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Abstract. Restrictive blind signatures allow a recipient to receive a
blind signature on a message not know to the signer but the choice of
message is restricted and must conform to certain rules. Partially blind
signatures allow a signer to explicitly include necessary information (ex-
piration date, collateral conditions, or whatever) in the resulting sig-
natures under some agreement with receiver. Restrictive partially blind
signatures incorporate the advantages of these two blind signatures. The
existing restrictive partially blind signature scheme was constructed un-
der certificate-based (CA-based) public key systems. In this paper we fol-
low Brand’s construction to propose the first identity-based (ID-based)
restrictive blind signature scheme from bilinear pairings. Furthermore,
we first propose an ID-based restrictive partially blind signature scheme,
which is provably secure in the random oracle model.

Key words: ID-based systems, Restrictive blind signatures, Partial blind
signatures, Bilinear pairings.

1 Introduction

Blind signatures, introduced by Chaum [11], allow a recipient to obtain a sig-
nature on message m without revealing anything about the message to the
signer. Blind signatures play an important role in plenty of applications such
as electronic voting, electronic cash schemes where anonymity is of great con-
cern. About the formal definition and security of blind signature schemes, refer
to [2, 17–19].

Restrictive blind signatures, firstly introduced by Brands [6, 7], which allow
a recipient to receive a blind signature on a message not known to the signer
but the choice of the message is restricted and must conform to certain rules.
? Supported by National Natural Science Foundation of China (No. 60403007) and
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Furthermore, he proposed a highly efficient electronic cash system, where the
bank ensures that the user is restricted to embed his identity in the resulting
blind signature.

The concept of partially blind signatures was first introduced by Abe and
Fujisaki [1] and allows a signer to produce a blind signature on a message for a
recipient and the signature explicitly includes common agreed information which
remains clearly visible despite the blinding process. This notion overcomes some
disadvantages of fully blind signatures such as the signer has no control over
the attributes except for those bound by the public key. Partial blind signatures
paly an important role in design efficient electronic cash systems. For example,
the bank does not require different public keys for different coins values. On the
other hand, the size of the database that stored the previously spent coins to
detect double-spending would not increase infinitely over time.

Maitland and Boyd [16] first incorporated these two blind signatures and
proposed a provably secure restrictive partially blind signature scheme, which
satisfies the partial blindness and restrictive blindness. Their scheme followed
the construction proposed by Abe and Okamoto [3] and used Brand’s restrictive
blind signature scheme. However, their scheme was constructed under the CA-
based public key systems. There seems no such schemes under the ID-based
public key systems to the best of our knowledge.

The concept of ID-based public key systems, proposed by Shamir in 1984
[20], allows a user to use his identity as the public key. It can simplify key man-
agement procedure compared to CA-based systems, so it can be an alternative
for CA-based public key systems in some occasions, especially when efficient key
management and moderate security are required. Many ID-based schemes have
been proposed after the initial work of Shamir, but most of them are impractical
for low efficiency. Recently, the bilinear pairings have been found various appli-
cations in cryptography, more precisely, they can be used to construct ID-based
cryptographic schemes [4, 5, 14, 21].

Recently, Chow et al first presented an ID-based partially blind signature
scheme [13]. In this paper, we utilize their scheme to propose an ID-based re-
strictive partially blind signature scheme from bilinear pairings. Our contribution
is two folds:
1. We first propose an ID-based restrictive blind signature scheme using the ID-
based knowledge proof for the equality of two discrete logarithm from bilinear
pairings.
2. We first introduce the notion of ID-based restrictive partially blind signatures
and propose a concrete signature scheme from bilinear pairings. Furthermore,
we give a formal proof of security for the proposed scheme in the random oracle.

The rest of the paper is organized as follows: Some preliminaries are given
in Section 2. The definitions associated with ID-based restrictive partially blind
signatures are introduced in Section 3. Two building blocks of ID-based restric-
tive partially blind signatures are given in 4. The proposed restrictive partially
blind signature scheme and its security analysis are given in Section 5. Finally,
conclusions will be made in Section 6.
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2 Preliminaries

In this section, we will briefly describe the basic definition and properties of bi-
linear pairings and gap Diffie-Hellman group. We also introduce ID-based public
key setting and a knowledge proof for the equality of two discrete logarithm from
bilinear pairings.

