
Ring Signatures: Stronger Definitions, and

Constructions without Random Oracles

Adam Bender∗ Jonathan Katz∗† Ruggero Morselli∗‡

Abstract

Ring signatures, first introduced by Rivest, Shamir, and Tauman, enable a user to sign a
message so that a ring of possible signers (of which the user is a member) is identified, without
revealing exactly which member of that ring actually generated the signature. In contrast
to group signatures, ring signatures are completely “ad-hoc” and do not require any central
authority or coordination among the various users (indeed, users do not even need to be aware
of each other); furthermore, ring signature schemes grant users fine-grained control over the
level of anonymity associated with any particular signature.

This paper has two main areas of focus. First, we examine previous definitions of security
for ring signature schemes and suggest that most of these prior definitions are too weak, in the
sense that they do not take into account certain realistic attacks. We propose new definitions
of anonymity and unforgeability which address these threats, and then give separation results
proving that our new notions are strictly stronger than previous ones. Next, we show two
constructions of ring signature schemes in the standard model: one based on generic assumptions
which satisfies our strongest definitions of security, and a second, more efficient scheme achieving
weaker security guarantees and more limited functionality. These are the first constructions of
ring signature schemes that do not rely on random oracles or ideal ciphers.

∗Dept. of Computer Science, University of Maryland. {bender,jkatz,ruggero}@cs.umd.edu
†This research was supported in part by NSF Trusted Computing Grants #0310499 and #0310751, NSF-ITR

#0426683, and NSF CAREER award #0447075.
‡Supported by NSF Trusted Computing Grant #0310499 and NSF-ITR #0426683.

1 Introduction

Ring signatures enable a user to sign a message so that a “ring” of possible signers (of which the user
is a member) is identified, without revealing exactly which member of that ring actually generated
the signature. This notion was first formally introduced by Rivest, Shamir, and Tauman [16]
(though the concept was also present in earlier work [5, 6]), and ring signatures — along with
the related notion of ring/ad-hoc identification and authentication schemes — have been studied
extensively since then [4, 15, 1, 19, 8, 18, 14, 2]. Ring signatures are related, but incomparable, to
the notion of group signatures [5]. On the one hand, group signatures have the additional feature
that the anonymity of a signer can be revoked (i.e., the signer can be traced) by a designated group
manager. On the other hand, ring signatures allow greater flexibility: no centralized group manager
or coordination among the various users is required (indeed, users may be unaware of each other
at the time they generate their public keys); rings may be formed completely “on-the-fly” and in
an ad-hoc manner; and users are given fine-grained control over the level of anonymity associated
with any particular signature (via selection of an appropriate ring).

Ring signatures naturally lend themselves to a variety of applications which have been suggested
already in previous work (see especially [16, 15, 8, 2]). The original motivation was to allow secrets to
be leaked anonymously. Here, for example, a high-ranking government official can sign information
with respect to the ring of all similarly high-ranking officials; the information can then be verified
as coming from someone reputable without exposing the actual signer. Ring signatures can also
be used to provide a member of a certain class of users access to a particular resource without
explicitly identifying this member; note that there may be cases when third-party verifiability is
required (e.g., to prove that the resource has been accessed some number of times, as in web
metering) and so ring signatures, rather than ad-hoc identification schemes, are needed. Finally,
we mention the application to designated-verifier signatures [13] especially in the context of e-mail.
Here, ring signatures enable the sender of an e-mail to sign the message with respect to the ring
containing the sender and the receiver; thus, the receiver is assured that the e-mail originated from
the sender but cannot prove this to any third party. We remark that for this latter application it
is sufficient to use a ring signature scheme which supports only rings of size two.

1.1 Our Contributions in Relation to Previous Work

This paper focuses on both definitions and constructions. We summarize our results in each of
these areas, and relate them to prior work.

Definitions of security. Prior work on ring signature/identification schemes provides definitions
of security that are either rather informal or seem (to us) unnaturally weak, in that they do not
address what seem (to us) to be valid security concerns. One example is the failure to consider the
possibility of adversarially-chosen public keys. Specifically, both the anonymity and unforgeability
definitions in most prior work assume that honest users always sign with respect to rings consisting
entirely of honestly-generated public keys; no security is provided if users sign with respect to a
ring containing even one adversarially-generated public key. Clearly, however, a scheme which is
not secure in the latter case is not very useful; this is especially true since rings are constructed in
an ad-hoc fashion using keys of (possibly unknown) users which are not validated as being correctly
constructed by any central authority! We formalize security against such attacks (as well as others),
and show separation results proving that our definitions are strictly stronger than those considered
in previous work. In addition to the strong definitions we present, the hierarchy of formal definitions
we give is useful for precisely characterizing the security of prior and subsequent constructions.

1

Constructions. We show two constructions of ring signature schemes which are proven secure
in the standard model. We stress that these are the first such constructions, as all previous
constructions of which we are aware rely on the random oracle/ideal cipher models.1 It is worth
remarking that ring identification schemes are somewhat easier to construct (using, e.g., techniques
from [6]); ring signatures can then easily be derived from such schemes using the Fiat-Shamir
methodology in the random oracle model [11]. This approach, however, is no longer viable (at
least, based on our current understanding) when working in the standard model.

Our first construction is based on generic assumptions, and satisfies the strongest definitions
of anonymity and unforgeability considered here. This construction is inspired by the generic
construction of group signatures due to Bellare, et al. [3] and, indeed, the constructions share some
similarities at a high level. We stress, however, that a number of subtleties arise in our context
that do not arise in the context of group signatures, and the construction given in [3] does not
immediately lend itself to a ring signature scheme. Two issues in particular that we need to deal
with are the fact that we have no central group manager to issue “certificates” as in [3], and that
we additionally need to take into account the possibility of adversarially-generated public keys
as discussed earlier (this is not a concern in [3] where there is only a single group key published
by a (semi-)trusted group manager). We remark that although our functional definition of a ring
signature scheme (cf. Def. 1) requires users to generate keys specifically for that purpose (in contrast
to the requirements of [1, 2]), our first construction can be easily modified to work with any ring
of users as long as they each have a public key for both encryption and signing (see Section 5 for
further discussion).

Our second construction is more efficient than the first, but relies on specific number-theoretic
assumptions. Furthermore, it provides more limited functionality and security guarantees than our
first construction; most limiting is that it only supports rings of size two. We stress, however, that
such a scheme is still useful for the application to designated-verifier signatures as discussed earlier;
furthermore, even constructing an efficient 2-user ring signature scheme without random oracles
seems difficult, as we still do not have the Fiat-Shamir methodology available in our toolbox. In
fact, we explored various known signature schemes to see whether they could be adapted to give
ring signatures, and found only one that was amenable: the signature scheme recently proposed by
Waters [17] in the context of ID-based encryption. Interestingly, the ring signature we construct
based on the Waters scheme does not increase the signature length (a concern addressed in [8]).

2 Preliminaries

We use the standard definitions of public-key encryption schemes and semantic security; signature
schemes and existential unforgeability under adaptive chosen-message attacks; and computational
indistinguishability. In this paper we will assume public-key encryption schemes for which, with
all but negligible probability over (pk, sk) generated at random using the specified key generation
algorithm, Decsk(Encpk(M)) = M holds with probability 1.

