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1 Introduction 
 

The linear cryptanalysis introduced by Mitsuru Matsui [6] is one of the basis attacks on block 

ciphers. The resistance of block cipher against this attack is the main requirement in stating its 

security. The notion of nonlinearity of Boolean functions and Boolean mappings (S-boxes) 

introduced in [7] and [8, 9] is essential in formulation of linear cryptanalysis. In this paper we 

consider the round function of a block cipher consisting of parallel S-boxes which inputs are 

concatenated and outputs are xored giving this way the output of the round function. The 

problem is to calculate the nonlinearity of such Boolean mapping when the component S-

boxes are quite large, e.g. having 8-bit inputs and 32-bit outputs. In the CAST-like ciphers [1, 

2] there was used the round function with four such S-boxes giving the mapping of 32-bit 

input and 32-bit output. The resistance of the CAST-like cipher to differential and linear 

cryptanalysis was investigated in [5]. At present, it is not possible in a direct way to calculate 

the nonlinearity of this round function. In the paper [11] the authors stated, without giving 

details, that they had calculated that nonlinearity and gave the numerical result. Following 

their suggestions we have proved here Lemma 4.3 and Theorem 4.4 which enable to calculate 

the nonlinearity of the function. The basic inspiration was taken from the notion of multi-

dimensional Walsh transform as presented in [3], although its explicit definition is not 

presented here since we needed only its special case of separable variables. The examined 

round function is a good approximation of that one used in the cipher CAST-256 [2], where in 

two cases bitwise addition is replaced by algebraic operations like arithmetic addition and 

subtraction modulo 232. The estimation or the explicit calculation of the nonlinearity of round 

function is used to obtain the resistance of the cipher against linear cryptanalysis. The result is 

better when we consider the round function as a whole than that one obtained by taking into 

account the nonlinear properties of the individual S-boxes. 

The paper is organized as follows. In section 2 we present the basic facts on Boolean 

functions, their nonlinearity and the fast Walsh transform. The section 3 describes the 

substitution boxes and their linear approximation tables. In section 4 there are investigated the 

nonlinear properties of the introduced round function. The Lemma 4.2 was given without 

proof in [11]. The Lemma 4.3 and Theorem 4.4 seem to be new ones. We have implemented 

the method and calculated the nonlinearity of the round function with four S-boxes taken from 

CAST-128 confirming the numerical value from [11]. In section 6 we give the application of 

our results to the linear cryptanalysis of the block cipher TGR which is a modification of the 
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hash function Tiger proposed by Anderson and Biham [4] working in the encryption mode.  

We have collected in the paper the proofs of facts on linear cryptanalysis and Walsh transform 

which are commonly known but in most cases are presented without proofs in the original 

papers. 

 

 

2 Boolean Functions 
 

A Boolean function with m inputs is a mapping 22: Ζ→Ζmf , where m∈Ν. The Boolean 

function 22: Ζ→Ζmf  is an affine one when it can be represented as  f (x) = amxm ⊕ am–1xm–1 

⊕ ... ⊕ a1x1 ⊕ a0, where x = [xm, xm–1, ..., x1]∈ m
2Ζ  and ai∈ 2Ζ , i = 0, 1, ..., m. The affine 

function  f  is linear when a0 = 0. 

Let iα  be n-dimensional binary vector being the binary representation of an integer i 

written in the decimal form, i.e. 0α = [0, ... , 0], 1α = [0, ... , 0, 1], ... , 
12 −mα = [1, ... ,1]. Then 

the binary vector  )](,),(),([
1210 −mfff ααα K  is called the truth table of the Boolean function 

22: Ζ→Ζmf . The truth table uniquely describes the Boolean function, hence writing  f  we 

mean usually the binary vector representing its truth table. 

For a given Boolean function  f  we define the polar function )()1()(ˆ xx ff −=  which 

takes the values from the set {– 1, 1}. 

