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Abstract. Since the formalization of ring signature by Rivest, Shamir
and Tauman in 2001, there are lots of variations appeared in the liter-
ature. Almost all of the variations rely on the random oracle model for
security proof. In this paper, we propose a ring signature scheme based
on bilinear pairings, which is proven to be secure against chosen mes-
sage attack without using the random oracle model. It is the first in the
literature to achieve this security level.
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1 Introduction

A ring signature scheme (see [RST01], [BSS02], [AOS02], [BGLS03], [ZK02],
[DKNS04] and [XZF04]) allows members of a group to sign messages on behalf
of the group without revealing their identities, i.e. signer anonymity. In addition,
it is not possible to decide whether two signatures have been issued by the same
group member. Different from a group signature scheme (for examples, [CvH91],
[CS97] and [BMW03]), the group formation is spontaneous and there is no group
manager to revoke the identity of the signer. That is, under the assumption that
each user is already associated with a public key of some standard signature
scheme, a user can form a group by simply collecting the public keys of all the
group members including his own. These diversion group members can be totally
unaware of being conscripted into the group.

Ring signature schemes could be used for whistle blowing [RST01], anony-
mous membership authentication for ad hoc groups [BSS02] and many other
applications which do not want complicated group formation stage but require
signer anonymity. For example, in the whistle blowing scenario, a whistleblower
gives out a secret as well as a ring signature of the secret to the public. From
the signature, the public can be sure that the secret is indeed given out by a
? corresponding author
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group member while cannot figure out who the whistleblower is. At the same
time, the whistleblower does not need any collaboration of other users who have
been conscripted by him into the group of members associated with the ring
signature. Hence the anonymity of the whistleblower is ensured and the public
is also certain that the secret is indeed leaked by one of the group members
associated with the ring signature.

Ring signature scheme can be used to derive other primitives as well. It had
been utilized to construct non-interactive deniable ring authentication [SM04],
perfect concurrent signature [SMZ04] and multi-designated verifiers signature
[LV04].

1.1 Contributions

In this paper, we propose the first ring signature scheme that is proven to be
secure against chosen message attack without relying on the random oracle as-
sumption [BR93]. Its construction is based on bilinear pairings. We give a rigor-
ous security proof.

In addition, we generalize the q-Strong Diffie-Hellman Problem [BB04] into
the (q, n)-General Strong Diffie-Hellman Problem. The lower bound of the com-
plexity is analyzed in the generic group model. The security of our proposed ring
signature scheme is reduced to this hard problem, and the reduction is tight.

Finally, we also prove that our proposed ring signature scheme also has strong
existential unforgeability [ADR02]. The security of our scheme is reduced to a
generalized version of the q-Diffie-Hellman Inversion Problem.

1.2 Previous Work

Ring signature scheme was first formalized by Rivest et. al. in [RST01]. There
are many pairing-based ring signature schemes. Ring signature schemes from
pairing-based short signature were proposed in [BGLS03] and [ZSNS04]. With
the help of pairing, ID-based ring signature was introduced in [ZK02] and ID-
based threshold ring signature scheme was introduced in [CHY04]. To the best of
authors’ knowledge, the most efficient (ID-based or non-ID-based) ring signature
scheme from bilinear pairings is [CYH05], which requires only a constant number
of pairings computation (zero in signing and two in verification).

Among all the above schemes, only the one proposed in [XZF04] is claimed to
be provably secure without using the random oracle model. However, there is no
formal security proof for this claim. For the remaining ring signature schemes,
none of them can be proven secure without using the random oracle assumption.

Organization This paper is organized as follow: The next section contains
preliminaries about the underlying cryptographic primitive used in this paper.
In Section 3, we review the definition of secure ring signature schemes. Then we
propose our new ring signature scheme in Section 4 and give the security proofs.
We analyze the strong existential unforgeability security of our proposed scheme
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in Section 5. In Section 6, we give a lower bound on the complexity of solving the
(q, n)- General Strong Diffie-Hellman Problem, which is a generalized version of
the q-Strong Diffie-Hellman Problem. Finally, we conclude the paper in Section
7.