We will also use the notion of a ZAP, which is a 2-round, public-coin, witness-indistinguishable
proof system for any language in NP (the formal definition is given in Appendix A). ZAPs were
introduced by Dwork and Naor [9], who show that ZAPs can be constructed based on any non-
interactive zero-knowledge proof system; the latter, in turn, can be constructed based on trapdoor
permutations [10]. For notational purposes, we represent a ZAP by a triple (`,P,V) such that

1Although Xu, Zhang, and Feng [18] claim a ring signature scheme in the standard model based on specific
assumptions, their proof was later found to be flawed (personal communication from J. Xu, March 2005).

2

(1) the initial message from the verifier is chosen to be of length `(k) (where k is the security
parameter); (2) the prover P, on input the prover-message r, statement x, and witness w, outputs
π ← Pr(x,w); finally, (3) Vr(x, π) outputs 1 or 0, indicating acceptance or rejection of the proof.

3 Definitions

We begin by presenting the functional definition of a ring signature scheme [16]. We will refer to an
ordered list R = (PK1, . . ., PKn) of public keys as a ring, and let R[i] = PKi. We will also freely
use set notation, and say, e.g., that PK ∈ R if there exists an index i such that R[i] = PK. We
will always assume, without loss of generality, that the keys in a ring are ordered lexicographically.

Definition 1 [Ring signature] A ring signature scheme is a triple of ppt algorithms (Gen, Sign,
Vrfy) that, respectively, generate a key pair for a user, sign a message, and verify the signature of
a message. Formally:

• Gen(1k), where k is a security parameter, outputs a public key PK and secret key SK.

• Signs,SKs
(M,R) outputs a signature σ on the message M with respect to the ring R = {PK1,

. . ., PKn}. We assume the following conventions for simplicity: (1) n ≥ 2 (since a ring
signature scheme is not intended2 to serve as a standard signature scheme); (2) each public
key in the ring is distinct; and (3) (SKs, PKs) is a valid key-pair output by Gen, where
PK2 = R[s].

• VrfyR(M,σ) verifies a purported signature σ on a message M with respect to the ring of
public keys R.

We require the following completeness condition: for any k, any {(SKi, PKi)}
n
i=1 output by Gen(1k),

any s ∈ [n], and any M , we have VrfyR(M,Signs,SKs
(M,R)) = 1, where R = {PK1, . . . , PKn}.

A c-user ring signature scheme is a variant of the above that only supports rings of fixed size c
(i.e., the Sign and Vrfy algorithms only take as input rings R for which |R| = c, and completeness
is only required to hold for such rings).

A ring signature scheme is used as follows: At various times, some collection of users run the
key generation algorithm Gen to generate public and private keys. We stress that no coordination
among these users is assumed or required. When a user wishes to generate an anonymous signature
on a message M , he chooses a ring R of public keys which includes his own; let s denote the index
of this user’s key within R. This user then computes σ ← Signs,SKs

(M,R) and outputs (σ,R). (In
such a case, we will refer to the holder of PKs as the signer of the message and to the holders
of the other public keys in R as the non-signers.) Anyone can now verify that this signature was
generated by someone holding a key in R by running VrfyR(M,σ).

As discussed in the Introduction, ring signatures must satisfy two independent notions of secu-
rity: anonymity and unforgeability. There are various ways each of these notions can be defined
(and various ways these notions have been defined in the literature); we present these different
definitions in Sections 3.1 and 3.2, and compare them in Section 4.

2Furthermore, it is easy to modify any ring signature scheme to allow signatures with n = 1 by including a special
key for just that purpose.

3

3.1 Definitions of Anonymity

The anonymity condition requires, informally, that an adversary not be able to tell which member
of a ring generated a particular signature.3 A number of subtleties, however, arise in developing
a formal definition. We begin with a basic definition of anonymity which is (essentially) either
explicit or (seems to be) implicit in most previous work (e.g., [16, 1, 8]).

Definition 2 [Basic anonymity] Given a ring signature scheme (Gen,Sign,Vrfy), a polynomial
n(·), and a ppt adversary A, consider the following game:

1. Key pairs {(PKi, SKi)}
n(k)
i=1 are generated using Gen(1k), and the set of public keys S

def
=

{PKi}
n(k)
i=1 is given to A.

2. A outputs a message M , distinct indices i0, i1, and a ring R ⊆ S for which PKi0 , PKi1 ∈ R.
A random bit b is chosen, and A is given σ ← Signib,SKib

(M,R).4

3. The adversary outputs a bit b′, and succeeds if b′ = b.

We say (Gen,Sign,Vrfy) achieves basic anonymity if the success probability of any A in the above
game is negligibly close to 1/2.

(Some previous papers consider a variant of the above in which the adversary is given a signature
computed by a randomly-chosen member of S, and should be unable to guess the actual signer with
probability better than 1/|S| + negl(k). A simple simulation argument shows that such a variant
is equivalent to the above.)

Unfortunately, the above definition of basic anonymity does not seem to suffice for many appli-
cations since it leaves open the possibility of the following attack: (1) an adversary generates public
keys in some arbitrary manner (which may possibly depend on the public keys of the honest users),
and then (2) a legitimate signer generates a signature with respect to a ring that contains some
of these adversarially-generated public keys. Note that the definition above offers no protection
in this case! Furthermore, the attack is quite realistic since, by their very nature, ring signatures
are intended to be used in settings where there is not necessarily any central authority checking
validity of public keys. This motivates the following, stronger definition (used in [15] in a slightly
different context):

Definition 3 [Anonymity w.r.t. adversarially-chosen keys] Given a ring signature scheme
(Gen,Sign,Vrfy), a polynomial n(·), and a ppt adversary A, consider the following game:

1. As in Definition 2.

2. A outputs a message M , distinct indices i0, i1, and a ring R for which PKi0 , PKi1 ∈ R and
all keys in R are distinct (we stress that it is not required that R ⊆ S). A random bit b is
chosen, and A is given σ ← Signib,SKib

(M,R).

3. The adversary outputs a bit b′, and succeeds if b′ = b.

3All the anonymity definitions that follow can be phrased in either a computational or an unconditional sense
(where, informally, in the former case anonymity holds for polynomial-time adversaries while in the latter case
anonymity holds even for all-powerful adversaries). For simplicity, we only present the computational versions.

4Technically speaking, we should say that A is given σ ← Signjb,SKi
b

(M, R), where jb is such that R[jb] = PKib
.

In an attempt to improve readability here and in the rest of the paper, however, we will avoid such precise but
hard-to-parse notation and will instead use indices liberally whenever doing so will not cause confusion.

4

We say (Gen,Sign,Vrfy) achieves anonymity w.r.t. adversarially-chosen keys if the success proba-
bility of any A in the above game is negligibly close to 1/2.

Definition 3 also may not be sufficient in certain scenarios. In particular, it may also be desirable
for anonymity to be preserved even in case the secret keys of (some) members of the ring are
exposed or, more generally, even if the randomness used to generate the secret keys of (some)
members of the ring are exposed (which provides security in case erasure cannot be guaranteed).
Beyond the obvious advantages of such a guarantee in case of long-term key exposure, etc., the
main advantage is that it ensures anonymity in case the non-signers decide to reveal their random
coins in an attempt to attribute the signature to the actual signer by proving that they did not
sign the message. Additional motivation is given below. (For simplicity, we also protect against
adversarially-chosen keys, although one could consider the weaker definition which does not.)

Definition 4 [Anonymity against attribution attacks/against key exposure] Given (Gen,
Sign, Vrfy), n(·), and A as in Definition 3, consider the following game:

1. For i = 1 to n(k), generate (PKi, SKi)← Gen(1k;ωi) for randomly-chosen ωi. Give to A the

set of public keys {PKi}
n(k)
i=1 .

