Identity-Based Encryption Schemes with Tight Security Reductions

Nuttapong Attrapadung* Jun Furukawa* ${ }^{* \dagger}$ Takeshi Gomi* Goichiro Hanaoka ${ }^{\ddagger}$
Hideki Imai* ${ }^{\ddagger}$ Rui Zhang*

*Institute of Industrial Science, University of Tokyo.
\{nuts,takego, zhang\}@imailab.iis.u-tokyo.ac.jp
imai@iis.u-tokyo.ac.jp
${ }^{\dagger} \mathrm{NEC}$ Corporation.
j-furukawa@ay.jp.nec.com
${ }^{\ddagger}$ Research Center for Information Security, National Institute of Advanced Industrial Science and Technology.
hanaoka-goichiro@aist.go.jp

Abstract

We present three variants of the Boneh-Franklin identity-based encryption scheme so as to have tight security reductions in the full security notion (to be precise, in the sense of IND-ID-CCA) in the random oracle model based on the technique suggested by Katz and Wang. The first one is based on the Gap Bilinear Diffie-Hellman (Gap BDH) assumption. The other two are based on the Decision BDH assumption, one of which has more compact ciphertext size while the other enjoys a publicly verifiability of ciphertexts.

1 Introduction

Identity Based Encryption (IBE) provides a public key encryption mechanism where an arbitrary string, such as recipient's identity, can be served as a public key. The ability to use identities as public keys avoids the need to distribute public key certificates. Such a scheme is largely motivated by many applications such as to encrypt emails using recipient's email address.

Although the concept of identity based encryption was proposed two decades ago [16], it is only recently that the first fully functional schemes were proposed. Boneh and Franklin [5, 6] defined a security model namely IND-ID-CCA ${ }^{1}$ and gave the first efficient construction provably secure in the random oracle model based on the Bilinear Diffie-Hellman (BDH) problem. Since then, there have been schemes shown to be secure without random oracles, but in a weaker model of security known as "Selective-ID" model [7, 2]. Such schemes in this weaker model are known to be secure also in the sense of IND-ID-CCA, but the proofs use an inefficient security reduction [3], which degrades reduction costs by a factor of the size of identities' space, which is indeed not polynomial in the security parameter. Boneh and Boyen [4] subsequently proposed the first scheme which is provably secure in the sense of IND-ID-CCA with a polynomial time reduction in the absence of random oracles, which was then simplified and improved by Waters [18].

However, for each of the above schemes, its security as in the sense of IND-ID-CCA is reduced only loosely to its underlying intractability assumption. An inefficient security reduction would imply either the lower security level or the requirement of larger key size to obtain the same security level.

[^0]It has been an open problem (as already posed in $[18,12]$) whether efficient IBE systems can exist with their security in the sense of IND-ID-CCA being reduced tightly (i.e., the reduction cost being only a constant term) to some reasonable intractability assumption. In the standard model, this is still an open problem. On the other hand, in the random oracle model, it has been partially solved by Katz and Wang [13].

Katz and Wang [13] suggested an elegant technique for constructing a variant of Boneh-Franklin which is secure in the sense of IND-ID-CPA with tight security reduction. Although they did not go into details since this issue was not the main focus of their paper, it is straightforward to prove its chosen-plaintext security (CPA).

However, to achieve CCA security, one might attempt to apply some CCA conversion with tight security reduction to the scheme modified by Katz and Wang so that we could have an overall IBE scheme tightly secure in the CCA sense. We explain in the following why this straightforward combination is essentially insufficient. To this end, the problem motivates us to find a proper modification so as to obtain CCA security while seamlessly integrate with Katz-Wang technique. In this paper, we present three such variants. To the best of our knowledge, these thus give the first explicit CCA-secure IBE schemes with tight security reduction.

1.1 Some Attempts

We now point out why the straightforward combination as described above does not work. The technique from [13] requires to modify the full Boneh-Franklin scheme (but now converted from the basic scheme by some CCA-conversion with tight reduction) so that for any ID there are two "public keys" $H(\mathrm{ID} \| 0)$ and $H(\mathrm{ID} \| 1)$; furthermore, to encrypt a message to user ID, a sender now encrypts the message with respect to both of these public keys. The private key generator (PKG), however, gives to ID only one of the corresponding keys, say the key corresponding to $H\left(\mathrm{ID} \| b_{\mathrm{ID}}\right)$, where b_{ID} is a secret fixed bit corresponding to ID and is maintained by the PKG. Note that a single key is sufficient to enable decryption. Following the proof technique in [13], a simulation can be set up so that the simulator knows exactly one secret key for every ID , in particular $H\left(\mathrm{ID} \| b_{\mathrm{ID}}\right)$. This enables the simulator to simulate the key exposure oracle for all queries while ensuring that encryption to any non-exposed ID remains secret. Let ID* be the challenge identity. Up to some point, in order to gather some information about the challenge ciphertext the adversary will essentially come up with a random oracle query related to the encryption corresponding to either $H\left(\mathrm{ID}^{*} \| b_{\mathrm{ID}}\right)$ or $H\left(\mathrm{ID}{ }^{*} \| \bar{b}_{\mathrm{ID}}{ }^{*}\right)$, in which the simulator embeds the underlying problem instance in the latter. Therefore, without knowing $b_{\mathrm{ID}^{*}}$, the adversary will ask the latter query with probability $\frac{1}{2}$, and the simulator can solve the underlying problem instance with the reduction cost $\frac{1}{2}$. The proof relies essentially on the fact that b_{ID} is perfectly hiding.

However, the following simple adversary A in the chosen-ciphertext attack scenario can cause the above simulator S, who uses A as a subroutine and tries to break the underlying assumption, to always fail. A will query the decryption oracle for $E n c_{H\left(\mathrm{ID}^{*} \| 0\right)}\left(m_{0}\right) \| E n c_{H\left(\mathrm{ID}^{*} \| 1\right)}\left(m_{1}\right)$ for some $m_{0} \neq m_{1}$. If the oracle returns m_{0}, A knows that $b_{\mathrm{ID}}{ }^{*}=0$, otherwise $b_{\mathrm{ID}}{ }^{*}=1$. (Since S has only the key corresponding to $\left.H\left(\mathrm{ID}^{*} \| b_{\mathrm{ID}}{ }^{*}\right)\right)$. Now A will just ask the random oracle query related to the encryption corresponding to $H\left(\mathrm{ID}^{*} \| b_{\mathrm{ID}}{ }^{*}\right)$ (and never to that of $H\left(\mathrm{ID}^{*} \| \bar{b}_{\mathrm{ID}}{ }^{*}\right)$, the one with the underlying problem instance embedded), resulting in the failure of S.

Even worse, the following adversary C can successfully attack in the real chosen-ciphertext game. Similar to the adversary A, C will be able to distinguish b_{ID}^{*}. Then she submits m_{0}^{*}, m_{1}^{*}, ID* to the challenge encryption oracle and gets back $C_{0}^{*}\left\|C_{1}^{*}=E n c_{H\left(\mathrm{ID}^{*} \| 0\right)}\left(m_{\beta}\right)\right\| E n c_{H\left(\mathrm{ID}^{*} \| 1\right)}\left(m_{\beta}\right)$ and will try to guess β. Knowing $b_{I \mathrm{D}^{*}}$, she now asks the decryption oracle for the ciphertext $C_{0}^{*} \| E n c_{H\left(\operatorname{ID}{ }^{*} \| 1\right)}\left(m^{\prime}\right)$ if $b_{\mathrm{ID}}^{*}=0$ and $E n c_{H\left(\mathrm{ID}^{*} \mid 0\right)}\left(m^{\prime}\right) \| C_{1}^{*}$ if $b_{\mathrm{ID}}^{*}=1$ for some $m^{\prime} \neq m_{0}^{*}$, m_{1}^{*}. Clearly, this is a legitimate query since neither is equal to $C_{0}^{*} \| C_{1}^{*}$. She will get m_{β} which means that she successfully attacks the scheme.

We now conclude the above discussion. On one hand, the technique of double encryption in which

Scheme	Security				Size Efficiency		
	Basic: IND- $\times \quad$ Assume	-X-ID-CPA Reduction	Full: IND-ID-CCA Conversion Overall Reduc	Model	Pub	Priv	Cipher
BF01 [5]	Adpt CBDH	$O\left(\frac{1}{q_{e x t} \cdot q_{H_{1}}}\right)$	FO99 [11] $O\left(\frac{1}{q_{e x t} \cdot q_{H_{1}} \cdot q_{H_{2}}}\right)$	RO	$O(1)$	$O(1)$	$O(1)$
CHK03 [7]	Sel DBDH	1	CHK04 [8] $\frac{1}{n}$	ST	$O(\log n)$	$O(\log n)$	$O(\log n)$
BB04(E1) [2]	Sel DBDH	1	CHK04 [8] $\frac{1}{n}$	ST	$O(1)$	$O(1)$	$O(1)$
BB04(E2) [2]	Sel DBDH-inv	1	- -	ST	$O(1)$	$O(1)$	$O(1)$
BB04(C) [4]	Adpt DBDH	$O\left(\frac{1}{q_{e x t}^{2}}\right)$	CHK04 [8] $O\left(\frac{1}{q_{e x t}^{2}}\right)$	ST	$O\left(\log ^{2} n\right)$	$O\left(\log ^{2} n\right)$	$O\left(\log ^{2} n\right)$
W05 [18]	Adpt DBDH	$O\left(\frac{1}{q_{e x t} \log n}\right)$	CHK04 [8] $O\left(\frac{1}{q_{e x t} \log n}\right)$	ST	$O(\log n)$	$O(1)$	$O(1)$
Ours 1	Adpt GBDH	\rightarrow	$O(1)$	RO	$O(1)$	$O(1)$	$O(1)$
Ours 2,3	Adpt DBDH	\rightarrow	$O(1)$	RO	$O(1)$	$O(1)$	$O(1)$

n : the size of identities' space; $q_{e x t}, q_{H}$: the no. of queries to the extraction oracle and random oracle H respectively. RO is for random oracle; ST is for the standard model; Adapt is for the adaptive-ID model; Sel is for selective-ID model. CBDH, DBDH, GBDH are computational, decisional, gap BDH assumptions respectively.

Table 1: Comparison among existing schemes and our schemes.
exactly one key for each ID is known by the simulator enables the simulation of the key exposure oracle and results in tight security reduction. On the other hand, this very technique itself also allows the CCA adversary to know about $b_{\mathrm{ID}}{ }^{*}$ and then to successfully break the scheme. This contradictory implication of straightforward application of the Katz-Wang technique suggests that more sophisticated techniques are needed.

1.2 Our Contributions

In this paper, we present the first three efficient variants of the Boneh-Franklin IBE schemes with tight security reductions in the random oracle model. We modify the double encryption technique by seamlessly integrating with new "special-purpose" CCA conversions which also overcome the weakness of Katz-Wang technique in the CCA setting. Put in other words, we construct three schemes achieving CCA security from scratch, without using any existing conversions. Our first construction is based on the Gap BDH assumption. The other two are based on the Decision BDH assumption, one of which has more compact ciphertext size while the other has a publicly verifiability of ciphertexts. All of our schemes are efficient and are the first in the literature that simultaneously achieve public parameter size, private key size, ciphertext size and reduction cost as being constant terms (see Table 1).

2 Preliminaries

We first review the model and the security notion of IBE scheme. Next, we review bilinear maps which is used in our proposed schemes. Then, we give a brief review of related computational assumptions. The definitions run parallel with $[5,6]$.

2.1 ID-Based Encryption: Algorithms

An IBE scheme \mathcal{E} is constructed by four efficient algorithms (Setup, Extract, Encrypt, Decrypt).
Setup: takes a security parameter k and returns params (system parameters) and master-key. The system parameters include a description of a finite message space \mathcal{M}, and a description of a
finite ciphertext space \mathcal{C}. Intuitively, the system parameters will be publicly known, while the master-key will be known only to the "Private Key Generator" (PKG).

Extract: takes as input params, master-key, and an arbitrary ID $\in\{0,1\}^{*}$, and returns a private key $s k$. Here ID is an arbitrary string that will be used as a public key, and $s k$ is the corresponding private decryption key. The Extract algorithm extracts a private key from the given public key.