2 Preliminaries

Before presenting our results, we review the definitions of groups equipped with
a bilinear pairing and the related assumptions.

2.1 Bilinear Pairing

Here we follow the notation in [BLS01]. Let G1 and G2 be two (multiplicative)
cyclic groups of prime order p. Let g1 be a generator of G1 and g2 be a generator
of G2. We also let ψ be an isomorphism from G2 to G1, with ψ(g2) = g1, and ê
be a bilinear map such that ê : G1 ×G2 → GT with the following properties:

1. Bilinearity: For all u ∈ G1, v ∈ G2 and a, b ∈ Z, ê(ua, vb) = ê(u, v)ab.
2. Non-degeneracy: ê(g1, g2) 6= 1.
3. Computability: There exists an efficient algorithm to compute ê(u, v)

2.2 Diffie-Hellman Problems

The following q-Strong Diffie-Hellman Problem is proposed and proven secure
in the generic group model in [BB04].

Definition 1 (q-Strong Diffie-Hellman Problem (q-SDH)). The q-Strong
Diffie-Hellman Problem in (G1,G2) is defined as follow: Given a (q + 2)-tuple
(g1, g2, gx

2 , g
x2

2 , · · · , gxq

2 ) ∈ G1×Gq+1
2 , output a pair (A, c) such that A(x+c) = g1 ∈

G1 where c ∈ Z∗
p. We say that the (q, τ, ε)-SDH assumption holds in (G1,G2) if

no τ -time algorithm has advantage at least ε in solving the q-SDH problem in
(G1,G2).

Definition 2 ((q, n)-General Strong Diffie-Hellman Problem ((q, n)-GSDH)).
The (q, n)-General Strong Diffie-Hellman Problem in (G1,G2) is defined as fol-

low: Given g1 ∈ G1, g
x

j1
1 x

j2
2 ···xjn

n

2 ∈ G(q+1)n

2 for 0 ≤ j1, . . . , jn ≤ q − 1, Output
(A1, . . . , An, c) such that they satisfy:

A
(x1+c)
1 ·A(x2+c)

2 · · ·A(xn+c)
n = g1

We say that the (q, n, τ, ε)-GSDH assumption holds in (G1,G2) if no τ -time al-
gorithm has advantage at least ε in solving the (q, n)-GSDH problem in (G1,G2).

We can see that if n = 1, the GSDH problem is the same as the SDH problem.
Therefore we called GSDH problem to be a generalized problem of the SDH
problem. To provide some confidence in the GSDH assumption, we prove in
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section 6 a lower bound on the complexity of solving the GSDH problem in a
generic group.

For the ease of understanding, we give an example of the problem instance
with n = 2. The (q, 2)-GSDH problem is that, given g1, g2, gx1

2 , gx2
2 , gx2

1
2 , gx1x2

2 ,

g
x2
2

2 , gx3
1

2 , gx2
1x2

2 , gx1x2
2

2 , gx3
2

2 , . . . , gxq
1xq

2
2 , output (A1, A2, c) such that:

A
(x1+c)
1 ·A(x2+c)

2 = g1

The following q-Diffie-Hellman Inversion Problem is proposed in [MSK02].

Definition 3 (q-Diffie-Hellman Inversion Problem (q-DHI)). The q-Diffie-
Hellman Inversion Problem in (G1,G2) is defined as follow: Given a (q+2)-tuple
(g1, g2, gx

2 , g
x2

2 , · · · , gxq

2 ) ∈ G1 × Gq+1
2 , compute g

1/(x)
1 ∈ G1. We say that the

(q, t, ε)-DHI assumption holds in (G1,G2) if no t-time algorithm has advantage
at least ε in solving the q-DHI problem in (G1,G2).

We can easily see that the q-DHI assumption implies the q-SDH assumption.
Similar to the GSDH problem, we gives a ”generalized” problem for the q-DHI
problem below.