2. A outputs a message M , distinct indices i0, i1, and a ring R for which PKi0 , PKi1 ∈ R and
all keys in R are distinct. A is given {ωi}i6=i0 . Furthermore, a random bit b is chosen and A
is given σ ← Signib,SKib

(M,R).

3. The adversary outputs a bit b′, and succeeds if b′ = b.

We say (Gen,Sign,Vrfy) achieves anonymity against attribution attacks if the success probability
of any A in the above game is negligibly close to 1/2. If, in the second step, A is instead given

{ωi}
n(k)
i=1 then we say (Gen,Sign,Vrfy) achieves anonymity against key exposure.

The definition of anonymity against key exposure parallels (in fact, is stronger than) the
anonymity definition given by Bellare, et al. in the context of group signatures [3]. We also believe
that anonymity against attribution attacks is a useful relaxation since a signer can then be assured
of anonymity as long as he himself refuses to divulge his secret key; although this might lead to
suspicion, it still cannot be proved (in court, say) that this user indeed issued the signature. We also
note that considering the case in which the randomness used to generate keys is revealed (rather
than “only” the secret keys themselves) makes sense when erasure cannot be ensured, or when it
cannot be guaranteed that all users will comply with the directive to erase their random coins.

Linkability. Another desideratum of a ring signature scheme is that it be unlinkable; that is, that
it be infeasible to determine whether two signatures (possibly generated with respect to different
rings) were generated by the same person. We remark that, similar to the case in [3], computational
anonymity against attribution attacks is sufficient to ensure unlinkability; this serves as additional
motivation for considering that definition. Also, any scheme which is unconditionally anonymous
(with respect to either Definition 2 or 3), and in which there is a unique secret key corresponding
to any public key, is also unlinkable (with respect to an appropriate extension of the corresponding
definition). In particular, then, both constructions given in this paper are unlinkable (in the
appropriate sense).

3.2 Definitions of Unforgeability

The notion of unforgeability considered in many previous works [16, 8, 2] is the following:

5

Definition 5 [Unforgeability against fixed-ring attacks] A ring signature scheme (Gen, Sign,
Vrfy) is unforgeable against fixed-ring attacks if for any ppt adversary A and for any polynomial
n(·), the probability that A succeeds in the following game is negligible:

1. Key pairs {(PKi, SKi)}
n(k)
i=1 are generated using Gen(1k), and the set of public keys R

def
=

{PKi}
n(k)
i=1 is given to A.

2. A is given access to a signing oracle OSign(·, ·), where OSign(s,M) outputs Signs,SKs
(M,R).

3. A outputs (M ∗, σ∗), and succeeds if VrfyR(M∗, σ∗) = 1 and it never queried (?,M ∗) to its
signing oracle.

Note that not only is the adversary restricted to making signing queries with respect to the entire
ring, but its forgery is required to verify with respect to the entire ring. The following stronger,
and more natural, definition was used in [1]:

Definition 6 [Unforgeability against chosen-subring attacks] A ring signature scheme (Gen,
Sign, Vrfy) is unforgeable against chosen-subring attacks if for any ppt adversary A and for any
polynomial n(·), the probability that A succeeds in the following game is negligible:

1. Key pairs {(PKi, SKi)}
n(k)
i=1 are generated using Gen(1k), and the set of public keys S

def
=

{PKi}
n(k)
i=1 is given to A.

2. A is given access to a signing oracle OSign(·, ·, ·), where OSign(s,M,R) outputs Signs,SKs
(M,R)

and we require that R ⊆ S and PKs ∈ R (and also |R| ≥ 2, as detailed in Definition 1).

3. A outputs (M ∗, σ∗, R∗), and succeeds if R∗ ⊆ S, VrfyR∗(M∗, σ∗) = 1, and A never queried
(?,M∗, R) to its signing oracle.

While the above definition is an improvement, it still leaves open the possibility of an attack
whereby users might generate signatures with respect to rings containing adversarially-generated
public keys. Such an attack was also previously suggested by [15, 14]. The following definition
takes this into account as well as (for completeness) an adversary who adaptively corrupts5 honest
participants and obtains their secret keys, as was considered by Bellare, et al. for the case of
group signatures [3]. Since either of these attacks may be viewed as the outcome of corrupting an
“insider”, we use this terminology.6

Definition 7 [Unforgeability w.r.t. insider corruption] A ring signature scheme (Gen, Sign,
Vrfy) is unforgeable w.r.t. insider corruption if for any ppt adversary A and for any polynomial
n(·), the probability that A succeeds in the following game is negligible:

1. Key pairs {(PKi, SKi)}
n(k)
i=1 are generated using Gen(1k), and the set of public keys S

def
=

{PKi}
n(k)
i=1 is given to A.

2. A is given access to a signing oracle OSign(·, ·, ·), where OSign(s,M,R) outputs Signs,SKs
(M,R)

and we require that PKs ∈ R.

3. A is also given access to a corrupt oracle Corrupt(·), where Corrupt(i) outputs SKi.

5We remark that Definitions 3 and 4 already guarantee anonymity in case of the corruption of honest users, and
so we do not explicitly consider corruptions when defining anonymity.

6Although we are aware that, technically speaking, there are not really any “insiders” in the context of ring
signatures since there is no coordination among the various users.

6

4. A outputs (M ∗, σ∗, R∗), and succeeds if VrfyR∗(M∗, σ∗) = 1, A never queried (?,M ∗, R∗),
and R∗ ⊆ S \ C, where C is the set of corrupted users.

4 Separations Between the Security Definitions

In the previous section, we presented various definitions of anonymity and unforgeability in order
of increasing strength. Here, we show that these definitions are in fact distinct, in the sense that
there exist (under certain assumptions) schemes satisfying a weaker definition but not a stronger
one. First, we show separations for the definitions of anonymity. (So as not to interrupt the main
flow of the paper, we defer all proofs to Appendix B.)

Claim 1 If there exists a scheme which achieves basic anonymity and is unforgeable w.r.t. in-
sider corruption, then there exists a scheme which achieves these same properties but which is not
anonymous w.r.t. adversarially-chosen keys.

Claim 2 If there exists a scheme which is anonymous w.r.t. adversarially-chosen keys and is
unforgeable w.r.t. insider corruption, then there exists a scheme which achieves these same proper-
ties but which is not anonymous against attribution attacks.

We also show separations for the definitions of unforgeability:

Claim 3 If there exists a scheme which is anonymous against key exposure and unforgeable w.r.t.
insider corruption, then there exists a scheme which is anonymous against key exposure and un-
forgeable against fixed-ring attacks, but not unforgeable against chosen-subring attacks.

(In contrast to the rest of the claims, the assumption in the above claim is not minimal. Never-
theless, the claim is meaningful especially since we show in Section 5 that the assumption of the
claim is satisfied under certain cryptographic assumptions.) We remark also that the scheme of [12]
serves as a natural example of a scheme that is unforgeable against fixed-ring attacks, but which
is not unforgeable against chosen-subring attacks. See Appendix B.1.

Claim 4 If there exists a scheme which is anonymous against key exposure and is unforgeable
against chosen-subring attacks, then there exists a scheme which achieves these same properties
but which is not unforgeable w.r.t. insider corruption.