We denote  wt(a)  the Hamming weight of the binary vector a = [am, am–1, ... , a1]∈ mZ2 , 

which is the number of ones in a, i.e. ∑
=

=
m

i
iawt

1
)(a . For given two vectors a, b∈ mZ2  their 

Hamming distance is defined as the number of places where the coordinates of these vectors 

are different, i.e.  d(a, b) = wt(a ⊕ b). For given two Boolean functions 22:, Ζ→Ζmgf , their 

Hamming distance is defined as the number of places at which are different their truth tables, 

i.e. d( f, g) = #{x m
2Ζ∈ | f(x) ≠ g(x)} = wt( f ⊕ g) = ∑

Ζ∈

⊕
m

gf
2

)()(
x

xx , where )( gfwt ⊕  is the 

Hamming weight of the function  f  ⊕ g. 
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Lemma 2.1 

Let 22:, Ζ→Ζmgf , then 

∑
Ζ∈

− −=
m

gfgfd m

2

)(ˆ)(ˆ2),( 2
11

x

xx . 

 

Proof 

Let ]..., ,,[ˆ
221 maaaf = , ]..., ,,[ˆ

221 mbbbg =  and ρ+ – the number of places where ai = bi, 

ρ– – the number of places where ai ≠ bi. 

We can write 

−−−

=

−+−−−+−+
Ζ∈

−=−−+=−+−=−=∑ ρρρρρρρρρρρ 22)()(ˆ)(ˆ

22

m

m
m

gf
43421

x

xx , 

hence 

−
Ζ∈

−=∑ ρ22)(ˆ)(ˆ
2

m

m

gf
x

xx , 

∑
Ζ∈

− −=
m

gfm

2

)(ˆ)(ˆ22
x

xxρ , 

∑
Ζ∈

−
− −=

m

gfm

2

)(ˆ)(ˆ2 2
11

x

xxρ , 

which is the thesis of the Lemma. 

g 
 

The real function of m
2Ζ∈u  defined as 

∑
Ζ∈

⋅−⋅=
m

ffW
2

)1()())((
x

xuxu  

is called the Walsh transform of the function  f,  where R→Ζmf 2: . 

The Walsh transform of the polar function f̂  at the point u is denoted ))(ˆ( ufW  or ))((ˆ ufW . 

 

Lemma 2.2 

For a Boolean function 22: Ζ→Ζmf  and an affine function  Aa,c(x) = a ⋅ x ⊕ c, where 

22 , Ζ∈Ζ∈ cma  we have 

)))(ˆ()1(2(),( 2
1

, aa fWAfd cm
c −−= . 
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Proof 

Using Lemma 2.1 one has 

)).)(ˆ()1(2())(ˆ()1(2)1)((ˆ)1(2

)1()1)((ˆ2)1)((ˆ2

)1)((ˆ2)(ˆ)(ˆ2),(

2
1

2
11

2
11

2
11

2
11

)(
2
11

,2
11

,

2

22

2

,

2

aax

xx

xxx

x

xa

x

xa

x

xa

x

x

x
aa

a

fWfWf

ff

fAfAfd

cmcmcm

cmcm

Am
c

m
c

m

mm

m

c

m

−−=−−=−−−=

=−−−=−−=

=−−=−=

−

Ζ∈

⋅−

Ζ∈

⋅−

Ζ∈

⊕⋅−

Ζ∈

−

Ζ∈

−

∑

∑∑

∑∑

  

g 
 

Lemma 2.3 

For a real constant c and a real function  f  defined on a finite domain D one has 

{ } )(max)(),(min xfcxfcxfc
DxDx ∈∈

−=+− . 

 

Proof 

{ }
[ ] [ ]
[ ] [ ]
[ ] [ ]

.)(max)(max

)()(
)()()()(
)()()()(

)(),(min

MxfcMcxf

McxfMcxf
McxfMcxfMcxfMcxf

MxfcMxfcMxfcMxfc

xfcxfcM

DxDx

DxDx

DxDx

DxDx

Dx

=−⇔−=⇔

⇔−≤∀∧−=∃⇔

⇔−≤−∧−≤∀∧−=−∨−=∃⇔
⇔≥+∧≥−∀∧=+∨=−∃⇔

⇔+−=

∈∈

∈∈

∈∈

∈∈

∈

 

g 
 

The nonlinearity of a Boolean function 22: Ζ→Ζmf  is defined as 

{ }cfNL m

cf ⊕⋅≠Ζ∈= xaxx
a

)(|#min 2,
, 

where 22 , Ζ∈Ζ∈ cma . The nonlinearity of the Boolean function is its Hamming distance to the 

nearest affine function.  