Definition 4 ((q, n)-General Diffie-Hellman Inversion Problem ((q, n)-
GDHI)). The (q, n)-General Diffie-Hellman Inversion Problem in (G1,G2) is

defined as follow: Given g1 ∈ G1, g
x

j1
1 x

j2
2 ···xjn

n

2 ∈ G(q+1)n

2 for 0 ≤ j1, . . . , jn ≤ q.
Output (A1, . . . , An) such that they satisfy:

A
(x1)
1 ·A(x2)

2 · · ·A(xn)
n = g1

We say that the (q, n, τ, ε)-GDHI assumption holds in (G1,G2) if no τ -time al-
gorithm has advantage at least ε in solving the (q, n)-GDHI problem in (G1,G2).

We can see that if n = 1, the GDHI problem is the same as the DHI problem.
Therefore we called GDHI problem to be a generalized problem of the DHI
problem. The GDHI assumption implies the GSDH assumption.

3 Security Definition

Hereafter we review the definition and the security notion of ring signature
schemes.

Let k ∈ N be a security parameter and m ∈ {0, 1}∗ be a message.

Definition 5 (Ring Signature Scheme). A ring signature scheme is a triple
(G, S, V) where

– (ŝ, P ) ← G(1k) is a probabilistic polynomial time algorithm (PPT) which
takes as input a security parameter k, produces a private key ŝ and a public
key P .
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– σ ← S(1k, ŝ, L,m) is a PPT which accepts as inputs a security parameter k,
a private key ŝ, a set of public keys L including the one that correspond to
the private key ŝ and a message m, produces a signature σ.

– 1/0← V(1k, L,m, σ) is a PPT which accepts as inputs a security parameter
k, a set of public keys L, a message m and a signature σ, returns 1 or 0 for
accept or reject, respectively. We require that V(1k, L,m,S(1k, ŝ, L,m)) = 1
for any message m and any private key ŝ which is generated by G(1k) and
any set public keys L including the one that correspond to the private key ŝ.

For simplicity, we usually omit the input of security parameter when using S
and V in the rest of the paper. L may include public keys based on different
security parameters. The security of the signature scheme defined above is set
to the smallest one among them. G may also be extended to take the description
of key types.

The security of a ring signature scheme consists of two requirements, namely
Signer Ambiguity and Existential Unforgeability. They are defined as follows.

Definition 6 (Signer Ambiguity). Let L = {P1, · · · , Pn} where each key is
generated as (ŝi, Pi)← G(1ki) for some ki ∈ N. Let k = min(k1, · · · , kn). A ring
signature scheme is said to be unconditionally signer ambiguous if, for any L,
any message m, and any signature σ ← S(ŝ, L,m) where ŝ ∈ {ŝ1, · · · , ŝn}, any
unbound adversary E accepts as inputs L, m and σ, outputs ŝ with probability
1/n.

It means that even all the private keys are known, it remains uncertain that
which signer out of n possible signers actually generate a ring signature.

Existential Unforgeability. For ring signature, we first define a weaker no-
tion of security, called existential unforgeability under a weak chosen message
attack, which is similar to the one for standard signature in [BB04]. For a ring
signature scheme with n public keys, the existential unforgeability is defined in
the following game between a challenger and an adversary A:

1. A sends the challenger a list of qS messages M1, . . . ,MqS
∈ {0, 1}∗.

2. The challenger runs algorithm G. Let L = {P1, · · · , Pn} be the set of n public
keys in which each key is generated as (ŝi, Pi) ← G(1ki) where ki ∈ N. Let
k = min(k1, · · · , kn). A is given L and the public parameters.

3. A can adaptively queries the signing oracle qS times. SO(m): On any mes-
sage m ∈ {M1, . . . ,MqS

}, returns a ring signature σ ← S(ŝ, L,m) for some
ŝ ∈ {ŝ1, · · · , ŝn}, such that V(L,m, σ) = 1.

4. Finally A outputs a tuple (m,σ)

A wins if V(1k, L,m, σ) = 1 and (m,σ) is not the output from SO. Denote AdvA
be the probability that A wins in the above game, taken over the coin flips of A
and the challenger.
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Definition 7. A ring signature scheme is (τ, qS , ε)-existentially unforgeable un-
der a weak chosen message attack if no PPT adversary A runs in time at most
τ , with at most qS queries to SO, and AdvA is at least ε.

We say that a ring signature scheme is secure if it satisfies the Signer Am-
biguity and Existential Unforgeability.