5 A Ring Signature Scheme Based on General Assumptions

We now describe our construction of a ring signature scheme that satisfies the strongest of our
proposed definitions, and is based on general assumptions. In what follows, we let (EGen,Enc,Dec)
be a public-key encryption scheme, let (Gen′,Sign′,Vrfy′) be a (standard) signature scheme, and let
(`,P,V) be a ZAP (for the witness relation R defined below). We denote by C ∗ ← Enc∗RE

(m) the
probabilistic algorithm that takes as input a set of public encryption keys RE = {pkE,1, . . . , pkE,n}
and a message m, and does the following: it first chooses random s1, . . . , sn−1 ∈ {0, 1}

|m| and then
outputs:

C∗ = EncpkE,1
(s1),EncpkE,2

(s2), · · · ,EncpkE,n−1
(sn−1),EncpkE,n

(m⊕
n−1
⊕

j=1

sj) .

7

Note that, informally, m can be recovered from the above ciphertext only if all the corresponding
secret keys are known. We also let L denote the NP language:

{

(pkS ,M∗, RE , C∗) : ∃σ′, ω s.t. C∗ = Enc∗RE
(σ′;ω)

∧

Vrfy′pkS
(M∗, σ′) = 1

}

,

withRL the obvious associated witness relation. The relation for the ZAP isR = {((x1, . . . , xn), w) :
∃i s.t. (xi, w) ∈ RL}. With this in mind, we give the details of our construction, which is specified
by the key-generation algorithm Gen, the ring signing algorithm Sign, and the ring verification
algorithm Vrfy:

Gen(1k):

1. Generate signing key pair (pkS , skS)← Gen′(1k).

2. Generate encryption key pair (pkE , skE)← Gen(1k) and erase skE .

3. Choose an initial ZAP message r ← {0, 1}`(k).

4. Output the public key PK = (pkS , pkE , r), and the secret key SK = skS.

Signi∗,SKi∗
(M, (PK1, . . . , PKn)):

(We assume SKi∗ corresponds to PKi∗ , and that the {PKi} are in lexicographic order.)

1. Parse each PKi as (pkS,i, pkE,i, ri), and parse SKi∗ as skS,i∗ . Set RE := {pkE,1, . . . , pkE,n}.

2. Set M ∗ := M |PK1 | · · · |PKn, where “|” denotes concatenation. Compute the signature
σ′

i∗ ← Sign′skS,i∗
(M∗).

3. Choose random coins ω1, . . . , ωn for Enc∗ and: (1) compute C∗
i∗ = Enc∗RE

(σ′
i∗ ;ωi∗) and (2) for

i ∈ {1, . . . , n} \ {i∗}, compute C∗
i = Enc∗RE

(0|σ
′
i∗
|;ωi).

4. For i ∈ [n], let xi denote the statement: “ (pkS,i,M
∗, RE , C∗

i) ∈ L ”, and let x =
∨

xi.
Compute the proof π ← Pr1

(x, (σ′
i∗ , ωi∗)).

5. The signature is σ = (C∗
1 , . . . , C∗

n, π).

8

VrfyPK1,...,PKn
(M,σ)

(We assume the {PKi} are in lexicographic order.)

1. Parse each PKi as (pkS,i, pkE,i, ri). Set M ∗ def
= M |PK1 | · · · |PKn and define RE

def
= {pkE,1,

. . ., pkE,n}. Parse σ as (C∗
1 , . . . , C∗

n, π).

2. For i ∈ [n], let xi denote the statement “ (pkS,i,M
∗, RE , C∗

i) ∈ L ” and set x =
∨

xi.

3. Output Vr1
(x, π).

It is easy to see that the scheme above satisfies the functional definition of a ring signature
scheme. We now prove that the scheme satisfies strong notions of anonymity and unforgeability:

Theorem 1 If encryption scheme (EGen,Enc,Dec) is semantically secure, signature scheme (Gen ′,
Sign′, Vrfy′) is existentially unforgeable under adaptive chosen-message attacks, and (`,P,V) is a
ZAP for R as described above, then the above ring signature scheme is (computationally) anonymous
against attribution attacks, and unforgeable w.r.t. insider corruption.

Proof (Sketch) We prove each of the desired security properties in turn.

Anonymity. For simplicity of exposition, we consider Definition 4 with n = 2; i.e., we assume
there are only two honest users. By a straightforward hybrid argument, this implies the general
case. Given any ppt adversary A, we consider a sequence of experiments E0, Hybrid0, Hybrid1, E1

such that E0 (resp., E1) corresponds to the experiment of Definition 4 with b = 0 (resp., b = 1),
and such that each experiment is computationally indistinguishable from the one before it. This
implies that A has negligible advantage in distinguishing E0 from E1, as desired.

For convenience, we review experiment E0. Here, two key pairs (PK0 = (pkS,0, pkE,0, r0), SK0)
and (PK1 = (pkS,1, pkE,1, r1), SK1) are generated and A is given PK0 and the randomness used
to generate (PK1, SK1) (recall we use n = 2 and so we can assume without loss of generality that
i0 = 0 and i1 = 1). The adversary A then outputs a message M along with a ring of public keys
R containing both PK0 and PK1. Finally, A is given σ ← Sign0,SK0

(M,R).
Experiment Hybrid0 is the same as experiment E0 except that we change how the signature

σ is generated. In particular, step 3 of the ring signing algorithm is modified as follows: let RE

and M∗ be as in the description of the ring signing algorithm given earlier. In step 3, instead
of setting C∗

1 to be an encryption of all zeros, we now compute σ ′
1 ← SignskS,1

(M∗) and then set
C∗

1 = Enc∗RE
(σ′

1;ω1). We stress that, as in E0, the ciphertext C∗
0 is still set to be an encryption of

the signature σ′
0, and the remaining ciphertexts are still encryptions of all zeros.

It is not hard to see that experiment Hybrid0 is computationally indistinguishable from experi-
ment E0, assuming semantic security of the encryption scheme (EGen,Enc,Dec). This follows from
the observations that (1) adversary A is not given the random coins used in generating PK0 and
so, in particular, it is not given the coins used to generate pkE,0; (2) (informally) semantic secu-
rity of encryption under EncpkE0

implies semantic security of encryption using Enc∗RE
as long as

pkE,0 ∈ RE (a formal proof is straightforward); and, finally, (3) the coins ω1 used in generating C∗
1

are not used in the remainder of the ring signing algorithm.
Experiment Hybrid1 is the same as Hybrid0 except that we use a different witness when computing

the proof π for the ZAP. In particular, instead of using witness (σ ′
0, ω0) we use the witness (σ′

1, ω1).
The remainder of the signing algorithm is unchanged.

It is relatively immediate that experiment Hybrid1 is computationally indistinguishable from
Hybrid0, assuming witness indistinguishability of the ZAP. (We remark that the use of a ZAP,
rather than non-interactive zero-knowledge, is essential here since the adversary may choose the

9

“random string” component of all the adversarially-chosen public keys any way it likes.) In more
detail, we can construct the following malicious verifier algorithm V ∗ using A: verifier V∗ generates
(PK0, SK0) and (PK1, SK1) exactly as in experiments Hybrid0 and Hybrid1, and gives these keys
and the appropriate associated random coins to A. When A makes its signing query, V ∗ computes
the C∗

i exactly as in Hybrid1 and then gives to the prover P the keys {pkS,i}i∈R, the message M ∗,
the set of keys RE , and the ciphertexts {C∗

i }i∈R; this defines the NP-statement x exactly as in
step 4 of the ring signing algorithm. In addition, V ∗ gives the two witnesses (σ′

0, ω0) and (σ′
1, ω1) to

P. Finally, V∗ sends as its first message the “random string” component r of the lexicographically-
first public key in R (note that this r is the random string that would be used to generate the proof
π in step 4 of the ring signing algorithm). The prover responds with a proof π ← Pr(x, (σ′

b, ωb))
(for some b ∈ {0, 1}), and then V∗ outputs (C∗

1 , . . . , C∗
n, π).