 

Lemma 2.4 

Let 22: Ζ→Ζmf , then 

))(ˆ(max2
2

2
11 a

a
fWNL

m

m
f

Ζ∈

− −= . 
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Proof 

{ } { } (*)),(),,(min),(min)(|#min 1,0,,2
2

2
2

2
2

===⊕⋅≠Ζ∈=
Ζ∈

Ζ∈
Ζ∈

Ζ∈
Ζ∈

aa
a

a
aa

xaxx AfdAfdAfdcfNL
mmm c

c

m

c

f . 

Using Lemma 2.2 one has 

{ }
{ } (**)))(ˆ(2),)(ˆ(2min

)))(ˆ()1(2()),)(ˆ()1(2(min(*)

2
11

2
11

1
2
10

2
1

2

2

=+−=

=−−−−=

−−

Ζ∈

Ζ∈

aa

aa

a

a

fWfW

fWfW

mm

mm

m

m

 

and Lemma 2.3 gives 

))(ˆ(max2))(ˆ(max2(**)
22

2
11

2
11 aa

aa
fWfW

mm

mm

Ζ∈

−

Ζ∈

− −=−= . 

g 
 

The effective method of calculating the nonlinearity of a Boolean function f must 

involve the fast calculating of the Walsh transform )ˆ( fW . 

 

 

The Walsh-Hadamard matrix is defined as 

⎥
⎦

⎤
⎢
⎣

⎡
−

=
−−

−−

11

11

mm

mm
m HH

HH
H , 

where  m = 1, 2, 3, ...  and  H0 = 1;  which can be written as 

Hm = H1 ⊗ Hm–1, 

where ⎥
⎦

⎤
⎢
⎣

⎡
−

=
11

11
1H   and  ⊗  denotes the Kronecker product, e.g. for 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

987

654

321

43

21       ,
bbb
bbb
bbb

B
aa
aa

A   

we have 

.           ,

987

654

321

43

21

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

AbAbAb
AbAbAb
AbAbAb

AB
BaBa
BaBa

BA  

One can observe that the Walsh-Hadamard matrix is a symmetric one: T
mm HH = . 
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Lemma 2.5 

])1[( vu⋅−=mH , 

where m
2, Ζ∈vu , u = [um, um–1, ..., u1], v = [vm, vm–1, ..., v1] and iαu = , jαv = , the indexes i, j 

= 0, 1, ..., 2m – 1  indicate the row and the column of the matrix Hm. 

 

Proof (by induction) 

Let m = 1, then 2, Ζ∈vu  and  [ ] .
11

11
)1()1(
)1()1(

)1( 11101

1000

H=⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡

−−
−−

=−
⋅⋅

⋅⋅
⋅vu  

Let us assume the thesis of the Lemma is true for m = 1, 2, ..., k. Then for m = k + 1 we have 

[ ]vu⋅
+ −⊗⎥

⎦

⎤
⎢
⎣

⎡
−

=⊗= )1(
11

11
11 kk HHH , 

where k
2, Ζ∈vu , u = [uk, uk–1, ..., u1], v = [vk, vk–1, ..., v1]. 

We calculate 

[ ]

(*),
])1[()1(])1[()1(
])1[()1(])1[()1(

])1[()1(])1[()1(
])1[()1(])1[()1(

)1(
11

11

1111

1111

10

00

1

=⎥
⎦

⎤
⎢
⎣

⎡

−−−−
−−−−

=

=⎥
⎦

⎤
⎢
⎣

⎡

−−−−
−−−−

=−⊗⎥
⎦

⎤
⎢
⎣

⎡
−

=

⋅⋅⋅⋅

⋅⋅⋅⋅

⋅⋅

⋅⋅
⋅

+

++++

++++

vuvu

vuvu

vuvu

vuvu
vu

kkkk

kkkk

vuvu

vuvu

kH

 

where 211, Ζ∈++ kk vu  indicates the sub-matrices of the matrix Hk+1. Hence 

])1[(])1[((*) ''11 vuvu ⋅⋅⊕⋅ −=−= ++ kk vu , where u’, v’ 1
2
+Ζ∈ k  and  u’ = [uk+1, uk, uk–1, ..., u1], v’ = [vk+1, 

vk, vk–1, ..., v1]. This implies that the thesis is true for arbitrary m ≥ 1. 

g 
 

Lemma 2.6 

The Walsh transform of the function Rf m →Ζ2:  can be represented as 

W( f ) = f ⋅ Hm . 