2.1 Bilinear Pairings

Let G1 be a cyclic additive group generated by P , whose order is a prime q, and
G2 be a cyclic multiplicative group of the same order q. Let a, b be elements
of Z∗q . We assume that the discrete logarithm problem (DLP) in both G1 and
G2 are hard. A bilinear pairings is a map e : G1 ×G1 → G2 with the following
properties:

1. Bilinear: e(aP, bQ) = e(P, Q)ab;
2. Non-degenerate: There exists P and Q ∈ G1 such that e(P, Q) 6= 1;
3. Computable: There is an efficient algorithm to compute e(P, Q) for all P, Q ∈

G1.

2.2 Gap Diffie-Hellman Group

Let G be a cyclic multiplicative group generated by g, whose order is a prime q,
assume that the inversion and multiplication in G can be computed efficiently.
We first introduce the following problems in G.

1. Discrete Logarithm Problem (DLP): Given two elements g and h, to find an
integer n ∈ Z∗q , such that h = gn whenever such an integer exists.

2. Computation Diffie-Hellman Problem (CDHP): Given g, ga, gb for a, b ∈ Z∗q ,

to compute gab.

3. Decision Diffie-Hellman Problem (DDHP): Given g, ga, gb, gc for a, b, c ∈ Z∗q ,
to decide whether c ≡ ab mod q.

We call G a gap Diffie-Hellman group if DDHP can be solved in polyno-
mial time but there is no polynomial time algorithm to solve CDHP with non-
negligible probability. Such groups can be found in supersingular elliptic curve
or hyperelliptic curve over finite field, and the bilinear pairings can be derived
from the Weil or Tate pairings. For more details, see [4, 10, 14].

Throughout the rest of this paper we define G1 be a gap Diffie-Hellman
group of prime order q, G2 be a cyclic multiplicative group of the same order
q and a bilinear pairing e : G1 × G1 → G2. Define four cryptographic secure
hash functions H : {0, 1}∗ → G1, H1 : G2

4 → Zq, H2 : {0, 1}∗ × G1 → Zq and
H3 : G1

2 ×G2
4 → Zq.
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2.3 ID-based Setting from Bilinear Pairings

The ID-based public key systems allow some public information of the user such
as name, address and email etc., rather than an arbitrary string to be used his
public key. The private key of the user is calculated by PKG and sent to the
user via a secure channel.

ID-based public key setting from bilinear pairings can be implemented as
follows:

– Setup: PKG chooses a random number s ∈ Z∗q and set Ppub = sP. The
center publishes system parameters params = {G1, G2, e, q, P, Ppub,H}, and
keep s as the master-key, which is known only himself.

– Extract: A user submits his/her identity information ID to PKG. PKG
computes the user’s public key as QID = H(ID), and returns SID = sQID

to the user as his/her private key.

2.4 ID-based Knowledge Proof for the Equality of Two Discrete
Logarithm from Bilinear Pairings

A prover with possession a secret number β ∈ Zq wants to show that logg u =
logh v while without exposing β, where u = gβ , v = hβ . Chaum and Pedersen
[12] first proposed an interactive protocol to solve this problem. Motivated by
this idea, Baek and Zheng [8, 9] construct a new ID-based knowledge proof for
the equality of two discrete logarithm from bilinear pairings.

Define g = e(P, QID), u = e(Ppub, QID), h = e(L,QID) and v = e(L, SID),
where P and L are independent points of G1. The following protocol presents a
knowledge proof of that logg u = logh v. An interesting property of this proof is
that even the prover does not know the discrete logarithm logg u = logh v (just
be convinced that it equals to the master-key s of the PKG), which is different
from the previous protocols. With the notation of [5], < g, h, u, v > is called a
Diffie-Hellman tuple.

– The prover randomly chooses an element Q in G1 and computes a = e(P, Q),
b = e(L,Q). The prover sends (a, b) to the verifier.

– The verifier randomly chooses an integer c ∈ Zq and sends c to the prover.
– The prover computes S = Q + cSID and sends S to the verifier.
– The verifier checks whether e(P, S) = auc and e(L, S) = bvc. If both the

equations hold, returns “accept”; else, returns “reject”.

