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Abstract

The Plutus file system introduced the notion of key rotation as a means to derive a sequence
of temporally-related keys from the most recent key. In this paper we show that, despite natural
intuition to the contrary, key rotation schemes cannot generically be used to key other crypto-
graphic objects; in fact, keying an encryption scheme with the output of a key rotation scheme
can yield a composite system that is insecure. To address these shortcomings, we introduce a
new cryptographic object called a key regression scheme, and we propose three constructions
that are provably secure under standard cryptographic assumptions. We implement key regres-
sion in a secure file system and empirically show that key regression can significantly reduce the
bandwidth requirements of a content publisher under realistic workloads. Our experiments also
serve as the first empirical evaluation of either a key rotation or key regression scheme.
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1 Introduction

Content distribution networks (CDNs) such as Akamai [2], BitTorrent [10], and Coral [15] enable
content publishers with low-bandwidth connections to make single-writer, many-reader content
available at high throughput. When a CDN is untrusted and the content publisher cannot rely on
the network to enforce proper access control, the content publisher can achieve access control by
encrypting the content and distributing the cryptographic keys to legitimate users [17, 19, 22, 23, 26,
28]. Under the lazy revocation model for access control [17, 23], following the eviction of a user from
the set of members, the content publisher will encrypt future content with a new cryptographic key
and will, upon request, distribute that new key to all remaining and future members. The content
publisher does not re-encrypt all pre-existing content since the evicted member could have already
cached that content.

The content publisher can use the CDN to distribute the encrypted content, but without the
aid of a trusted server, the content publisher must distribute all the cryptographic keys to mem-
bers directly. To prevent the publisher’s connection from becoming a bottleneck, the Plutus file
system [23] introduced a new cryptographic object called a key rotation scheme. Plutus uses the
symmetric key Ki to encrypt content during the i-th time period, e.g., before the i-th eviction. If
a user becomes a member during the i-th time period, then Plutus gives that member the i-th key
Ki. From [23], the critical properties of a key rotation scheme are that (1) given the i-th key Ki

it is easy to compute the keys Kj for all previous time periods j < i, but (2) for any time period
l > i after i, it should be computationally infeasible to compute the keys Kl for time period l given
only Ki. Property (1) enables the content publisher to transfer only a single small key Ki to new
members wishing to access all current and past content, rather than the potentially large set of
keys {K1,K2, . . . , Ki}; this property reduces the bandwidth requirements on the content publisher.
Property (2) is intended to prevent a member evicted during the i-th time period from accessing
(learning the contents of) content encrypted during the l-th time period, l > i.

1.1 Overview of contributions

In this work we uncover a design flaw with the definition of a key rotation scheme. To address
the deficiencies with key rotation, we introduce a new cryptographic object called a key regression
scheme. We present RSA-based, SHA1-based, and AES-based key regression schemes. We imple-
ment key regression in a secure file system and we analyze the performance of key regression within
the context of this file system. We summarize our contributions in more detail in the following
paragraphs.

Negative results on key rotation. We begin by presenting a design flaw with the definition
of key rotation: for any realistic key rotation scheme, even though a member evicted during the
i-th time period cannot predict subsequent keys Kl, l > i, the evicted member can distinguish
subsequent keys Kl from random. The lack of pseudorandomness follows from the fact that if
an evicted member is given the real key Kl, then by definition (i.e., by property (2)) the evicted
member can recover the real key Ki; but given a random key instead of Kl, the evicted member
will with high probability recover a key K ′

i 6= Ki. The difference between unpredictability and
lack of pseudorandomness can have severe consequences in practice. To illustrate the seriousness
of this design flaw, we describe a key rotation scheme and a symmetric encryption scheme that
individually meet their desired security properties (property (2) for key rotation and IND-CPA
privacy for symmetric encryption [3]), but when combined (e.g, when a content publisher uses the
keys from the key rotation scheme to key the symmetric encryption scheme) result in a system that
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Figure 1: Key regression overview; stpi and stmi respectively represent the i-th publisher and
member states.

fails to provide even a weak form of privacy.1

Fixing key rotation with key regression. While the above counter example does not imply
that all systems employing key rotation will fail just as drastically, it does motivate finding a
key rotation-like object that still achieves property (1) (or something similar) but (property (2′))
produces future keys that are pseudorandom to evicted members (as opposed to just unpredictable).
Assuming the new object achieves pseudorandomness, one could use it as a black box to key other
cryptographic constructs without worrying about the resulting system failing as drastically as the
one described above. A key regression scheme is such a key rotation-like object.

To describe key regression, we must enact a paradigm shift: rather than give a new member the
i-th key Ki directly, the content publisher would give the member a member state stmi. From the
member state, the member could derive the encryption key Ki for the i-th time period, as well as all
previous member states stmj , j < i. By transitivity, a member given the i-th member state could
also derive all previous keys Kj . By separating the member states from the keys, we can build key
regression schemes where the keys Kl, l > i, are pseudorandom to evicted members possessing only
the i-th member state stmi. Intuitively, the trick that we use in our constructions to make the keys
Kl pseudorandom is to ensure that given both Kl and stmi, it is still computationally infeasible for
the evicted member to compute the l-th member state stml. Viewed another way, there is no path
from Kl to stmi in Figure 1 and vice-versa.

Our constructions. We refer to our three preferred key regression schemes as KR-RSA, KR-SHA1,
and KR-AES. Rather than rely solely on potentially error-prone heuristic methods for analyzing
the security of our constructions, we prove that all three are secure key regression schemes. Our
security proofs use the reduction-based provable security approach pioneered by Goldwasser and
Micali [20] and lifted to the concrete setting by Bellare, Kilian, and Rogaway [4]. For KR-RSA,
our proof is based on the assumption that RSA is one-way. For the proof of both KR-RSA and
KR-SHA1, we assume that SHA1 is a random oracle [5]. For the proof of KR-AES, we assume that
AES is a secure pseudorandom permutation [25, 4].

Implementation and evaluation. We integrated key regression in a secure file system to mea-
sure the performance characteristics of key regression in a real application. Our measurements show
that key regression can significantly reduce the bandwidth requirements of a publisher distributing

1We stress that the novelty here is in identifying the design flaw with key rotation, not in presenting a specific
counter example. Indeed, the counter example follows naturally from our observation that a key rotation scheme
does not produce pseudorandom keys.
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decryption keys to members. On a simulated cable modem, a publisher using key regression can
distribute 1,000 keys to 181 clients/sec whereas without key regression the cable modem limits the
publisher to 20 clients/sec. The significant gain in throughput conservation comes at no cost to
client latency, even though key regression requires more client-side computation. Our measure-
ments show that key regression actually reduces client latency in cases of highly dynamic group
membership.

We also provide the first empirical measurements of either a key regression or key rotation
scheme. Contrary to conventional wisdom, we find that KR-AES can perform more than four times
as many unwinds/sec than KR-SHA1. The measurements will help developers select the most
appropriate key regression scheme for particular applications.

Applications. We target key regression at publishers of popular content who have limited band-
width to their trusted servers, or who may not always be online, but who can use an untrusted CDN
to distribute encrypted content at high throughput. Our experimental results show that a publisher
using key regression on a low-bandwidth connection can serve more clients than the strawman ap-
proach of having the publisher distribute all keys {K1,K2, . . . , Ki} directly to members. Moreover,
our experimental results suggest that key regression can be significantly better than the strawman
approach when i is large, as might be the case if the publisher has a high membership turnover
rate. Such a publisher might be an individual, startup, or cooperative with popular content but
with few network resources. The possibilities for such content range from blogs and amateur press
to operating systems and various forms of multimedia. To elaborate on one such form of con-
tent, operating systems, Mandriva Linux currently uses the BitTorrent CDN to distribute its latest
Linux distributions to its Mandriva Club members 2. And it controls access to these distributions
by only releasing the .torrent files to its members. Using key regression, Mandriva could exercise
finer-grained access control over its distributions, allowing members through time period i to access
all versions of the operating system including patches, minor revisions and new applications added
through time period i, but no additions to the operating system after time period i.3

1.2 Related work

The key rotation scheme in Plutus [23] inspired our research in key regression. Bellare and Yee [7]
introduce the notion of a forward-secure pseudorandom bit generator (FSPRG). One can roughly
view forward-secure pseudorandom bit generation as the mirror image of key regression. Whereas
a key regression scheme is designed to prevent an evicted member in possession of stmi from
distinguishing subsequent encryption keys Kl, l > i, from random, a FSPRG is designed to prevent
an adversary who learns the state of the FSPRG at some point in time from distinguishing previous
outputs of the FSPRG from random. In our security proof for KR-AES, we make the relationship
between key regression and FSPRGs concrete by first proving that one can build a secure key
regression scheme from any secure FSPRG by essentially running the FSPRG backwards. Abdalla
and Bellare [1] formally analyze methods for rekeying symmetric encryption schemes, but like
FSPRGs, a standard rekeying scheme is roughly the mirror image of a key regression scheme.

As pointed out in [9], one possible mechanism for distributing updated content encryption keys
for a secure file system is to use a broadcast encryption scheme [14, 27, 12, 13]. Indeed, one of
the main challenges faced by an encrypted file system is the distribution of the encryption keys to

2http://club.mandriva.com/xwiki/bin/view/Downloads/TorrentAccess.
3While Mandriva may wish to exercise access control over non-security-critical patches and upgrades, they would

likely wish to allow all Mandriva users, including evicted Mandriva Club members, access to all security-critical
patches. To enable this, Mandriva could encrypt all security-critical patches with the key for the time period to
which the patch is first applicable, or Mandriva could simply not encrypt security-critical patches.
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Alg. setup

(N, e, d) $← Krsa ; K
$← Z∗N

pk← 〈N, e〉 ; sk← 〈K, N, d〉
Return (pk, sk)

Alg. wndkey(sk = 〈K, N, d〉)
K ′ ← Kd mod N
sk′ ← 〈K ′, N, d〉
Return (K, sk′)

Alg. unwndkey(K, pk = 〈N, e〉)
Return Ke mod N

Figure 2: The Plutus key rotation scheme; Krsa is an RSA key generator.