 

Proof 

From the definition of the Walsh transform we have 

u
x

xuxu hfffW
m

⋅=−⋅= ∑
Ζ∈

⋅

2

)1()())(( , where Tmh ])1(,...,)1(,)1[( 1210 −
⋅⋅⋅ −−−=
αuαuαu

u . 
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Let us notice that ],...,,[
1210 −m

hhh ααα  is the symmetric matrix ])1[( ji αα ⋅− , where i, j = 0, 1, ..., 

2m–1 are the row number and the column number of this matrix. Since =
−

],...,,[
1210 m

hhh ααα  

])1[( ji αα ⋅−= , hence Lemma 2.5 gives mHhhh
m

=
−

],...,,[
1210 ααα , so 

i
hα is the i-th column (and 

also the i-th row since the matrix is symmetric) of the Walsh-Hadamard matrix Hm. Hence the 

vector containing all values of the Walsh transform of the function f for the succeeding 

arguments 
1210 ,...,,
−

= mαααu  is equal to  mHfhhhffW
m

⋅=⋅=
−

],...,,[)(
1210 ααα . 

g 
 

Lemma 2.7 

For arbitrary x, y∈R one has 

{ } yxyxyx +=−+ ,max . 

 

Proof 

Let us notice that for x and y of the same sign it is yxyx −≥+ , in the opposite case 

yxyx −<+ . Let us consider the cases: 

1) If  x, y ≥ 0, then { } yxyxyxyxyx +=+=+=−+ ,max . 

2) If  x, y < 0, then { } yxyxyxyxyxyx +=−+−=+−=+=−+ )()()(,max . 

3) If  x ≥ 0, y < 0, then { } yxyxyxyxyxyx +=−+=−=−=−+ )(,max . 

4) If  x < 0, y ≥ 0, then { } yxyxyxyxyxyx +=+−=−−=−=−+ )()(,max . 

g 
 

Let 22: Ζ→Ζmf  be a Boolean function and f̂  its polar form. Let ][̂ jif K  represents the 

truth table of f̂  for the inputs from iα  to jα . Then the Lemma 2.6 gives 

[ ]1010
11

11
]122[]120[]12...0[ ,]ˆ,ˆ[ˆˆ)ˆ( 11 WWWW

HH
HH

ffHfHffW
mm

mm
mm mmmm −+=⎥

⎦

⎤
⎢
⎣

⎡
−

⋅=⋅=⋅=
−−

−−
−−− −− KK

, 

where W0 = ]120[ 1
ˆ

−−mf
K

⋅ Hm–1  and  W1 = ]122[ 1
ˆ

−− mmf
K

⋅ Hm–1. This way to calculate the Walsh 

transform of the function }1,1{:ˆ
2 −→Ζmf  it is sufficient to know the transforms W0, W1 of 

the functions }1,1{:ˆ,ˆ 1
210 −→Ζ −mff , where ]ˆ,ˆ[ˆ

10 fff = . 
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To speed up the calculation of the Walsh transform one can create in the computer 

memory the matrix W4 having dimension p × q, where p = 655362
42 = , q = 24 = 16, which 

has rows indexed by the successive 16-bit vectors 4
if , i = 0, ..., 65535 (being the truth tables 

of Boolean functions of 4 variables) and the columns are indexed by the successive 4-bit 

vectors jα  ( j = 0, ..., 15). The (i, j)-entry of the matrix W4 is the value of Walsh transform 

))(ˆ( 4
jifW α . To calculate the Walsh transform of the function }1,1{:ˆ 5

2
5 −→Ζf , its truth table 

is divided into two halves which are the truth tables of the functions }1,1{:ˆ,ˆ 4
2

44 −→Ζji ff . 

Then we calculate ),(4),(4))(ˆ( 5 kjWkiWkfW +=  and  ),(4),(4)16)(ˆ( 5 kjWkiWkfW −=+ , 

where k = 0, ..., 15. We follow in a similar way for function having more inputs, e.g. to 

calculate )ˆ( 6fW  we divide the truth table of function having 6 inputs into two truth tables of  

functions having 5 inputs and in turn into four truth tables of 4-input functions. 