3 Definitions

Abe and Okamoto first present the formal definition of partially blind signa-
tures. Restrictive partially blind signatures can be regarded as partially blind
signatures which also satisfies the property of restrictiveness. In the context of
partially blind signatures, the signer and user are assumed to agree on a piece of
information, denoted by info . In real applications, info may be decided by the



5

negotiation between the signer and user. For the sake of simplicity, we omit the
negotiation throughout this paper. In the following, we follow this definitions
of [3, 15, 6, 13] to give a formal definition of ID-based restrictive partially blind
signatures.

Definition 1. (ID-based Restrictive Partially Blind Signatures) A restrictive
partially blind signature scheme is a four-tuple (PG,KG,SG,SV).

– System Parameters Generation PG: On input a security parameter k,
outputs the common system parameters Params.

– Key Generation KG: On input Params and an identity information ID,
outputs the private key sk = SID.

– Signature Generation SG: Let U and S be two probabilistic interactive
Turing machines and each of them has a public input tape, a private random
tape, a private work tape, a private output tape, a public output tape, and
input and output communication tapes. The random tape and the input tapes
are read-only, and the output tapes are write-only. The private work tape is
read-write. Suppose info is agreed common information between U and S.
The public input tape of U contains ID and info. The public input tape
of S contains info. The private input tape of S contains sk, and that for
U contains a message m which he knows a representation with respect to
some bases in Params. The lengths of info and m are polynomial to k. U
and S engage in the signature issuing protocol and stop in polynomial-time.
When they stop, the public output of S contains either completed or not-
completed. If it is completed, the private output tape of U contains either ⊥
or (info,m, σ).

– Signature Verification SV: On input (ID, info,m, σ) and outputs either
accept or reject.

Definition 2. (Completeness) If S and U follow the signature issuing protocol,
the signature scheme is complete if, for every constant c > 0, there exists a bound
k0 such that S outputs completed and info on its proper tapes, and U outputs
(info,m, σ) that satisfies

SV(info,m, σ) = accept

with probability at least 1 − 1/kc for k > k0. The probability is taken over the
coin flips of KG, S and U .

We say a message-signature tuple (info ,m, σ) is valid with regard to ID if
it lead to SV to accept.

Definition 3. (Restrictiveness) Let m be a message such that the user U knows
a representation (a1, · · · , ak) of m with respect to a generator-tuple (g1, · · · , gk)
at the start of a blind signature issuing protocol. Let (b1, · · · , bk) be the repre-
sentation U knows of the blinded number m′ of m after the protocol finished. If
there exist two function I1 and I2 such that

I1(a1, · · · , ak) = I2(b1, · · · , bk)
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regardless of m and the blinding transformation applied by U , then the protocol
is called a restrictive blind signature protocol. The function I1 and I2 are called
blinding-invariant functions of the protocol with respect to (g1, · · · , gk).

Definition 4. (Partial Blindness) Let U0 and U1 be two honest users that follow
the signature issuing protocol.

1. sk = SID ← KG(Params, ID).
2. (m0,m1, info0, info1) ← S∗(1k, ID, sk).
3. Set up the input tapes of U0 and U1 as follows:

– Select b ∈R {0, 1} and put mb and m1−b on the private input tapes of U0

and U1, respectively.
– Put info0 and info1 on the public input tapes of U0 and U1, respectively.

Also put ID on their public input tapes.
– Randomly select the contents of the private random tapes.

4. S∗ engages in the signature issuing protocol with U0 and U1.
5. Let U0 and U1 output (info0,mb, σb) and (info0,m1−b, σ1−b), respectively,

on their private tapes. If info0 6= info1, then gives ⊥ to S∗. If info0 =
info1, then provides S∗ with the additional inputs (σb, σ1−b) ordered accord-
ing to the corresponding messages (mb,m1−b).

6. S∗ outputs b′ ∈ {0, 1}. We say that S∗ wins if b′ = b.

A signature scheme is partially blind if, for every constant c > 0, there exists a
bound k0 such that for all probabilistic polynomial-time algorithm S∗, S∗ outputs
b′ = b with probability at most 1/2 + 1/kc for k > k0. The probability is taken
over the flips of KG, U0, U1, and S∗.