Note that if the prover uses the first witness provided to it by V ∗ then the output of V∗ is
distributed exactly according to Hybrid0, while if the prover uses the second witness provided to it
by V∗ then the output of V∗ is distributed exactly according to Hybrid1. Witness indistinguishability
of the ZAP thus implies computational indistinguishability of Hybrid0 and Hybrid1.

We may now notice that Hybrid1 is computationally indistinguishable from E1 by exactly the
same argument used to show the indistinguishability of Hybrid0 and E0. This completes the proof.

Unforgeability. Assume there exists a ppt adversary A that breaks the above ring signature
scheme (in the sense of Definition 7) with non-negligible probability. We construct an adversary A ′

that breaks the underlying signature scheme (Gen′,Sign′,Vrfy′) (in the standard sense of existential
unforgeability) with non-negligible probability.
A′ receives as input a public key pkS . Let n = n(k) be a bound on the number of (honest

user) public keys that A expects to be generated. A′ runs A with input public keys PK1, . . . , PKn,
that A′ generates as follows. A′ chooses i∗ ← {1, . . . , n} and sets pkS,i∗ = pkS . The remainder
of public key PKi∗ is generated exactly as prescribed by the Gen algorithm, with the exception
that the decryption key skE,i∗ that is generated is not erased. Public keys PKi for i 6= i∗ are also
generated exactly as prescribed by the Gen algorithm, again with the exception that the decryption
keys {skE,i} are not erased.
A′ then proceeds to simulate the oracle queries of A in the natural way. In particular:

1. When A requests a signature on message M , with respect to ring R (which may possibly
contain some public keys generated in an arbitrary manner by A), to be signed by user
i 6= i∗, then A′ can easily generate the response to this query by running the Sign algorithm
completely honestly;

2. When A requests a signature on message M , with respect to ring R = {PK1, . . . , PKn}
(which may possibly contain some public keys generated in an arbitrary manner by A) to be
signed by user i∗, then A′ cannot directly respond to this query since it does not have skS,i∗ .
Instead, A′ sets M∗ := M |PK1 | · · · PKn, submits M ∗ to its signing oracle, and obtains in
return a signature σ′

i∗ . It then computes the remainder of the ring signature by following the
rest of the Sign algorithm; note, in particular, that skS,i∗ is not needed for this;

3. Any corruption query made by A for a user i 6= i∗ can be faithfully answered by A′. On the
other hand, if A ever makes a corruption query for i∗, then A′ simply aborts.

At some point, A outputs a forgery σ̄ = (C̄∗
1 , . . . , C̄∗

n, π̄) on a message M̄ with respect to some ring
of honest-user public keys R̄ = {PK1, . . . , PKn′}. If PKi∗ is not contained in the ring R̄, then
A′ aborts. Otherwise, since A′ knows all relevant decryption keys (recall that the ring R̄ contains
public keys of honest users only, and these keys were generated by A′) it can decrypt C̄∗

i∗ and obtain

10

the candidate signature σ̄i∗ . Finally, A′ sets M̄∗ = M̄ |PK1 | · · · |PKn′ and outputs (M̄∗, σ̄i∗).
Note that (by requirement) A never requested a signature on message M̄ with respect to the ring
R̄, and so A′ never requested a signature on message M̄∗ from its own oracle.

We claim that if A forges a signature with non-negligible probability ε = ε(k), then A ′ forges
a signature with probability at least ε′ = ε/n − negl. To see this, note first that if A outputs
a valid forgery then with all but negligible probability (by soundness of the ZAP) it holds that
(pkS,i, M̄

∗, R̄E , C̄∗
i) ∈ L for some i (where pkS,i and R̄E are defined in the natural way based on the

ring R̄ and the public keys it contains). Conditioned on this, with probability 1/n it is the case that
(1) A′ did not abort and furthermore (2) (pkS,i∗ , M̄

∗, R̄E , C̄∗
i∗) ∈ L. When this occurs, then with

all but negligible probability A′ will recover (by decrypting as described above) a valid signature
σ̄i∗ on the message M̄∗ with respect to the given public key pkS,i∗ = pkS (we remark that we rely
here on the fact that with all but negligible probability over choice of public encryption keys the
encryption scheme Enc∗ has zero decryption error). Security of (Gen′,Sign′,Vrfy′) thus implies that
ε must be negligible.

Extension. The scheme above can also be used (with a few easy modifications) in a situation
where some users in the ring have not generated a key pair according to Gen, as long as every ring
member has a public key both for encryption and for signing, and at least one of the members has
included a sufficiently-long random string in his public key. Furthermore, the encryption (signature)
public keys of different members of the ring may be associated with different encryption (signature)
schemes. Thus, a single user who establishes a public key for a ring signature scheme suffices to
provide anonymity for everyone. Alternately, this provides a way to include “oblivious” users in
the signing ring, as in [1, 2].

5.1 Achieving Stronger Anonymity Guarantees

In our proof that the previous scheme satisfies the anonymity requirement, it was essential that
the adversary not be given the random coins used to generate both ring signature keys.7 (If the
adversary gets both sets of random coins, it can potentially decrypt ciphertexts encrypted using
Enc∗RE

and thereby determine the true signer of a message.) In this section, we note how it is
possible to achieve the stronger notion of anonymity against key exposure, whereby the adversary
is given all the random coins used by the honest players in generating their keys.

To achieve this, we will use an enhanced form of encryption for which, informally, there exists
an “oblivious” way to generate a public key without generating a corresponding secret key. This
notion, introduced by Damg̊ard and Nielsen [7], can be viewed as a generalization of dense cryp-
tosystems in which the public key is required to be a uniformly distributed string (in particular,
dense cryptosystems satisfy the definition below). We review the formal definition here.

Definition 8 An oblivious public-key generator for public-key encryption scheme (EGen,Enc,Dec)
is a pair of ppt algorithms (OblEGen,OblRand) such that:

• OblEGen, on input 1k and random coins ω ∈ {0, 1}n(k), outputs a key pk;

• OblRand, on input a key pk, outputs a string ω;

and the following distribution ensembles are computationally indistinguishable:
{

ω ← {0, 1}n(k) : (ω,OblEGen(1k;ω))
}

7However, anonymity still holds even if the adversary is given both secret keys (but not the randomness used to
generate both secret keys). This is because the decryption key skE is erased, and not included in SK.

11

and
{

(pk, sk)← EGen(1k);ω ← OblRand(pk) : (ω, pk)
}

.

Note that if (EGen,Enc,Dec) is semantically secure, then (informally) it is also semantically secure
to encrypt messages using a public key pk generated by OblEGen, even if the adversary has the
random coins used by OblEGen in generating pk. We remark for completeness that the El Gamal
encryption scheme (over the group of quadratic residues modulo a prime) is an example of a scheme
having an oblivious public-key generator.