Strong Existential Unforgeability We would like to consider also the strong
version of security model for existential unforgeability [ADR02]. It models the
adaptive chosen message attack. The only difference from the game above is that
step 1 in the game is not needed and the adversary can query any message to
SO. A′ wins if V(1k, L,m, σ) = 1 and (m,σ) is not the output from SO. Denote
AdvA′ be the probability that A′ wins in the above game, taken over the coin
flips of A′ and the challenger.

Definition 8. A ring signature scheme is (τ, qS , ε)-existentially unforgeable un-
der an adaptive chosen message attack if no PPT adversary A′ runs in time at
most τ , with at most qS queries to SO, and Adv′A is at least ε.

4 Our Ring Signature Scheme

In this section, we construct a secure ring signature scheme in the standard
model using the q-SDH assumption. Let (G1,G2) be bilinear groups where |G1| =
|G2| = p for some prime p.

Let the message to be signed be m ∈ Z∗
p. (Explicitly, the domain can be

extended to any finite string {0, 1}∗ using a collision resistant hash function
H : {0, 1}∗ → Z∗

p. We will discuss later.) The scheme is as follows:

Setup Select a pairing ê : G1 × G2 → GT . Let g1 be generators of G1 and g2
be a generator of G2 and ψ(g2) = g1. The public parameters are (ê, g1, g2).

Key Generation Assume there are n users. For user i, where i = 1, . . . , n,
pick an elements xi ∈R Z∗

p which are the components of the secret key. The
corresponding public key is ui ∈ G2 where ui = gxi

2

Signing Without loss of generality, we assume the signer wants to form a ring
signature of n users {u1, . . . , un} with his own public key at index t.

1. For i = 1, 2, . . . , t− 1, t+ 1, . . . , n, pick zi ∈R Z∗
p and compute σi = gzi

1 .
2. Find w ∈ G1 such that

g1 = w · [
∏

i∈{1,...,n}\t

(ψ(ui · gm
2 )zi)],

3. Compute σt = w1/(x+m) by his secret key x.
4. The signature is {σ1, σ2, · · · , σn}.
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Verification Given a signature {σ1, σ2, · · · , σn} from a set of users {u1, . . . , un}
for message m, accept if the following holds:

n∏
i=1

[ê(σi, (ui · gm
2 ))] = ê(g1, g2)

4.1 Security Analysis

Theorem 1. Our proposed scheme is unconditional signer ambiguous.

Proof. For i = 1, . . . , t − 1, t + 1, . . . , n, σis are random since zi are randomly
picked. σt can be considered as in the form of g1zt as g1 is the generator and
hence such zt always exists. It is determined by σis by the equation, so σt is
also uniformly distributed. To conclude, the distribution of the components of
the signature generated by our scheme is independent of what is the group of
participating signer, for any message m and any set of users associated to the
ring signature. ut

Theorem 2. Suppose the (q, n, τ, ε)-GSDH assumption holds in (G1,G2). Then
our ring signature scheme with n users is (τ̄ , qS , ε)-secure against existential
forgery under a weak chosen message attack provided that:

qS < q and τ̄ ≤ τ −Θ(nqS(qn − 1)T )

where T is the maximum time for an exponentiation in G1 and G2.

Proof. Suppose the adversary A can forge a ring signature with n users. We
construct an algorithm B that uses A to solve the (q, n)-GSDH problem.

B is given the GSDH tuple: g1 ∈ G1, g2, g
x

j1
1 x

j2
2 ···xjn

n

2 ∈ G(q+1)n

2 for 0 ≤
j1, . . . , jn ≤ q. A sends qS messages M1, . . . ,MqS

, where qS = q − 1. Let
f(y1, . . . , yn) be the polynomial f(y1, . . . , yn) =

∏n
j=1

∏q−1
i=1 (yj + Mi). Expand

it and write:

f(y1, . . . , yn) =
q−1∑
`1=0

q−1∑
`2=0

· · ·
q−1∑
`n=0

(α`1,`2,...,`n
y`1
1 y

`2
2 · · · y`n

n )

