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Abstract

We present three variants of the Boneh-Franklin identity-based encryption scheme so as to have
tight security reductions in the full security notion (to be precise, in the sense of IND-ID-CCA) in the
random oracle model based on the technique suggested by Katz and Wang. The first one is based on
the Gap Bilinear Diffie-Hellman (Gap BDH) assumption. The other two are based on the Decision
BDH assumption, one of which has more compact ciphertext size while the other enjoys a publicly
verifiability of ciphertexts.

1 Introduction

Identity Based Encryption (IBE) provides a public key encryption mechanism where an arbitrary string,
such as recipient’s identity, can be served as a public key. The ability to use identities as public keys
avoids the need to distribute public key certificates. Such a scheme is largely motivated by many
applications such as to encrypt emails using recipient’s email address.

Although the concept of identity based encryption was proposed two decades ago [16], it is only
recently that the first fully functional schemes were proposed. Boneh and Franklin [5, 6] defined a
security model namely IND-ID-CCA1 and gave the first efficient construction provably secure in the
random oracle model based on the Bilinear Diffie-Hellman (BDH) problem. Since then, there have
been schemes shown to be secure without random oracles, but in a weaker model of security known as
“Selective-ID” model [7, 2]. Such schemes in this weaker model are known to be secure also in the sense
of IND-ID-CCA, but the proofs use an inefficient security reduction [3], which degrades reduction costs
by a factor of the size of identities’ space, which is indeed not polynomial in the security parameter.
Boneh and Boyen [4] subsequently proposed the first scheme which is provably secure in the sense
of IND-ID-CCA with a polynomial time reduction in the absence of random oracles, which was then
simplified and improved by Waters [18].

However, for each of the above schemes, its security as in the sense of IND-ID-CCA is reduced only
loosely to its underlying intractability assumption. An inefficient security reduction would imply either
the lower security level or the requirement of larger key size to obtain the same security level.

1INDistinguishability under Chosen-Ciphertext Attack for ID-based encryption
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It has been an open problem (as already posed in [18, 12]) whether efficient IBE systems can exist
with their security in the sense of IND-ID-CCA being reduced tightly (i.e., the reduction cost being only
a constant term) to some reasonable intractability assumption. In the standard model, this is still an
open problem. On the other hand, in the random oracle model, it has been partially solved by Katz
and Wang [13].

Katz and Wang [13] suggested an elegant technique for constructing a variant of Boneh-Franklin
which is secure in the sense of IND-ID-CPA with tight security reduction. Although they did not go
into details since this issue was not the main focus of their paper, it is straightforward to prove its
chosen-plaintext security (CPA).

However, to achieve CCA security, one might attempt to apply some CCA conversion with tight
security reduction to the scheme modified by Katz and Wang so that we could have an overall IBE
scheme tightly secure in the CCA sense. We explain in the following why this straightforward combi-
nation is essentially insufficient. To this end, the problem motivates us to find a proper modification
so as to obtain CCA security while seamlessly integrate with Katz-Wang technique. In this paper, we
present three such variants. To the best of our knowledge, these thus give the first explicit CCA-secure
IBE schemes with tight security reduction.

1.1 Some Attempts

We now point out why the straightforward combination as described above does not work. The tech-
nique from [13] requires to modify the full Boneh-Franklin scheme (but now converted from the basic
scheme by some CCA-conversion with tight reduction) so that for any ID there are two “public keys”
H(ID||0) and H(ID||1); furthermore, to encrypt a message to user ID, a sender now encrypts the mes-
sage with respect to both of these public keys. The private key generator (PKG), however, gives to ID
only one of the corresponding keys, say the key corresponding to H(ID||bID), where bID is a secret fixed
bit corresponding to ID and is maintained by the PKG. Note that a single key is sufficient to enable de-
cryption. Following the proof technique in [13], a simulation can be set up so that the simulator knows
exactly one secret key for every ID, in particular H(ID||bID). This enables the simulator to simulate
the key exposure oracle for all queries while ensuring that encryption to any non-exposed ID remains
secret. Let ID∗ be the challenge identity. Up to some point, in order to gather some information about
the challenge ciphertext the adversary will essentially come up with a random oracle query related to
the encryption corresponding to either H(ID∗||bID∗) or H(ID∗||b̄ID∗), in which the simulator embeds the
underlying problem instance in the latter. Therefore, without knowing bID∗ , the adversary will ask the
latter query with probability 1