If we calculate [ ]1010 ,)ˆ( WWWWfW −+=  to obtain the nonlinearity of f, then from 

Lemma 2.4 we need ))(ˆ(max
2

u
u

fW
mΖ∈

 and from Lemma 2.7 we can in the last step of calculation 

of Walsh transform limit to take the maximum over the elements of |||| 10 WW + . 

 

 

3 Substitution Boxes 
 

A substitution box of dimension m×n is a transformation nmS 22: Ζ→Ζ , where m, n∈Ν. The 

substitution box S can be considered as a collection of its coordinates n Boolean functions, i.e.  

S = [fn, fn–1, ..., f1],  where 22: Ζ→Ζm
if . 

The nonlinearity of substitution box nmS 22: Ζ→Ζ  is defined as 

SS NLNL ⋅= bb
min , 

where }{\2 0b nΖ∈ , b = [bn, bn–1, ..., b1]  and  NLb⋅S  is nonlinearity of the Boolean function  

b⋅S = bn fn⊕ bn–1 fn–1 ⊕ ... ⊕ b1 f1. 

For a given substitution box nmS 22: Ζ→Ζ  it is defined the linear approximation table 

which elements are 

{ } 1
2 2)(|#),( −−⋅=⋅Ζ∈= mm

S SLAT xbxaxba , 
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where }{\, 22 0ba nm Ζ∈Ζ∈ . 

 

Lemma 3.1 

For a substitution box nmS 22: Ζ→Ζ  we have 

LATS(a, b) = 2m–1 – d(a ⋅ x, b ⋅ S), 

where }{\, 22 0ba nm Ζ∈Ζ∈ . 

 

Proof 

{ } { }
).,(2

2)(|#22)(|#),(
1

1
2

1
2

Sd

SSLAT
m

mmmmm
S

⋅⋅−=

=−⋅≠⋅Ζ∈−=−⋅=⋅Ζ∈=
−

−−

bxa

xbxaxxbxaxba
 

g 
 

Lemma 3.2 

For a substitution box nmS 22: Ζ→Ζ  one has 

),(max2
,

1 ba
ba S

m
S LATNL −= − , 

where }{\, 22 0ba nm Ζ∈Ζ∈ . 

 

Proof 

{ }
{ }

{ } { }
{ } (*)),(2,2),(min2

),(2),,(min)1,(),,(min

1)()(|#min

)(|#minmin

11

,

1

,,

2,

2,,

=⋅⋅−−⋅⋅+=

=⋅⋅−⋅⋅=⊕⋅⋅⋅⋅=

=⊕⋅≠⋅∨⋅≠⋅Ζ∈=

=⊕⋅≠⋅Ζ∈==

−−−

⋅

xabxab

xabxabxabxab

xaxbxaxbx

xaxbx

ba

baba

ba

babb

SdSd

SdSdSdSd

SS

cSNLNL

mmm

m

m

m

cSS

 

From Lemma 3.1 and next from Lemma 2.3 we obtain 

{ } ),(max2),(),,(min2(*)
,

1

,

1 bababa
baba S

m
SS

m LATLATLAT −=−+= −−  . 

g 
 

By the linear approximation of a substitution box nmS 22: Ζ→Ζ  we mean the equation 

a ⋅ x = b ⋅ S(x) , 

where }{\, 22 0ba nm Ζ∈Ζ∈ . Let p be the probability of satisfying this equation for given a and 

b, it is 
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{ }
m

m Sp
2

)(|# 2 xbxax ⋅=⋅Ζ∈
=  . 

Then 

{ }
mm

mm LATSp
2

),(
2

2)(|#
2
1 1

2 baxbxax
=

−⋅=⋅Ζ∈
=−

−

 

has a meaning of efficiency of the linear approximation of substitution box nmS 22: Ζ→Ζ . 

Let  pβ  denotes the probability of best linear approximation, it means that one for which the 

efficiency 
2
1

−βp  has the biggest value. 

 

Lemma 3.3 (Lee et al. [5]) 

For a substitution box nmS 22: Ζ→Ζ  it is 

m
S

m NLp
2

2
2
1 1 −
=−

−

β  . 