Encrypt: takes as input params, ID, and $M \in \mathcal{M}$. It returns a ciphertext $C \in \mathcal{C}$.
Decrypt: takes as input params, $C \in \mathcal{C}$, and a private key $s k$. It returns $M \in \mathcal{M}$ or "reject".
These algorithms must satisfy the standard consistency constraint, namely when $s k$ is the private key generated by algorithm Extract when it is given ID as the public key, then

$$
\forall M \in \mathcal{M}: \operatorname{Decrypt}(\text { params }, C, s k)=M \quad \text { where } C=\operatorname{Encrypt}(\text { params, ID }, M)
$$

2.2 Security Notion

In [5, 6], Boneh and Franklin defined chosen ciphertext security for IBE under a chosen identity attack. In their model the adversary is allowed to collude with an adversary having other ID and access a decryption oracle.

We say that an IBE scheme \mathcal{E} is semantically secure against an adaptive chosen ciphertext attack under a chosen identity attack (IND-ID-CCA) if no polynomially bounded adversary $\mathcal{A}_{i b e}$ has a nonnegligible advantage against the challenger in the following IND-ID-CCA game:

Setup: The challenger takes a security parameter k and runs the Setup algorithm. It gives the adversary the resulting system parameters params. It keeps the master-key to itself.

Phase 1: The adversary issues several queries q_{1}, \cdots, q_{m} where query q_{i} is one of:

- Extraction query $\left\langle\mathrm{ID}_{i}\right\rangle$: The challenger responds by running algorithm Extract to generate the private key $s k_{i}$ corresponding to the public key $\left\langle\mathrm{ID}{ }_{i}\right\rangle$. It sends $s k_{i}$ to the adversary.
- Decryption query $\left\langle\mathrm{ID}_{i}, C_{i}\right\rangle$: The challenger responds by running algorithm Extract to generate the private key $s k_{i}$ corresponding to ID_{i}. It then runs algorithm Decrypt to decrypt the ciphertext C_{i} using the private key $s k_{i}$. It sends the result to the adversary.

These queries may be asked adaptively, that is, each query q_{i} may depend on the replies to q_{1}, \cdots, q_{i-1}.

Challenge: Once the adversary decides that Phase 1 is over it outputs two equal length plaintexts $M_{0}, M_{1} \in \mathcal{M}$ and an identity ID^{*} on which it wishes to be challenged. The only constraint is that ID* did not appear in any Extraction query in Phase 1.
The challenger picks a random bit $\beta \in\{0,1\}$ and sets $C^{*}=\operatorname{Encrypt}\left(\operatorname{Params}, \mathrm{ID}^{*}, M_{\beta}\right)$. It sends C^{*} as the challenge to the adversary.

Phase 2: The adversary issues more queries $q_{m+1}, \cdots, q_{\max }$ where each query is one of:

- Extraction query $\left\langle\mathrm{ID}_{i}\right\rangle$ where $\mathrm{ID}_{i} \neq \mathrm{ID}$ *: Challenger responds as in Phase 1.
- Decryption query $\left\langle\mathrm{ID}_{i}, C_{i}\right\rangle \neq\left\langle\mathrm{ID}^{*}, C^{*}\right\rangle$: Challenger responds as in Phase 1.

These queries may be asked adaptively as in Phase 1.
Guess: Finally, the adversary outputs a guess $\beta^{\prime} \in\{0,1\}$ and wins the game if $\beta=\beta^{\prime}$.

We refer to such an adversary $\mathcal{A}_{i b e}$ as an IND-ID-CCA adversary. We define adversary $\mathcal{A}_{\text {ibe }}$'s advantage in attacking the scheme \mathcal{E} as:

$$
A d v_{\mathcal{E}, \mathcal{A}_{i b e}}=\operatorname{Pr}\left[\beta=\beta^{\prime}\right]-1 / 2
$$

The provability is over the random bits used by the challenger and the adversary.
Definition 1. We say that the IBE system \mathcal{E} is $\left(t_{i b e}, \epsilon_{i b e}\right)$-adaptive chosen ciphertext secure under a chosen identity attack if for any $t_{i b e}$-time IND-ID-CCA adversary $\mathcal{A}_{i b e}$, we have $A d v_{\mathcal{E}, \mathcal{A}_{i b e}}<\epsilon_{i b e}$. As shorthand, we say that \mathcal{E} is IND-ID-CCA secure.

2.3 Bilinear Maps

We briefly review several facts about bilinear maps. Throughout this paper, we let \mathbb{G}_{1} and \mathbb{G}_{2} be two multiplicative cyclic groups of prime order q and g be a generator of \mathbb{G}_{1}. A bilinear map $e: \mathbb{G}_{1} \times \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$ satisfies the following properties:

1. bilinearity: For all $u, v \in \mathbb{G}_{1}$ and $a, b \in \mathbb{Z}, e\left(u^{a}, v^{b}\right)=e(u, v)^{a b}$.
2. non-degeneracy: $e(g, g) \neq 1$.
3. computability: There is an efficient algorithm to compute $e(u, v)$ for any $u, v \in \mathbb{G}_{1}$.

Note that a bilinear map is symmetric since $e\left(g^{a}, g^{b}\right)=e\left(g^{b}, g^{a}\right)=e(g, g)^{a b}$.

2.4 Complexity Assumptions

Here, we review three complexity assumptions related to bilinear maps: the Computational Bilinear Diffie-Hellman (CBDH) assumption, the Decision Bilinear Diffie-Hellman (DBDH) assumption, and the Gap Bilinear Diffie-Hellman (GBDH) assumption. Here, we let \mathbb{G}_{1} and \mathbb{G}_{2} be two groups of order q and g be a generator of \mathbb{G}_{1}.

CBDH Assumption. The CBDH problem [5] in \mathbb{G}_{1} is as follows: given a tuple $\left(g, g^{a}, g^{b}, g^{c}\right) \in\left(\mathbb{G}_{1}\right)^{4}$ as input, output $e(g, g)^{a b c} \in \mathbb{G}_{2}$. An algorithm $\mathcal{A}_{c b d h}$ solves CBDH problem in \mathbb{G}_{1} with the probability $\epsilon_{c b d h}$ if

$$
\operatorname{Pr}\left[\mathcal{A}_{c b d h}\left(g, g^{a}, g^{b}, g^{c}\right)=e(g, g)^{a b c}\right] \geq \epsilon_{c b d h},
$$

where the probability is over the random choice of generator $g \in \mathbb{G}_{1}^{*}$, the random choice of $a, b, c \in \mathbb{Z}_{q}$, and random coins consumed by $\mathcal{A}_{c b d h}$.

Definition 2. We say that the $\left(t_{c b d h}, \epsilon_{c b d h}\right)$-CBDH assumption holds in \mathbb{G}_{1} if no $t_{c b d h}$-time algorithm has advantage at least $\epsilon_{c b d h}$ in solving the CBDH problem in \mathbb{G}_{1}.

DBDH Assumption. The DBDH problem in \mathbb{G}_{1} is defined as follows: given a tuple $\left(g, g^{a}, g^{b}, g^{c}, T\right) \in$ $\left(\mathbb{G}_{1}\right)^{4} \times \mathbb{G}_{2}$ as input, outputs a bit $b \in\{0,1\}$. An algorithm $\mathcal{A}_{\text {dbdh }}$ solves DBDH problem in \mathbb{G}_{1} with advantage $\epsilon_{d b d h}$ if

$$
\left|\operatorname{Pr}\left[\mathcal{A}_{d b d h}\left(g, g^{a}, g^{b}, g^{c}, e(g, g)^{a b c}\right)=0\right]-\operatorname{Pr}\left[\mathcal{A}_{d b d h}\left(g, g^{a}, g^{b}, g^{c}, T\right)=0\right]\right| \geq \epsilon_{d b d h},
$$

where the probability is over the random choice of generator $g \in \mathbb{G}_{1}^{*}$, the random choice of $a, b, c \in \mathbb{Z}_{q}$, the random choice of T in \mathbb{G}_{2}, and the random coins consumed by $\mathcal{A}_{d b d h}$.

Definition 3. We say that the $\left(t_{d b d h}, \epsilon_{d b d h}\right)$-DBDH assumption holds in \mathbb{G}_{1} if no $t_{d b d h}$-time algorithm has advantage at least $\epsilon_{d b d h}$ in solving the DBDH problem in \mathbb{G}_{1}.

GBDH Assumption. The GBDH problem in \mathbb{G}_{1} is as follows: given a tuple $\left(g, g^{a}, g^{b}, g^{c}\right) \in\left(\mathbb{G}_{1}\right)^{4}$ as input, output $e(g, g)^{a b c} \in \mathbb{G}_{2}$ with the help of a DBDH oracle \mathcal{O} which for given $\left(g, g^{a}, g^{b}, g^{c}, T\right) \in$ $\left(\mathbb{G}_{1}\right)^{4} \times \mathbb{G}_{2}$, answers "true" if $T=e(g, g)^{a b c}$ or "false" otherwise [15]. An algorithm $\mathcal{A}_{g b d h}$ solves GBDH problem in \mathbb{G}_{1} with the probability $\epsilon_{g b d h}$ if

$$
\operatorname{Pr}\left[\mathcal{A}_{g b d h}^{\mathcal{O}}\left(g, g^{a}, g^{b}, g^{c}\right)=e(g, g)^{a b c}\right] \geq \epsilon_{g b d h}
$$

where the probability is over the random choice of generator $g \in \mathbb{G}_{1}^{*}$, the random choice of $a, b, c \in \mathbb{Z}_{q}$, and random coins consumed by $\mathcal{A}_{g b d h}$.
Definition 4. We say that the $\left(t_{g b d h}, \epsilon_{g b d h}\right)$-GBDH assumption holds in \mathbb{G}_{1} if no $t_{g b d h}$-time algorithm has advantage at least $\epsilon_{g b d h}$ in solving the GBDH problem in \mathbb{G}_{1}.

3 Secure IBE Construction Based on the GBDH Assumption

In this section, we present an IBE scheme TightIBE1 whose IND-ID-CCA security can be reduced tightly to the difficulty of the GBDH problem in the random oracle model. Intuitively, the sender will doubly encrypt the message M using the Boneh-Franklin scheme to the identities $H\left(\right.$ ID $\left.\| b_{\mathrm{ID}}\right)$ and $H\left(\mathrm{ID} \| \bar{b}_{\mathrm{ID}}\right)$ in such a way that the receiver who has only one out of the two keys, say for the identity $H\left(\mathrm{ID} \| b_{\mathrm{ID}}\right)$, can decrypt both encryptions so that she can check the consistencies of the messages (and in particular, this overcomes the weakness of the straightforward application of Katz-Wang technique as described in Section 1.1). This sounds paradoxical in the first place since she does not know the other key, i.e., that of the identity $H\left(\mathrm{ID} \| \bar{b}_{\mathrm{ID}}\right)$. However we can manage to do this by encrypting also the "randomness" used in the other encryption simultaneously.

3.1 Construction: TightIBE1

Let \mathbb{G}_{1} and \mathbb{G}_{2} be two groups of order q (whose size is k) and g be a generator of \mathbb{G}_{1}. Let $e: \mathbb{G}_{1} \times \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$ be a bilinear map. Let G, H, \hat{H} be cryptographic hash functions $G: \mathbb{G}_{2} \rightarrow\{0,1\}^{n+k}$ for some n, $H:\{0,1\}^{*} \rightarrow \mathbb{G}_{1}, \hat{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{k_{1}}$ for some k_{1} respectively. The message space is $\mathcal{M}=\{0,1\}^{n}$. Let $a \| b$ denote the concatenation of a and b, and $a \oplus b$ denote the exclusive-OR of a and b. The TightIBE1 scheme consists of the four algorithms which are shown in Table 2.