2 , and the simulator can solve the underlying problem instance with the
reduction cost 1

2 . The proof relies essentially on the fact that bID∗ is perfectly hiding.
However, the following simple adversary A in the chosen-ciphertext attack scenario can cause the

above simulator S, who uses A as a subroutine and tries to break the underlying assumption, to always
fail. A will query the decryption oracle for EncH(ID∗||0)(m0)||EncH(ID∗||1)(m1) for some m0 6= m1.
If the oracle returns m0, A knows that bID∗ = 0, otherwise bID∗ = 1. (Since S has only the key
corresponding to H(ID∗||bID∗)). Now A will just ask the random oracle query related to the encryption
corresponding to H(ID∗||bID∗) (and never to that of H(ID∗||b̄ID∗), the one with the underlying problem
instance embedded), resulting in the failure of S.

Even worse, the following adversary C can successfully attack in the real chosen-ciphertext game.
Similar to the adversary A, C will be able to distinguish b∗ID. Then she submits m∗

0,m
∗
1, ID

∗ to the
challenge encryption oracle and gets back C∗

0 ||C∗
1 = EncH(ID∗||0)(mβ)||EncH(ID∗||1)(mβ) and will try to

guess β. Knowing bID∗ , she now asks the decryption oracle for the ciphertext C∗
0 ||EncH(ID∗||1)(m′) if

b∗ID = 0 and EncH(ID∗||0)(m′)||C∗
1 if b∗ID = 1 for some m′ 6= m∗

0,m
∗
1. Clearly, this is a legitimate query

since neither is equal to C∗
0 ||C∗

1 . She will get mβ which means that she successfully attacks the scheme.
We now conclude the above discussion. On one hand, the technique of double encryption in which
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Security Size Efficiency
Scheme Basic: IND-X-ID-CPA Full: IND-ID-CCA Model Pub Priv Cipher

X Assume Reduction Conversion Overall Reduc

BF01 [5] Adpt CBDH O( 1
qext·qH1

) FO99 [11] O( 1
qext·qH1 ·qH2

) RO O(1) O(1) O(1)

CHK03 [7] Sel DBDH 1 CHK04 [8] 1
n ST O(log n) O(log n) O(log n)

BB04(E1) [2] Sel DBDH 1 CHK04 [8] 1
n ST O(1) O(1) O(1)

BB04(E2) [2] Sel DBDH-inv 1 - - ST O(1) O(1) O(1)

BB04(C) [4] Adpt DBDH O( 1
q2

ext
) CHK04 [8] O( 1

q2
ext

) ST O(log2 n) O(log2 n) O(log2 n)

W05 [18] Adpt DBDH O( 1
qext log n ) CHK04 [8] O( 1

qext log n ) ST O(log n) O(1) O(1)

Ours 1 Adpt GBDH → - O(1) RO O(1) O(1) O(1)
Ours 2,3 Adpt DBDH → - O(1) RO O(1) O(1) O(1)

n: the size of identities’ space; qext, qH : the no. of queries to the extraction oracle and random oracle H respectively.
RO is for random oracle; ST is for the standard model; Adapt is for the adaptive-ID model; Sel is for selective-ID model.
CBDH, DBDH, GBDH are computational, decisional, gap BDH assumptions respectively.

Table 1: Comparison among existing schemes and our schemes.

exactly one key for each ID is known by the simulator enables the simulation of the key exposure
oracle and results in tight security reduction. On the other hand, this very technique itself also allows
the CCA adversary to know about bID∗ and then to successfully break the scheme. This contradictory
implication of straightforward application of the Katz-Wang technique suggests that more sophisticated
techniques are needed.

1.2 Our Contributions

In this paper, we present the first three efficient variants of the Boneh-Franklin IBE schemes with
tight security reductions in the random oracle model. We modify the double encryption technique by
seamlessly integrating with new “special-purpose” CCA conversions which also overcome the weakness
of Katz-Wang technique in the CCA setting. Put in other words, we construct three schemes achieving
CCA security from scratch, without using any existing conversions. Our first construction is based on
the Gap BDH assumption. The other two are based on the Decision BDH assumption, one of which
has more compact ciphertext size while the other has a publicly verifiability of ciphertexts. All of our
schemes are efficient and are the first in the literature that simultaneously achieve public parameter
size, private key size, ciphertext size and reduction cost as being constant terms (see Table 1).