Alg. setup

KMW
$← {0, 1}160 ; pk← ε

For i = MW downto 2 do
Ki−1 ← SHA1(Ki)

sk← 〈1,K1, . . . , KMW〉
Return (pk, sk)

Alg. wndkey(sk = 〈i,K1, . . . , KMW〉)
If i > MW return (⊥, sk)
sk′ ← 〈i + 1,K1, . . . , KMW〉
Return (Ki, sk

′)

Alg. unwndkey(K, pk)
// ignore pk
K ′ ← SHA1(K)
Return K ′

Figure 3: A hash chain-based key rotation scheme.

the remaining (not evicted) set of users, and broadcast encryption provides an ideal solution. We
note, however, that this is orthogonal to the specific problem addressed by key regression. In fact,
a key regression scheme is a key generation algorithm as opposed to a key distribution algorithm.
Key regression simply assumes the existence of a secure distribution channel, of which broadcast
encryption is one possible instantiation.

Self-healing key distribution with revocation [33] protocols are resilient even when broadcasts
are lost on the network. In this manner, one can view key regression as having the self-healing
property in perpetuity.

2 Notation.

If x and y are strings, then |x| denotes the length of x in bits and x‖y denotes their concatenation.
If x and y are two variables, we use x← y to denote the assignment of the value of y to x. If Y is a
set, we denote the selection of a random element in Y and its assignment to x as x

$← Y . If f is a
deterministic (respectively, randomized) function, then x← f(y) (respectively, x

$← f(y)) denotes
the process of running f on input y and assigning the result to x. We use the special symbol ⊥ to
denote an error.

We use AESK(M) to denote the process of running the AES block cipher with key K and input
block M . An RSA [29] key generator for some security parameter k is a randomized algorithm Krsa

that returns a triple (N, e, d). The modulus N is the product of two distinct odd primes p, q such
that 2k−1 ≤ N < 2k; the encryption exponent e ∈ Z∗ϕ(N) and the decryption exponent d ∈ Z∗ϕ(N)

are such that ed ≡ 1 mod ϕ(N), where ϕ(N) = (p − 1)(q − 1). Section 5 describes what it means
for an RSA key generator to be one-way.

3 Problems with key rotation

A key rotation scheme [23] consists of three algorithms: setup, wndkey, and unwndkey. Figure 2
shows the original (RSA-based) Plutus key rotation scheme. Following Plutus, one familiar with
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hash chains [24] and S/KEY [21] might design the key rotation scheme in Figure 3, which is more
efficient than the scheme in Figure 2, but which is limited because it can only produce MW (“max
wind”) keys, where MW is a parameter chosen by the implementor. A content publisher runs
the setup algorithm to initialize a key rotation scheme; the result is public information pk for all
users and a secret sk1 for the content publisher. The content publisher invokes wndkey(ski) to
obtain the key Ki and a new secret ski+1. Any user in possession of Ki, i > 1, and pk can invoke
unwndkey(Ki, pk) to obtain Ki−1. Informally, the desired security property of a key rotation scheme
is that, given only Ki and pk, it should be computationally infeasible for an evicted member (the
adversary) to compute Kl, for any l > i. The Plutus construction in Figure 2 has this property
under the RSA one-wayness assumption (defined in Section 5), and the construction in Figure 3
has this property if one replaces SHA1 with a random oracle [5].

The problem. In Section 1 we observed that the l-th key output by a key rotation scheme cannot
be pseudorandom, i.e., will be distinguishable from a random string, to an ex-member in possession
of the key Ki for some previous time period i < l.4 We consider the following example to emphasize
how this lack of pseudorandomness might impact the security of a real system that combines a key
rotation scheme and a symmetric encryption scheme as a black boxes.

For our example, we first present a key rotation scheme KO and an encryption scheme SE
that individually both satisfy their respective security goals (unpredictability for the key rotation
scheme and IND-CPA privacy [3] for the symmetric encryption scheme). To build KO, we start
with a secure key rotation scheme KO; KO outputs keys twice as long as KO. The KO winding
algorithm wndkey invokes KO’s winding algorithm to obtain a key K; wndkey then returns K‖K
as its key. On input a key K‖K, unwndkey invokes KO’s unwinding algorithm with input K
to obtain a key K ′; unwndkey then returns K ′‖K ′ as its key. If the keys output by wndkey are
unpredictable to evicted members, then so must the keys output by wndkey. To build SE , we start
with a secure symmetric encryption scheme SE ; SE uses keys that are twice as long as SE . The
SE encryption and decryption algorithms take the key K, split it into two halves K = L1‖L2, and
run SE with key L1⊕L2. If the key K is random, then the key L1⊕L2 is random and SE runs the
SE encryption algorithm with a uniformly selected random key. This means that SE satisfies the
standard IND-CPA security goal if SE does.

Despite the individual security of both KO and SE , when the keys output by KO are used to
key SE , SE will always run SE with the all-zero key; i.e., the content publisher will encrypt all
content under the same constant key. An adversary can thus trivially compromise the privacy of all
encrypted data, including data encrypted during time periods l > i after being evicted. Although
the construction of KO and SE may seem somewhat contrived, this example shows that combining
a key rotation scheme and an encryption scheme may have undesirable consequences and, therefore,
that it is not wise to use (even a secure) key rotation scheme as a black box to directly key other
cryptographic objects.

4 Key Regression

The negative result in Section 3 motivates our quest to find a new cryptographic object, similar
to key rotation, but for which the keys generated at time periods l > i are pseudorandom to any

4Technically, there may be pathological examples where the l-th key is pseudorandom to a member given the i-th
key, but these examples seem to have other problems of their own. For example, consider a key rotation scheme
like the one in Figure 3, but where SHA1 is replaced with a function mapping all inputs to some constant string
C, e.g., the all 0 key. Now set MW = 2, i = 1, and l = 2. In this pathological example K2 is clearly random
to the evicted member, meaning (better than) pseudorandom. But this construction still clearly lacks our desired
pseudorandomness property: the key K1 is always the constant string C.
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adversary evicted at time i. Here we formalize such an object: a key regression scheme. Following
the reduction-based practice-oriented provable security approach [20, 4], our formalisms involve
carefully defining the syntax, correctness requirements, and security goal of a key regression scheme.
These formalisms enable us to, in Section 5, prove that our preferred constructions are secure under
reasonable assumptions. We desire provable security over solely ad hoc analyses since, under ad hoc
methods alone, one can never be completely convinced that a cryptographic construction is secure
even if one assumes that the underlying components (e.g., block ciphers, hash functions, RSA) are
secure.

Overview of key regression. Figure 1 gives an abstract overview of a key regression scheme.
The content publisher has content publisher states stpi from which it derives future publisher and
member states. When using a key regression scheme, instead of giving a new member the i-th key
Ki, the content publisher would give the member the i-th member state stmi. As the arrows in
Figure 1 suggest, given stmi, a member can efficiently compute all previous member states and the
keys K1, . . . ,Ki. Although it would be possible for an ex-member to distinguish future member
states stml, l > i, from random (the ex-member would extend our observation on the lack of
pseudorandomness in key rotation schemes), because there is no efficient path between the future
keys Kl and the ex-member’s last member state stmi, it is possible for a key regression scheme to
produce future keys Kl that are pseudorandom (indistinguishable from random). We present some
such constructions in Section 5.

On an alternative: Use key rotation carefully. Figure 1 might suggest an alternative approach
for fixing the problems with key rotation. Instead of using the keys Ki from a key rotation scheme
to directly key other cryptographic objects, use a function of Ki, like SHA1(Ki), instead. If one
models SHA1 as a random oracle and if the key rotation scheme produces unpredictable future
keys Kl, then it might seem reasonable to conclude that an ex-member given Ki should not be
able to distinguish future values SHA1(Kl), l > i, from random. While this reasoning may be
sound for some specific key rotation schemes (this reasoning actually serves as the basis for our
derivative of the construction in Figure 2, KR-RSA in Construction 5.5) we dislike this approach
for several reasons. First, we believe that it is unreasonable to assume that every engineer will
know to or remember to use the hash function. Further, even if the engineer knew to hash the
keys, the engineer might not realize that simply computing SHA1(Kl) may not work with all key
rotation schemes, which means that the engineer cannot use a key rotation scheme as a black box.
For example, while SHA1(Kl) would work for the scheme in Figure 2, it would cause problems
for the scheme in Figure 3. We choose to consider a new cryptographic object, key regression,
because we desire a cryptographic object that is not as prone to accidental misuse. Additionally,
by focusing attention on a new cryptographic object, we allow ourselves greater flexibility in how we
can construct objects that meet our requirements. For example, one of our constructions (KR-AES,
Construction 5.3) does not use a hash function and is therefore in the standard model instead of
the random oracle model.

4.1 Syntax and correctness requirements

Syntax. Here we formally define the syntax of a key regression scheme KR = (setup, wind, unwind,
keyder). Let H be a random oracle; all four algorithms are given access to the random oracle, though
they may not use the random oracle in their computations. Via stp

$← setupH , the randomized
setup algorithm returns a publisher state. Via (stp′, stm) $← windH(stp), the randomized winding
algorithm takes a publisher state stp and returns a pair of publisher and member states or the error
code (⊥,⊥). Via stm′ ← unwindH(stm) the deterministic unwinding algorithm takes a member state
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stm and returns a member state or the error code ⊥. Via K
$← keyderH(stm) the deterministic key

derivation algorithm takes a member state stm and returns a key K ∈ DK, where DK is the derived
key space for KR. Let MW ∈ {1, 2, . . .} ∪ {∞} denote the maximum number of derived keys that
KR is designed to produce. We do not define the behavior of the algorithms when input the error
code ⊥. A construction may use multiple random oracles, but since one can always obtain multiple
random oracles from a single random oracle [5], our definitions assume just one.