where α0,0,...,0, α0,0,...,1, . . . , αq−1,q−1,...,q−1 ∈ Zp
qn

are the coefficients of the
above polynomial. For 1 ≤ ρ ≤ n, B computes:

g′2 =
q−1∏
j1=0

q−1∏
j2=0

· · ·
q−1∏
jn=0

(gx
j1
1 ···xjn

n

2 )αj1,...,jn = g
f(x1,...,xn)
2 and

uρ =
q−1∏
j1=0

q−1∏
j2=0

· · ·
q∏

jρ=1

· · ·
q−1∏
jn=0

(gx
j1
1 ···xjn

n

2 )αj1,...,jρ−1,...,jn = g
xρf(x1,...,xn)
2 = (g′2)

xρ
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Let g′1 = ψ(g′2). We assume that f(x1, . . . xn) 6= 0, otherwise xj = −Mi for some
i, j which means that B obtained the secret key xj for the (q, n)-GSDH problem.
B gives A the set of public keys L = {u1, u2, . . . , un}.

For the SO query, B generates a signature for message Mi as follows. For
1 ≤ j ≤ n, B randomly selects wj ∈ Z∗

p and computes:

σj = ψ(g′2)
wj/(xj+Mi)

= ψ(gf(x1,...,xn)/(xj+Mi)
2 )wj (1)

Then the signature (σ1, . . . , σn, Mi) satisfies
∏n

j=1 ê(σj , (uj · g′2
Mi)) = ê(g′1, g

′
2).

Hence B generates valid signatures for Mi.
Finally, A outputs a signature (σ∗1 , . . . , σ

∗
n,M

∗) and wins if it is not an output
from SO and passes the verification. Therefore, we have

∏n
i=1 σ

∗
i
(xi+M∗) = g′1 =

g
f(x1,...,xn)
1 . Let:

R =
f(x1, x2, . . . , xn)

(x1 +M∗)(x2 +M∗) · · · (xn +M∗)

=
q−2∑
`1=0

q−2∑
`2=0

· · ·
q−2∑

`n=0,∃`i 6=0

(β`1,`2,...,`n
x`1

1 x
`2
2 · · ·x`n

n )

+
β0,0,...,0

(x1 +M∗)(x2 +M∗) · · · (xn +M∗)
(2)

where βs ∈ Zp can be computed and β0,0,...,0 6= 0 as M∗ /∈ {M1, . . . ,MqS
}.

Denote S be the first term in equation (2). Therefore:
n∏

i=1

σ∗i
(xi+M∗)

(x1+M∗)···(xn+M∗) = gR
1

= g
S+

β0,0,...,0
(x1+M∗)···(xn+M∗)

1

g
−S(x1+M∗)···(xn+M∗)
1

n∏
i=1

σ∗i
(xi+M∗) = g

β0,0,...,0
1

Let σ̄i = σ∗i
1/β0,0,...,0 for 2 ≤ i ≤ n. Then B computes:

σ̄1 = (σ∗1g
−S(x2+M∗)···(xn+M∗)
1 )1/β0,0,...,0

which can be computed by the GSDH tuple again. Then (σ̄1, . . . , σ̄n,M
∗) are

the solution to the (q, n)-GSDH problem.
From the proof above, we can see that the number of query to SO qS and

the time τ̄ is restricted to:

qs < q, and τ̄ ≤ τ −Θ(nqS(qn − 1)T )

where T is the maximum time for an exponentiation in G1 and G2. ut
Summarizing with the signer ambiguity, we have:

Theorem 3. The ring signature is secure if the (q, n, τ, ε)-GSDH assumption
holds in (G1,G2).



Ring Signature without Random Oracles 9

5 Towards Strong Existential Unforgeability

We would like to consider also the strong version of security model for existential
unforgeability [ADR02]. It models the adaptive chosen message attack. We use
the similar technique as in [DY05], which uses the weaker q-DHI assumption in
the security proof. [DY05] proves that [BB04]’s signature scheme (which is the
same as our ring signature scheme with 1 user only) is secure against adaptive ad-
versary. They use a weaker q-DHI assumption instead of the q-SDH assumption
in [BB04]. In their proof, they restrict messages to be of slightly superlogarithm
size in the security parameter k, which enables them to enumerate all possible
messages and to response to adversary’s queries adaptively.