2 Preliminaries

We first review the model and the security notion of IBE scheme. Next, we review bilinear maps which
is used in our proposed schemes. Then, we give a brief review of related computational assumptions.
The definitions run parallel with [5, 6].

2.1 ID-Based Encryption: Algorithms

An IBE scheme E is constructed by four efficient algorithms (Setup, Extract, Encrypt, Decrypt).

Setup: takes a security parameter k and returns params (system parameters) and master-key. The
system parameters include a description of a finite message space M, and a description of a
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finite ciphertext space C. Intuitively, the system parameters will be publicly known, while the
master-key will be known only to the “Private Key Generator” (PKG).

Extract: takes as input params, master-key, and an arbitrary ID ∈ {0, 1}∗, and returns a private key
sk. Here ID is an arbitrary string that will be used as a public key, and sk is the corresponding
private decryption key. The Extract algorithm extracts a private key from the given public key.

Encrypt: takes as input params, ID, and M ∈ M. It returns a ciphertext C ∈ C.

Decrypt: takes as input params, C ∈ C, and a private key sk. It returns M ∈ M or “reject”.

These algorithms must satisfy the standard consistency constraint, namely when sk is the private
key generated by algorithm Extract when it is given ID as the public key, then

∀M ∈ M : Decrypt(params, C, sk) = M where C = Encrypt(params, ID,M)

2.2 Security Notion

In [5, 6], Boneh and Franklin defined chosen ciphertext security for IBE under a chosen identity attack.
In their model the adversary is allowed to collude with an adversary having other ID and access a
decryption oracle.

We say that an IBE scheme E is semantically secure against an adaptive chosen ciphertext attack
under a chosen identity attack (IND-ID-CCA) if no polynomially bounded adversary Aibe has a non-
negligible advantage against the challenger in the following IND-ID-CCA game:

Setup: The challenger takes a security parameter k and runs the Setup algorithm. It gives the adver-
sary the resulting system parameters params. It keeps the master-key to itself.

Phase 1: The adversary issues several queries q1, · · · , qm where query qi is one of:

• Extraction query 〈IDi〉: The challenger responds by running algorithm Extract to generate
the private key ski corresponding to the public key 〈IDi〉. It sends ski to the adversary.

• Decryption query 〈IDi, Ci〉: The challenger responds by running algorithm Extract to gen-
erate the private key ski corresponding to IDi. It then runs algorithm Decrypt to decrypt
the ciphertext Ci using the private key ski. It sends the result to the adversary.

These queries may be asked adaptively, that is, each query qi may depend on the replies to
q1, · · · , qi−1.

Challenge: Once the adversary decides that Phase 1 is over it outputs two equal length plaintexts
M0,M1 ∈ M and an identity ID∗ on which it wishes to be challenged. The only constraint is that
ID∗ did not appear in any Extraction query in Phase 1.

The challenger picks a random bit β ∈ {0, 1} and sets C∗ = Encrypt(Params, ID∗,Mβ). It sends
C∗ as the challenge to the adversary.

Phase 2: The adversary issues more queries qm+1, · · · , qmax where each query is one of:

• Extraction query 〈IDi〉 where IDi 6= ID∗: Challenger responds as in Phase 1.

• Decryption query 〈IDi, Ci〉 6= 〈ID∗, C∗〉: Challenger responds as in Phase 1.

These queries may be asked adaptively as in Phase 1.

Guess: Finally, the adversary outputs a guess β′ ∈ {0, 1} and wins the game if β = β′.
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We refer to such an adversary Aibe as an IND-ID-CCA adversary. We define adversary Aibe’s advantage
in attacking the scheme E as:

AdvE,Aibe
= Pr[β = β′] − 1/2

The provability is over the random bits used by the challenger and the adversary.

Definition 1. We say that the IBE system E is (tibe, εibe)-adaptive chosen ciphertext secure under a
chosen identity attack if for any tibe-time IND-ID-CCA adversary Aibe, we have AdvE,Aibe

< εibe. As
shorthand, we say that E is IND-ID-CCA secure.