Correctness. Our first correctness criterion for a key regression scheme is that the first MW times
that wind is invoked, it always outputs valid member states, i.e., the outputs are never ⊥. Our
second correctness requirement ensures that if stmi is the i-th member state output by wind, and
if i > 1, then from stmi, one can derive all previous member states stmj , 0 < j < i. Formally,
let stp0

$← setup and, for i = 1, 2, . . ., let (stpi, stmi)
$← windH(stpi−1). We require that for each

i ∈ {1, 2, . . . , MW}, that stmi 6= ⊥ and that, for i ≥ 2, unwindH(stmi) = stmi−1.

Remarks on syntax. Although we allow wind to be randomized, the wind algorithms in all of
our constructions are deterministic. We allow wind to return (⊥,⊥) since we only require that wind
return non-error states for its first MW invocations. We use the pair (⊥,⊥), rather than simply
⊥, to denote an error from wind since doing so makes our pseudocode cleaner. We allow unwind to
return ⊥ since the behavior of unwind may be undefined when input the first member state.

4.2 Security goal

For security, we desire that if a member (adversary) is evicted during the i-th time period, then
the adversary will not be able to distinguish the keys derived from any subsequent member state
stml, l > i, from randomly selected keys. Definition 4.1 captures this goal as follows. We allow
the adversary to obtain as many member states as it wishes (via a WindO oracle). Note that the
WindO oracle returns only a member state rather than both a member and publisher state. Once
the adversary is evicted, its goal is to break the pseudorandomness of subsequently derived keys.
To model this, we allow the adversary to query a key derivation oracle KeyderO. The key derivation
oracle will either return real derived keys (via internal calls to wind and keyder) or random keys.
The adversary’s goal is to guess whether the KeyderO oracle’s responses are real derived keys or
random keys. Since the publisher is in charge of winding and will not invoke the winding algorithm
more than the prescribed maximum number of times, MW, the WindO and KeyderO oracles in our
security definition will only respond to the first MW queries from the adversary.

Definition 4.1 [Security for key regression schemes.] Let KR = (setup, wind, unwind, keyder)
be a key regression scheme. Let A be an adversary. Consider the experiments Expkr-b

KR,A, b ∈
{0, 1}, and the oracles WindO and KeyderO below. The adversary runs in two stages, member and
non-member, and returns a bit.

Experiment Expkr-b
KR,A

Pick random oracle H
i← 0
stp

$← setupH

st
$← AWindO,H(member)

b′ $← AKeyderOb,H(non-member, st)
Return b′

Oracle WindO

i← i + 1
If i > MW then

return ⊥
(stp, stm) $← windH(stp)
Return stm

Oracle KeyderOb

i← i + 1
If i > MW then return ⊥
(stp, stm) $← windH(stp)
If b = 1 then

K ← keyderH(stm)
If b = 0 then

K
$← DK

Return K

7



KR-SHA1 KR-AES KR-RSA

MW =∞ No No Yes
Random oracles Yes No Yes
setup cost MW SHA1 ops MW AES ops 1 RSA key generation
wind cost no crypto no crypto 1 RSA decryption
unwind cost 1 SHA1 op 1 AES op 1 RSA encryption
keyder cost 1 SHA1 op 1 AES op 1 SHA1 op

Table 1: Our preferred constructions. There are ways of implementing these constructions with
different wind costs. The “random oracles” line refers to whether our security proof is in the random
oracle model or not.

The KR-advantage of A in breaking the security of KR is defined as

Advkr
KR,A = Pr

[
Expkr-1

KR,A = 1
]
− Pr

[
Expkr-0

KR,A = 1
]

.

Under the concrete security approach [4], we say that a KR is “KR-secure” if for any adversary
A attacking KR with resources (running time, size of code, number of oracle queries) limited to
“practical” amounts, the KR-advantage of A is “small.” Formal results are stated with concrete
bounds.

5 Constructions

We are now in a position to describe our three preferred key regression schemes, KR-SHA1, KR-AES
and KR-RSA. Table 1 summarizes some of their main properties. KR-SHA1 is a derivative of the
key rotation scheme in Figure 3 and KR-RSA is a derivative of the Plutus key rotation scheme in
Figure 2. The primary differences between the new key regression schemes and the original key
rotation schemes are the addition of the new, SHA1-based keyder algorithms, and the adjusting of
terminology (e.g., member states in these key regression schemes correspond to keys in the original
key rotation schemes).

We begin by defining KR-SHA1. In the construction of KR-SHA1, we prepend the string 08 to
the input to SHA1 in keyder to ensure that the inputs to SHA1 never collide between the keyder
and unwind algorithms.

Construction 5.1 [KR-SHA1] The key regression scheme KR-SHA1 = (setup, wind, unwind, keyder)
is defined as follows. MW is a positive integer and a parameter of the construction.

Alg. setup

stmMW
$← {0, 1}160

For i = MW downto 2 do
stmi−1 ← unwind(stmi)

stp← 〈1, stm1, . . . , stmMW〉
Return stp

Alg. wind(stp)
If stp = ⊥ then return (⊥,⊥)
Parse stp as 〈i, stm1, . . . , stmMW〉
If i > MW return (⊥,⊥)
stp′ ← 〈i + 1, stm1, . . . , stmMW〉
Return (stp′, stmi)

Alg. unwind(stm)
stm′ ← SHA1(stm)
Return stm′

Alg. keyder(stm)
K ← SHA1(08‖stm)
Return K

The derived key space for KR-SHA1 is DK = {0, 1}160.
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The following theorem states that KR-SHA1 is secure in the random oracle model for adversaries
that make a reasonable number of queries to their random oracles. Here we view the application
of SHA1(·) in unwind as one random oracle and the application of SHA1(08‖·) in keyder as another
random oracle. The proof of Theorem 5.2 in Appendix A is thus in the random oracle model [5].

Theorem 5.2 Let KR be a generalization of KR-SHA1 (Construction 5.1) in which SHA1(·) in
unwind is replaced by a random oracle H1: {0, 1}160 → {0, 1}160 and in which SHA1(08‖·) in
keyder is replaced by another random oracle H2: {0, 1}160 → {0, 1}160. Then KR is KR-secure in
the random oracle model. Concretely, for any adversary A we have

Advkr
KR,A ≤

(MW)2

2k+1
+

q ·MW

2k −MW − q
,

where q is the maximum number of queries that A makes to its random oracles.

Our next preferred construction, KR-AES, uses AES and is provably secure in the standard model.

Construction 5.3 [KR-AES] The key regression scheme KR-AES = (setup, wind, unwind, keyder) is
defined as follows. MW is a positive integer and a parameter of the construction.

Alg. setup

stmMW
$← {0, 1}128

For i = MW downto 2 do
stmi−1 ← unwind(stmi)

stp← 〈1, stm1, . . . , stmMW〉
Return stp

Alg. wind(stp)
If stp = ⊥ then return (⊥,⊥)
Parse stp as 〈i, stm1, . . . , stmMW〉
If i > MW return (⊥,⊥)
stp′ ← 〈i + 1, stm1, . . . , stmMW〉
Return (stp′, stmi)

Alg. unwind(stm)
stm′ ← AESstm(0128)
Return stm′

Alg. keyder(stm)
K ← AESstm(1128)
Return K

The derived key space for KR-AES is DK = {0, 1}128.

Before proving the security of KR-AES, we first recall the standard notion of a pseudorandom
permutation [25, 4]. Let E: {0, 1}k × {0, 1}l → {0, 1}l be a block cipher and let Perm(l) denote
the set of all permutations on {0, 1}l. If A is an adversary with access to an oracle, we let

Advprp
E,A = Pr

[
K

$← {0, 1}k : AEK(·) = 1
]
− Pr

[
g

$← Perm(l) : Ag(·) = 1
]

denote the prp-advantage of A in attacking E. Under the concrete security approach [4], there is no
formal definition of what it means for E to be a “secure PRP,” but in discussions this phrase should
be taken to mean that, for any A attacking E with resources (running time, size of code) limited
to “practical” amounts, the prp-advantage of A is “small.” The formal result below is stated with
concrete bounds.

Theorem 5.4 If AES is a secure PRP, then KR-AES is KR-secure. Concretely, given an adversary
A attacking KR-AES, we can construct an adversary B attacking AES such that

Advkr
KR,A ≤ 2 · (q + 1)2 ·

(
Advprp

E,B + 2−128
)

where q is the minimum of MW and the maximum number of queries A makes to its WindO and
KeyderO oracles. Adversary B makes 2 oracle queries and uses within a small constant factor of
the resources of A, plus the time to compute setup and AES 2MW times.

The proof of Theorem 5.4 is in Appendix B. The proof exploits the fact that one can roughly view
KR-AES as the mirror image (reverse) of one of Bellare and Yee’s forward-secure pseudorandom bit
generators [7].
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Our final construction, KR-RSA derives from the key rotation scheme in Figure 2; KR-RSA
differs from KR-SHA1 and KR-AES in that MW =∞, meaning that the content provider can invoke
the KR-RSA winding algorithm an unbounded number of times.

Construction 5.5 [KR-RSA] The key regression scheme KR-RSA = (setup, wind, unwind, keyder)
is defined as follows. Let Krsa be an RSA key generator for some security parameter k and let
m: Z2k → {0, 1}k denote the standard big-endian encoding of the integers in Z2k to k-bit strings.

Alg. setup

(N, e, d) $← Krsa

S
$← Z∗N

stp← 〈N, e, d, S〉
Return stp

Alg. wind(stp)
Parse stp as 〈N, e, d, S〉
S′ ← Sd mod N
stp′ ← 〈N, e, d, S′〉
stm← 〈N, e, S〉
Return (stp′, stm)

Alg. unwind(stm)
Parse stm as 〈N, e, S〉
S′ ← Se mod N ; stm′ ← 〈N, e, S′〉
Return stm′

Alg. keyder(stm)
Parse stm as 〈N, e, S〉 ; K ← SHA1(m(S))
Return K

The derived key space for KR-RSA is DK = {0, 1}160. In our experiments, we set k = 1, 024, and
Krsa returns e = 3 as the RSA public exponent.

