We denote this extremum point by s∗k. Now we need to show that s∗k is a minimum point. If we show

that µB(sk) is convex, then from Kuhn-Tucker Theorem we get that s∗k is a global minimum point. We

proceed by showing that µB(sk) is convex.
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We have already shown that ∂µB(sk)
∂cpi

= R
ψ
· −1

(cpi
+a)2

. We get that µB(sk) is twice continuously differ-

entiable, and the second derivative is:

∂2µB(sk)

∂cpi
∂cpj

=











0 i 6= j

R
ψ
·

2(cpi
+a)

(cpi
+a)4

i = j

We get that the Hessian of µB(sk) is a positive diagonal matrix. Thus, µB(sk) is convex, and from

Kuhn-Tucker Theorem, µB(s∗k) is a global minimum of the delivery probability function µB(sk).

From Proposition 1 and Lemma 5 we get:

Corollary 2. Under a blind attack, if k, a, C, and R are fixed, then the expected delivery probability for

sk ∈ Sk is bounded from below as follows: µB(a, C,R, sk) ≥
ψ−k
ψ

+ 1
ψ
·
∑k

i=1
R

C
k

+a
= ψ−k

ψ
+ 1

ψ
· kR

C
k

+a
=

ψ−k
ψ

+ k2R
ψ(C+ka)

.

We now define µB(k) , minsk∈Sk
µB(sk). We get that for each k:

µB(k) =
ψ − k

ψ
+
R

ψ
·

k2

C + ka

To find a lower bound, we continue this analysis as if k is continuous. The derivative of µB(k) is then:

µ′
B(k) =

−1

ψ
+
R

ψ
·
2k(C + ka)− k2a

(C + ka)2
=
R

ψ
·
2kC + k2a

(C + ka)2
−

1

ψ
=
R− 1

ψ
−
R

ψ
·
C2 + (2kC + k2a)(a− 1)

(C + ka)2

We now prove two lemmas that show that µB(a, C,R) is bounded from below by the function

f(a, C,R) presented in Equation 1.

Lemma 6. Let R = a, then an adversary with C ≥ ψ cannot decrease the expected delivery probability

lower than ψa

C+ψa
, and an adversary with C ≤ ψ cannot decrease the expected delivery probability lower

than 1− C
ψ(1+a)

.

Proof. Let R = a. We get that µ′
B(k) = R−1

ψ
− R

ψ
· C

2+(2kC+k2R)(R−1)
(C+kR)2

. We now show that µ′
B(k) < 0:

R− 1

ψ
−
R

ψ
·
C2 + (2kC + k2R)(R− 1)

(C + kR)2

?
< 0
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(C + kR)2(R− 1)
?
≤ RC2 +R(R− 1)(2kC + k2R)

(C2 + 2kRC + k2R2)(R− 1)
?
≤ RC2 + (R− 1)(2kCR + k2R2)

C2(R− 1)
?
≤ RC2

0
?
≤ C2

Clearly, the last inequality holds, and we get that µB(k) monotonically decreases as k increases. Thus,

the adversary wants to choose k as large as possible. Ideally, k = ψ, C ≥ ψ(R− a+1) = ψ and we get:

µB(a, R, C) ≥
a

ψ
·

ψ2

C + ψa
=

ψa

C + ψa

However, this attack requires substantial strength from the adversary, i.e., the adversary needs to be

more than ψ times stronger than B. If C ≤ ψ(R−a+1) = ψ we get that k = C
R−a+1

= C. The resulting

degraded delivery probability is:

µB(a, R, C) ≥
ψ − C

ψ
+
a

ψ
·

C2

C(1 + a)
=
ψ(1 + a)− C(1 + a) + aC

ψ(1 + a)
= 1−

C

ψ(1 + a)
≥ 1−

ψ

ψ(1 + a)
= 1−

1

1 + a

Lemma 7. Let a < R. Then an adversary with C ≥ ψa�
R

R−a
−1

cannot decrease the expected delivery

probability lower than ψR

C+ψa
, and an adversary with C ≤ ψa�

R
R−a

−1
cannot decrease the expected delivery

probability lower than
ψa−C � � R

R−a
−1 �

ψa
+ R

ψ
·
C � � R

R−a
−1 � 2

a2
�

R
R−a

.