Definition 5. (Unforgeability) Suppose the adversary A can perform a polyno-
mial bounded number of the following types of queries (including the hash queries
and signing queries) in an adaptively manner during the signature issuing pro-
tocol.

1. sk = SID ← KG(Params, ID).
2. For each info, A chooses a message m and an identity ID, the challenger
C issues a signature σ and send it to A.

3. A outputs a tuple (ID, info,m, σ), where (ID,m, info) is never queried
before. We say the adversary A wins the game if σ is a valid signature for
m and info.

A partially blind signature scheme is existential unforgeable against adaptively
chosen message and ID attacks if no probabilistic polynomial-time adversary can
win the above game with a non-negligible advantage.

4 Building Blocks

In this section, we describe two building blocks of ID-based restrictive partially
blind signatures. Firstly, we propose an ID-based restrictive blind signature
scheme from bilinear pairings. We then introduce the ID-based partially blind
signature scheme proposed by Chow et al.
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4.1 ID-based Restrictive Blind Signature Scheme

Brand’s restrictive blind signature scheme is mainly based on Chaum-Pedersen’s
knowledge proof of common exponent [12]. Maitland and Boyd [16] presented the
following general construction based on Brand’s original scheme. In this paper,
we first propose ID-based restrictive blind signature scheme by using the ID-
based knowledge proof for the equality of two discrete logarithm from bilinear
pairings.

– PKG chooses a random number s ∈ Z∗q as the master-key and set Ppub = sP.
The system parameters are params = {G1, G2, e, q, P, Ppub,H, H1}.

– The signer submits his/her identity information ID to PKG. PKG computes
QID = H(ID), and returns SID = sQID to the user as his/her private key.
For the sake of simplicity, define g = e(P, QID), y = e(Ppub, QID).

– Suppose the signed message be M ∈ G1.1 The signer generates a random
number Q ∈R G1, and sends z = e(M, SID), a = e(P, Q), and b = e(M, Q)
to the receiver.

– The receiver generates random numbers α, β, u, v ∈R Zq and computes

M ′ = αM + βP, A = e(M ′, QID), z′ = zαyβ , a′ = augv, b′ = auβbuαAv.

The receiver then computes c′ = H1(A, z′, a′, b′) and sends c = c′/u mod q
to the signer.

– The signer responds with S = Q + cSID.
– The receiver accepts if and only if e(P, S) = ayc, e(M, S) = bzc. If the

receiver accepts, computes S′ = uS + vQID.

(z′, c′, S′) is a valid signature on M ′ if the following equation holds:

c′ = H1(e(M ′, QID), z′, e(P, S′)y−c′ , e(M ′, S′)z′−c′).

This is because

A = e(M ′, QID)
e(P, S′) = e(P, uS + vQID) = e(P, S)ue(P, QID)v

= (ayc)ugv = augvycu

= a′yc′

e(M ′, S′) = e(M ′, uS + vQID) = e(M ′, S)ue(M ′, QID)v

= e(αM + βP, S)uAv = (bzc)uα(ayc)uβAv

= auβbuα(zαyβ)c′Av

= b′z′c
′

Thus, the receiver obtains a signature on the message M ′ where M ′ = αM +βP
and (α, β) are values chosen by the receiver. In addition, in the particular case
1 In applications, if the signed message m is not an element of G1, we can use a

cryptographic secure hash function to map m into an element M of G1.
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where β = 0, the above signature scheme achieves the restrictiveness [16]. For
designing a electronic cash system, the system parameters consist of another
two random generators P1 and P2. A user chooses a random number u as his
identification information and computes M = uP1 + P2. He then with the bank
performs the signature issuing protocol to obtain a coin. When spending the
coin at a shop, the user must provide a proof that he knows a representation of
M ′ with respect to P1 and P2. This restricts M ′ must be the form of αM . For
more details, refer to [6].

4.2 ID-based Partially Blind Signature Scheme

Chow et al first presented the following ID-based partially blind signature scheme
[13]. Suppose the signed message is m and the agreed common information is ∆.

– PKG chooses a random number s ∈ Z∗q as the master-key and set Ppub = sP.
The system parameters are params = {G1, G2, e, q, P, Ppub,H, H2}.