Given the above, we adapt the scheme of the previous section in the natural way. Specifically,
the Gen algorithm is changed so that instead of generating the key pkE using EGen (and then erasing
the secret key skE and the random coins used), we now generate pkE using OblEGen. Adapting
Theorem 1, we can easily show:

Theorem 2 Under the assumptions of Theorem 1 and assuming (EGen,Enc,Dec) has an oblivi-
ous public-key generator, the modified ring signature scheme described above is (computationally)
anonymous against key exposure, and unforgeable w.r.t. insider corruption.

The proof is given in Appendix C

6 An Efficient 2-User Ring Signature Scheme

In this section, we present a more efficient construction of a 2-user ring signature scheme based
on specific assumptions. The scheme is based on the (standard) signature scheme8 constructed by
Waters [17] which we briefly review now.

6.1 The Waters Scheme

Let
�

,
�

1 be groups of prime order q such that there exists an efficiently computable bilinear map
ê :

�
×

�
→

�
1 . We assume that q,

�
,

�
1 , ê, and a generator g ∈

�
are publicly known. The

Waters signature scheme for messages of length n is defined as follows:

Key Generation. Choose α ← � q and set g1 = gα. Additionally choose random elements
h, u′, u1, . . . , un ←

�
. The public key is (g1, h, u′, u1, . . . , un) and the secret key is hα.

Signing. To sign the n-bit message M , first compute w = u′ ·
∏

i:Mi=1 ui. Then choose random
r ← � q and output the signature σ = (hα · wr, gr).

Verification. To verify the signature (A,B) on message M with respect to public key (g1, h, u′,

u1, . . ., un), compute w = u′ ·
∏

i:Mi=1 ui and then check whether ê(g1, h) · ê(B,w)
?
= ê(A, g).

6.2 A 2-User Ring Signature Scheme

The main observation we make with regard to the above scheme is the following: element h is
arbitrary, and only knowledge of hα is needed to sign. So, we can dispense with including h in
the public key altogether; instead, a user U with secret α and the value g1 = gα in his public
key will use as his “h-value” the value ḡ1 contained in the public key of a second user Ū . This

8More accurately, the signature scheme shown here is derived from the identity-based encryption (IBE) scheme of
Waters using the idea first suggested by Naor for converting IBE schemes to signature schemes.

12

provides anonymity since Ū could also have computed the very same value (ḡ1)
α using the secret

value ᾱ = logg ḡ1 known to him (because (ḡ1)
α = gᾱ

1). We now proceed with the details.

Key Generation. Choose α ← � q and set g1 = gα. Additionally choose random elements
u′, u1, . . . , un ←

�
. The public key is (g1, u′, u1, . . ., un) and the secret key is α. (We again assume

that q,
�

,
�

1 , ê, and g are system-wide parameters.)

Ring Signing. To sign message M ∈ {0, 1}n with respect to the ring R = {PK,PK} using secret
key α (where we assume without loss of generality that α is the secret corresponding to PK),
proceed as follows: parse PK as (g1, u′, u1, . . ., un) and PK as (ḡ1, ū′, ū1, . . ., ūn), and compute
w = u′ ·

∏

i:Mi=1 ui and w̄ = ū′ ·
∏

i:Mi=1 ūi. Then choose random r ← � q and output the signature

σ = (ḡα
1 · (ww̄)r, gr) .

Ring Verification. To verify the signature (A,B) on message M with respect to the ring R =
{PK,PK} (parsed as above), compute w = u′ ·

∏

i:Mi=1 ui and w̄ = ū′ ·
∏

i:Mi=1 ūi and then check

whether ê(g1, ḡ1) · ê(B, (ww̄))
?
= ê(A, g).

It is not hard to see that correctness holds. We prove the following regarding the above scheme:

Theorem 3 Assume the Waters signature scheme is existentially unforgeable under adaptive cho-
sen message attack. Then the 2-user ring signature scheme described above is unconditionally
anonymous against key exposure attacks, and unforgeable against chosen-subring attacks.

Proof Unconditional anonymity against key exposure attacks follows easily from the observations

made earlier: namely, that only the value ḡα
1 = gᾱ

1 (where ᾱ
def
= logg ḡ1) is needed to sign, and either

of the two (honest) parties can compute this value.
We now prove that the scheme satisfies Definition 6. We do this by showing how an adversary

A that forges a signature with respect to the ring signature scheme with non-negligible probability,
can be used to construct an adversary Â that forges a signature with respect to the Waters signature
scheme (in the standard sense) with the same probability. For simplicity in the proof, we assume
that A only ever sees the public keys of two users, requests all signatures to be signed with respect
to the ring R containing these two users, and forges a signature with respect to that same ring
R. By a hybrid argument, it can be shown easily that this is equivalent to the more general case
when A may see multiple public keys, request signatures with respect to various (different) 2-user
subsets, and then output a forgery with respect to any 2-user subset of its choice.9

Construct Â as follows: Â is given the public key (ĝ1, ĥ, û′, û1, . . ., ûn) of an instance of the
Waters scheme. Â constructs two user public keys as follows: first, it sets g1 = ĝ1 and ḡ1 = ĥ.
Then, it chooses random u′, u1, . . . , un ←

�
and sets ū′ = û′/u′ and ūi = ûi/ui for all i. It gives

to A the public keys (g1, u′, u1, . . ., un) and (ḡ1, ū′, ū1, . . ., ūn). Note that both public keys have
the appropriate distribution. When A requests a ring signature on a message M with respect to
the ring R containing these two public keys, Â requests a signature on M from its signing oracle,
obtains in return a signature (A,B), and gives this signature to A. Note that this is indeed a
perfect simulation, since

ĥlogg ĝ1 ·

û′
∏

i:Mi=1

ûi

r

, gr

 =

ḡ
logg g1

1 ·

u′ū′
∏

i:Mi=1

uiūi

r

, gr

 ,

9Equivalence holds for the case of any c-user ring signature scheme for any constant c (as is the case here), since
the number of possible subrings in such a case in polynomial. In the general case when rings can be any polynomial
size, the number of possible rings is exponential and hence the hybrid argument no longer applies.

13

which is an appropriately-distributed ring signature with respect to the public keys given to A.
When A outputs a forgery (A∗, B∗) on a message M ∗, this same forgery is output by Â. Note

that Â outputs a valid forgery whenever A does, since

ê(g1, ḡ1) · ê(B
∗, (u′ū′

∏

i:M∗
i =1 uiūi)) = ê(A∗, g) =⇒ ê(ĝ1, ĥ) · ê(B∗, (û′∏

i:M∗
i =1 ûi)) = ê(A∗, g).

We conclude that Â outputs a forgery with the same probability as A. Since, by assumption, the
Waters scheme is secure, this completes the proof.

We do not know how to prove unforgeability of the above scheme with respect to the stronger
Definition 7.

References

[1] M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n signatures from a variety of keys. In Advances
in Cryptology — Asiacrypt 2002.

[2] B. Adida, S. Hohenberger, and R. Rivest. Ad-hoc-group signatures from hijacked keypairs.
http://theory.lcs.mit.edu/~srhohen/papers/AHR.pdf, June 2005.

[3] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal defini-
tions, simplified requirements, and a construction based on general assumptions. In Advances
in Cryptology — Eurocrypt 2003.

[4] E. Bresson, J. Stern, and M. Szydlo. Threshold ring signatures and applications to ad-hoc
groups. In Advances in Cryptology — Crypto 2002.

[5] D. Chaum and E. van Heyst. Group signatures. In Advances in Cryptology — Eurocrypt ’91.

[6] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and simplified
design of witness hiding protocols. In Advances in Cryptology — Crypto ’94.