Now we describe the intuition of the proof of theorem 1 in [DY05]. Write
q = 2a(k). Algorithm B is given the tuple (g1, g2, gx

2 , g
x2

2 , · · · , gxq

2 ). B guesses that
A will output a forgery on message m0 ∈R {0, 1}a(k). The probability that such
guess is correct is 1/2a(k). Error probability can be decreased by repeating the
algorithm sufficiently many times. B sets y = x − Φ(m0) to be the secret key,
where Φ : {0, 1}a 7→ Z∗

p. Then B can simulate the SO, except the case that the
SO input message m = m0. In that case, B declares failure and exits. Finally
A returns a forgery (m∗, σ∗). If m∗ 6= m0, declare failure and exit. Otherwise B
uses the output from A to compute g1/(y+Φ(m0))

1 = g
1/x
1 , which is the solution to

the q-DHI problem. Then B succeeds with probability ε/2a(k) and the running
time is τ2a(k)poly(k).

Now we use the same technique to extend our ring signature scheme to achieve
strong existential unforgeability against adaptive chosen message attack.

Theorem 4. Suppose the (q, n, τ, ε′)-GDHI assumption holds in (G1,G2). Then
our ring signature scheme with n public keys is (τ̄ , qS , ε)-secure against strong
existential forgery under an adaptive chosen message attack provided that:

qS < q and τ̄ ≤ τ −Θ(nqS(qn − 1)T ) and ε ≥ ε′/q

where T is the maximum time for an exponentiation in G1 and G2.

Proof. (Sketch) Write q = 2a(k). Algorithm B is given the (q, n)-GDHI instance.
B guesses that A will output a forgery on message m0 ∈R {0, 1}a(k). The prob-
ability that such guess is correct is 1/2a(k). Error probability can be decreased
by repeating the algorithm sufficiently many times. B sets yi = xi − Φ(m0), for
1 ≤ i ≤ n, to be the new secret keys, where Φ : {0, 1}a 7→ Z∗

p. B computes the
public parameters as in theorem 2. The function f is now changed to:

f(y1, · · · , yn̄) =
n∏

j=1

∏
m∈{0,1}a,m 6=m0

(yj +m)

Then B can simulate the SO for input message m ∈ {0, 1}a, except the case
m = m0. In that case, B declares failure and exits. Finally A returns a forgery



10 Joseph K. Liu and Tsz Hon Yuen

(m∗, σ∗1 , . . . , σ
∗
n). If m∗ 6= m0, declare failure and exit. Otherwise B has the

signatures that satisfies:

n∏
i=1

σ∗i
(yi+Φ(m0)) = g′1

It is equal to
∏n

i=1 σ
∗
i
(xi) = g′1. B uses the same method as theorem 2 to find

the solution to the q-DHI problem. Then B succeeds with probability ε′/q and
the running time is Θ(nqS(qn − 1)T ), where T is the maximum time for an
exponentiation in G1 and G2. ut

Now we can extend our scheme to sign arbitrary message in {0, 1}∗, by first
hashing the message using a collision-resistant hash function H : {0, 1}∗ →
{0, 1}a(k) prior to both signing and verifying. Therefore we have a ring signature
which is secure against strong existential forgery under adaptive chosen message
attack for arbitrary message signing.

6 Generic Security of the (q, n)-GSDH Problem

In this section we prove a lower bound on the computational complexity of the
(q, n)-GSDH problem for the generic group in the sense of Shoup [Sho97].

In the generic group model, elements of G1,G2 and GT appear to be en-
coded as unique random strings, so that only equality can be directly tested by
the adversary. Five oracles are assumed to perform operations between group
elements: computing the group action in each of the three groups G1,G2, GT ;
isomorphism ψ : G2 → G1; and the bilinear pairing G1×G2 → GT . The opaque
encoding of the elements of G1 is modeled as an injective function: ξ1 : Zp → Ξ1,
where Ξ1 ⊂ {0, 1}∗, which maps all a ∈ Zp to the string representation ξ1(ga)
of ga ∈ G1. Similarly we define ξ2 : Zp → Ξ2 for G2 and ξT : Zp → ΞT for GT .
The attacker A communicates with the oracles using the ξ representations of the
group elements only.