2.3 Bilinear Maps

We briefly review several facts about bilinear maps. Throughout this paper, we let G1 and G2 be two
multiplicative cyclic groups of prime order q and g be a generator of G1. A bilinear map e : G1×G1 → G2

satisfies the following properties:

1. bilinearity: For all u, v ∈ G1 and a, b ∈ Z, e(ua, vb) = e(u, v)ab.

2. non-degeneracy: e(g, g) 6= 1.

3. computability: There is an efficient algorithm to compute e(u, v) for any u, v ∈ G1.

Note that a bilinear map is symmetric since e(ga, gb) = e(gb, ga) = e(g, g)ab.

2.4 Complexity Assumptions

Here, we review three complexity assumptions related to bilinear maps: the Computational Bilinear
Diffie-Hellman (CBDH) assumption, the Decision Bilinear Diffie-Hellman (DBDH) assumption, and
the Gap Bilinear Diffie-Hellman (GBDH) assumption. Here, we let G1 and G2 be two groups of order
q and g be a generator of G1.

CBDH Assumption. The CBDH problem [5] in G1 is as follows: given a tuple (g, ga, gb, gc) ∈ (G1)4

as input, output e(g, g)abc ∈ G2. An algorithm Acbdh solves CBDH problem in G1 with the probability
εcbdh if

Pr[Acbdh(g, ga, gb, gc) = e(g, g)abc] ≥ εcbdh,

where the probability is over the random choice of generator g ∈ G∗
1, the random choice of a, b, c ∈ Zq,

and random coins consumed by Acbdh.

Definition 2. We say that the (tcbdh, εcbdh)-CBDH assumption holds in G1 if no tcbdh-time algorithm
has advantage at least εcbdh in solving the CBDH problem in G1.

DBDH Assumption. The DBDH problem in G1 is defined as follows: given a tuple (g, ga, gb, gc, T ) ∈
(G1)4 × G2 as input, outputs a bit b ∈ {0, 1}. An algorithm Adbdh solves DBDH problem in G1 with
advantage εdbdh if∣∣∣Pr[Adbdh(g, ga, gb, gc, e(g, g)abc) = 0] − Pr[Adbdh(g, ga, gb, gc, T ) = 0]

∣∣∣ ≥ εdbdh,

where the probability is over the random choice of generator g ∈ G∗
1, the random choice of a, b, c ∈ Zq,

the random choice of T in G2, and the random coins consumed by Adbdh.

Definition 3. We say that the (tdbdh, εdbdh)-DBDH assumption holds in G1 if no tdbdh-time algorithm
has advantage at least εdbdh in solving the DBDH problem in G1.
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GBDH Assumption. The GBDH problem in G1 is as follows: given a tuple (g, ga, gb, gc) ∈ (G1)4

as input, output e(g, g)abc ∈ G2 with the help of a DBDH oracle O which for given (g, ga, gb, gc, T ) ∈
(G1)4×G2, answers “true” if T = e(g, g)abc or “false” otherwise [15]. An algorithm Agbdh solves GBDH
problem in G1 with the probability εgbdh if

Pr[AO
gbdh(g, ga, gb, gc) = e(g, g)abc] ≥ εgbdh,

where the probability is over the random choice of generator g ∈ G∗
1, the random choice of a, b, c ∈ Zq,

and random coins consumed by Agbdh.

Definition 4. We say that the (tgbdh, εgbdh)-GBDH assumption holds in G1 if no tgbdh-time algorithm
has advantage at least εgbdh in solving the GBDH problem in G1.

3 Secure IBE Construction Based on the GBDH Assumption

In this section, we present an IBE scheme TightIBE1 whose IND-ID-CCA security can be reduced tightly
to the difficulty of the GBDH problem in the random oracle model. Intuitively, the sender will doubly
encrypt the message M using the Boneh-Franklin scheme to the identities H(ID||bID) and H(ID||b̄ID) in
such a way that the receiver who has only one out of the two keys, say for the identity H(ID||bID), can
decrypt both encryptions so that she can check the consistencies of the messages (and in particular,
this overcomes the weakness of the straightforward application of Katz-Wang technique as described in
Section 1.1). This sounds paradoxical in the first place since she does not know the other key, i.e., that
of the identity H(ID||b̄ID). However we can manage to do this by encrypting also the “randomness”
used in the other encryption simultaneously.