Before presenting Theorem 5.6, we first recall the standard notion of one-wayness for RSA. Let
Krsa be an RSA key generator with security parameter k. If A is an adversary, we let

Advrsa-ow
Krsa,A = Pr

[
(N, e, d) $← Krsa ; x

$← Z∗N ; y ← xe mod N : A(y, e, N) = x
]

denote the RSA one-way advantage of A in inverting RSA with the key generator Krsa. Under
the concrete security approach [4], there is no formal definition of what it means for Krsa to be
“one-way.” In discussions this phrase should be taken to mean that for any A attacking Krsa with
resources (running time, size of code, number of oracle queries) limited to “practical” amounts, the
RSA one-way advantage of A is “small.” The formal result below is stated with concrete bounds.
We prove Theorem 5.6 in Appendix C; the proof is in the random oracle model.

Theorem 5.6 Let KR be a generalization of KR-RSA in which SHA1(m(·)) in keyder is replaced
by a random oracle H: Z2k → {0, 1}160. If Krsa is an RSA key generator with security parameter
k, then KR is KR-secure under the RSA one-wayness assumption. Concretely, given an adversary
A attacking KR-RSA, we can construct an adversary B attacking Krsa such that

Advkr
KR,A ≤ 2q2 ·Advrsa-ow

Krsa,B ,

where q is the maximum number of winding and key derivation oracle queries that A makes. Ad-
versary B uses resources within a constant factor of A’s resources plus the time to perform q RSA
encryption operations.

6 Performance of key regression in access-controlled content dis-
tribution

We integrated key regression into the Chefs file system [17] (described in a thesis) to measure
the performance characteristics of key regression in a real application. We first give an overview of
Chefs. Then we provide measurements to show that key regression enables efficient key distribution
even for publishers with low-bandwidth and high-latency connections such as cable and analog
modems.
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Chefs for access-controlled content distribution. Chefs [17] is a secure, single-writer, many-
reader file system for access-controlled content distribution using untrusted servers. Chefs extends
the SFS read-only file system [18, 23] to provide access control. Chefs uses lazy revocation [16] and
KR-SHA1 key regression to reduce the amount of out-of-band communication necessary for group
key distribution.

Three modules comprise the Chefs file system. An untrusted server makes encrypted, integrity-
protected content available in the form of a block store. A publisher creates the encrypted, integrity-
protected content and manages key distribution. A client downloads content from an untrusted
server, then verifies integrity and decrypts the content using keys fetched from the publisher. Our
publisher, e.g., a blogger, is expected to have a low-bandwidth connection. The publisher may
often be offline, effectively providing zero throughput.

Several types of keys guard the access control and confidentiality of content in Chefs. After a
membership event, e.g., an eviction, the publisher produces a new key regression member state.
The remaining group members request this member state on-demand from the publisher; to com-
municate the new member state, the publisher encrypts the member state with each member’s
1,024-bit public RSA key using the low exponent e = 3. Chefs uses a content key to encrypt
content. A member obtains a content key by opening a lockbox that is encrypted with the group
key; the member derives the group key from the group member state.

6.1 Hypothesis and methodology

Performance measurements validate that (1) key regression allows a publisher to serve many client-
sessions per second effectively independent of the publisher’s network throughput and the rate
of membership turnover, and (2) key regression does not degrade client latency. To prove these
statements, we compare the performance of Chefs to Sous-Chefs, a version of Chefs without key
regression.

Experimental setup. We used three machines to benchmark key regression in Chefs. The client
and server contained the same hardware: a 2.8 GHz Intel Pentium 4 with 512 MB RAM. Each
machine used a 100 Mbit/sec full-duplex Intel PRO/1000 ethernet card and a Maxtor 250 GB,
Serial ATA 7200 RPM hard drive with an 8 MB buffer size, 150 MB/sec transfer rate, and less
than 9.0 msec average seek time. The publisher was a 3.06 GHz Intel Xeon with 2 GB RAM, a
Broadcom BCM5704C Dual Gigabit Ethernet card, and a Hitachi 320 GB SCSI-3 hard drive with
a 320 MB/sec transfer rate.

The machines were connected on a 100 Mbit/sec local area network and all used FreeBSD 4.9.
With NetPipe [32] we measured the round-trip latency between the pairs of machines at 249 µsec,
and the maximum sustained TCP throughput of the connection at 88 Mbit/sec when writing data
in 4 MB chunks and using TCP send and receive buffers of size 69,632 KB. When writing in 8 KB
chunks (the block size in Chefs), the peak TCP throughput was 66 Mbit/sec.

To simulate cable modem and analog modem network conditions, we used the dummynet [30]
driver in FreeBSD. For the cable modem, we set the round-trip delay to 20 msec and the download
and upload bandwidth to 4 Mbit/sec and 384 Kbit/sec respectively. For the analog modem, we set
the round-trip delay to 200 msec and the upload and download bandwidth each to 56 Kbit/sec.

For each measurement, we report the median result of five samples.

6.2 Secure content distribution on untrusted storage

We were not able to find a standard benchmark for measuring the effects of group membership
dynamics. Therefore, we evaluate Chefs based on how a client might search for content in an online
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Key regression protocol Winds/sec Unwinds/sec
KR-SHA1 Not applicable 687,720
KR-AES Not applicable 3,303,900
KR-RSA 158 35,236

Table 2: Microbenchmarks of KR-SHA1, KR-AES, KR-RSA key regression.

newspaper. We benchmark the performance of Chefs based on this workload.
Table 2 displays the performance of basic key regression operations. The internal block size

of the hash function matters significantly for the throughput of KR-SHA1 key regression. Because
SHA1 uses an internal 512-bit block size, hashing values smaller than 512 bits results in poorer
throughput than one would expect from SHA1 hashing longer inputs. For this reason, KR-AES key
regression performs significantly better than KR-SHA1 key regression.

A search workload. Our benchmarks were inspired by the membership dynamics reported at
Salon.com, a subscription-based online journal5. Salon announced that in the year 2003, they added
31,000 paid subscribers (for a total of 73,000) and maintained a 71% renewal rate. Thus, a 29%
eviction rate would generate an expected 21,170 evictions in one year. This suggests that the total
number of membership events would reach 52,170.

To represent a workload of searching newspaper content, we created a file system containing
10,000 8 KB encrypted files and the associated content keys. Our experiment consists of mounting
the file system and reading all the files. This causes the client machine to fetch all the content keys.

Note that we cannot let the untrusted server perform the search because a client could not
believe in the response. For instance, an untrusted server could respond, “No results found.”
Moreover, the server is not able to selectively return ciphertexts that would match the search. The
server would still have to prove to the client that no other matching ciphertexts exist. Because
Chefs extends the SFS read-only file system, it inherits the property that the client can verify when
it has received all intended content (i.e., the whole truth) from the server. Therefore, the Chefs
client downloads all the encrypted content and keys to perform the search itself.

Sous-Chefs. To determine the cost of key regression, we compare Chefs to a version of Chefs with
key regression disabled. We call this strawman file system Sous-Chefs. Chefs and Sous-Chefs differ
only in how they fetch group keys from the publisher. When using KR-SHA1 for key regression,
Chefs fetches a 20-byte member state, encrypted in the client’s public 1,024-bit RSA key with low
exponent e = 3. Chefs then uses key regression to unwind and derive all past versions of the group
key. In Sous-Chefs, we fetch at once all the derived group keys (each 16 bytes). The group keys
themselves are encrypted with 128-bit AES in CBC mode. The AES key is encrypted with the
client’s RSA public key. We allow a Sous-Chefs client to request a single bulk transfer of every
version of a group key to fairly amortize the cost of the transfer.

Reduced throughput requirements. Figure 4 shows that a publisher can serve many more
clients in Chefs than Sous-Chefs in low-bandwidth, high-latency conditions. The CPU utilization
for Chefs under no bandwidth limitation is negligible, indicating that the cost of RSA encryptions
on the publisher is not the bottleneck.

Each test asynchronously plays back 20 traces of a single client fetching the keys for the search
workload. This effectively simulates the effect of 20 clients applying the same key distribution
workload to the publisher. After all traces have completed, we record the effective number of

5http://www.salon.com/press/release/
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chefs 
chefs (cable modem)
chefs (analog modem)
souschefs
souschefs (cable modem)
souschefs (analog modem)

Figure 4: Aggregate publisher throughput for key distribution. Key regression enables a publisher
to support many client-sessions per second. Chefs always performs better Sous-Chefs because key
regression performance is effectively independent of the rate of membership turnover.

trace playbacks per second. The Sous-Chefs traces of fetching 10, 102, 103, 104, 105, and 106 keys
generate 4, 4, 5, 24, 200, and 1,966 asynchronous remote procedure calls from the client to the
publisher respectively. Chefs always generates a single remote procedure call, regardless of the
number of key versions.

Improved client latency. Our client latency experiment measures the time for a single client to
execute our search workload. The untrusted server and publisher have warmed caches while the
client has a cold cache.

Figure 5 shows that Chefs equals or outperforms Sous-Chefs for our search workload under
several network conditions. In Sous-Chefs, the network transfer time dominates client latency
because of the sheer volume of keys transferred from the publisher to the client. There is no
measurement for Sous-Chefs downloading 1,000,000 keys on an analog modem because the operation
expectedly times out.

Key regression itself is a small component of the Chefs benchmark. With 106 keys, key regression
on the client takes less than 1.5 sec with CPU utilization never exceeding of 42%.