3.2 Security

Now, we prove that the security of TightIBE1 can be tightly reduced to the GBDH assumption.
Theorem 1. Suppose $\left(t_{g b d h}, \epsilon_{g b d h}\right)-G B D H$ assumption holds in \mathbb{G}_{1}. Suppose the hash functions G, H, \hat{H} are random oracles. Then, TightIBE1 is $\left(t_{i b e}, \epsilon_{i b e}\right)$-IND-ID-CCA secure such that

$$
\begin{aligned}
\epsilon_{i b e} & \leq \epsilon_{g b d h}+\frac{q_{D}}{2^{k_{1}+1}} \\
t_{i b e} & \leq t_{g b d h}-\Theta\left(\tau\left(2 q_{H}+3 q_{E}+9 q_{D}\right)\right)
\end{aligned}
$$

as long as IND-ID-CCA adversary $\mathcal{A}_{i b e}$ makes at most $q_{H} H$-queries, q_{D} Decryption queries, and q_{E} Extraction queries. Here, τ is the maximum time among time for computing an exponentiation in $\mathbb{G}_{1}, \mathbb{G}_{2}$, and pairing e.
Proof. We show how to construct an algorithm $\mathcal{A}_{g b d h}$ that solves the GBDH problem in \mathbb{G}_{1} by using an adversary $\mathcal{A}_{i b e}$ that breaks IND-ID-CCA security of our scheme. The algorithm $\mathcal{A}_{g b d h}$ is given an instance $\left\langle g, g^{a}, g^{b}, g^{c}\right\rangle$ in \mathbb{G}_{1} from the challenger and try to output $e(g, g)^{a b c}$ using $\mathcal{A}_{i b e}$ and the DBDH oracle \mathcal{O}. Let $g_{1}=g^{a}, g_{2}=g^{b}, g_{3}=g^{c}$. The algorithm $\mathcal{A}_{g b d h}$ works by interacting with $\mathcal{A}_{i b e}$ and \mathcal{O} in an IND-ID-CCA game as follows:

TightIBE1									
```Setup (1 (1): s\leftarrow\mp@subsup{\mathbb{Z}}{q}{*};\mp@subsup{g}{pub}{}:=\mp@subsup{g}{}{s} params:=\langleq, \mathbb{G}},\mp@subsup{\mathbb{G}}{2}{},e,n,g,\mp@subsup{g}{pub}{},G,H,\hat{H} master-key:=s return (params, master-key)```	$\begin{aligned} & \text { Extract }^{\dagger}(\mathrm{ID}, \text { params, master-key }): \\ & \quad b_{\mathrm{ID}} \leftarrow\{0,1\} \\ & h_{\mathrm{ID} \\| b_{\mathrm{ID}}}:=H\left(\mathrm{ID} \\| b_{\mathrm{ID}}\right) ; \quad d_{\mathrm{ID}}:=\left(h_{\mathrm{ID} \\| b_{\mathrm{ID}}}\right)^{s} \\ & \text { sk } k_{\mathrm{ID}}:=\left(d_{\mathrm{ID}}, b_{\mathrm{ID}}\right) \\ & \text { return sk } k_{\mathrm{ID}} \end{aligned}$								
$\begin{aligned} & \hline \text { Encrypt }(\mathrm{ID}, \text { params, } M): \\ & h_{\mathrm{ID} \\| 0}:=H(\mathrm{ID} \\| 0) ; \quad h_{\mathrm{ID} \\| 1}:=H(\mathrm{ID} \\| 1) \\ & r_{0}, r_{1} \leftarrow \mathbb{Z}_{q}^{*} \\ & W_{0}:=e\left(g_{p u b}, h_{\mathrm{ID} \\| 0}\right)^{r_{0}} \\ & W_{1}:=e\left(g_{p u b}, h_{\mathrm{ID} \\| 1}\right)^{r_{1}} \\ & c_{0}:=\left\langle g^{r} r_{0}, G\left(W_{0}\right) \oplus\left(M \\| r_{1}\right)\right\rangle \\ & c_{1}:=\left\langle g^{r_{1}}, G\left(W_{1}\right) \oplus\left(M \\| r_{0}\right)\right\rangle \\ & c_{\hat{H}}:=\hat{H}\left(W_{0}, W_{1}, \mathrm{ID}, M, c_{0}, c_{1}\right) \\ & C:=\left(c_{0}, c_{1}, c_{\hat{H}}\right) \\ & \text { return } C \end{aligned}$									

${ }^{\dagger}$ Extract first checks to see if $s k_{\mathrm{ID}}$ has been generated before. If it has, the previously-generated $s k_{\mathrm{ID}}$ is output.

## Table 2: The algorithms of TightIBE1

Setup: $\mathcal{A}_{g b d h}$ picks a random $\mu \in \mathbb{Z}_{q}^{*}$. Also, $\mathcal{A}_{g b d h}$ gives $\mathcal{A}_{\text {ibe }}$ the system parameter

$$
\text { params }=\left\langle q, \mathbb{G}_{1}, \mathbb{G}_{2}, e, n, g, g_{1}, G, H, \hat{H}\right\rangle .
$$

Here, random oracles $G, H, \hat{H}$ are controlled by $\mathcal{A}_{g b d h}$ as described below.
$G$-queries: $\mathcal{A}_{i b e}$ issues up to $q_{G}$ queries to the random oracle $G$. To respond to these queries algorithm $\mathcal{A}_{g b d h}$ forms a list of tuples $\langle W, x\rangle$ as explained below. We call this list $G_{l i s t}$. The list is initially empty. When $\mathcal{A}_{\text {ibe }}$ gives $\mathcal{A}_{g b d h}$ a query $W$ to the oracle $G, \mathcal{A}_{g b d h}$ responds as follows:

1. If the query $W$ already appears on the $G_{l i s t}$ in a tuple $\langle W, x\rangle$, then outputs $G(W)=x$.
2. The algorithm $\mathcal{A}_{g b d h}$ performs the two verifications as follows:
(i) $\mathcal{A}_{\text {ibe }}$ submits $\left(g, g_{1}, g_{2}, g_{3}, W\right)$ to $\mathcal{O}$. If $\mathcal{O}$ 's answer is true, $\mathcal{A}_{g b d h}$ outputs $W$ as the solution of the given instance of GBDH problem, and aborts the simulation.
(ii) $\mathcal{A}_{g b d h}$ checks whether $W=e\left(g_{1}, g\right)^{\mu}$ or not. If it is true, then aborts the simulation.
3. $\mathcal{A}_{g b d h}$ chooses a random $x \in\{0,1\}^{n+k}$.
4. $\mathcal{A}_{g b d h}$ stores the tuple $\langle W, x\rangle$ to the $G_{\text {list }}$ and outputs $G(W)=x$.
$H$-queries: $\mathcal{A}_{\text {ibe }}$ issues up to $q_{H}$ queries to the random oracle $H$. To respond to these queries algorithm $\mathcal{A}_{g b d h}$ forms a list of tuples $\left\langle\mathrm{ID}, b_{\mathrm{ID}}, h_{\mathrm{ID} \| \bar{b}_{\mathrm{lD}}}, h_{\mathrm{ID} \| b_{1 \mathrm{D}}}, r_{\mathrm{ID},}, t_{\mathrm{ID}}\right\rangle$ as explained below. We call the list $H_{\text {list }}$. The list is initially empty. When $\mathcal{A}_{\text {ibe }}$ give $\mathcal{A}_{g b d h}$ a query (ID $\left.\| b\right)$ to the oracle $H, \mathcal{A}_{g b d h}$ responds as follows:
5. If the query ID already appears on the $H_{\text {list }}$ in a tuple $\left\langle\mathrm{ID}, b_{\mathrm{ID}}, h_{\mathrm{ID} \| \bar{b}_{\mathrm{lD}}}, h_{\mathrm{ID} \| b_{\mid \mathrm{D}}}, r_{\mathrm{ID}}, t_{\mathrm{ID}}\right\rangle$, then outputs $H(\mathrm{ID} \| b)=h_{\mathrm{ID} \| b_{\mathrm{ID}}}$ if $b=b_{\mathrm{ID}}$ and $H(\mathrm{ID} \| b)=h_{\mathrm{ID} \| \bar{b}_{\text {ID }}}$ otherwise.
6. $\mathcal{A}_{g b d h}$ picks a random bit $b_{\mathrm{ID}} \in\{0,1\}$ and chooses random $r_{\mathrm{ID}}, t_{\mathrm{ID}} \in \mathbb{Z}_{q}^{*}$.
7. $\mathcal{A}_{g b d h}$ computes $\left(h_{I \mathrm{D} \| \bar{b}_{\mathrm{ID}}}, h_{\mathrm{ID} \| b_{\mid \mathrm{II}}}\right)=\left(g_{2}^{r_{\mathrm{ID}}}, g^{t_{\mathrm{ID}}}\right)$.
8. $\mathcal{A}_{g b d h}$ stores the tuple $\left\langle\mathrm{ID}, b_{\mathrm{ID}}, h_{\mathrm{ID} \| \bar{b}_{\mathrm{lD}}}, h_{\mathrm{ID} \| b_{1 \mathrm{I}}}, r_{\mathrm{ID}}, t_{\mathrm{ID}}\right\rangle$ to the $H_{\text {list }}$ and outputs $H(\mathrm{ID} \| b)=$ $h_{\mathrm{ID} \| b_{\mathrm{ID}}}$ if $b=b_{\mathrm{ID}}$ and $H(\mathrm{ID} \| b)=h_{\mathrm{ID} \| \bar{b}_{\text {ID }}}$ otherwise.
$\hat{H}$-queries: $\mathcal{A}_{\text {ibe }}$ issues up to $q_{\hat{H}}$ queries to the random oracle $\hat{H}$. To respond to these queries algorithm $\mathcal{A}_{g b d h}$ forms a list of tuples $\left\langle W_{0}, W_{1}\right.$, ID $\left., M, c_{0}, c_{1}, \gamma\right\rangle$ as described below. We call the list $\hat{H}_{\text {list }}$ and it is initially empty. When $\mathcal{A}_{\text {ibe }}$ give $\mathcal{A}_{g b d h}$ a query ( $W_{0}, W_{1}, \mathrm{ID}, M, c_{0}, c_{1}$ ) to the oracle $\hat{H}$, algorithm $\mathcal{A}_{g b d h}$ responds as follows:
9. If the query $\left(W_{0}, W_{1}, \mathrm{ID}, M, c_{0}, c_{1}\right)$ already appears on the $\hat{H}_{l i s t}$ in a tuple $\left\langle W_{0}, W_{1}, \mathrm{ID}, M, c_{0}, c_{1}, \gamma\right\rangle$, then outputs $\hat{H}\left(W_{0}, W_{1}\right.$, ID $\left., M, c_{0}, c_{1}\right)=\gamma$.
10. The algorithm $\mathcal{A}_{g b d h}$ performs the two verifications as follows:
(i) For $W=W_{0}$ and $W_{1}, \mathcal{A}_{i b e}$ submits $\left(g, g_{1}, g_{2}, g_{3}, W\right)$ to $\mathcal{O}$. If $\mathcal{O}$ 's answer is true, $\mathcal{A}_{g b d h}$ outputs $W$ as the solution of the given instance of GBDH problem, and aborts the simulation.
(ii) For $W=W_{0}$ and $W_{1}, \mathcal{A}_{g b d h}$ checks whether $W=e\left(g_{1}, g\right)^{\mu}$ or not. If it is true, then aborts the simulation.
11. $\mathcal{A}_{\text {gbdh }}$ chooses a random $\gamma \in\{0,1\}^{k_{1}}$.
12. $\mathcal{A}_{\text {gbdh }}$ stores the tuple $\left\langle W_{0}, W_{1}\right.$, ID , $\left.M, c_{0}, c_{1}, \gamma\right\rangle$ to the $\hat{H}_{\text {list }}$ and output $\hat{H}\left(W_{0}, W_{1}\right.$, ID $\left., M, c_{0}, c_{1}\right)=$ $\gamma$.

Extraction queries: $\mathcal{A}_{i b e}$ issues up to $q_{E}$ Extraction queries. The simulator behaves same in both Phase 1 and Phase 2. When $\mathcal{A}_{\text {ibe }}$ gives a query ID, $\mathcal{A}_{g b d h}$ responds as follows:

1. $\mathcal{A}_{g b d h}$ runs the algorithm for responding to $H$-queries to obtain $b_{\mathrm{ID}}$ and $t_{\mathrm{ID}}$.
2. $\mathcal{A}_{g b d h}$ sets $s k_{\mathrm{ID}}=\left(\left(g_{1}\right)^{t_{\mathrm{ID}}}, b_{\mathrm{ID}}\right)$. Observe that $s k_{\mathrm{ID}}=\left(\left(g^{t_{\mathrm{ID}}}\right)^{a}, b_{\mathrm{ID}}\right)$ and therefore $s k_{\mathrm{ID}}$ is the private key corresponding to the ID.
3. $\mathcal{A}_{g b d h}$ outputs $s k_{\mathrm{ID}}$ to $\mathcal{A}_{i b e}$.

Decryption queries: $\mathcal{A}_{i b e}$ issues up to $q_{D}$ Decryption queries. The simulator behaves same in both Phase 1 and Phase 2. When $\mathcal{A}_{i b e}$ gives a query (ID, $C$ ), $\mathcal{A}_{g b d h}$ responds as follows:

1. $\mathcal{A}_{g b d h}$ runs the algorithm for responding to Extraction queries to obtain the private key $s k_{\mathrm{ID}}$ corresponding to the ID.
2. Using the private key $s k_{\mathrm{ID}}, \mathcal{A}_{g b d h}$ decrypts $C$.
3. $\mathcal{A}_{g b d h}$ outputs the result.

Challenge: Once algorithm $\mathcal{A}_{\text {ibe }}$ decides that Phase 1 is over, it outputs public key ID* and two messages $M_{0}, M_{1}$ on which it wishes to be challenged. Algorithm $\mathcal{A}_{g b d h}$ responds as follows:

1. $\mathcal{A}_{g b d h}$ runs the algorithm for responding to $H$-queries to obtain $r_{\mathrm{ID}}{ }^{*}$ and $t_{\mathrm{ID}^{*}}$ such that $H\left(\mathrm{ID}^{*}| |{\overline{b_{\mathrm{ID}}}}\right)=g_{2}^{r_{1 \mathrm{IO}^{*}}}$ and $H\left(\mathrm{ID} *\left|\mid b_{\mathrm{ID}^{*}}\right)=g^{t_{1 \mathrm{D}^{*}}}\right.$.
2. $\mathcal{A}_{g b d h}$ sets $\mu^{*}=\mu \cdot t_{1 \mathrm{D}^{*}}^{-1} \bmod q, \omega_{0}, \omega_{1} \in_{R}\{0,1\}^{n+k}$ and $\alpha^{*} \in_{R}\{0,1\}^{k_{1}}$.
3. $\mathcal{A}_{g b d h}$ sets $c_{\bar{b}_{1 \mathrm{D}^{*}}}^{*}, c_{b_{1 \mathrm{D}^{*}}}^{*}, c_{\hat{H}}^{*}$ as follows:

$$
\begin{aligned}
c_{\bar{b}_{\mathrm{ID}}}^{*} & =\left\langle\left(g_{3}\right)^{\left.r_{1 \mathrm{ID}^{*}}^{-1}, \omega_{0}\right\rangle} \begin{array}{c}
c_{b_{\mathrm{ID}^{*}}}^{*}
\end{array}=\left\langle g^{\mu^{*}}, \omega_{1}\right\rangle\right. \\
c_{\hat{H}}^{*} & =\alpha^{*}
\end{aligned}
$$

where $r_{\mathrm{ID}}{ }^{-1}$ is the inverse of $r_{\mathrm{ID}}{ }^{*} \bmod q$.
4. $\mathcal{A}_{g b d h}$ gives $C^{*}=\left\langle c_{0}^{*}, c_{1}^{*}, c_{\hat{H}}^{*}\right\rangle$ as the challenge ciphertext to $\mathcal{A}_{\text {ibe }}$.

Guess: When $\mathcal{A}_{\text {ibe }}$ decides that Phase 2 is over, $\mathcal{A}_{\text {ibe }}$ outputs its guess bit $\beta^{\prime} \in\{0,1\}$. At the same time, algorithm $\mathcal{A}_{g b d h}$ terminates the simulation.

Claim 1. If $\mathcal{A}_{\text {gbdh }}$ does not abort during the simulation, then algorithm $\mathcal{A}_{\text {ibe }}$ 's view is identical to its view in the real attack. Furthermore, if $\mathcal{A}_{\text {gbdh }}$ does not abort then $\operatorname{Pr}\left[\beta^{\prime}=\beta\right] \geq 1 / 2+\epsilon_{\text {ibe }}$.