[7] I. Damg̊ard and J. Nielsen. Improved non-committing encryption schemes based on a general
complexity assumption. In Advances in Cryptology — Crypto 2000.

[8] Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identification in ad hoc groups.
In Advances in Cryptology — Eurocrypt 2004.

[9] C. Dwork and M. Naor. Zaps and their applications. In Proc. 41st Annual Symposium on
Foundations of Computer Science (FOCS ’00). IEEE Computer Society, 2000.

[10] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge proofs under
general assumptions. SIAM J. Computing, 29(1):1–28, 1999.

[11] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Advances in Cryptology — Crypto ’86.

[12] J. Herranz and G. Sáez. Forking lemmas for ring signature schemes. In Indocrypt, 2003.

[13] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their applications.
In Advances in Cryptology — Eurocrypt ’96.

14

[14] J. Liu, V. Wei, and D. Wong. Linkable spontaneous anonymous group signatures for ad hoc
groups. In ACISP 2004.

[15] M. Naor. Deniable ring authentication. In Advances in Cryptology — Crypto 2002.

[16] R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In Asiacrypt 2001. Full version
available at http://www.mit.edu/~tauman and to appear in Essays in Theoretical Computer
Science: in Memory of Shimon Even.

[17] B. Waters. Efficient identity-based encryption without random oracles. In Advances in Cryp-
tology — Eurocrypt 2005.

[18] J. Xu, Z. Zhang, and D. Feng. A ring signature scheme using bilinear pairings. In Workshop
on Information Security Applications (WISA) 2004.

[19] F. Zhang and K. Kim. ID-based blind signature and ring signature from pairings. In Advances
in Cryptology — Asiacrypt 2002.

A ZAPs

Let L be an NP language with associated polynomial-time witness relation RL (i.e., such that

L
def
= {x | ∃w : (x,w) ∈ RL}). If (x,w) ∈ RL we refer to x as the statement and w as the associated

witness for x. We now recall the definition of a ZAP from [9]:

Definition 9 [ZAP] A ZAP for an NP language L with associated witness relation RL is a triple
(`,P,V), where `(·) is a polynomial, P is a ppt algorithm, and V is polynomial-time deterministic
algorithm, and such that.

Completeness For10 any (x,w) ∈ RL and any r ∈ {0, 1}`(k):

Pr[π ← Pr(x,w) : Vr(x, π) = 1] = 1.

Adaptive soundness There exists a negligible function ε such that

Pr[r ← {0, 1}`(k) : ∃(x, π) : x 6∈ L and Vr(x, π) = 1] ≤ ε(k).

Witness indistinguishability (Informal) For any x ∈ L, any pair of witnesses w0, w1 for x,
and any r ∈ {0, 1}`(k), the distributions {Pr(x,w0)} and {Pr(x,w1)} are computationally
indistinguishable. (Note: more formally, we need to speak in terms of sequences {rk ∈
{0, 1}`(k)}, {xk}, and {(wk,0, wk,1)} but we avoid doing so for ease of exposition.)

A ZAP is used in the following way: The verifier generates a random first message r ← {0, 1}`(k)

and sends it to the prover P. The prover, given r, a statement x, and associated witness w, sends
π ← Pr(x,w) to the verifier. The verifier then runs Vr(x, π) and accepts iff the output is 1.

10We remark that the definition in [9] allows for a negligible completeness error. However, their construction
achieves perfect completeness when instantiated using the NIZK of [10].

15

B Proofs of Claims 1–4

Proof of Claim 1: Let Π = (Gen,Sign,Vrfy) be a ring signature scheme satisfying the conditions
stated in the claim. Construct the following scheme Π′: the key generation algorithm Gen′(1k)
computes (PK,SK)← Gen(1k) and outputs PK ′ = 0|PK and SK ′ = SK. The signing algorithm
Sign′s,SKs

(M,R) checks whether all public keys in R begin with a “0”: if so, it outputs σ ←
Signs,SKs

(M, R̄) (where R̄ contains the same keys as R, but with the leading bit of each key
removed); otherwise, it outputs s. The verification algorithm is modified in the obvious way (recall
that completeness is only required to hold for rings containing honestly-generated public keys).

Clearly, the above scheme does not achieve anonymity w.r.t. adversarially-chosen keys. On the
other hand, it clearly does remain (unconditionally) anonymous in the basic sense. It is also not
difficult to see that it remains unforgeable w.r.t. insider corruption.

Proof of Claim 2: Let Π = (Gen,Sign,Vrfy) be a ring signature scheme satisfying the conditions
stated in the claim, and assume a symmetric-key encryption scheme (Enc,Dec) (which exists given
the assumption of the claim). Construct scheme Π′ as follows: the key generation algorithm Gen′(1k)
computes (PK,SK) ← Gen(1k) but additionally chooses κ ← {0, 1}k ; it outputs PK ′ = PK
and SK ′ = SK|κ. The signing algorithm Sign′

s,SKs|κ
(M,R) computes σ ← Signs,SKs

(M,R) and
C ← Encκ(s); it outputs the signature (σ,C). Verification is changed in the obvious way.

The scheme does not achieve anonymity under attribution attacks since, given a signature
computed by (say) a user with secret key SK|κ with respect to any ring, as long as the adversary
has all-but-one of the secret keys of the members of the ring (and, in particular, has the {κi} values
for all-but-one of the members), it can determine who the correct signer is with all but negligible
probability. On the other hand, it is not hard to show that the scheme remains anonymous w.r.t.
adversarially-generated keys and also remains unforgeable w.r.t. insider corruption.

Proof of Claim 3: Let Π = (Gen,Sign,Vrfy) be a ring signature scheme satisfying the conditions
of the claim. Construct Π′ = (Gen′, Sign′, Vrfy′) as follows. The key generation algorithm Gen′ is
the same as Gen. The signing algorithm Sign′

s,SKs
(M,R) sets R′ = R ∪ {M} (where M is treated

as a public key) and computes σ1 ← Signs,SKs
(M,R) and σ2 ← Signs,SKs

(0k, R′). The output is
the signature (σ1, σ2). To verify a signature (σ1, σ2) (using Vrfy′), simply verify that signature σ1

is correct (using Vrfy).
It is not hard to see that the scheme is insecure against chosen-subring attacks. Specifically,

consider the adversary A who receives the set of public keys (PK1, PK2, PK3) and then requests a
signature on the message M = PK3 with respect to the ring R = (PK1, PK2). Let (σ1, σ2) be the
response of the signing oracle. A outputs (0k, (σ2, σ2), (PK1, PK2, PK3)) and terminates. Note
that (σ2, σ2) is a valid ring signature (with respect to the scheme Π′) for the message 0k with respect
to the ring (PK1, PK2, PK3). Also note that A never requested a signature for such a message-ring
pair. We therefore conclude that A succeeds in producing a valid forgery with probability 1.

On the other hand, it is not difficult to show that Π′ remains anonymous against key exposures
(we omit the details).