7 Conclusions

We presented provably-secure constructions for key regression — addressing the shortfalls of key
rotation. We also provided the first measurements of either a key regression or key rotation system.
Finally, we integrated key regression in a content distribution application to demonstrate how key
regression enables efficient key distribution on low-bandwidth, high-latency connections. Using key
regression, a publisher can efficiently control access to content independent of group membership
dynamics and without needing a fast network connection.
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chefs 
souschefs
souschefs (cable modem)
souschefs (analog modem)

Figure 5: Single client latency to read 10,000 8 KB encrypted files and the associated content keys.
Key regression maintains the same client latency as a system not using key regression. Under low-
bandwidth, high-latency conditions, key regression can improve client latency linear with respect
to the number of keys.
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A Generalization of KR-SHA1 and proof of Theorem 5.2

Construction A.1 below shows a generalization of KR-SHA1 in which SHA1(·) and SHA1(08‖·)
are respectively replaced by two random oracles, H1 and H2. For Construction A.1, in order for
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Alg. setupH1,H2

stmMW
$← {0, 1}k

For i = MW downto 2 do
stmi−1 ← unwindH1,H2(stmi)

stp← 〈1, stm1, . . . , stmMW〉
Return stp

Alg. windH1,H2(stp)
If stp = ⊥ then return (⊥,⊥)
Parse stp as
〈i, stm1, . . . , stmMW〉

If i > MW return (⊥,⊥)
stp′ ← 〈i + 1, stm1, . . . , stmMW〉
Return (stp′, stmi)

Alg. unwindH1,H2(stm)
stm′ ← H1(stm)
Return stm′

Alg. keyderH1,H2(stm)
K ← H2(stm)
Return K

Figure 6: Hash chains- and skeys-based algorithms for Construction A.1. H1 and H2 are random
oracles. The setup algorithm uses the unwind algorithm defined in the second column.

setup and wind to be “efficient,” we assume that MW has some “reasonable” value like 220; in the
asymptotic setting we would require that MW be polynomial in some security parameter. Besides
KR-SHA1, one can envision a number of other natural instantiations of Construction A.1.

Construction A.1 Let H1: {0, 1}k → {0, 1}k and H2: {0, 1}k → {0, 1}l be random oracles.
Figure 6 shows how to construct a key regression scheme KR = (setup, wind, unwind, keyder) from
H1 and H2; MW is a positive integer and a parameter of the construction. The derived key space
for KR is DK = {0, 1}l.
The following theorem states that Construction A.1 is secure in the random oracle model for ad-
versaries that make a reasonable number of queries to their random oracles.

Theorem A.2 The key regression scheme in Construction A.1 is secure in the random oracle
model. Formally, let H1: {0, 1}k → {0, 1}k and H2: {0, 1}k → {0, 1}l be random oracles and let
KR be the key regression scheme built from H1,H2 via Construction A.1. Then for any adversary
A we have that

Advkr
KR,A ≤

(MW)2

2k+1
+

q ·MW

2k −MW − q
,

where q is the maximum number of queries total that adversary A makes to its H1 and H2 random
oracles.

Proof of Theorem A.2: Consider the experiments Expkr-1
KR,A and Expkr-0

KR,A. Let stm1, stm2, . . . ,
stmMW denote the member states as computed by setup, and let w′ denote the variable number
of WindO oracle queries that A made in its member stage. Let E1 be the event in Expkr-1

KR,A
that w′ ≤ MW − 1 and that A queries either its H1 or H2 random oracles with some string
x ∈ {stmw′+1, . . . , stmMW}. Let E0 be the event in Expkr-0

KR,A that w′ ≤ MW− 1 and that A queries
either its H1 or H2 random oracles with some string x ∈ {stmw′+1, . . . , stmMW}. Let F1 be the
event in Expkr-1

KR,A that there exist two distinct indices i, j ∈ {1, . . . ,MW} such that stmi = stmj

and let F0 be the event in Expkr-0
KR,A that there exist two distinct indices i, j ∈ {1, . . . ,MW} such

that stmi = stmj .

We claim that

Advkr
KR,A ≤ Pr

[
Expkr-1

KR,A = 1 ∧ F1

]
+ Pr

[
Expkr-1

KR,A = 1 ∧ E1 ∧ F1

]
, (1)

that

Pr
[
Expkr-1

KR,A = 1 ∧ F1

]
≤ (MW)2

2k+1
, (2)
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and that

Pr
[
Expkr-1

KR,A = 1 ∧ E1 ∧ F1

]
≤ q ·MW

2k −MW − q
, (3)

from which the inequality in the theorem statement follows.

To justify Equation (1), let Pr1 [ · ] and Pr0 [ · ] denote the probabilities over Expkr-1
KR,A and Expkr-0

KR,A,
respectively. From Definition 4.1, we have

Advkr
KR,A = Pr

[
Expkr-1

KR,A = 1
]
− Pr

[
Expkr-0

KR,A = 1
]

= Pr
[
Expkr-1

KR,A = 1 ∧ F1

]
+ Pr

[
Expkr-1

KR,A = 1 ∧ E1 ∧ F1

]

+Pr
[
Expkr-1

KR,A = 1 ∧ E1 ∧ F1

]
− Pr

[
Expkr-0

KR,A = 1 ∧ F0

]

−Pr
[
Expkr-0

KR,A = 1 ∧ E0 ∧ F0

]
− Pr

[
Expkr-0

KR,A = 1 ∧ E0 ∧ F0

]

≤ Pr
[
Expkr-1

KR,A = 1 ∧ F1

]
+ Pr

[
Expkr-1

KR,A = 1 ∧ E1 ∧ F1

]

+Pr
[
Expkr-1

KR,A = 1 ∧ E1 ∧ F1

]
− Pr

[
Expkr-0

KR,A = 1 ∧ E0 ∧ F0

]
. (4)

By conditioning,

Pr
[
Expkr-1

KR,A = 1 ∧ E1 ∧ F1

]
= Pr

[
Expkr-1

KR,A = 1 | E1 ∧ F1

]
· Pr1

[ E1 ∧ F1

]

and

Pr
[
Expkr-0

KR,A = 1 ∧ E0 ∧ F0

]
= Pr

[
Expkr-0

KR,A = 1 | E0 ∧ F0

]
· Pr0

[ E0 ∧ F0

]
.

Prior to the adversary causing the events E1∨F1 and E0∨F0 to occur in their respective experiments,
A’s view is identical in both experiments, meaning that

Pr1
[ E1 ∧ F1

]
= Pr0

[ E0 ∧ F0

]
.

Similarly, if the events do not occur, then the outcome of Expkr-1
KR,A and Expkr-0

KR,A will be the same
since the output of a random oracle is random if the input is unknown; i.e., the response to A’s
key derivation oracle query in the non-member stage will be random in both cases and therefore

Pr
[
Expkr-1

KR,A = 1 | E1 ∧ F1

]
= Pr

[
Expkr-0

KR,A = 1 | E0 ∧ F0

]
.

Consequently,

Pr
[
Expkr-1

KR,A = 1 ∧ E1 ∧ F1

]
= Pr

[
Expkr-0

KR,A = 1 ∧ E0 ∧ F0

]
.

Combining the above equation with Equation (4) gives Equation (1).

Returning to Equation (2), we first note that

Pr
[
Expkr-1

KR,A = 1 ∧ F1

]
≤ Pr1 [F1 ] .

If we consider the event F1, we note that the setup algorithm selects the points stmMW, stmMW−1,
stmMW−2, and so on, uniformly at random from {0, 1}k until a collision occurs. Since this is exactly
the standard birthday paradox [4], we can upper bound Pr1 [F1 ] as

Pr1 [F1 ] ≤ (MW)2

2k+1
.
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Algorithm unwind(stm)
x← G(stm)
stm′ ← first k bits of x
Return stm′

Algorithm keyder(stm)
x← G(stm)
K ← last l bits of x
Return K

Figure 7: The unwind and keyder algorithms for Construction B.1. G: {0, 1}k → {0, 1}k+l is a
function. The setup and wind algorithms are as in Figure 6 except that setup and wind do not
receive access to any random oracles.

Equation (2) follows.

To justify Equation (3), we begin by noting that

Pr
[
Expkr-1

KR,A = 1 ∧ E1 ∧ F1

]
≤ Pr1

[ E1 | F1

] · Pr1
[F1

] ≤ Pr1
[ E1 | F1

]
.

Consider the adversary A in Expkr-1
KR,A and assume that F1 does not occur. Consider any snapshot

of the entire state of Expkr-1
KR,A before A causes E1 to occur, and let q′ denote the number of H1

and H2 oracle queries that A has made prior to the snapshot being taken. Then the member states
stmw′+1, . . . , stmMW are restricted only in that they are distinct strings from {0, 1}k and that none
of the strings are from {stm1, . . . , stmw′} or the set of A’s q′ queries to its random oracles; i.e., the
member states that A obtained in its member stage and the responses from the KeyderO oracle do
not reveal additional information to the adversary. This means that if the adversary’s next oracle
query after this snapshot is to one of its random oracles, and if that input for that oracle query is
some string x, then the probability that x ∈ {stmw′+1, . . . , stmMW}, i.e., the probability that A’s
oracle query would cause E1 to occur, is at most (MW−w′)/(2k− (w′+ q′)) ≤ MW/(2k−MW− q′).
Summing over all of A’s q random oracle queries and taking an upper bound, we have

Pr1
[ E1 | F1

] ≤ q ·MW

2k −MW − q
,

which completes the proof.

Proof of Theorem 5.2: Theorem 5.2 follows immediately from Theorem A.2 since the latter
makes a more general statement.

B Generalization of KR-AES and proof of Theorem 5.4

Construction B.1 below generalizes KR-AES, and is essentially one of Bellare and Yee’s [7] forward
secure PRGs in reverse. Construction B.1 uses a pseudorandom bit generator, which is a function
G: {0, 1}k → {0, 1}k+l that takes as input a k-bit seed and returns a string that is longer than
the seed by l bits, k, l ≥ 1. Pseudorandom bit generators were defined first in [8] and lifted to the
concrete setting in [11]. As with Construction A.1, in order for setup and wind to be “efficient,” we
assume that MW has some “reasonable” value like 220; in the asymptotic setting we would require
that MW be polynomial in some security parameter. To instantiate KR-AES from Construction B.1,
we set k = l = 128 and, for any X ∈ {0, 1}128, we define G as G(X) = AESX(0128)‖AESX(1128).
Numerous other instantiations exist. The security proof for Construction B.1 is in the standard,
as opposed to the random oracle, model.
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Construction B.1 Let G: {0, 1}k → {0, 1}k+l be a pseudorandom bit generator. Figure 7 shows
how to construct a key regression scheme KR = (setup,wind, unwind, keyder) from G; MW is a
positive integer and a parameter of the construction. The derived key space for the scheme KR is
DK = {0, 1}l.