Proof. Since a < R, we get R ≥ 2. Let us find the value of k that minimizes the delivery probability:

µ′
B(k) = 0

R − 1

ψ
−
R

ψ
·
C2 + (2kC + k2a)(a− 1)

(C + ka)2
= 0

(C + ka)2(R− 1)− RC2 − R(2kC + k2a)(a− 1) = 0

2kCR + k2aR − 2kCa− k2a2 − C2 = 0
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2kC(R− a) + k2a(R− a)− C2 = 0

ak2 + 2Ck −
C2

R − a
= 0

Since k > 0, we get that the solution is:

k =
−2C +

√

4C2 + 4C2a
R−a

2a
=
−2C +

√

4C2R
R−a

2a
=
C
(√

R
R−a
− 1
)

a

Obviously, this value of k is not an integer. However, we use it to bound the minimum delivery proba-

bility under a blind DoS attack. First, we need to show that this value of k is indeed a minimum point.

We do this by showing that the second derivative of µB(k) is always positive:

µ′′
B(k) =

R

ψ
·
2x(C + kx) [C2 + (2kC + k2a)(a− 1)]− (2C + 2ka)(a− 1)

(C + k)4

It suffices to show that the numerator is always positive. I.e., we need to show:

a(2C + 2ka)
[

C2 + (2kC + k2a)(a− 1)
]

> (2C + 2ka)(a− 1)

This is clearly true, since a ≥ 1, k ≥ 1, C ≥ 1, and we get a [C2 + (2kC + k2a)(a− 1)] > a− 1. Thus,

µ′′
B(k) is always positive, and we have found a minimum point.

We also need the found k to be in range. Clearly, k > 0. We still need to show that k ≤ C
R−a+1

:

k
?
≤

C

R− a+ 1

C
(√

R
R−a
− 1
)

a

?

≤
C

R− a+ 1
√

R

R − a

?

≤
a

R− a+ 1
+ 1

R

R − a

?
≤

(R + 1)2

(R− a+ 1)2

R(R + 1)2 − 2Ra(R + 1) +Ra2
?
≤ R(R + 1)2 − a(R + 1)2
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Ra− 2R2
?
≤ −R2 − 1

a
?
≤ R−

1

R

The last inequality holds since a < R, a is an integer, and R ≥ 2. Thus, k ≤ C
R−a+1

.

We can now bound the expected delivery probability µ(a, R, C) from below. For the case where

k =
C � � R

R−a
−1 �

a
≤ ψ we get:

µB(a, R, C) ≥
ψ −

C � � R
R−a

−1 �
a

ψ
+
R

ψ
·

C2 � � R
R−a

−1 � 2

a2

C +
C � � R

R−a
−1 �

a
a

=
ψa− C

(√

R
R−a
− 1
)

ψa
+
R

ψ
·
C
(√

R
R−a
− 1
)2

a2
√

R
R−a

For the case where
C � � R

R−a
−1 �

a
> ψ, since µB(k) has just one extremum point, and it is a minimum point

with k > ψ, we get that the attacker’s best strategy is to choose k = ψ, and we get:

µB(a, R, C) ≥
ψ − ψ

ψ
+

ψ2R

ψ(C + ψa)
=

ψR

C + ψa

Note that we got the same result for R = a and k = ψ. However, the conditions for choosing k = ψ are

different. For R = a we choose k = w if C ≥ w. For R > a we choose k = ψ if
C � � R

R−a
−1 �

a
> ψ.

We conclude the following lemma:

Lemma 3. µB(a, C,R) is bounded from below by the following function f(a, C,R):

f(a, C,R) =























































ψa

C+ψa
if R = a and C ≥ ψ

1− C
ψ(1+a)

if R = a and C < ψ

ψR

C+ψa
if R > a and C ≥ ψa�

R
R−a

−1

ψa−C � � R
R−a

−1 �
ψa

+ R
ψ
·
C � � R

R−a
−1 � 2

a2
�

R
R−a

if R > a and C < ψa�
R

R−a
−1

0 otherwise

27



C Ack-Based Protocol – Proof of Correctness

Invariant 1. Let PA and PB be the P counters thatA and B hold in the ack-based protocol, respectively.

The probability that PB − PA ∈ {0, 1} is 1 up to a polynomially-negligible factor.

Proof. After the initialization stage PA = PB , and the property PB − PA ∈ {0, 1} holds.

When the counters are equal, the part of the protocol that may update them proceeds as follows:

1. A sends a message to B on port PRFSAB
(PA|“data”).

2. If the message reaches B in a valid state, B adds 1 to PB and sends an acknowledgment back to A

on port PRFSBA
(PB|“ack”).