Theorem 5. Let A be an algorithm that solves the (q, n)-GSDH problem in
the generic group model., making a total of at most qG queries to the oracles
computing the group action in G1,G2,GT , the oracle computing the isomorphism
ψ, the oracle computing the bilinear pairing ê. If x1, . . . , xn ∈ Z∗

p and ξ1, ξ2, ξT
are chosen at random, and if A is given p, ξ1(1), ξ2(x

j1
1 x

j2
2 · · ·xjn

n ), for 0 ≤
j1, . . . , jn ≤ q, then the probability ε that A outputs (c, A1, . . . , An) with c ∈ Z∗

p,

satisfying
∏n

i=1A
(xi+c)
i = g1, is bound by

ε ≤ O(
(qG)2qn

p
+
q2n+1n

p
)

Proof. Consider an algorithm B that plays the following game with A. B main-
tains thee lists of pairs L1 = {(F1,i, ξ1,i) : i = 0, . . . , τ1 − 1}, L2 = {(F2,i, ξ2,i) :
i = 0, . . . , τ2 − 1}, LT = {(FT,i, ξT,i) : i = 0, . . . , τT − 1}, such that at step τ in
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the game, τ1 + τ2 + τT = τ + (q + 1)n + 1. The F1,i and F2,i are polynomials of
degree ≤ nq in Zp[x1, . . . , xn], and the FT,i are polynomials of degree ≤ 2nq in
Zp[x1, . . . , xn], The ξ1,i, ξ2,i, ξT,i are strings in {0, 1}∗. The lists are initialized at
step τ = 0 by taking τ1 = 1, τ2 = (q+ 1)n, τT = 0 and posing F1,0 = 1, F2,0 = 1,
F2,1 = x1, . . . , F2,n = xn, . . . , F2,(q+1)n = xq

1 · · ·xq
n. The corresponding ξ1,0, ξ2,0

and ξ2,is are set to arbitrary distinct strings in {0, 1}∗.
We may assume that A only makes oracle queries on strings previously ob-

tained from B. We note that B can determine the index i of any given string
ξ1,i in L1 (resp. ξ2,i in L2, ξT,i in LT ), breaking ties between multiple matches
arbitrarily.
B starts the game by providing A with the strings ξ1,0, ξ2,0, . . . , ξ2,(q+1)n .

Queries go as follows.

Group action: Given a multiply/divide selection bit and two operands ξ1,i, ξ1,j

with 0 ≤ i, j < τ1, we compute F1,τ1 ← F1,i ± F1,j ∈ Zp[x1, . . . , xn] depending
on whether a multiplication or a division is requested. If F1,τ1 = F1,l for some
l < τ1, we set ξ1,τ1 ← ξ1,l; otherwise we set ξ1,τ1 to a string in {0, 1}∗ distinct
from ξ1,0, . . . , ξ1,τ1−1. we add (F1,τ1 , ξ1,τ1) to L1 and give ξ1,τ1 to A, then increase
τ1 by one. Group action queries in G2,GT are treated similarly.

Isomorphism: Given a string ξ2,i with 0 ≤ i < τ2, we let F1,τ1 ← F2,τ2 ∈ Z∗
p.

If F1,τ1 = F1,l for some l < τ1, we set ξ1,τ1 ← ξ1,l; otherwise, we set ξ1,τ1 to
a string in {0, 1}∗ distinct from ξ1,0, . . . , ξ1,τ1−1. we add (F1,τ1 , ξ1,τ1) to L1 and
give ξ1,τ1 to A, then increase τ1 by one.