Toward proving the security of Construction B.1, we begin by defining our security assumptions
on the base PRG [8, 34, 7]. If A is an adversary, we let

Advprg
F,A = Pr

[
K

$← {0, 1}k ; x← G(K) : A(x) = 1
]
− Pr

[
x

$← {0, 1}k+l : A(x) = 1
]

denote the prg-advantage of A in attacking G. Under the concrete security approach [4], there is
no formal definition of what it means for G to be a “secure PRG,” but in discussions this phrase
should be taken to mean that, for any A attacking G with resources (running time, size of code)
limited to “practical” amounts, the prg-advantage of A is “small.” Formal results are stated with
concrete bounds.

Theorem B.2 If G: {0, 1}k → {0, 1}k+l is a secure PRG, then the key regression scheme KR
built from G via Construction B.1 is KR-secure. Concretely, given an adversary A attacking KR,
we can construct an adversary B attacking G such that

Advkr
KR,A ≤ 2 · (q + 1)2 ·Advprg

G,B
where q is the minimum of MW and the maximum number of queries A makes to its WindO and
KeyderO oracles. Adversary B uses within a small constant factor of the resources of A, plus the
time to compute setup and G MW times.

For our proof of Theorem B.2, we remark that the internal structure of the member states and
derived keys in Construction B.1 is very similar to the internal structure of the states and output
bits in a forward-secure pseudorandom bit generator, as defined in [7] and recalled below. Our proof
therefore proceeds first by showing how to build a secure key regression scheme from any forward-
secure pseudorandom bit generator, essentially by running the forward-secure pseudorandom bit
generator in reverse during the key regression scheme’s setup algorithm (Construction B.3). This
intermediate result suggests that future work in forward-secure pseudorandom bit generators could
have useful applications to key regression schemes. To prove Theorem B.2, we then combine this
intermediate result with a lemma in [7] that shows how to create a forward-secure pseudorandom
bit generator from a conventional pseudorandom bit generator.

Before proving Theorem B.2, we first use Theorem B.2 to prove Theorem 5.4.

Proof of Theorem 5.4: To instantiate KR-AES from Construction B.1, we set k = l = 128 and,
for any X ∈ {0, 1}128, we define G as G(X) = AESX(0128)‖AESX(1128).

We first claim that, given an adversary B attacking G, we can construct an adversary C attacking
AES such that

Advprg
G,B ≤ Advprp

AES,C + 2−128 (5)

and C makes two oracle queries and uses within a small constant factor of the resources of B.
Theorem 5.4 follows from this claim and Theorem B.2.

We now justify our claim above. Let Func(l, l) denote the set of all functions from {0, 1}l to {0, 1}l.
Let C be a PRP adversary that runs B with input f(0128)‖f(1128), where f : {0, 1}128 → {0, 1}128

is C’s oracle. Adversary C then returns the same bit that B returns.
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Note that

Pr
[

K
$← {0, 1}128 ; x← G(K) : B(x) = 1

]
= Pr

[
K

$← {0, 1}128 : CAESK(·) = 1
]

since, when C’s oracle is AESK(·), C runs B with input AESK(0128)‖AESK(1128), for a randomly
selected key K, which has the same distribution as G(K) for a randomly selected key K. Addi-
tionally,

Pr
[

x
$← {0, 1}256 : B(x) = 1

]
= Pr

[
g

$← Func(128, 128) : Cg(·) = 1
]

since, when C’s oracle is a random function from {0, 1}128 to {0, 1}128, it runs B with a random
256-bit string.

Expanding the definition of Advprg
G,B and substituting the above equalities, we have

Advprg
G,B = Pr

[
K

$← {0, 1}128 ; x← G(K) : B(x) = 1
]
− Pr

[
x

$← {0, 1}256 : B(x) = 1
]

= Pr
[

K
$← {0, 1}128 : CAESK(·) = 1

]
− Pr

[
g

$← Func(128, 128) : Cg(·) = 1
]

.

If we subtract and add Pr
[

g
$← Perm(128) : Cg(·) = 1

]
and apply the definition of Advprp

AES,C , we
get

Advprg
G,B = Pr

[
K

$← {0, 1}128 : CAESK(·) = 1
]
− Pr

[
g

$← Perm(128) : Cg(·) = 1
]

+Pr
[

g
$← Perm(128) : Cg(·) = 1

]
− Pr

[
g

$← Func(128, 128) : Cg(·) = 1
]

= Advprp
AES,C

+Pr
[

g
$← Perm(128) : Cg(·) = 1

]
− Pr

[
g

$← Func(128, 128) : Cg(·) = 1
]

.

Using the standard PRF/PRP switching result from [4], re-proven in [6, 31], and the fact that C
makes only two oracle queries, the above simplifies to Equation (5), completing the proof.

B.1 Forward-secure pseudorandom generators

In [7], Bellare and Yee define stateful pseudorandom bit generators and describe what it means for
a stateful pseudorandom bit generator to be forward-secure. Intuitively a stateful PRG is forward-
secure if even adversaries that are given the generator’s current state cannot distinguish previous
outputs from random.

Syntax. A stateful PRG consists of two algorithms: SBG = (seed, next). The randomized setup
algorithm returns an initial state; we write this as stg

$← seed. The deterministic next step algorithm
takes a state as input and returns a new state and an output from OutSpSBG , or the pair (⊥,⊥);
we write this as (stg′,K) ← next(stg). We require that the set OutSpSBG is efficiently samplable.
MaxLenSBG ∈ {1, 2, . . .}∪{∞} denotes the maximum number of output blocks that SBG is designed
to produce.

Correctness. The correctness requirement for stateful PRGs is as follows: let stg0
$← seed and, for

i = 1, 2, . . ., let (stgi,Ki)
$← next(stgi−1). We require that for i ≤ MaxLenSBG , (stgi,Ki) 6= (⊥,⊥).

Security. Let SBG = (seed, next) be a stateful bit generator. Let A be an adversary. Consider the
experiments Expfsprg-b

SBG,A, b ∈ {0, 1}, and the oracle NextO below. The adversary runs in two stages:
find and guess.

21



Algorithm setup

stgMW
$← seed

For i = MW downto 2 do
(stgi−1, Ki−1)← next(stgi)

stp← 〈1, stg1, . . . , stgMW〉
Return stp

Algorithm wind(stp)
If stp = ⊥ then

return (⊥,⊥)
Parse stp as
〈i, stg1, . . . , stgMW〉

If i > MW return (⊥,⊥)
stp′ ←
〈i + 1, stg1, . . . , stgMW〉

Return (stp′, stmi)

Algorithm unwind(stm)
(stm′,K)← next(stm)
Return stm′

Algorithm keyder(stm)
(stm′,K)← next(stm)
Return K

Figure 8: Algorithms for KR-SBG (Construction B.3). Construction KR-SBG demonstrates how to
build a KR-secure key regression scheme from any FSPRG-secure stateful bit generator SBG =
(seed, next). All algorithms may have access to the next algorithm. The setup algorithm assumes
access to the seed algorithms, and that the unwind and keyder algorithms do not have access to
seed.

Experiment Expfsprg-b
SBG,A

stg
$← seed

st
$← ANextOb(find)

b′ $← A(guess, stg, st)
Return b′

Oracle NextOb

(stg,K)← next(stg)
If b = 0 then K

$← OutSpSBG
Return K

The FSPRG-advantage of A in breaking the security of SBG is defined as

Advfsprg
SBG,A = Pr

[
Expfsprg-1

SBG,A = 1
]
− Pr

[
Expfsprg-0

SBG,A = 1
]

.

Under the concrete security approach, the scheme SBG is said to be FSPRG-secure if the FSPRG-
advantage of all adversaries A using reasonable resources is “small.”

B.2 Key regression from forward-secure pseudorandom bit generators

Construction B.3 [KR-SBG] Given a stateful generator SBG = (seed, next), we can construct a
key regression scheme KR-SBG = (setup, wind, unwind, keyder) as follows. For the construction, we
set MW to a positive integer at most MaxLenSBG ; MW is a parameter of our construction. The
derived key space for KR-SBG is DK = OutSpSBG . The algorithms for KR are shown in Figure 8.

Lemma B.4 If SBG is FSPRG-secure, then KR built from SBG via KR-SBG (Construction B.3)
is KR-secure. Concretely, given an adversary A attacking KR, we can construct an adversary B
attacking SBG such that

Advkr
KR,A ≤ (q + 1) ·Advfsprg

SBG,B

where q is the minimum of MW and the maximum number of wind and key derivation oracle queries
that A makes. Adversary B makes up to MW queries to its oracle and uses within a small constant
factor of the other resources of A plus the time to run the setup algorithm.

Proof of Lemma B.4: The adversary B is shown in Figure 9. The main idea is that if B correctly
guesses the number of WindO queries that A will make, then B’s simulation is perfect for either
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Adversary BNextOb(find)
q′ $← {0, 1, . . . , q}
For i = MW downto q′ + 1 do

Ki−1 ← NextOb

Return 〈q′,Kq′ , . . . , KMW−1〉

Adversary B(guess, stg, st)
Parse st as 〈q′, Kq′ , . . . , KMW−1〉
stgq′ ← stg
For i = q′ downto 2 do

(stgi−1,Ki−1)← next(stgi)
i← 0
bad← false

stA
$← ASimWindO(member)

If i 6= q′ then bad← true
If bad = true then return 0
b′ $← ASimKeyderO(non-member, stA)
Return b′

Oracle SimWindO
If i ≥ q′ then bad← true
If i ≥ MW or bad = true

then return ⊥
Else i← i + 1
return stgi

Oracle SimKeyderO
If i ≥ MW then return ⊥
i← i + 1
Return Ki−1

Figure 9: The adversary B in the proof of Theorem B.4.

choice of bit b. If B does not correctly guess the bit the number of WindO oracle queries, then it
always returns 0, regardless of the value of the bit b. We restrict q to the minimum of MW and the
maximum number of wind and key derivation oracle queries that A makes since wind is defined to
return (⊥,⊥) after MW invocations.