Proof. It is obvious that the responses to $G, \hat{H}$ queries are perfect. The responses to $H$ are also as in the real attack since each response is uniformly and independently distributed in $\mathbb{G}_{1}^{*}$. Interestingly, the responses to Extraction and Decryption queries are perfect as well. Notice that $\mathcal{A}_{g b d h}$ can generate any user's private key including ID*'s, and furthermore, can decrypt any ciphertext for any user by using the private keys. Finally, we show that the response to Challenge is perfect if $\mathcal{A}_{g b d h}$ does not abort the simulation. Let the response to Challenge be $C^{*}=\left(\left\langle u_{0}^{*}, v_{0}^{*}\right\rangle,\left\langle u_{1}^{*}, v_{1}^{*}\right\rangle, \alpha^{*}\right)$. Then, both $u_{0}^{*}$ and $u_{1}^{*}$ are uniformly and independently distributed in $\mathbb{G}_{1}^{*}$ due to randoms $\log _{g} g_{3}$ and $\mu$, and therefore are as in the real attack. Obviously, $v_{0}^{*}, v_{1}^{*}$ and $\alpha^{*}$ are perfect. Therefore, by definition of $\mathcal{A}_{\text {ibe }}$, we have that $\operatorname{Pr}\left[\beta^{\prime}=\beta\right] \geq 1 / 2+\epsilon_{i b e}$.

Next, let us define by $E_{1}$ an event assigned to be true if and only if a $G$-query coincides with $e(g, g)^{a b c}$ and by $E_{2}$ an event assigned to be true if and only if a $G$-query coincides with $e\left(g_{1}, g\right)^{\mu}$. Similarly, let us define by $E_{3}$ an event assigned to be true if and only if a $\hat{H}$-query coincides with $\left(e(g, g)^{a b c}, *, *, *, *, *\right)$ or $\left(*, e(g, g)^{a b c}, *, *, *, *\right)$ and by $E_{4}$ an event assigned to be true if and only if a $\hat{H}$-query coincides with $\left(e\left(g_{1}, g\right)^{\mu}, *, *, *, *, *\right)$ or $\left(*, e\left(g_{1}, g\right)^{\mu}, *, *, *, *\right)$, where $*$ denotes any bit string. We also define $E=E_{1} \vee E_{2} \vee E_{3} \vee E_{4}$.

Claim 2. We have that $\operatorname{Pr}\left[\beta^{\prime}=\beta \mid \neg E\right] \leq 1 / 2+q_{D} / 2^{k_{1}+1}$.
Proof. Since $M_{\beta}$ is concealed by one-time pad, it is impossible to obtain any information of $M_{\beta}$ unless $\mathcal{A}_{i b e}$ sends a query whose response contains information of $G\left(e(g, g)^{a b c}\right)$ or $G\left(e\left(g_{1}, g\right)^{\mu}\right)$. There are only two ways to make such a query, that is, (i) submit $e(g, g)^{a b c}$ or $e\left(g_{1}, g\right)^{\mu}$ directly to $G$, or (ii) submit a Decryption query such that $\mathcal{A}_{g b d h}$ by itself has to calculate $G\left(e(g, g)^{a b c}\right)$ or $G\left(e\left(g_{1}, g\right)^{\mu}\right)$ and return a decryption result based on it.

Hence, if $E=$ false, $\mathcal{A}_{\text {ibe's }}$ best strategy for guessing $\beta$ is to observe a response to a Decryption query (ID, $\left.\left\langle\left\langle u_{0}, v_{0}\right\rangle,\left\langle u_{1}, v_{1}\right\rangle, \alpha\right\rangle\right)$ such that at least one of $e\left(h_{\mathrm{ID} \| 0}, u_{0}\right)^{a}$ and $e\left(h_{\mathrm{ID} \| 1}, u_{1}\right)^{a}$ is identical to $e(g, g)^{a b c}$ or $e\left(g_{1}, g\right)^{\mu}$ without submitting $\left(e(g, g)^{a b c}, *, *, *, *, *\right),\left(*, e(g, g)^{a b c}, *, *, *, *\right),\left(e\left(g_{1}, g\right)^{\mu}, *, *, *, *, *\right)$ nor $\left(*, e\left(g_{1}, g\right)^{\mu}, *, *, *, *\right)$ to $\hat{H}$. Then, it is clear that the response to the query will be reject with probability $1-1 / 2^{k_{1}}$ since $\mathcal{A}_{\text {ibe }}$ has to guess $\alpha$ uniformly at random from $\{0,1\}^{k_{1}}$. Obviously, reject gives no information on the plaintext. Hence, $\mathcal{A}_{i b e}$ obtains no information with probability at least $\left(1-1 / 2^{k_{1}}\right)^{q_{D}}$. Hence, we have

$$
\begin{aligned}
\operatorname{Pr}\left[\beta^{\prime}=\beta \mid \neg E\right] & \leq \frac{1}{2} \cdot\left(1-\frac{1}{2^{k_{1}}}\right)^{q_{D}}+1 \cdot\left(1-\left(1-\frac{1}{2^{k_{1}}}\right)^{q_{D}}\right) \\
& \leq \frac{1}{2}+\frac{q_{D}}{2^{k_{1}+1}}
\end{aligned}
$$

which proves the claim.

Claim 3. We have that $\operatorname{Pr}\left[E_{1} \vee E_{3}\right]=\operatorname{Pr}\left[E_{2} \vee E_{4}\right]$.
Proof. From the symmetricity, it is sufficient to prove that $\mathcal{A}_{i b e}$ can distinguish the value of $b_{\mathrm{ID}^{*}}$ with probability $1 / 2$. Now, we prove that $\mathcal{A}_{\text {ibe }}$ 's view is independent on the value of $b_{\mathrm{ID}}$ for any ID.

Since leakage of information on $b_{\mathrm{ID}}$ may occur only from responses to Decryption queries, it is sufficient to prove that there exists no ciphertext such that its decryption result may become different values according to the value of $b_{\mathrm{ID}}$. Next, we prove this by contradiction. Assume that $C=$ $\left\langle\left\langle u_{0}, v_{0}\right\rangle,\left\langle u_{1}, v_{1}\right\rangle, \alpha\right\rangle$ be a ciphertext such that $\operatorname{Decrypt}\left(\right.$ params, $\left.C, s k_{0}\right) \neq \operatorname{Decrypt}\left(\right.$ params, $\left.C, s k_{1}\right)$, where $s k_{b}=\left(\left(h_{\mathrm{ID}| | b}\right)^{s}, b\right), b \in\{0,1\}$. Without loss of generality, we assume that $\operatorname{Decrypt}\left(\right.$ params, $\left.C, s k_{0}\right)=$ $M(\neq$ reject $)$. Then, we have $\left\langle u_{0}, v_{0}\right\rangle=\left\langle g^{r_{0}}, G\left(e\left(g_{p u b}, h_{\mathrm{ID} \|}\right)^{r_{0}}\right) \oplus\left(M \| r_{1}\right)\right\rangle$ for some $r_{0}, r_{1} \in \mathbb{Z}_{q}^{*}$. Since $M \neq$ reject, the following equations hold: $M^{\prime}=M, u_{0}=g^{r_{0}^{\prime}}, u_{1}=g^{r_{1}}$, and $\alpha=\hat{H}\left(e\left(u_{0},\left(h_{\mid \mathrm{D} \| 0}\right)^{s}\right)\right.$, $\left.e\left(g_{p u b}, h_{\mathrm{ID}| | 1}\right)^{r_{1}}, M,\left\langle u_{0}, v_{0}\right\rangle,\left\langle u_{1}, v_{1}\right\rangle\right)$, where $\left(M^{\prime}| | r_{0}^{\prime}\right)=v_{1} \oplus G\left(e\left(g_{p u b}, h_{\mathrm{ID}| | 1}\right)^{r_{1}}\right)$. This means that $\left\langle u_{1}, v_{1}\right\rangle=$ $\left\langle g^{r_{1}}, G\left(e\left(g_{p u b}, h_{\mathrm{ID} \|}\right)^{r_{1}}\right) \oplus\left(M \| r_{0}\right)\right\rangle$, and it is obvious that $\operatorname{Decrypt}\left(\right.$ params, $\left.C, s k_{1}\right)=M$ which is a contradition.

Finally, we calculate $\epsilon_{g b d h}$ from the above claims. From Claims 1 and 2, we have

$$
\begin{aligned}
\operatorname{Pr}\left[\beta^{\prime}=\beta\right] & =\operatorname{Pr}\left[\beta^{\prime}=\beta \mid \neg E\right] \operatorname{Pr}[\neg E]+\operatorname{Pr}\left[\beta^{\prime}=\beta \mid E\right] \operatorname{Pr}[E] \\
& \leq\left(\frac{1}{2}+\frac{q_{D}}{2^{k_{1}+1}}\right)(1-\operatorname{Pr}[E])+\operatorname{Pr}[E] \\
& \leq \frac{1}{2}+\frac{1}{2} \operatorname{Pr}[E]+\frac{q_{D}}{2^{k_{1}+1}}
\end{aligned}
$$

From Claim 3, we have $\operatorname{Pr}\left[E_{1} \vee E_{3}\right] \geq 1 / 2 \operatorname{Pr}[E]$, and therefore,

$$
\epsilon_{g b d h}=\operatorname{Pr}\left[E_{1} \vee E_{3}\right] \geq \frac{1}{2} \operatorname{Pr}[E] .
$$

Hence, we have that

$$
\operatorname{Pr}\left[\beta^{\prime}=\beta\right] \leq \frac{1}{2}+\epsilon_{g b d h}+\frac{q_{D}}{2^{k_{1}+1}},
$$

and consequently,

$$
\epsilon_{i b e} \leq \epsilon_{g b d h}+\frac{q_{D}}{2^{k_{1}+1}} .
$$

From above discussions, it is easily seen that the claimed bound of the running-time of $\mathcal{A}_{\text {gbdh }}$ holds. This completes the proof of Theorem 1.

## 4 Secure IBE Constructions Based on the DBDH Assumption

In this section, we present two IBE schemes TightIBE2 and TightIBE3 whose security is tightly reduced to the difficulty of the DBDH problem.

### 4.1 Construction: TightIBE2

IND-ID-CCA security of IBE scheme TightIBE2 can be reduced to the DBDH problem in the random oracle model. TightIBE2 adapts similar technique of TightIBE1, however, distinguishes itself from TightIBE1 in performance: its enjoys more compact ciphertext size when the message is short. Moreover, it is more computational efficient since it needs only 2 pairings and 2 scalar multiplications in encryption and 2 pairings and 2 scalar multiplications in decryption. The computation time is even comparable to the original Boneh-Franklin scheme, if parallel computation is considered.

Let $\mathbb{G}_{1}$ and $\mathbb{G}_{2}$ be two groups of order $q$ (whose size is $k$ ) and $g$ be a generator of $\mathbb{G}_{1}$. Let $e: \mathbb{G}_{1} \times \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$ be a bilinear map. Let $k=k_{1}+k_{2}, G:\{0,1\}^{*} \rightarrow\left(Z_{q}^{*}\right)^{2}, H:\{0,1\}^{*} \rightarrow \mathbb{G}_{1}$ be two cryptographic hash functions, $\phi:\{0,1\}^{k} \rightarrow \mathbb{G}_{2}$ be one-to-one function that its inverse is efficiently computable. The message space is $\mathcal{M}=\{0,1\}^{k_{1}}$. The TightIBE2 scheme consists of the algorithms which are shown in Table 3.

${ }^{\dagger}$ Extract first checks to see if $s k_{\mathrm{ID}}$ has been generated before. If it has, the previously-generated $s k_{\mathrm{ID}}$ is output.

Table 3: The algorithms of TightIBE2
Theorem 2. Suppose $\left(t_{d b d h}, \epsilon_{d b d h}\right)$-DBDH assumption holds in $\mathbb{G}_{1}$. Suppose the hash functions $G, H$ are random oracles. Then, TightIBE2 is $\left(t_{i b e}, \epsilon_{i b e}\right)$-IND-ID-CCA secure such that

$$
\begin{aligned}
\epsilon_{i b e} & \leq 2 \epsilon_{d b d h}+\frac{q_{G}}{2^{k_{2}}} \\
t_{i b e} & \leq t_{d b d h}-\Theta\left(\tau\left(2 q_{H}+3 q_{E}+9 q_{D}\right)\right)
\end{aligned}
$$

as long as IND-ID-CCA adversary $\mathcal{A}_{i b e}$ makes at most $q_{G} G$-queries, $q_{H} H$-queries, $q_{D}$ Decryption queries, and $q_{E}$ Extraction queries. Here, $\tau$ is the maximum time among time for computing an exponentiation in $\mathbb{G}_{1}, \mathbb{G}_{2}$, and pairing e.

The proof of Theorem 2 is given in Appendix A.

### 4.2 Construction: TightIBE3

Next, we propose a public verifiable IBE scheme TightIBE3 whose IND-ID-CCA security can be reduced tightly to the decision bilinear Diffie-Hellman assumption in the random oracle model. This is a
straightforward application of the idea given in [13] to the double encryption paradigm proposed in [14] with non-malleable and non-interactive zero-knowledge proof in the random oracle model.