– The signer submits his/her identity information ID to PKG. PKG computes
QID = H(ID), and returns SID = sQID to the user as his/her private key.

– The signer randomly chooses r ∈R Z∗q , and sends U = rP, Y = rQID to the
receiver.

– The receiver generates random numbers α, β, γ ∈R Z∗q and computes

Y ′ = αY + αβQID − γH(∆), U ′ = αU + γPpub, h = α−1H2(m,Y ′) + β.

The receiver then sends h to the signer.
– The signer responds with S = (r + h)SID + rH(∆).
– The receiver computes S′ = αS.

The resulting signature for the message m and the agreed information ∆ is
(Y ′, U ′, S′) if e(S′, P ) = e(Y ′ + H2(m,Y ′)QID, Ppub)e(H(∆), U ′) holds.

For the correctness and security analysis of the scheme, refer to [13].

5 ID-based Restrictive Partially Blind Signatures

5.1 ID-based Restrictive Partially Blind Signature Scheme

– System Parameters Generation PG: Given a security parameter k. The
system parameters are Params = {G1, G2, e, q, Ppub, k,H, H3}.

– Key Generation KG: On input Params and the signer’s identity informa-
tion ID, outputs the private key SID = sQID = sH(ID) of the signer.

– Signature Generation SG: Let the shared information info = ∆, and a
message M from the receiver. Define g = e(P, QID), y = e(Ppub, QID). The
signature issuing protocol is shown in Fig. 1.
• The signer randomly chooses an element Q ∈R G1, and computes z =

e(M, SID), a = e(P, Q), and b = e(M, Q). He also randomly chooses a
number r ∈R Z∗q , and computes U = rP , and Y = rQID. He then sends
(z, a, b, U, Y ) to the receiver.
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• The receiver generates random numbers α, β, u, v, λ, µ, δ ∈R Zq, and
computes M ′ = αM + βP ,A = e(M ′, QID), z′ = zαyβ , a′ = augv,
b′ = auβbuαAv, Y ′ = λY + λµQID − γH(∆), U ′ = λU + γPpub, h =
λ−1H3(M ′, Y ′, U ′, A, z′, a′, b′) + µ, and c′ = hu. He then sends h to the
receiver.

• The signer responds with S1 = Q + hSID, S2 = (r + h)SID + rH(∆).
• If the equations e(P, S1) = ayc and e(M, S1) = bzc hold, the receiver

computes S′1 = uS1 + vQID, and S′2 = αS2.
The resulting signature for ∆ and message M ′ is a tuple (Y ′, U ′, z′, c′, S′1, S

′
2).

– Signature Verification SV: Given the message M ′, the shared information
∆ and the tuple (Y ′, U ′, z′, c′, S′1, S

′
2), the verifier computes A = e(M ′, QID),

a′ = e(P, S′1)y
−c′ , and b′ = e(M ′, S′1)z

′−c′ . He accepts the signature if the
following equation holds:

e(S′2, P ) = e(Y ′ + H3(M ′, Y ′, U ′, A, z′, a′, b′)QID, Ppub)e(H(∆), U ′).

5.2 Security Analysis

Theorem 1. The proposed scheme achieves the property of completeness.

Proof. Note that

e(P, S′1) = e(P, S1)ue(P, QID)v = (ayh)ugv = a′yc′

e(M ′, S′1) = e(M ′, S1)ue(M ′, QID)v = e(αM + βP, S1)uAv = b′z′c
′

and

e(S′2, P ) = e(λS2, P )
= e((λr + λh)SID + λrH(∆), P )
= e((λr + H3(M ′, Y ′, U ′, A, z′, a′, b′) + λµ)SID, P )e(H(∆), λrP )
= e((λr + H3(M ′, Y ′, U ′, A, z′, a′, b′) + λµ)QID, Ppub)e(H(∆), U ′ − γPpub)
= e((λr + H3(M ′, Y ′, U ′, A, z′, a′, b′) + λµ)QID − γH(∆), Ppub)e(H(∆), U ′)
= e(Y ′ + H3(M ′, Y ′, U ′, A, z′, a′, b′)QID, Ppub)e(H(∆), U ′)
= e(Y ′ + H3(M ′, Y ′, U ′, A, z′, a′, b′)QID, Ppub)e(H(∆), U ′)

Thus, the proposed scheme achieves the property of completeness.