 

Proof 

By definition m

LAT
p

2

),(max

2
1 ,

ba
ba=−β  and by the Lemma 3.2 we have 

),(max2
,

1 ba
ba S

m
S LATNL −= − , hence S

m
S NLLAT −= −1

,
2),(max ba

ba
 and =−

2
1

βp  

m
S

m

m

NLLAT

2
2

2

),(max 1
, −

==
−ba

ba . 

g 
 

 

4 The Nonlinearity of the Round Function 
 

Let nkmF 22: Ζ→Ζ  be a transformation such that 

F(x) = F(xk, xk–1, …, x1) = S1(x1) ⊕ S2(x2) ⊕ … ⊕ Sk(xk), 

where nm
iS 22: Ζ→Ζ , i = 1, 2, ..., k  and  Si = [fi,n, fi,n–1, ..., fi,1], 22, : Ζ→Ζm

jif , j = 1, 2, ..., n. 
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Figure 4.1: The structure of F round function. 

 

Similarly to substitution boxes it is defined the nonlinearity of the transformation 
nkmF 22: Ζ→Ζ : 

                                                          FF NLNL ⋅= bb
min ,                                                        (4.1) 

where }{\2 0b nΖ∈ , b = [bn, bn–1, ..., b1],  F = [Fn, Fn–1, ..., F1], 22: Ζ→Ζkm
jF , 

Fj(x) = Fj(xk, xk–1, …, x1) = f1, j(x1) ⊕ f2, j(x2) ⊕ ... ⊕ fk, j(xk) and NLb⋅F is nonlinearity of the 

Boolean function b⋅F = bnFn⊕ bn–1Fn–1 ⊕ ... ⊕ b1F1. 

 

Lemma 4.1 (Piling-Up Lemma, Matsui [6]) 

Let  X1, X2, ..., Xn  be independent binary random variables, where n ≥ 2 and let 

P{Xi = 0} = pi,  P{Xi = 1} = 1 – pi  for  i = 1, 2, ..., n. Then 

∏∏
=

−

=

− +=−+==⊕⊕⊕
n

i
i

n
n

i
i

n
n pXXX

1

1
2
1

1
2
11

2
1

21 2)(2}0{P εK , 

where iip ε+= 2
1 , 2

1
2
1 ≤≤− iε . 

 

Proof (by induction) 

Let n = 2, then 

=−−+++=−−+=
===+======⊕

))(())(()1)(1(
}1,1{P}0,0{P}{P}0{P

22
1

12
1

22
1

12
1

2121

21212121

εεεεpppp
XXXXXXXX

 

F 

km

m m m

S1 S2 Sk . . .

n

n n n
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).)((22 2
1

22
1

12
1
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Let us assume the thesis of the Lemma is true for n = 2, 3, ..., k. Then for n = k + 1 we have 
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The calculation above implies that the thesis is true for n ≥ 2. 

g 
 

The following lemma is a generalization of the result given without proof by Youssef, 

Chen and Tavares in [11]. 

 

Lemma 4.2 
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Proof 

Let us take the linear approximation of the transformation F : 

a⋅x = b⋅F(x), 

where }{\, 22 0ba nkm Ζ∈Ζ∈ , in other words  

a1x1 ⊕ a2x2 ⊕ ... ⊕ akxk = bS1(x1) ⊕ bS2(x2) ⊕ ... ⊕ bSk(xk). 

Let pβ denotes the probability of the linear approximation of transformation F having the best 

efficiency, then by Lemma 3.3 we have km
F

km NLp
2

2 1

2
1 −
=−

−

β . 

Let us consider generalization of the above approximation, it is 

a1x1 ⊕ a2x2 ⊕ ... ⊕ akxk = b1S1(x1) ⊕ b2S2(x2) ⊕ ... ⊕ bkSk(xk), 
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where }{\, 22 0ba n
i

m
i Ζ∈Ζ∈ . Let pγ denotes the probability of generalized approximation 

having the best efficiency. Then 2
1

2
1 −≤− γβ pp , since in the worst case we can take b1 = b2 

= ... = bk = b. Let us transform the generalized approximation to the form 

a1x1 ⊕ b1S1(x1) ⊕ a2x2 ⊕ b2S2(x2) ⊕ ... ⊕ akxk ⊕ bkSk(xk) = 0. 

We assume that Xi = aixi ⊕ biSi(xi) are independent binary random variables having the 

probability distribution P{Xi = 0} = pi, P{Xi = 1} = 1 – pi. This assumption is very natural 

since pi are the probabilities of linear approximation of independent substitutions boxes Si. By 

Lemma 4.1 we have 
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Lemma 4.3 
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2211 kkSWSWSWFW ubububub ⋅⋅⋅=⋅ K , 

where u = [uk, uk–1, ..., u1]. 