3. If the ack reaches A in a valid state, A adds 1 to PA.

If steps 2 and 3 complete successfully, both counters advance by 1 and remain equal to each other. If

step 2 fails (message dropped or modified in transit), both counters remain unchanged. If step 2 succeeds

but step 3 fails (ack lost or changed in transit), PB is incremented by 1, but PA remains the same. Thus,

if PA = PB, the next change of counters will still maintain the property PB − PA ∈ {0, 1}.

Now suppose we have reached the state where PB = PA + 1. The portion of the protocol that may

update the counters proceeds as follows:

1. A sends a message to B on port PRFSAB
(PA|“data”).

2. If the message reachesB in a valid state,B sends an ack back toA on port PRFSBA
(PB−1|“ack”).

3. If the ack reaches A in a valid state, A adds 1 to PA.

If steps 2 and 3 complete successfully, PA advances by 1 and the counters become equal to each

other. If steps 2 or 3 fail (messages dropped or are not valid), both counters remain unchanged. Thus, if

PB = PA + 1, the next change of counters will still maintain the property PB − PA ∈ {0, 1}.

The only way to break this invariant is if the attacker makes just one party advance its counter. This

means that the adversary has to fabricate a message so one party will think it is valid. Thus, the attacker
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needs to guess both the port number and the authentication information attached to each message. The

probability that the attacker succeeds in doing so is a polynomially-negligible factor.

Theorem 1. When using the ack-based protocol, the probability that a data message that A sends to port

p arrives when p is open is 1 up to a polynomially-negligible factor.

Proof. According to Invariant 1, when A sends a data message to B, either PA = PB or PB = PA + 1,

with probability 1 up to a polynomially-negligible factor.

For the first case, let M be a message A sends to B when PA = PB . Since B always opens two ports

for data, we need to show that PB does not increase by more than one until M actually reaches B. Since

the link maintains the FIFO semantics, messages sent after M was sent cannot change the value of PB

before M reaches B. The only messages that can change PB are messages that preceded M but reached

B only after M was sent.

According to the protocol, PB increases by one iff B receives a data message from A that was sent

using the counter PA = PB. Furthermore, all messages preceding M were sent using a counter that is

less than or equal to PA. It follows that PB can only increase by one from the time M leaves A until it

reaches B.

Consider now the second case where M was sent when PB = PA + 1. Since B only opens two ports

for data, we need to show that PB does not change at all. Again, since the link has FIFO semantics,

PB can only change by messages preceding M that reach B after M was sent but before it reaches B.

However, such messages have counters that are less than or equal to PA, and thus strictly less than PB.

According to the protocol, messages sent with such counters do not affect the value of PB.

D Ack-Based with Reinitializations – Proof of Correctness

Theorem 2. When using the ack-based protocol with proactive reinitializations, the probability that a

data message that A sends to port p arrives when p is open is 1 up to a polynomially-negligible factor.

Proof. From Theorem 1 we get that if A and B both use the ack-based protocol initialized with seed,
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then messages sent byA arrive to open ports atB. To complete the proof, we need to show the following:

1. When A reinitializes the protocol with a new seed, B has already started running an ack-based

protocol instance using the same seed.

2. B does not terminate a protocol instance while it may still receive messages corresponding to that

instance.

For the first property, let us look at some real time tAn when A reinitializes the protocol, where

tA(tAn ) = nδ, n ∈ N. From the bounded drift assumption we get the bound tAn ≥ nδ − Φ. The seed

corresponding to the initialization at tAn is tA(tAn )
δ

= n. Now let us look at the real time tBn in which B

starts a new ack-based protocol instance with the seed n. This happens when tB(tBn ) + 2Φ = nδ, i.e.,

when tB(tBn ) = nδ − 2Φ. Using the bounded drift assumption we get the bound tBn ≤ nδ − 2Φ + Φ =

nδ − Φ ≤ tAn .

For the second property, let us look at seed n again. A terminates the instance with seed n at real

time tAn+1. The last packet sent using the ack-based protocol initialized with seed n inevitably reaches B

before real time tAn+1 + ∆. B terminates the ack-based protocol instance in either one of the following

two cases:

1. At time tB(tBn+1) + 4Φ + ∆.

2. ∆ time units after receiving the first message for a newer ack-based protocol instance.

For the first case, we get tBn+1 ≥ (n + 1)δ − 2Φ− Φ + 4Φ + ∆ = (n + 1)δ + Φ + ∆ ≥ tAn+1 + ∆. For

the second case, we observe that if a message for a newer instance of the ack-based protocol has arrived,

then A is no longer sending messages with instances initialized with older seeds. However, the varying

message propagation delay means that messages from older protocol instances can take up to ∆ time

units to arrive, while the new message might have taken negligible time to arrive.
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