Pairing: Given two operands ξ1,i and ξ2,j with 0 ≤ i < τ1 and 0 ≤ j < τ2, we
compute the product FT,τT

← F1,i · F2,j ∈ Zp[x1, . . . , xn]. If FT,τT
= FT,l for

some l < τ1, we set ξT,τT
← ξT,l; otherwise, we set ξT,τT

to a string in {0, 1}∗
distinct from ξT,0, . . . , ξT,τT−1. we add (FT,τT

, ξT,τT
) to LT and give ξT,τT

to A,
then increase τT by one.
A terminates and returns a pair (c, ξ1,`1 , . . . , ξ1,`n) where 0 ≤ `i < τ1, such

that each ξ1,`i
corresponding to user xi. Let F1,`i

be the corresponding polyno-
mial of ξ1,`i

in the list L1 for 1 ≤ i ≤ n. In order to exhibit the correctness of
A’s answer within the simulation framework, B computes the polynomial:

FT,∗ = F1,`1 · (F2,1 + [c]F2,0) + . . .+ F1,`n
· (F2,n + [c]F2,0)

= F1,`1 · (x1 + c) + . . .+ F1,`n
· (xn + c)

Notice that if A’s answer is correct, then necessarily:

FT,∗(x1, . . . , xn)− 1 = 0 (3)

It corresponds to the DDH relation:
∏n

i=1 ê(Ai, g
xi
2 g

c
2) = ê(g1, g2), where Ai de-

notes the element of G1 represented by ξ1,`i
. Now observe that since the constant

monomial ”1” has degree 0 and FT,∗ has total degree at most qn+ 1. To satisfy



12 Joseph K. Liu and Tsz Hon Yuen

the equation (3) identically in Zp[x1, . . . , xn], FT,∗ must has degree ≥ p − 1.
Therefore there exists a tuple (x1, . . . , xn) for which equation (3) does not hold.
Then for random (x∗1, . . . , x

∗
n) ∈ Zp, the probability that equation (3) holds is at

most (qn+ 1)/p by the Schwartz-Zippel Theorem [Sch80].
At this point B chooses a random tuple (x∗1, . . . , x

∗
n) ∈ Zp. The simulation

provided by B is perfect unless the x∗i s create an equality relation between the
simulated group elements that was not revealed toA, a category in which relation
(3) belongs. Thus the success probability of A is bounded by the probability that
any of the following holds:

1. F1,i(x∗1, . . . , x
∗
n)− F1,j(x∗1, . . . , x

∗
n) = 0 for some i, j such that F1,i 6= F1,j ,

2. F2,i(x∗1, . . . , x
∗
n)− F2,j(x∗1, . . . , x

∗
n) = 0 for some i, j such that F2,i 6= F2,j ,

3. FT,i(x∗1, . . . , x
∗
n)− FT,j(x∗1, . . . , x

∗
n) = 0 for some i, j such that FT,i 6= FT,j ,

4. F1,`1 · (x∗1 + c) + . . .+ F1,`n
· (x∗n + c)− 1 = 0.

Since F1,i − F1,j for fixed i and j is a polynomial of degree at most qn, it
vanishes at a random (x∗1, . . . , x

∗
n) ∈ Zp with probability at most qn/p. Similarly

the second case occurs with probability ≤ qn/p, and the third with probability
≤ 2qn/p. The fourth occurs with probability qn+1

p . By summing over all valid
pairs (i, j) in each case, then A wins the game with probability:

ε ≤
(
τ1
2

)
qn

p
+

(
τ2
2

)
qn

p
+

(
τT
2

)
2qn
p

+
qn+ 1
p

≤ (qG + (q + 1)n + 1)2
qn

p
+
qn+ 1
p

≤ O(
(qG)2qn

p
+
q2n+1n

p
)

Therefore we achieve the required bound. ut

Corollary 1. Any adversary that solves the (q, n)-GSDH problem with constant
probability ε > 0 in generic group of order p such that q < O( 2n+1

√
p/n) requires

Ω(
√
εp/qn) generic group operations.

7 Conclusion

In this paper, we proposed a ring signature scheme that is proven to be secure
without using the random oracle model. Its construction is based on bilinear
pairings. It is the first in the literature to achieve this security with formal rig-
orous proof. Furthermore, we generalize the q-SDH Problem into (q, n)-General
SDH Problem. We have given the lower bound on the complexity of this gener-
alization. The security of our proposed scheme is reduced to this hard problem.
Furthermore, we also extend the security proof for the scheme to achieve strong
existential unforgeability.
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