 

Proof 

Since  b⋅F = bnFn ⊕ bn–1Fn–1 ⊕ ... ⊕ b1F1  for   F = [Fn, Fn–1, ..., F1], 22: Ζ→Ζkm
jF , 

Fj(x) = Fj(xk, xk–1, …, x1) = f1, j(x1) ⊕ f2, j(x2) ⊕ ... ⊕ fk, j(xk), 

we have 

b⋅F(x) = bnFn(x) ⊕ bn–1Fn–1(x) ⊕ ... ⊕ b1F1(x) = 

= bn( f1,n(x1) ⊕ f2,n(x2) ⊕ … ⊕ fk,n(xk)) ⊕ bn–1( f1,n–1(x1) ⊕ f2,n–1(x2) ⊕ … ⊕ fk,n–1(xk)) ⊕ ... ⊕ 

 b1( f1,1(x1) ⊕ f2,1(x2) ⊕ … ⊕ fk,1(xk)) = 
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Theorem 4.4 

∏
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Proof 
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⋅  and by Lemma 4.3 
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hence 
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The above theorem has been used to calculate in the special cases the nonlinearity of 

the function F according to the formula (4.1). 

 

 

5 The TGR Algorithm 
 

The TGR algorithm is a block cipher which works on 128-bit blocks and uses 256-bit keys. 

The general scheme of the cipher TGR is shown in the Figure 5.1. The 128-bit plaintext P is 

transformed to the 128-bit ciphertext C in three passes (r = 1, 2, 3) each consisting of eight 

rounds ( j = 0, 1, …, 7). 

The passes use the 256-bit keys Kr obtained from the main 256-bit key K using the key 

schedule algorithm Key_sch. We have Kr = Key_sch(Kr–1), where K0 = K. Each key Kr is 

divided into eight 32-bit subkeys kr, j, which are used in the corresponding j-th round of the r-

th pass. The first use of Key_sch has as an input the main key K = (k0, k1, k2, k3, k4, k5, k6, k7) 

and gives as an output the key K1 = (k1,0, k1,1, k1,2, k1,3, k1,4, k1,5, k1,6, k1,7) used in the first pass. 

Next we have as an input to Key_sch the key K1 and we get as an output K2 = (k2,0, k2,1, k2,2, 

k2,3, k2,4, k2,5, k2,6, k2,7) and analogously for K3 = (k3,0, k3,1, k3,2, k3,3, k3,4, k3,5, k3,6, k3,7). The 

Key_sch is described by the formulae shown in Figure 5.2. Operations like + and – are just an 

addition and a subtraction modulo 232 respectively, ⊕ is a bitwise sum modulo 2, ~ denotes a 

bitwise negation, << and >> are bitwise shifts left and right respectively (the loosing bits are 

complemented by zeros), <<< and >>> are bitwise rotations left and right respectively. 

The 128-bit input to the j-th round of the r-th pass is divided into four 32-bit blocks 

denoted (Ar, j, Br, j, Cr, j, Dr, j) and the 128-bit output of this round is denoted (A’r, j, B’r, j, C’r, j, 
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D’r, j). The structure of the round is depicted in the Figure 5.3. The S-boxes S1, S2, S3, S4 are 

taken from the CAST-256 cipher [2] and operation Rot is the data-dependent rotation function 

just taken from the RC6 cipher [10] as shown in Figure 5.4. 

The TGR design is based on the hash function Tiger proposed by Anderson and Biham 

in [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. The scheme of the TGR encryption algorithm. 

 

 

 

k0 := k0 – (k7 ⊕ ((~k6) <<< 11) ⊕ 0xa5a5a5a5) 
k1 := k1 ⊕ k0 
k2 := k2 + k1 
k3 := k3 – (k2 ⊕ ((~k1) >>> 13)) 
k4 := k4 ⊕ k3 
k5 := k5 + k4 
k6 := k6 – (k5 ⊕ ((~k4) >> 7)) 
k7 := k7 ⊕ k6 
k0 := k0 + k7 
k1 := k1 – (k0 ⊕ ((~k7) << 5)) 
k2 := k2 ⊕ k1 
k3 := k3 + k2 
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k4 := k4 – (k3 ⊕ ((~k2) <<< 11)) 
k5 := k5 ⊕ k4 
k6 := k6 + k5 
k7 := k7 – (k6 ⊕ ((~k5) >>> 13)) 
k0 := k0 ⊕ k7 
k1 := k1 + k0 
k2 := k2 – (k1 ⊕ ((~k0) >> 7)) 
k3 := k3 ⊕ k2 
k4 := k4 + k3 
k5 := k5 – (k4 ⊕ ((~k3) << 5)) 
k6 := k6 ⊕ k5 
k7 := k7 + k6 