Public verifiability of ciphertexts is especially effective in cases when its private key is distributed among a multiple of players and these players are required to collaborately prove the validity/invalidity of the ciphertext when they decrypt/reject it. Such a case can be found in some of mix-net schemes. These collaborations are tends to be complex task if ciphertexts are not publicly verifiable.

Let $\mathbb{G}_{1}$ and $\mathbb{G}_{2}$ be two groups of order $q$ (whose size is $k$ ) and $g$ be a generator of $\mathbb{G}_{1}$. Let $e: \mathbb{G}_{1} \times \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$ be a bilinear map. Let $H:\{0,1\}^{*} \rightarrow \mathbb{G}_{1}$ and $G:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$ be a cryptographic hash functions. The message space $\mathcal{M}=\mathbb{G}_{2}$. The TightIBE3 scheme consists of the algorithms which are shown in Table 4.

TightIBE3					
```Setup (1 (1): s\leftarrow\mp@subsup{\mathbb{Z}}{q}{*};\mp@subsup{g}{pub}{}:=\mp@subsup{g}{}{s} params := \langleq, \mathbb{G}},\mp@subsup{\mathbb{G}}{2}{},e,g,\mp@subsup{g}{pub}{},G,H master-key:=s return (params, master-key)```	```Extract \(^{\dagger}\) (ID, params, master-key): \(b_{\text {ID }} \leftarrow\{0,1\}\) \(h_{\mathrm{ID} \\| b_{\mathrm{ID}}}:=H\left(\mathrm{ID} \| b_{\mathrm{ID}}\right) ; \quad d_{\mathrm{ID}}:=\left(h_{\mathrm{ID} \| b_{\mathrm{ID}}}\right)^{s}\) \(s k_{\mathrm{ID}}:=\left(d_{\mathrm{ID}}, b_{\mathrm{ID}}\right)\) return \(s k_{\text {ID }}\)```				
```Encrypt (ID, params, \(M\) ): \(h_{\mathrm{ID} \\| 0}:=H(\mathrm{ID} \| 0) ; \quad h_{\mathrm{ID} \| 1}:=H(\mathrm{ID} \| 1)\) \(r_{0}, r_{1} \leftarrow \mathbb{Z}_{q}\) \(c_{0}=\left(u_{0}, v_{0}\right):=\left(g^{r_{0}}, M \cdot e\left(g_{p u b}, h_{\mathrm{ID} \| 0}\right)^{r_{0}}\right)\) \(c_{1}=\left(u_{1}, v_{1}\right):=\left(g^{r_{1}}, M \cdot e\left(g_{p u b}, h_{\mathrm{ID} \| 1}\right)^{r_{1}}\right)\) \(s_{0}, s_{1}, r_{M}, s_{M} \leftarrow \mathbb{Z}_{q}\) \(c_{M}:=(1 / M) \cdot e(g, g)^{r_{M}}\) \(u_{0}^{\prime}:=g^{s_{0}}\) \(u_{1}^{\prime}:=g^{s_{1}}\) \(v_{0}^{\prime}:=e\left(g_{p u b}, h_{\mathrm{ID} \| 0}\right)^{s_{0}} \cdot e(g, g)^{s_{M}}\) \(v_{1}^{\prime}:=e\left(g_{p u b}, h_{\mathrm{ID} \| 1}\right)^{s_{1}} \cdot e(g, g)^{s_{M}}\) \(c:=G\left(\mathbb{G}_{1}, \mathbb{G}_{2}, g, g_{p u b}\right.\), ID, \(\left.c_{0}, c_{1}, c_{M}, u_{0}^{\prime}, u_{1}^{\prime}, v_{0}^{\prime}, v_{1}^{\prime}\right)\) \(t_{0}:=r_{0} c+s_{0}\) \(t_{1}:=r_{1} c+s_{1}\) \(t_{M}:=r_{M} c+s_{M}\) \(C:=\left(c_{0}, c_{1}, c_{M}, c, t_{0}, t_{1}, t_{M}\right)\) return \(C\)```	```Decrypt ( \(C\), params, \(s k_{\mathrm{ID}}\) ): parse \(C=\left(\left\langle u_{0}, v_{0}\right\rangle,\left\langle u_{1}, v_{1}\right\rangle, c_{M}, c, t_{0}, t_{1}, t_{M}\right)\) \(e_{0}:=g^{t_{0}} u_{0}{ }^{-c}\) \(e_{1}:=g^{t_{1}} u_{1}{ }^{-c}\) \(e_{2}:=e(g, g)^{t_{m}} e\left(g_{p u b}, h_{\mathrm{ID} \\| 0}\right)^{t_{0}}\left(v_{0} c_{M}\right)^{-c}\) \(e_{3}:=e(g, g)^{t_{m}} e\left(g_{p u b}, h_{\mathrm{ID}		1}\right)^{t_{1}}\left(v_{1} c_{M}\right)^{-c}\) if \(c \neq G\left(\mathbb{G}_{1}, \mathbb{G}_{2}, g, g_{p u b}\right.\), ID, \(\left.c_{0}, c_{1}, c_{M}, e_{0}, e_{1}, e_{2}, e_{3}\right)\) return "reject" else \(M:=v_{b_{1 \mathrm{D}}} \cdot e\left(u_{b_{1 \mathrm{D}}}, d_{\mathrm{ID}}\right)^{-1}\) return \(M\)```   Note that no secret key is required to decide whether to accept the ciphertext or not, which is the property of publicly verifiability.		

${ }^{\dagger}$ Extract first checks to see if $s k_{\mathrm{ID}}$ has been generated before. If it has, the previously-generated $s k_{\mathrm{ID}}$ is output.

Table 4: The algorithms of TightIBE3

Theorem 3. Suppose $\left(t_{d b d h}, \epsilon_{d b d h}\right)$-DBDH assumption holds in $\mathbb{G}_{1}$. Suppose the hash functions $G, H$ are random oracles. Then, TightIBE3 is $\left(t_{i b e}, \epsilon_{i b e}\right)$-IND-ID-CCA secure such that

$$
\begin{aligned}
\epsilon_{i b e} & \leq 2 \epsilon_{d b d h}+\frac{2\left(q_{G}+q_{H}\right)}{q} \\
t_{i b e} & \leq t_{d b d h}-\Theta\left(\tau\left(2 q_{H}+3 q_{E}+13 q_{D}\right)\right)
\end{aligned}
$$

as long as IND-ID-CCA adversary $\mathcal{A}_{i b e}$ makes at most $q_{G} G$-queries, $q_{H} H$-queries, $q_{D}$ Decryption queries, and $q_{E}$ Extraction queries. Here, $\tau$ is the maximum time among times for computing an exponentiation in $\mathbb{G}_{1}, \mathbb{G}_{2}$, and pairing $e$.

The proof of Theorem 3 is given in Appendix B.

## 5 Conclusion

We presented three new efficient and chosen ciphertext secure identity-based encryption schemes which are the first ones in the literature that enjoy tight security reductions in the random oracle model.

It is still an open problem to build chosen ciphertext secure identity based systems that obtain tight security reductions under reasonable assumptions in the standard model.

## References

[1] M. Bellare and P. Rogaway, "The Game-Playing Technique," available as IACR ePrint Report 2004/331.
[2] D. Boneh and X. Boyen, "Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles," In Advances in Cryptology-Eurocrypt'04, LNCS 3027, pp.223-238, 2004.
[3] D. Boneh and X. Boyen, "Efficient Selective-ID Secure Identity Based Encryption Without Random Oracles," the full version of [2], available as IACR ePrint Report 2004/172.
[4] D. Boneh and X. Boyen, "Secure Identity Based Encryption Without Random Oracles," In Advances in Cryptology-Crypto'04, LNCS 3152, pp.443-459, 2004.
[5] D. Boneh and M. Franklin, "Identity Based Encryption from the Weil Pairing," In Advances in CryptologyCrypto'01, LNCS 2139, pp.213-229, 2001.
[6] D. Boneh and M. Franklin, "Identity Based Encryption from the Weil Pairing," SIAM Journal of Computing $32(3): 586-615,2003$, full version of [5].
[7] R. Canetti, S. Halevi and J. Katz, "A Forward-Secure Public-Key Encryption Scheme," In Advances in Cryptology-Eurocrypt'03, LNCS 2656, pp.255-271, 2003.
[8] R. Canetti, S. Halevi and J. Katz, "Chosen-Ciphertext Security from Identity Based Encryption," In Advances in Cryptology-Eurocrypt'04, LNCS 3027, pp.207-222, 2004.
[9] J.S. Coron, "On the Exact Security of Full Domain Hash," In Advances in Cryptology-Crypto’00, LNCS 1880, pp.229-235, 2000.
[10] E. Fujisaki and T. Okamoto, "How to Enhance the Security of Public-Key Encryption at Minimum Cost," Proc. of PKC'99, LNCS 1560, pp.53-68, 1999.
[11] E. Fujisaki and T. Okamoto, "Secure Integration of Asymmetric and Symmetric Encrytion Schemes," In Advances in Cryptology-Crypto'99, LNCS 1666, pp.537-554, 1999.
[12] D. Galindo, "Boneh-Franklin Identity Based Encryption Revisited," to appear in Proc. of ICALP'05, available as IACR ePrint Report 2005/117.
[13] J. Katz and N. Wang, "Efficiency Improvements for Signature Schemes with Tight Security Reductions," Proc. of ACM-CCS'03, pp.155-164, 2003.
[14] M. Naor and M. Yung, "Public-key Cryptosystems Provably Secure against Chosen Ciphertext Attacks," Proc. of STOC'90, pp.427-437, 1990.
[15] T. Okamoto and D. Pointcheval, "The Gap-Problems: a New Class of Problems for the Security of Cryptographic Schemes," Proc. of PKC'01, LNCS 1992, pp.104-118, 2001.
[16] A. Shamir, "Identity-Based Cryptosystems and Signature Schemes," In Advances in CryptologyCRYPTO'84, LNCS 293, pp.341-349, 1984.
[17] V. Shoup, "Sequences of Games: A Tool for Taming Complexity in Security Proofs," available as IACR ePrint Report 2004/332.
[18] B. Waters, "Efficient Identity-Based Encryption Without Random Oracles," In Advances in CryptologyEurocrypt'05, LNCS 1666, pp.114-127, 2005. The full version is available as IACR ePrint Report 2004/180.

## A The Proof of Theorem 2

Proof. We show how to construct an algorithm $\mathcal{A}_{d b d h}$ that solves the DBDH problem in $\mathbb{G}_{1}$ by using an adversary $\mathcal{A}_{i b e}$ that breaks IND-ID-CCA security of our scheme. The algorithm $\mathcal{A}_{d b d h}$ is given an instance $\left\langle g, g^{a}, g^{b}, g^{c}, T\right\rangle$ in $\mathbb{G}_{1}$ from the challenger and tries to distinguish whether it is a valid BDH tuple or not. Let $g_{1}=g^{a}, g_{2}=g^{b}, g_{3}=g^{c}$. $\mathcal{A}_{d b d h}$ works by interacting with $\mathcal{A}_{i b e}$ in an IND-ID-CCA game as follows:

Setup: $\mathcal{A}_{d b d h}$ picks a random $R_{0}, R_{1} \in_{R}\{0,1\}^{k_{2}}$, and flips coins $\beta$ and $\mathcal{C O} \mathcal{I N} \in_{R}\{0,1\}$. Also, $\mathcal{A}_{d b d h}$ gives $\mathcal{A}_{\text {ibe }}$ the system parameter params $=\left\langle q, \mathbb{G}_{1}, \mathbb{G}_{2}, e, k_{1}, g, g_{1}, G, H\right\rangle$. Here, random oracles $G, H$ are controlled by $\mathcal{A}_{d b d h}$ as described below.
$G$-queries: $\mathcal{A}_{i b e}$ issues up to $q_{G}$ queries to the random oracle $G$. To respond to these queries algorithm $\mathcal{A}_{d b d h}$ forms a list of tuples $\langle W, x\rangle$ as explained below. We call this list $G_{l i s t}$. The list is initially empty. When $\mathcal{A}_{i b e}$ gives $\mathcal{A}_{d b d h}$ a query $W$ to the oracle $G, \mathcal{A}_{d b d h}$ responds as follows:

1. If the query $W$ already appears on the $G_{l i s t}$ in a tuple $\langle W, x\rangle$, then outputs $G(W)=x$.
2. If $W=\left(*, *, R_{\beta}\right), \mathcal{A}_{d b d h}$ outputs " $T=e(g, g)^{a b c}$ " and aborts the simulation.
3. If $W=\left(*, *, R_{\bar{\beta}}\right)$ and $\mathcal{C O} \mathcal{I N}=1, \mathcal{A}_{d b d h}$ outputs " $T \neq e(g, g)^{a b c}$ " and aborts the simulation.
4. $\mathcal{A}_{d b d h}$ chooses a random $x \in \mathbb{Z}_{q}^{*}$.
5. $\mathcal{A}_{d b d h}$ stores the tuple $\langle W, x\rangle$ to the $G_{l i s t}$ and outputs $G(W)=x$.
$H$-queries: $\mathcal{A}_{i b e}$ issues up to $q_{H}$ queries to the random oracle $H$. To respond to these queries algorithm $\mathcal{A}_{d b d h}$ forms a list of tuples $\left\langle\mathrm{ID}, b_{\mathrm{ID}}, h_{\mathrm{ID} \| \bar{b}_{\mathrm{ID}}}, h_{\mathrm{ID} \| b_{\mathrm{ID}}}, r_{\mathrm{ID}}, t_{\mathrm{ID}}\right\rangle$ as explained below. We call this list $H_{l i s t}$. The list is initially empty. When $\mathcal{A}_{\text {ibe }}$ gives $\mathcal{A}_{d b d h}$ a query (ID $\| b$ ) to the oracle $H, \mathcal{A}_{d b d h}$ responds as follows:
6. If the query ID already appears on the $H_{\text {list }}$ in a tuple $\left\langle\mathrm{ID}, b_{\mathrm{ID}}, h_{\mathrm{ID} \| \bar{b}_{\mathrm{ID}}}, h_{\mathrm{ID} \| b_{\mathrm{ID}}}, r_{\mathrm{ID}}, t_{\mathrm{ID}}\right\rangle$, then outputs $H(\mathrm{ID} \| b)=h_{\mathrm{ID} \| b_{\mathrm{ID}}}$ if $b=b_{\mathrm{ID}}$ and $H(\mathrm{ID} \| b)=h_{\mathrm{ID} \| \bar{b}_{\mathrm{ID}}}$ otherwise.
7. $\mathcal{A}_{d b d h}$ picks a random bit $b_{\mathrm{ID}} \in\{0,1\}$ and chooses random $r_{\mathrm{ID}}, t_{\mathrm{ID}} \in \mathbb{Z}_{q}^{*}$.
8. $\mathcal{A}_{d b d h}$ computes $\left(h_{\mathrm{ID} \| \bar{b}_{\mathrm{ID}}}, h_{\mathrm{ID} \| b_{\mathrm{ID}}}\right)=\left(g_{2}^{r_{\mathrm{ID}}}, g^{t_{\mathrm{ID}}}\right)$.
9. $\mathcal{A}_{d b d h}$ stores the tuple $\left\langle\mathrm{ID}, b_{\mathrm{ID}}, h_{\mathrm{ID} \| \bar{b}_{\mathrm{ID}}}, h_{\mathrm{ID} \| b_{\mathrm{ID}}}, r_{\mathrm{ID}}, t_{\mathrm{ID}}\right\rangle$ to the $H_{\text {list }}$ and outputs $H(\mathrm{ID} \| b)=$ $h_{\mathrm{ID} \| b_{\mathrm{ID}}}$ if $b=b_{\mathrm{ID}}$ and $H(\mathrm{ID} \| b)=h_{\mathrm{ID} \| \bar{b}_{\mathrm{ID}}}$ otherwise.

Extraction queries: $\mathcal{A}_{i b e}$ issues up to $q_{E}$ Extraction queries. The simulator behaves same in both Phase 1 and Phase 2 . When $\mathcal{A}_{\text {ibe }}$ gives a query ID, $\mathcal{A}_{d b d h}$ responds as follows:

1. $\mathcal{A}_{d b d h}$ runs the algorithm for responding to $H$-queries to obtain $b_{\mathrm{ID}}$ and $t_{\mathrm{ID}}$.
2. $\mathcal{A}_{d b d h}$ sets $s k_{\mathrm{ID}}=\left(\left(g_{1}\right)^{t_{\mathrm{ID}}}, b_{\mathrm{ID}}\right)$. Observe that $s k_{\mathrm{ID}}=\left(\left(g^{t_{\mathrm{ID}}}\right)^{a}, b_{\mathrm{ID}}\right)$ and therefore $s k_{\mathrm{ID}}$ is the secret key corresponding to the ID.
3. $\mathcal{A}_{\text {dbdh }}$ outputs $s k_{\text {ID }}$ to $\mathcal{A}_{\text {ibe }}$.

Decryption queries: $\mathcal{A}_{i b e}$ issues up to $q_{D}$ Decryption queries. The simulator behaves same in both Phase 1 and Phase 2. When $\mathcal{A}_{i b e}$ gives a query (ID, $C$ ), $\mathcal{A}_{d b d h}$ responds as follows:

1. $\mathcal{A}_{d b d h}$ runs the algorithm for responding to Extraction queries to obtain the secret key $s k_{\mathrm{ID}}$.
2. Using the private key $s k_{\mathrm{ID}}, \mathcal{A}_{d b d h}$ decrypts $C$.
3. $\mathcal{A}_{d b d h}$ outputs the result.

Challenge: Once algorithm $\mathcal{A}_{\text {ibe }}$ decides that Phase 1 is over, it outputs public key ID* and two messages $M_{0}, M_{1}$ on which it wishes to be challenged. Algorithm $\mathcal{A}_{d b d h}$ responds as follows:

1. $\mathcal{A}_{d b d h}$ runs the algorithm for responding to $H$-queries to obtain $r_{\text {ID }}$ such that $H\left(\mathrm{ID}^{*} \| \bar{b}_{\mathrm{ID}}{ }^{*}\right)=$ $g_{2}^{r_{\text {ID }}}$.
2. $\mathcal{A}_{d b d h}$ sets $C^{*}=\left\langle c_{0}^{*}, c_{1}^{*}\right\rangle$ as follows:

$$
\begin{aligned}
c_{\bar{b}_{\mathrm{D}^{*}}}^{*} & =\left\langle g_{3}^{r_{1 \mathrm{D}^{*}}^{-1}}, \bar{M}_{\beta} \cdot T\right\rangle & & \\
c_{b_{\mathrm{ID}^{*}}^{*}}^{*} & =\left\langle g^{r}, \bar{M}_{\beta} \cdot e\left(h_{\mathrm{ID}^{*}| | b_{\mathrm{ID}^{*}}}, g_{1}\right)^{r}\right\rangle & & \text { if } \mathcal{C O I N}=0 \\
& =\left\langle g^{r}, \bar{M}_{\bar{\beta}} \cdot e\left(h_{\mathrm{ID}^{*} \| b_{\mathrm{ID}^{*}}}, g_{1}\right)^{r}\right\rangle & & \text { if } \mathcal{C O I N}=1,
\end{aligned}
$$

where $\bar{M}_{\beta}=\phi\left(M_{\beta} \| R_{\beta}\right), \bar{M}_{\bar{\beta}}=\phi\left(M_{\bar{\beta}} \| R_{\bar{\beta}}\right), r \in_{R} Z_{q}^{*}$ and $r_{\mathrm{ID}^{*}}^{-1}$ is the inverse of $r_{\mathrm{ID}^{*}} \bmod q$.
3. $\mathcal{A}_{d b d h}$ gives $C^{*}=\left\langle c_{0}^{*}, c_{1}^{*}\right\rangle$ as the challenge ciphertext to $\mathcal{A}_{\text {ibe }}$.

Guess: When $\mathcal{A}_{\text {ibe }}$ decides that Phase 2 is over, $\mathcal{A}_{\text {ibe }}$ outputs its guess bit $\beta^{\prime} \in\{0,1\}$. At the same time, algorithm $\mathcal{A}_{d b d h}$ outputs " $T=e(g, g)^{a b c}$ " if $\beta^{\prime}=\beta$, or " $T \neq e(g, g)^{a b c}$ " otherwise. Without loss of generality, we can assume that $\mathcal{A}_{\text {ibe }}$ always outputs 0 or 1.

Next, let us define by $E$ an event assigned to be true if and only if $\mathcal{A}_{d b d h}$ outputs " $T=e(g, g)^{a b c}$ ".
Claim 4. $\mathcal{A}_{\text {ibe }}$ 's view is independent to the value of $b_{I D}$ for any ID.
Proof. Since leakage of information on $b_{\text {ID }}$ may occur only from responses to Decryption queries, it is sufficient to prove that there exists no ciphertext such that its decryption result may become different values according to the value of $b_{\mathrm{ID}}$. Next, we prove this by contradiction. Assume that $C=\left\langle\left\langle u_{0}, v_{0}\right\rangle,\left\langle u_{1}, v_{1}\right\rangle\right\rangle$ be a ciphertext such that Decrypt(params, $\left.C, s k_{0}\right) \neq \operatorname{Decrypt}\left(\right.$ params $\left., C, s k_{1}\right)$, where $s k_{b}=\left(\left(h_{\mathrm{ID} \| \mid b}\right)^{s}, b\right), b \in\{0,1\}$. Without loss of generality, we assume that $\operatorname{Decrypt}\left(\right.$ params, $\left.C, s k_{0}\right)=$ $M(\neq$ reject $)$. Then, we have $\left\langle u_{0}, v_{0}\right\rangle=\left\langle g^{r_{0}}, \phi(M \| R) \cdot e\left(g_{p u b}, h_{\mathrm{ID} \| 0}\right)^{r_{0}}\right\rangle$ for some $r_{0} \in \mathbb{Z}_{q}^{*}$ and $R \in$ $\{0,1\}^{k_{2}}$. Since $M \neq$ reject, following equations hold: $\left(r_{0} \| r_{1}^{\prime}\right)=G(\mathrm{ID}, M, R), u_{0}=g^{r_{0}}, u_{1}=g^{r_{1}^{\prime}}$, $v_{1} \cdot e\left(g_{p u b}, h_{\mathrm{ID} \| 1}\right)^{-r_{1}^{\prime}}=\phi(M \| R)$ for some $r_{1}^{\prime} \in \mathbb{Z}_{q}^{*}$. This means that $\left\langle u_{1}, v_{1}\right\rangle=\left\langle g^{r_{1}^{\prime}}, \phi(M \| R)\right.$. $\left.e\left(g_{p u b}, h_{\mathrm{ID} \| 1}\right)^{r_{1}^{\prime}}\right\rangle$, and it is obvious that $\operatorname{Decrypt}\left(\right.$ params $\left., C, s k_{1}\right)=M$ which is a contradiction.

Claim 4 guarantees symmetricity of $c_{0}^{*}$ and $c_{1}^{*}$ in $C^{*}$.
Claim 5. We have that $\operatorname{Pr}\left[E \mid T=e(g, g)^{a b c}, \mathcal{C O I N}=0\right] \geq 1 / 2+A d v$, where $A d v$ is $\mathcal{A}_{\text {ibe }}$ 's advantage.
Proof. When $T=e(g, g)^{a b c}, \mathcal{C O I N}=0$ and $\mathcal{A}_{d b d h}$ doesn't abort, it is clear that $\mathcal{A}_{\text {ibe's view is identical }}$ to the real attack. Hence, we have

$$
\frac{1}{2}+A d v=\operatorname{Pr}\left[\beta^{\prime}=\beta \mid E_{v l d} \wedge E_{a b r t}\right] \cdot \operatorname{Pr}\left[E_{a b r t} \mid E_{v l d}\right]+\operatorname{Pr}\left[\beta^{\prime}=\beta \mid E_{v l d} \wedge \neg E_{a b r t}\right] \cdot \operatorname{Pr}\left[\neg E_{a b r t} \mid E_{v l d}\right]
$$

where $E_{\text {vld }}$ denotes the event $\left(T=e(g, g)^{a b c} \wedge \mathcal{C O \mathcal { I } \mathcal { N }}=0\right)$ and $E_{a b r t}$ denotes the event assigned to be true if and only if $\mathcal{A}_{d b d h}$ aborts during the simulation. Also, we have the following equation:

$$
\begin{aligned}
\operatorname{Pr}\left[E \mid E_{v l d}\right] & =\operatorname{Pr}\left[E \mid E_{v l d} \wedge E_{a b r t}\right] \cdot \operatorname{Pr}\left[E_{\text {abrt }} \mid E_{v l d}\right]+\operatorname{Pr}\left[E \mid E_{v l d} \wedge \neg E_{a b r t}\right] \cdot \operatorname{Pr}\left[\neg E_{a b r t} \mid E_{v l d}\right] \\
& =\operatorname{Pr}\left[E_{a b r t} \mid E_{v l d}\right]+\operatorname{Pr}\left[E \mid E_{v l d} \wedge \neg E_{\text {abrt }}\right] \cdot \operatorname{Pr}\left[\neg E_{a b r t} \mid E_{v l d}\right]
\end{aligned}
$$

From the above, we finally have

$$
\begin{aligned}
\operatorname{Pr}\left[E \mid E_{v l d}\right] & \geq \operatorname{Pr}\left[E_{a b r t} \mid E_{v l d}\right]+\left(\frac{1}{2}+A d v-\operatorname{Pr}\left[\beta^{\prime}=\beta \mid E_{v l d} \wedge E_{a b r t}\right] \cdot \operatorname{Pr}\left[E_{a b r t} \mid E_{v l d}\right]\right) \\
& =\frac{1}{2}+A d v+\left(1-\operatorname{Pr}\left[\beta^{\prime}=\beta \mid E_{v l d} \wedge E_{a b r t}\right]\right) \cdot \operatorname{Pr}\left[E_{a b r t} \mid E_{v l d}\right] \\
& \geq \frac{1}{2}+A d v
\end{aligned}
$$

which proves the claim.

Claim 6. If $T=e(g, g)^{\text {abc }}$ and $\mathcal{C O I N}=1$, then $\mathcal{A}_{d b d h}$ 's view is independent to $\beta$ and hence, $\operatorname{Pr}[E \mid T=$ $\left.e(g, g)^{a b c}, \mathcal{C O I N}=1\right]=1 / 2$.

Proof. It is obvious from Claim 4.
Claim 7. We have that $\left|\operatorname{Pr}\left[E \mid T \neq e(g, g)^{a b c}, \mathcal{C O I N}=0\right]-\operatorname{Pr}\left[\neg E \mid T \neq e(g, g)^{a b c}, \mathcal{C O I N}=1\right]\right| \leq$ $q_{G} / 2^{k_{2}}$.

Proof. If $T \neq e(g, g)^{a b c}$, then $c_{\bar{b}_{\mathrm{ID}^{*}}}^{*}$ is uniformly distributed in $\mathbb{G}_{1} \times \mathbb{G}_{2}$ due to the random $\log _{g} g_{3}$. Since

$$
\left.\left.\begin{array}{rlrl}
c_{b_{\mathrm{ID}}}^{*} & =\left\langle g^{r}, \bar{M}_{\beta} \cdot e\left(h_{\mathrm{ID} *}{ }^{*} \mid \bar{b}_{\mathrm{b}^{*}}, g_{1}\right)^{r}\right\rangle & & \text { if } \mathcal{C O I N}=0 \\
& =\left\langle g^{r}, \bar{M}_{\bar{\beta}} \cdot e\left(h_{\mathrm{ID}}{ }^{*} \mid \bar{b}_{\mathrm{ID}}\right.\right.
\end{array}, g_{1}\right)^{r}\right\rangle \quad \begin{array}{ll}
\text { if } \mathcal{C O I N}=1,
\end{array}
$$

distribution of $c_{b_{1 D} *}^{*}$ for the case of $(\beta=\mathrm{b}) \wedge(\mathcal{C O \mathcal { I } N}=0)$ is statistically indistinguishable from that for the case of $(\beta=\overline{\mathrm{b}}) \wedge(\mathcal{C O \mathcal { N }}=1)$ for any $\mathrm{b} \in\{0,1\}$. We notice that $\mathcal{A}_{\text {ibe }}$ distinguishes the above distributions only when it submits a $G$-query $\left(*, *, R_{\mathrm{b}}\right)$, where $*$ denotes any bit string. Hence, $\left|\operatorname{Pr}\left[E \mid T \neq e(g, g)^{a b c}, \mathcal{C O} \mathcal{I N}=0\right]-\operatorname{Pr}\left[\neg E \mid T \neq e(g, g)^{a b c}, \mathcal{C O} \mathcal{I N}=1\right]\right| \leq q_{G} / 2^{k_{2}}$ holds.