Formally, we claim that

Pr
[
Expkr-1

KR,A = 1
]

= (q + 1) · Pr
[
Expfsprg-1

SBG,B = 1
]

(6)

Pr
[
Expkr-0

KR,A = 1
]

= (q + 1) · Pr
[
Expfsprg-0

SBG,A = 1
]

, (7)

from which it follows that

Advkr
KR,A = Pr

[
Expkr-1

KR,A = 1
]
− Pr

[
Expkr-0

KR,A = 1
]

= (q + 1) ·
(
Pr

[
Expfsprg-1

SBG,B = 1
]
− Pr

[
Expfsprg-0

SBG,A = 1
])

≤ (q + 1) ·Advfsprg
SBG,B

as desired.

It remains to justify Equation (6), Equation (7), and the resources of B. Let E1 and E0 respectively
denote the events that B sets bad to true in the experiments Expfsprg-1

SBG,B and Expfsprg-0
SBG,A, i.e., when

B fails to correctly guess the number of wind oracle queries that A makes. Let Pr1 [ · ] and Pr0 [ · ]
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Algorithm seed

stg0
$← {0, 1}k

return stg0

Algorithm next(stgi)
r

$← G(stgi)
stgi+1 ← first k bits of r
K ← last l bits of r
return (stgi+1,K)

Figure 10: Algorithms for Construction B.5.

respectively denote probabilities over Expfsprg-1
SBG,B and Expfsprg-0

SBG,A. We now claim that

Pr
[
Expkr-1

KR,A = 1
]

= Pr
[
Expfsprg-1

SBG,B = 1 | E1
]

(8)

= Pr
[
Expfsprg-1

SBG,B = 1 ∧ E1
]
· 1
Pr1

[ E1
] (9)

= (q + 1) · Pr
[
Expfsprg-1

SBG,B = 1 ∧ E1
]

(10)

= (q + 1) ·
(
Pr

[
Expfsprg-1

SBG,B = 1 ∧ E1
]

+ Pr
[
Expfsprg-1

SBG,B = 1 ∧ E1
])

(11)

= (q + 1) · Pr
[
Expfsprg-1

SBG,B = 1
]

.

Equation (8) is true because when the event E1 does not occur, i.e., when B correctly guesses the
number of wind oracle queries that A will make, then B in Expfsprg-1

SBG,B runs A exactly as A would
be run in Expkr-1

KR,A. Equation (9) follows from conditioning off Pr1
[ E1

]
and Equation (10) is true

because B chooses q′ from q + 1 possible values and therefore Pr1
[ E1

]
= 1/(q + 1). To justify

Equation (11), note that Pr
[
Expfsprg-1

SBG,B = 1 ∧ E1
]

= 0 since B always returns 0 whenever it fails
to correctly guess the number of wind oracle queries that A will make. This justifies Equation (6).

To justify Equation (7), note that

Pr
[
Expkr-0

KR,A = 1
]

= Pr
[
Expfsprg-0

SBG,B = 1 | E0
]

since when the event E0 does not occur, B in Expfsprg-0
SBG,B runs A exactly as A would be run

in Expkr-0
KR,A. The remaining justification for Equation (7) is analogous to our justification of

Equation (6) above.

The resources for B is within a small constant factor of the resources for A except that B must
execute the setup algorithm itself, which involves querying its oracle up to MW times.

B.3 Forward-secure pseudorandom bit generators from standard PRGs

Construction B.5 [Construction 2.2 of [7].] Given a PRG G : {0, 1}k → {0, 1}k+l we can
construct a FSPRG SBG = (seed, next) as described in Figure 10. The output space of SBG is
OutSpSBG = {0, 1}l and MaxLenSBG =∞.

The following theorem comes from Bellare and Yee [7] except that we treat q as a parameter of the
adversary and we allow the trivial case that q = 0.
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Alg. setupH

(N, e, d) $← Krsa

S
$← Z∗N

stp← 〈N, e, d, S〉
Return stp

Alg. windH(stp)
Parse stp as 〈N, e, d, S〉
S′ ← Sd mod N
stp′ ← 〈N, e, d, S′〉
stm← 〈N, e, S〉
Return (stp′, stm)

Alg. unwindH(stm)
Parse stm as 〈N, e, S〉
S′ ← Se mod N
stm′ ← 〈N, e, S′〉
Return stm′

Alg. keyderH(stm)
Parse stm as 〈N, e, S〉
K ← H(S)
Return K

Figure 11: Algorithms for Construction C.1. H is a random oracle.

Lemma B.6 [Theorem 2.3 of [7].] Let G : {0, 1}k → {0, 1}k+l be a PRG, and let SBG be the
FSPRG built using G according to Construction B.5. Given an adversary A attacking SBG that
makes at most q queries to its oracle, we can construct an adversary B such that

Advfsprg
SBG,A ≤ 2q ·Advprg

G,B

where B uses within a small constant factor of the resources of adversary A and computes G up to
q times.

B.4 Proof of Theorem B.2

Proof: Construction B.1 is exactly Construction B.3 built from the forward secure pseudoran-
dom bit generator defined by Construction B.5. The theorem statement therefore follows from
Lemma B.4 and Lemma B.6.

C Generalization of KR-RSA and proof of Theorem 5.6

While we consider our previous constructions to be practical in most cases, in some cases one might
need properties that they do not achieve. For example, if MW is large, maintaining the owner states
may require a non-trivial amount of space or time. Also, both the random oracle and PRG based
constructions only handle a limited number of winds. We address these concerns by presenting a
construction based on RSA that can handle an infinite number of winds and that requires a small
amount of space to store its state.

Construction C.1 Given an RSA key generator Krsa for some security parameter k and a ran-
dom oracle H: Z2k → {0, 1}l, Figure 11 shows how to construct a key regression scheme KR =
(setup,wind, unwind, keyder). The derived key space for KR is DK = {0, 1}l.

Theorem C.2 If Krsa is an RSA key generator with security parameter k, then KR built from Krsa

via Construction C.1 is KR-secure under the RSA assumption. Concretely, given an adversary A
attacking KR, we can construct an adversary B attacking Krsa such that

Advkr
KR,A ≤ 2q2 ·Advrsa-ow

Krsa,B ,
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where q is the maximum number of winding and key derivation oracle queries that A makes. Ad-
versary B uses resources within a constant factor of A’s resources plus the time to perform q RSA
encryption operations.

The proof of Theorem C.2 uses the two following Lemmas.

Lemma C.3 If a key regression scheme is secure when an adversary is limited to one KeyderO oracle
query, then the key regression scheme is secure when an adversary is allowed multiple KeyderO oracle
queries. Concretely, let KR be a key regression scheme. Given an adversary A attacking KR that
makes at most q1 queries to WindO and q2 queries to KeyderO, we can construct an adversary B
attacking KR such that

Advkr
KR,A ≤ q2 ·Advkr

KR,B , (12)

B makes at most q1 + q2 − 1 queries to WindO (or 0 queries if q1 + q2 = 0), B makes at most one
query to KeyderO, and B has other resource requirements within a small constant factor of the
resource requirements of A.

Lemma C.4 If Krsa is an RSA key generator with security parameter k, then the key regression
scheme KR built from Krsa via Construction C.1 is KR-secure assuming that Krsa is one-way.
Concretely, given an adversary A attacking KR that makes at most one key derivation oracle
query, we can construct an adversary B attacking Krsa such that

Advkr
KR,A ≤ (q + 1) ·Advrsa-ow

Krsa,B , (13)

where q is the maximum number of winding oracle queries that A makes. Adversary B uses within
a small constant factor of the resources as A plus performs up to q RSA encryption operations.

Proof of Theorem C.2: The proof of Theorem C.2 follows from Lemma C.3 and Lemma C.4.
Note that for the application of Lemma C.3 we set q1 = q and q2 = q, meaning the adversary B
from Lemma C.3 may make up to 2q − 1 queries to its WindO oracle, or 2q if q = 0.

Proof of Theorem 5.6: Theorem 5.6 is Theorem C.2 with l = 160.

C.1 Proof of Lemma C.3

Proof: We consider the case where q2 = 0 separately. If q2 = 0 then

Pr
[
Expkr-1

KR,A = 1
]

= Pr
[
Expkr-0

KR,A = 1
]

since the adversary A’s view in the experiments Expkr-1
KR,A and Expkr-0

KR,A is identical. Therefore,
when q2 = 0,

Advkr
KR,A = Pr

[
Expkr-1

KR,A = 1
]
− Pr

[
Expkr-0

KR,A = 1
]

= 0

= q2 ·Advkr
KR,B

for all adversaries B.
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Experiment ExpHKR,A,i

Pick random oracle H
i← 0
stp

$← setupH

st
$← AHWindO,H(member)

j ← 0
b′ $←
AHKeyderOi,H(non-member, st)

Return b′

Oracle HWindO

i← i + 1
If i > MW then

return ⊥
(stp, stm) $← windH(stp)
Return stm

Oracle HKeyderOi

i← i + 1
If i > MW then

return ⊥
(stp, stm) $← windH(stp)
If j < i then

K ← keyderH(stm)
Else

K
$← DK

j ← j + 1
Return K

Figure 12: Hybrid experiments for the proof of Lemma C.3.