 

Figure 5.2. The key schedule algorithm Key_sch. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. The j-th round of the r-th pass of the encryption algorithm. 
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Figure 5.4. The data-dependent rotation function Rot. 

 

The TGR decryption algorithm is obtained by taking the inversion of the TGR encryption 

algorithm (suitable modification of the round function and opposite order of the subkeys). 

 

 

6 Resistance of TGR to Linear Cryptanalysis 
 

It has been stated in [5] that the best linear approximation of a cipher, satisfied with the 

probability Lp  is bounded as follows: 

                                                       
α

β
α

2
12

2
1 1 −≤− − ppL ,                                               (6.1) 

where α  is the number of S-box linear approximations involved in the linear approximation 

of the cipher and βp  represents the probability of the best S-box linear approximation (among 

all the α  S-box linear approximations). In every round of the block cipher TGR there are 

involved two 16×32-bit S-boxes each consisting of two 8×32-bit S-boxes taken from the 

CAST-256. The linear approximation of a block cipher is based on the assumption of 

independent round keys such that the linear expressions approximating the S-boxes are 

independent. The sequence of approximations of the round functions (involving 

approximations of the S-boxes) results in the overall linear expression for the cipher. 

According to [6] the number of known plaintexts required to almost sure deduction of some 

bits of the round keys is approximately equal to 

                                                            
2

2
1 −

−= Lp pN .                                                         (6.2) 

y := x <<< [((d⋅(2d+1) mod 232) <<< 5) & 0x1f] d 

y

x
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It was shown in [5] (see Lemma 3.3 above) that the probability βp  is given by 

                                                       m

m NLp
2

2
2
1 min

1 −
=−

−

β ,                                                  (6.3) 

where m is the number of input bits of the S-box and minNL  is minimal nonlinearity of the S-

boxes involved in the approximation of the cipher. In our case of TGR cipher we have m = 16 

and using Theorem 4.4 we have calculated minNL  being 28736 for the 16×32-bit S-box built 

from the substitution boxes S1 and S2 taken from the CAST-256 cipher. The best linear 

approximation of TGR cipher appears to be constructed using two round characteristics when 

in each round it is approximated the left one 16×32-bit S-box (see Figure 5.3) and the 

arithmetic addition and subtraction are replaced by xor operation and the data-dependent 

rotation is neglected. These characteristics are not iterative ones. When calculating (6.3) with 

our data we obtain 

1024
63

2
1
=−βp  

and putting 24=α  in (6.1) we have 

2210725545.0
2
1 −⋅≤−Lp . 

 

From (6.2) we get that the number of required plaintexts to perform the linear cryptanalysis is 
14744 2108996.1 ≈⋅≥pN  

which is much more that the number 2128 of all available plaintexts. 

If we perform such analysis, when in each two round characteristic there are 

approximated two 8×32-bit substitution boxes S1 and S2 having nonlinearity 74, we get that 

the required number of plaintexts is greater than 2121. It shows that we obtain the better 

resistance of the cipher to linear cryptanalysis when considering bigger S-boxes in the round 

function confirming this way the observation made by Youssef et al. in [11]. 

Let us consider the TGR cipher reduced to two passes, i.e. 16 rounds. Performing the 

linear cryptanalysis as described above we get the following data. In the first case of 16×32-

bit S-boxes, there are then 16=α  S-box linear approximations involved in the approximation 

of the cipher and it is required more than 298 plaintexts which is an unrealistic amount. In the 

second case of 8×32-bit S-boxes, there are then 32=α  S-box linear approximations involved 

in the approximation of the cipher and it is required more than 281 plaintexts. We can 
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conclude that TGR algorithm has a one pass (8 rounds) of the security margin with respect to 

the linear cryptanalysis. 
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