Now, we are back to the proof of the theorem. We calculate the advantage of $\mathcal{A}_{d b d h}$ by using the above claims.

$$
\begin{aligned}
& \epsilon_{d b d h} \geq\left|\operatorname{Pr}\left[E \mid T=e(g, g)^{a b c}\right]-\operatorname{Pr}\left[E \mid T \neq e(g, g)^{a b c}\right]\right| \\
& \geq \frac{1}{2} \operatorname{Pr}\left[E \mid T=e(g, g)^{a b c}, \mathcal{C O I N}=0\right]+\frac{1}{2} \operatorname{Pr}\left[E \mid T=e(g, g)^{a b c}, \mathcal{C O I N}=1\right] \\
& -\frac{1}{2} \operatorname{Pr}\left[E \mid T \neq e(g, g)^{a b c}, \mathcal{C O I N}=0\right]-\frac{1}{2} \operatorname{Pr}\left[E \mid T \neq e(g, g)^{a b c}, \mathcal{C O I N}=1\right] \\
& \geq \frac{1}{2} \operatorname{Pr}\left[E \mid T=e(g, g)^{a b c}, \mathcal{C O} \mathcal{I N}=0\right]+\frac{1}{2} \operatorname{Pr}\left[E \mid T=e(g, g)^{a b c}, \mathcal{C O I N}=1\right] \\
& -\left(\frac{1}{2} \operatorname{Pr}\left[E \mid T \neq e(g, g)^{a b c}, \mathcal{C O I N}=0\right]+\left(\frac{1}{2}-\frac{1}{2} \operatorname{Pr}\left[\neg E \mid T \neq e(g, g)^{a b c}, \mathcal{C O I N}=1\right]\right)\right) \\
& \geq \frac{1}{2}\left(\frac{1}{2}+A d v\right)+\frac{1}{2} \cdot \frac{1}{2}-\left(\frac{1}{2}+\frac{1}{2} \cdot \frac{q_{G}}{2^{k_{2}}}\right) \\
& =\frac{1}{2} A d v-\frac{q_{G}}{2^{k_{2}+1}} .
\end{aligned}
$$

Hence, we have that

$$
2 \epsilon_{d b d h}+\frac{q_{G}}{2^{k_{2}}} \geq A d v
$$

and consequently,

$$
2 \epsilon_{d b d h}+\frac{q_{G}}{2^{k_{2}}} \geq \epsilon_{i b e}
$$

From above discussions, it is easily seen that the claimed bound of the running-time of $\mathcal{A}_{d b d h}$ holds. This completes the proof of Theorem 2.

## B The proof of Theorem 3

Proof. The theorem follows from Claim 8 below.
We prove this theorem by using "game-based technique" $[1,17]$ unlike the proofs of Theorems 1 and 2 . We are able to reduce distinguishing of two successive games into solving a certain problem. Majority of procedures in these reductions are the same as those given in the proofs of Theorem 1 and 2. Hence, in the followings, we concentrate mostly on their differences.

Definition 1. Game 0-4 are defined as in the following:

## Game 0:

Same as the real game. Let $X_{0}$ is an event that the adversary output $\beta^{\prime \prime}$ which is equal to $\beta$. Events $X_{1}, \ldots, X_{4}$ in Game 1,2,3, and 4 are defined in the same way.

## Game 1:

Suppose that $(A, B, C)$ which is randomly chosen from uniform distribution of $\left(\mathbb{G}_{1}\right)^{3}$, and $D \in \mathbb{G}_{2}$, which is the solution of computational bilinear Diffie-Hellman problem with respect to $(A, B, C)$, is given.

Game 1 is the same as Game 0 except in the following points:
Setup: We let $g_{p u b}=A$ instead of letting $g_{p u b}=g^{s}$.
$H$-queries: $H$ is an ordinary random oracle except that its output is chosen in the following way: For $H$ query with respect to $\mathrm{ID} \| b$, randomly choose $b_{\mathrm{ID}} \in_{R}\{0,1\}$ and $\left(r_{\mathrm{ID}}, t_{\mathrm{ID}}\right) \in_{R}\left(\mathbb{Z}_{q}\right)^{2}$ and then let $\left(h_{\mathrm{ID} \|\left.\right|_{\mathrm{ID}}}, d_{\mathrm{ID}}\right)=\left(g^{r_{\mathrm{ID}}}, A^{r \mathrm{ID}}\right)$ and $h_{\mathrm{ID} \| \bar{b}_{\mathrm{ID}}}=B^{t_{\mathrm{ID}}}$.

Challenge: Challenge ciphertext is generated as follows: First, choose random $w \in_{R} \mathbb{Z}_{q}$ and generate

$$
\begin{aligned}
c_{b_{D^{*}}^{*}}^{*} & =\left(g^{w}, M_{b} \cdot e\left(g_{p u b}, h_{1 \mathrm{D}^{*}}\| \|_{\mathrm{D}^{*}}^{*}\right)^{w}\right) \\
c_{b_{\mathrm{D}^{*}}^{*}}^{*} & =\left(C^{t_{\mathrm{ID}^{*}}}, M_{b} \cdot D\right)
\end{aligned}
$$

Other variables are simulated by choosing random oracles.

## Game 2:

Same as Game 1 except that $D$ is randomly chosen.

## Game 3:

Same as Game 2 except that the distribution from which $D$ is chosen is the same as that in Game 1 and that challenge ciphertext is generated as follows: Randomly choose $M \in \mathbb{G}_{2}$ and generate

$$
\left.\left.\begin{array}{rl}
c_{b_{0^{*}}^{*}}^{*} & =\left(g^{w}, M \cdot e\left(g_{p u b}, h_{1 \mathrm{D}^{*} \|} \mid b_{1^{*}}^{*}\right.\right.
\end{array}\right)^{w}\right)
$$

Other variables are simulated by choosing random oracles.

## Game 4:

Same as Game 3 except that $D$ is randomly chosen.
Claim 8. The followings hold:

1. $\epsilon_{i b e}-\operatorname{Pr}\left[X_{0}\right]=0$
2. $\left|\operatorname{Pr}\left[X_{0}\right]-\operatorname{Pr}\left[X_{1}\right]\right| \leq q_{G} / q$
3. There exists $t_{d b d h}$-time algorithm $\mathcal{A}_{d b d h}$ such that
$\epsilon_{d b d h} \geq\left|\operatorname{Pr}\left[X_{1}\right]-\operatorname{Pr}\left[X_{2}\right]\right|$ and $t_{d b d h} \leq t_{i b e}+\Theta\left(\tau\left(2 q_{H}+3 q_{E}+13 q_{D}\right)\right.$
4. $\left|\operatorname{Pr}\left[X_{2}\right]-\operatorname{Pr}\left[X_{3}\right]\right| \leq \frac{q_{G}+2 q_{H}}{q}$
5. There exists $t_{d b d h}$-time algorithm $\mathcal{A}_{d b d h}$ such that
$\epsilon_{d b d h} \geq\left|\operatorname{Pr}\left[X_{3}\right]-\operatorname{Pr}\left[X_{4}\right]\right|$ and $t_{d b d h} \leq t_{\text {ibe }}+\Theta\left(\tau\left(2 q_{H}+3 q_{E}+13 q_{D}\right)\right.$
6. $\operatorname{Pr}\left[X_{4}\right]-1 / 2=0$

Proof. 1. The 1st and the 6 th relations clearly hold.
2. With respect to the 2 nd relation, $\operatorname{Pr}\left[X_{0}\right]-\operatorname{Pr}\left[X_{1}\right]=0$ holds unless the simulation fails. Therefore, from Claim 9, the result follows.
3. It is easy to see that the 3 rd and the 5 th relations hold. The algorithm $\mathcal{A}_{d b d h}$ needs $\Theta\left(\tau\left(2 q_{H}+\right.\right.$ $\left.3 q_{E}+13 q_{D}\right)$ times more than $\mathcal{A}_{\text {ibe }}$ to simulate $H$ oracle, the Decryption oracle, and the Extraction oracle. The simulations can be done similarly to those in the proofs of Theorems 1 and 2 .
4. With respect to 4 th relation, $\operatorname{Pr}\left[X_{0}\right]-\operatorname{Pr}\left[X_{1}\right]=0$ holds unless the behavior of Decryption oracle depends on the value of $b_{\mathrm{ID}}^{*}$. Therefore, from Claim 10, the result follows.

Claim 9. Given $\left(u_{0}, v_{0}, u_{1}, v_{1}\right),\left(c_{M}, c, t_{0}, t_{1}, t_{M}\right)$ are perfectly simulatable by choosing random oracle with the probability of at least $1-q_{G} / q$.

Proof. $c_{M}, c, t_{0}, t_{1}, t_{M}$ are uniformly and randomly distributed in $\mathbb{G}_{2} \times\left(\mathbb{Z}_{q}\right)^{4}$ because of random choice of $r_{M}, s_{0}, c, s_{1}, s_{M}$ (by Encrypt and a random oracle). Hence, by randomly choosing $c_{M}, c, t_{0}, t_{1}, t_{M}$ and a consistent random oracle, which succeeds with the probability of at least $1-q_{G} / q$, perfect simulation is possible.

Claim 10. A ciphertext $C$ will not be accepted with the probability more than $\frac{q_{G}+2 q_{H}}{q}$ unless its both decryptions by secret keys $\left(\left(h_{\mathrm{ID} \| 0}\right)^{s}, 0\right)$ and $\left(\left(h_{\mathrm{ID} \| 1}\right)^{s}, 1\right)$ coincide.

Proof. We will show that no adversary whose resources are unbounded, with the exception that it may ask random oracles only polynomial number of times, is able to generates a ciphertext that can be accepted with non-negligible probability unless the results of two decryptions are the same.

Suppose that $r_{0}, r_{1}, r_{0}^{\prime}, r_{1}^{\prime}, r_{M}, s_{0}, s_{1}, s_{0}^{\prime}, s_{1}^{\prime}, s_{M}, s_{M}^{\prime}, s_{M}^{\prime \prime}, \alpha_{0}$, and $\alpha_{1}$ are such that

$$
\begin{aligned}
u_{0} & =g^{r_{0}} \\
v_{0} & =M \cdot e\left(g_{p u b}, h_{\mathrm{ID} \| 0}\right)^{r_{0}^{\prime}}=M e(g, g)^{\alpha_{0} r_{0}^{\prime}} \\
u_{1} & =g^{r_{1}} \\
v_{1} & =M \cdot e\left(g_{p u b}, h_{\mathrm{ID} \| 1}\right)^{r_{1}^{\prime}}=M e(g, g)^{\alpha_{1} r_{1}^{\prime}} \\
c_{M} & =(1 / M) \cdot e(g, g)^{r_{M}} \\
u_{0}^{\prime} & =g^{s_{0}} \\
u_{1}^{\prime} & =g^{s_{1}} \\
v_{0}^{\prime} & =e\left(g_{p u b}, h_{\mathrm{ID}| | 0}\right)^{s_{0}^{\prime}} e(g, g)^{s_{M}} \\
v_{1}^{\prime} & =e\left(g_{p u b}, h_{\mathrm{ID}| | 1}\right)^{s_{1}^{\prime}} e(g, g)^{s_{M}^{\prime}} \\
c_{M}^{\prime} & =M \cdot g^{s_{M}^{\prime \prime}}
\end{aligned}
$$

hold. Then, for randomly chosen $c$, equations

$$
\begin{aligned}
t_{0} & =r_{0} c+s_{0} \\
t_{1} & =r_{1} c+s_{1} \\
t_{M}+\alpha_{0} t_{0} & =\left(\alpha_{0} r_{0}^{\prime}+r_{M}\right) c+s_{M}+\alpha_{0} s_{0}^{\prime} \\
t_{M}+\alpha_{1} t_{1} & =\left(\alpha_{1} r_{1}^{\prime}+r_{M}\right) c+s_{M}^{\prime}+\alpha_{1} s_{1}^{\prime}
\end{aligned}
$$

must hold for the ciphertext to be accepted. That is,

$$
\left\{\alpha_{0}\left(r_{0}^{\prime}-r_{0}\right)-\alpha_{1}\left(r_{1}^{\prime}-r_{1}\right)\right\} c+\left\{\alpha_{0}\left(s_{0}^{\prime}-s_{0}\right)-\alpha_{1}\left(s_{1}^{\prime}-s_{1}\right)\right\}+\left(s_{M}-s_{M}^{\prime}\right)=0
$$

must holds for randomly chosen $c$. Hence, the ciphertext will be accepted at most with the probability of $\frac{q_{G}+2 q_{H}}{q}$ unless equation

$$
\alpha_{0}\left(r_{0}^{\prime}-r_{0}\right)=\alpha_{1}\left(r_{1}^{\prime}-r_{1}\right)
$$

holds. In this case when the equation holds, the following equation

$$
\begin{aligned}
v_{0} \cdot e\left(u_{0},\left(h_{\mathrm{ID} \| 0}\right)^{s}\right)^{-1} & =M e(g, g)^{\alpha_{0} r_{0}^{\prime}} e(g, g)^{-\alpha_{0} r_{0}} \\
& =M e(g, g)^{\alpha_{0} r_{0}^{\prime}-\alpha_{0} r_{0}} \\
& =M e(g, g)^{\alpha_{1} r_{1}^{\prime}-\alpha_{1} r_{1}} \\
& =M e(g, g)^{\alpha_{1} r_{1}^{\prime}} e(g, g)^{-\alpha_{1} r_{1}} \\
& =v_{1} \cdot e\left(u_{1},\left(h_{\mathrm{ID} \| 1}\right)^{s}\right)^{-1}
\end{aligned}
$$

holds. Thus, the claim is proved.


[^0]:    ${ }^{1}$ INDistinguishability under Chosen-Ciphertext Attack for ID-based encryption