We now restrict our analysis to the case where q2 ≥ 1. Consider the experiments ExpHKR,A,i in
Figure 12, i ∈ {0, . . . , q2}. When i = q2, ExpHKR,A,i uses keyder to reply to all of A’s HKeyderO
oracle queries, which means that

Pr
[
Expkr-1

KR,A = 1
]

= Pr
[
ExpHKR,A,q2

= 1
]

.

On the other hand, when i = 0, ExpHKR,A,i replies to all of A’s HKeyderO oracle queries with
random values from DK, which means that

Pr
[
Expkr-0

KR,A = 1
]

= Pr
[
ExpHKR,A,0 = 1

]
.

From these two equations we conclude that

Advkr
KR,A = Pr

[
ExpHKR,A,q2

= 1
]− Pr

[
ExpHKR,A,0 = 1

]
. (14)

Consider now the adversary B in Figure 13. We claim that

Pr
[
Expkr-1

KR,B = 1
]

=
1
q2
·

q2−1∑

i=0

Pr
[
ExpHKR,A,i+1 = 1

]
(15)

and

Pr
[
Expkr-0

KR,B = 1
]

=
1
q2
·

q2−1∑

i=0

Pr
[
ExpHKR,A,i = 1

]
. (16)

Subtracting Equation (16) from Equation (15) and using Definition 4.1, we get

Advkr
KR,B = Pr

[
Expkr-1

KR,B = 1
]
− Pr

[
Expkr-0

KR,B = 1
]

=
1
q2
· (Pr

[
ExpHKR,A,q2

= 1
]− Pr

[
ExpHKR,A,0 = 1

])
. (17)

Equation (12) follows from combining Equation (14) with Equation (17).

It remains to justify Equation (15), Equation (16), and the resources of B. To justify Equation (15),
note that in the experiment Expkr-1

KR,B, when B picks some value for i, the view of A becomes
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Adversary BWindO,H(member)

i
$← {0, . . . , q2 − 1}

l← 0
Run AWindO′,H′

(member),
replying to A’s oracle queries as follows:

For each query to WindO′ do
stm

$←WindO
l← l + 1
If l > MW then stm← ⊥
Return stm to A

For each query x to H ′ do
y ← H(x)
Return y to A

Until A halts outputting a state st′

For j = 0 to i− 1 do
stm

$←WindO

Kj ← keyderH(stm)
st← (st′, i, l, K0, . . . , Ki−1)
Return st

Adversary BKeyderOb,H(non-member, st)
Parse st as (st′, i, l, K0, . . . , Ki−1)
j ← 0
Run AKeyderO′,H′

(non-member, st′),
replying to A’s oracle queries as follows:

For each query to KeyderO′ do
If j < i then K ← Kj

Else if j = i then K ← KeyderOb

Else K
$← DK

j ← j + 1 ; l← l + 1
If l > MW then K

$← ⊥
Return K to A

For each query x to H ′ do
y ← H(x)
Return y to A

Until A halts outputting a bit b
Return b

Figure 13: Adversary B for the proof of Lemma C.3. We describe in the body an alternate descrip-
tion with reduced resource requirements.

equivalent to A’s view in ExpHKR,A,i+1; namely, A’s first i + 1 queries to its KeyderO oracle will
be computed using keyder, and the remaining KeyderO oracle queries will return random values
from DK. More formally, if I denotes the random variable for the B’s selection for the variable
i ∈ {0, . . . , q2 − 1}, then

Pr
[
Expkr-1

KR,B = 1 | I = i
]

= Pr
[
ExpHKR,A,i+1 = 1

]

for each i ∈ {0, . . . , q2 − 1}. Letting Pr1 [ · ] denote the probability over Expkr-1
KR,B, we then derive

Equation (15) by conditioning off the choice of i:

Pr
[
Expkr-1

KR,B = 1
]

=
q2−1∑

i=0

Pr
[
Expkr-1

KR,B = 1 | I = i
]
· Pr1 [ I = i ]

=
1
q2
·

q2−1∑

i=0

Pr
[
Expkr-1

KR,B = 1 | I = i
]

=
1
q2
·

q2−1∑

i=0

Pr
[
ExpHKR,A,i+1 = 1

]

The justification for Equation (16) is similar. When B picks some value for i in Expkr-0
KR,B, the view

of A in Expkr-0
KR,B becomes equivalent to A’s view in ExpHKR,A,i since in both cases the responses

to A’s first i (not i + 1 this time) queries to its KeyderO oracle will be computed using keyder, and
the remaining KeyderO oracle queries will return random values from DK.
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Adversary B(y, e, N)
bad← false
α← ⊥
j ← 0
w

$← {0, 1, 2, . . . , q}
stmw ← y
For i = w − 1 downto 1 do

stmi ← (stmi+1)e mod N

st
$← ASimWindO,SimH(member)

If j 6= w then
bad← true
Return ⊥

b
$← ASimKeyderO,SimH(non-member, st)

Return α

Oracle SimWindO
j ← j + 1
If j ≤ w then return stmj

Else return ⊥

Oracle SimKeyderO

K
$← DK

Return K

Oracle SimH(x)
If xe = y mod n then α← x
If H[x] undefined then

H[x] $← DK
Return H[x]

Figure 14: The adversary B in the proof of Lemma C.4.

We now turn to the resource requirements of B. The pseudocode for B in Figure 13 suggests that
B might invoke WindO and keyder up to q2 times more than A (since the last for loop of B’s
member stage runs for up to q2 interactions even though A may not make that many KeyderO
oracle queries). We describe B this way since we feel that Figure 13 better captures the main idea
behind our proof and what B does. Equivalently, B could split A’s non-member stage between its
(B’s) own member and non-member stages and invoke WindO and keyder only the number of times
that it needs to simulate i of A’s KeyderO1 oracle queries. When viewed this way, B uses resources
equivalent, within a constant factor, to the resources of A.

C.2 Proof of Lemma C.4

Proof: Consider the experiments Expkr-1
KR,A and Expkr-0

KR,A; let (N, e, S1), (N, e, S2), . . . , (N, e, Sw′)
denote the responses to A’s wind oracle queries when A is in the member stage, w′ ∈ {0, 1, . . . , q}.
Let E1 and E0 respectively be the events in Expkr-1

KR,A and Expkr-0
KR,A that A queries its random

oracle with a value S such that Se ≡ Sw′ mod N . We claim that

Advkr
KR,A = Pr

[
Expkr-1

KR,A = 1 ∧ E1
]
− Pr

[
Expkr-0

KR,A = 1 ∧ E0
]

. (18)

Consider now the adversary B in Figure 14. We additionally claim that

Pr
[
Expkr-1

KR,A = 1 ∧ E1
]
≤ (q + 1) · Pr

[
Exprsa-ow

Krsa,B = 1
]

. (19)

Combining these two equations and the definition of security for Krsa gives Equation (13).

It remains to justify Equation (18), Equation (19), and the resource requirements for B. We first
justify Equation (18). Let Pr1 [ · ] and Pr0 [ · ] denote the probabilities over Expkr-1

KR,A and Expkr-0
KR,A,
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respectively. From Definition 4.1, we have

Advkr
KR,A = Pr

[
Expkr-1

KR,A = 1
]
− Pr

[
Expkr-0

KR,A = 1
]

= Pr
[
Expkr-1

KR,A = 1 ∧ E1
]

+ Pr
[
Expkr-1

KR,A = 1 ∧ E1
]

−Pr
[
Expkr-0

KR,A = 1 ∧ E0
]
− Pr

[
Expkr-0

KR,A = 1 ∧ E0
]

. (20)

By conditioning,

Pr
[
Expkr-1

KR,A = 1 ∧ E1
]

= Pr
[
Expkr-1

KR,A = 1 | E1
]
· Pr1

[ E1
]

and

Pr
[
Expkr-0

KR,A = 1 ∧ E0
]

= Pr
[
Expkr-0

KR,A = 1 | E0
]
· Pr0

[ E0
]

.

Prior to E1 and E0, A’s view is identical in both experiments, meaning that

Pr1
[ E1

]
= Pr0

[ E0
]

.

Further, if the events do not occur, then the outcome of Expkr-1
KR,A and Expkr-0

KR,A will be the same
since the output of a random oracle is random if the input is unknown; i.e., the response to A’s
key derivation oracle query in the non-member stage will be random in both cases and therefore

Pr
[
Expkr-1

KR,A = 1 | E1
]

= Pr
[
Expkr-0

KR,A = 1 | E0

]
.

Consequently,

Pr
[
Expkr-1

KR,A = 1 ∧ E1
]

= Pr
[
Expkr-0

KR,A = 1 ∧ E0
]

.

Combining the above equation with Equation (20) gives Equation (18).

We now turn to Equation (19). Note that B runs A exactly as in Expkr-1
KR,A assuming that B

correctly guesses the number of wind oracle queries that A will make in its member stage; i.e., if B
does not set bad to true. Here we use the fact that RSA encryption and decryption is a permutation
and therefore B is justified in unwinding a starting state from its input (y, e, N). Also observe that
if E1 in Expkr-1

KR,A occurs and if B does not set bad to true, then B will succeed in inverting RSA.
Letting BAD denote the event that B sets bad to true, it follows that

Pr
[
Expkr-1

KR,A = 1 ∧ E1
]
≤ Pr

[
Exprsa-ow

Krsa,B = 1 | BAD
]

and, by conditioning, that

Pr
[
Expkr-1

KR,A = 1 ∧ E1
]
≤ Pr

[
Exprsa-ow

Krsa,B = 1 ∧ BAD
] · 1

Pr2
[
BAD

]

where Pr2 [ · ] denotes the probability over Exprsa-ow
Krsa,B . Equation (19) follows from the above equation

and the fact that Pr2
[
BAD

]
= 1/(q + 1).

Turning to the resource requirements of B, note that the for loop in B is not present A (nor in
the algorithm setup nor the experiment Expkr-b

KR,A). This means that B may perform q more RSA
encryption operations than in the Expkr-b

KR,A experiment running A; B does not, however, invoke
any RSA decryption operations.
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