Theorem 2. The proposed scheme achieves the property of restrictiveness.

Proof. Similar to [6, 16], the restrictiveness nature of the scheme can be captured
by the following assumption: The recipient obtains a signature on a message
that can only be the form M ′ = αM + βP with α and β randomly chosen by
the recipient. In addition, in the particular case where β = 0, if there exists a
representation (µ1, µ2) of M with respect to bases P1 and P2 such that M =
µ1P1 + µ2P2 and if there exists a representation (µ′1, µ

′
2) of M ′ with respect to

g1 and g2 such that M ′ = µ′1P1 + µ′2P2, then the relation I1(µ1, µ2) = µ1/µ2 =
µ′1/µ′2 = I2(µ′1, µ

′
2) holds.
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Signer Receiver
∆ -¾

¾ MQ ∈R G1

Compute

z = e(M, SID)

a = e(P, Q)

b = e(M, Q)

r ∈R Z∗q

Compute

U = rP

Y = rQID z, a, b, U, Y - α, β, u, v ∈R Zq

Compute

M ′ = αM + βP

A = e(M ′, QID)

z′ = zαyβ

a′ = augv

b′ = auβbuαAv

λ, µ, γ ∈R Zq

Compute

Y ′ = λY + λµQID − γH(∆)

U ′ = λU + γPpub

h = λ−1H3(M
′, Y ′, U ′, A, z′, a′, b′) + µ

c′ = hu¾ hCompute

S1 = Q + hSID

S2 = (r + h)SID + rH(∆)

S1, S2 - Check

e(P, S1)
?
= ayh

e(M, S1)
?
= bzh

Compute

S′1 = uS1 + vQID

S′2 = λS2

Fig. 1. ID-based Restrictive Partially Blind Signature Scheme
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Theorem 3. The proposed scheme is partially blind.

Proof. Suppose S∗ is given ⊥ in step 5 of the game in definition 4, S∗ determines
b with a probability 1/2 (the same probability as randomly guessing b).

If in step 5, the shared information ∆0 = ∆1. Let (Y ′, U ′, z′, c′, S′1, S
′
2,M

′) be
one of the signatures subsequently given to S∗. Let (Y, U, z, a, b, h, S1, S2,M) be
data appearing in the view of S∗ during one of the executions of the signature
issuing protocol at step 4. It is sufficient to show that there exists a tuple of
random blinding factors (α, β, u, v, λ, µ, γ) that maps (Y, U, z, a, b, h, S1, S2,M)
to (Y ′, U ′, z′, c′, S′1, S

′
2,M

′).
Let S′2 = λS2, U ′ = λU +γPpub and Y ′ = λY +λµQID−γH(∆). The unique

blinding factors (λ, µ, γ) are always exist.2

Let u = c′/h, we know there exists a unique blinding factor v which satisfies
the equation S′1 = uS1 + vQID. Determine a representation M ′ = αM + βP ,
which is known to exist. Note that z′ = As and z = e(M, QID)s have been
established by the interactive proof and the fact that the signature is valid.
Therefore, z′ = e(M ′, QID)s = zαyβ . Since e(P, S1) = ayh and e(M, S1) = bzh,
we have a′ = e(P, S′1)y

−c′ = augv and b′ = e(M ′, S′1)(z
′)−c′ = auβbuαAv.

Thus, the blinding factors always exist which lead to the same relation de-
fined in the signature issuing protocol. Therefore, even an infinitely powerful S∗

succeeds in determining b with probability 1/2.

Theorem 4. The proposed scheme is secure against on the existential adap-
tively chosen message and ID attacks under the assumption of CDHP in G1 is
intractable and the random oracle.

Proof. The proof follows the security argument given by Chow et al [13].

6 Conclusions

Restrictive partially blind signatures incorporate the advantages of restrictive
blind signatures and partially blind signatures, which play an important role
in electronic commerce. In this paper we first propose an ID-based restrictive
partially blind signature scheme from bilinear pairings. Furthermore, we give a
formal proof of security for the proposed schemes in the random oracle.
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