Π′ is also unforgeable against fixed-ring attacks. We prove this by contradiction. Let A ′ be
an adversary that breaks the unforgeability of Π′ against fixed-ring attacks. We construct an
adversary A that breaks the unforgeability of Π w.r.t. insider attacks. A takes as input a ring
S = (PK1, . . . , PKn) and feeds it to A′. When A′ requests a signature (under Sign′) on the
message M with respect to the ring R, A uses its signing oracle to obtain the two components σ1

and σ2. Note that A can obtain σ2, because he can request a signature on a ring that contains
public keys of its choice (M in this case); here is where we use the fact that Π is unforgeable

16

w.r.t. insider attacks. When A′ outputs a candidate forgery (M, (σ1, σ2)), then A outputs σ1 as a
candidate forgery for message M with respect to the ring S. Note that if the output of A ′ is valid
signature under Π′, then the output of A is a valid signature under Π. Also, if A′ never requested a
signature on M , then A never requested a signature on M with respect to the ring S. We conclude
that A outputs a valid forgery whenever A′ does.

Proof of Claim 4: Let Π = (Gen,Sign,Vrfy) be a scheme satisfying the conditions of the claim.
We construct the scheme Π′ as follows. The key generation algorithm Gen′ runs Gen to obtain
(PK,SK), then outputs PK ′ = 0|PK and SK ′ = SK. We will say that a public key is “good”
if it begins with a zero and that it is “bad” if it begins with a one. We note that all public keys
generated by Gen′ are “good”.

The signing algorithm Sign′s,SKs
(M,R) proceeds as follows. If R[s] = PK ′

s is “bad”, then the
algorithm returns ⊥. Otherwise, Sign′ sets R′ to be the ring consisting of only the “good” public
keys from the ring R, with the initial bit stripped. It then computes σ ← Signs,SKs

(M,R′) and
outputs this as the signature. The verification algorithm Vrfy ′ is modified in the appropriate way.

Π′ is not unforgeable w.r.t. insider corruption. To see this, consider the adversary A who receives
public keys (PK ′

1, PK ′
2). Next, A generates an arbitrary “bad” public key PK ′ = 1 | PK ′′.

The adversary then requests a signature on an arbitrary message M with respect to the ring
(PK ′

1, PK ′
2, PK ′) on behalf of the signer holding PK ′

1. The signing oracle returns a signature
σ that is a valid signature for message M respect to the ring (PK ′

1, PK ′
2) (recall that PK ′ is

ignored, since it is “bad”). But now A can output the forgery (M,σ, (PK ′
1, PK ′

2)) and succeed
with probability 1.

It is not hard to see that Π′ remains unforgeable against chosen-subring attacks (since, in such
attacks, the adversary can only request signatures with respect to rings that consist only of “good”
public keys). One can also easily show that Π′ remains anonymous w.r.t. key exposures.

B.1 The Herranz-Sáez Ring Signature Scheme

In this section we show that the Herranz-Sáez ring signature scheme [12] gives a natural separation
between unforgeability against fixed-ring and chosen-subring attacks. Recall that, in the proof of
Claim 3 (above), we presented a ring signature scheme that is anonymous against key exposure
and unforgeable against fixed-ring attacks, but not unforgeable against chosen-subring attacks.
Such a scheme was artificial and purposely designed to achieve the separation under a very relaxed
assumption. In contrast, we now show a “natural” scheme, introduced in previous work, that
illustrates the same separation albeit under specific and stronger assumptions.

We first review the Herranz-Sáez ring signature scheme. Let
�

,
�

1 be groups of prime order q.
Let H : {0, 1}∗ → � q be a hash function modeled as a random oracle. We assume that H, q,

�
,

and a generator g ∈
�

are publicly known. The scheme is defined as follows:

Key Generation. Choose x← � q and set y = gx. The public key is y and the secret key is x.

Ring Signing. To sign message M with respect to the ring R = {y1, . . . , yn} using secret key xs,
proceed as follows:

1. for i = 1, . . . , n, i 6= s, choose random ai ← � q and set Ci = gai ;

2. choose random as ← � q;

17

3. compute Cs and b as follows:

Cs = gas

∏

i6=s

y
−H(M,Ci)
i

b = as +
∑

i6=s

ai + xsH(M,Cs);

4. in the unlikely event that the Ci are not all distinct, restart from the beginning;

5. output the signature σ = (b, C1, . . . , Cn).

Ring Verification. To verify the signature (b, C1, . . . , Cn) on message M with respect to the ring
R = {y1, . . . , yn}, check that the Ci are all distinct and that:

gb ?
=

n
∏

i=1

Ci · y
H(M,Ri)
i .

It is not hard to see that the scheme above is unconditionally anonymous against key exposure,
even in the standard model. This is because a ring signature on message M with respect to a
ring R is a uniformly random sample from the set of the tuples (b, C1, . . . , Cn) that satisfy the
ring verification condition, and this distribution is independent of the index s of the signing key
used. Additionally, Herranz and Sáez [12] prove that this scheme is unforgeable against fixed-ring
attacks11 under the discrete logarithm assumption in the random oracle model.

However, we point out that the Herranz-Sáez scheme is not unforgeable against chosen-subring
attacks. Consider an adversary that requests two signatures on the same arbitrary message M
with respect to the disjoint rings R = (y1, . . . , yn) and R′ = (y′1, . . . , y

′
m), obtaining signature

σ = (b, C1, . . . , Cn) in the first case and σ′ = (b′, C ′
1, . . . , C

′
n) in the second. The adversary can then

output the forged signature

σ∗ = (b + b′, C1, . . . , Cn, C ′
1, . . . , C

′
m)

on message M with respect to the ring R ∪ R′ = (y1, . . . , yn, y′1, . . . , y
′
m). Applying the ring verifi-

cation algorithm shows that this is indeed a valid forgery (except in the unlikely case that Ci = C ′
j

for some i, j).

C Proof of Theorem 2

We restate Theorem 2 for convenience:

Under the assumptions of Theorem 1 and assuming (EGen,Enc,Dec) has an oblivious public-key gen-
erator, the modified ring signature scheme described above is (computationally) anonymous against
key exposure, and unforgeable w.r.t. insider corruption.

Proof (Sketch) The proof of unforgeability follows immediately from Theorem 1 since, by Def-
inition 8, the adversary cannot distinguish between the original scheme (in which the encryption
key is generated using EGen) and the modified scheme (in which the encryption key is generated
using OblEGen).

11The authors do not formally define unforgeability, but an inspection of their proof of security reveals that their
notion of unforgeability matches our Definition 5.

18

We now argue that the modified scheme achieves anonymity against key exposure. First we
note that the anonymity against attribution attacks claimed in Theorem 1 holds even when the
adversary is given all random coins used to generate (PK0, SK0) except for those coins used to
generate pkE,0 (using EGen). Now, if there exists a ppt adversary A that breaks anonymity of the
modified scheme in the sense of key exposure, we can use it to construct a ppt adversary A ′ that
breaks anonymity of the original scheme against attribution attacks. A′ receives PK0, the random
coins ωS,1, ωE,1 used to generate (PK1, SK1), and the random coins ωS,0 used to generate pkS,0

(i.e., A is not given the coins used to generate pkE,0). Next, A′ runs ω′
E,0 ← OblRand(pkE0

) and
ω′

E,1 ← OblRand(pkE,1) and gives to A the public key PK0 it received as well as the random coins
ωS,0, ω

′
E,0, ωS,1, ω

′
E,1. The remainder of A’s execution is simulated in the natural way by A′.

Now, Definition 8 implies that the advantage of A in the above is negligibly close to the advan-
tage of A in attacking the modified scheme in the sense of key exposure attacks. But the advantage
of A in the above is exactly the advantage of A′ in attacking the original scheme via key attribution
attacks. Since we have already proved that the original scheme is anonymous against attribution
attacks (cf. Theorem 1), we see that the modified scheme is anonymous against key exposure.

19