3.1 Construction: TightIBE1

Let G1 and G2 be two groups of order q (whose size is k) and g be a generator of G1. Let e : G1×G1 → G2

be a bilinear map. Let G,H, Ĥ be cryptographic hash functions G : G2 → {0, 1}n+k for some n,
H : {0, 1}∗ → G1, Ĥ : {0, 1}∗ → {0, 1}k1 for some k1 respectively. The message space is M = {0, 1}n.
Let a‖b denote the concatenation of a and b, and a ⊕ b denote the exclusive-OR of a and b. The
TightIBE1 scheme consists of the four algorithms which are shown in Table 2.

3.2 Security

Now, we prove that the security of TightIBE1 can be tightly reduced to the GBDH assumption.

Theorem 1. Suppose (tgbdh, εgbdh)-GBDH assumption holds in G1. Suppose the hash functions G,H, Ĥ
are random oracles. Then, TightIBE1 is (tibe, εibe)-IND-ID-CCA secure such that

εibe ≤ εgbdh +
qD

2k1+1

tibe ≤ tgbdh − Θ(τ(2qH + 3qE + 9qD))

as long as IND-ID-CCA adversary Aibe makes at most qH H-queries, qD Decryption queries, and qE

Extraction queries. Here, τ is the maximum time among time for computing an exponentiation in
G1, G2, and pairing e.

Proof. We show how to construct an algorithm Agbdh that solves the GBDH problem in G1 by using
an adversary Aibe that breaks IND-ID-CCA security of our scheme. The algorithm Agbdh is given an
instance 〈g, ga, gb, gc〉 in G1 from the challenger and try to output e(g, g)abc using Aibe and the DBDH
oracle O. Let g1 = ga, g2 = gb, g3 = gc. The algorithm Agbdh works by interacting with Aibe and O in
an IND-ID-CCA game as follows:
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TightIBE1

Setup (1k):
s ← Z∗

q ; gpub := gs

params := 〈q, G1, G2, e, n, g, gpub, G,H, Ĥ〉
master-key := s
return (params, master-key)

Extract† (ID, params, master-key):
bID ← {0, 1}
hID‖bID

:= H(ID‖bID); dID := (hID‖bID
)s

skID := (dID, bID)
return skID

Encrypt (ID, params,M):
hID‖0 := H(ID‖0); hID‖1 := H(ID‖1)

r0, r1 ← Z∗
q

W0 := e(gpub, hID‖0)r0

W1 := e(gpub, hID‖1)r1

c0 := 〈gr0 , G(W0) ⊕ (M‖r1)〉
c1 := 〈gr1 , G(W1) ⊕ (M‖r0)〉
cĤ := Ĥ(W0,W1, ID,M, c0, c1)

C := (c0, c1, cĤ)
return C

Decrypt (C, params, skID):
parse C = (〈u0, v0〉, 〈u1, v1〉, α)

W ′
bID

:= e(ubID
, dID)

(MbID
‖rb̄ID

) := vbID
⊕ G(W ′

bID
)

W ′
b̄ID

:= e(gpub, hID||b̄ID
)rb̄ID

(Mb̄ID
‖rbID

) := vb̄ID
⊕ G(W ′

b̄ID
)

if MbID
6= Mb̄ID

∨ ubID
6= grbID ∨ ub̄ID

6= g
rb̄ID∨

α 6= Ĥ(W ′
0,W

′
1, ID,MbID

, c0, c1)
return “reject”

else
M := MbID

(= Mb̄ID
)

return M
†Extract first checks to see if skID has been generated before. If it has, the previously-generated skID is output.

Table 2: The algorithms of TightIBE1

Setup: Agbdh picks a random µ ∈ Z∗
q . Also, Agbdh gives Aibe the system parameter

params = 〈q, G1, G2, e, n, g, g1, G,H, Ĥ〉.

Here, random oracles G,H, Ĥ are controlled by Agbdh as described below.

G-queries: Aibe issues up to qG queries to the random oracle G. To respond to these queries algorithm
Agbdh forms a list of tuples 〈W,x〉 as explained below. We call this list Glist. The list is initially
empty. When Aibe gives Agbdh a query W to the oracle G, Agbdh responds as follows:

1. If the query W already appears on the Glist in a tuple 〈W,x〉, then outputs G(W ) = x.

2. The algorithm Agbdh performs the two verifications as follows:

(i) Aibe submits (g, g1, g2, g3,W ) to O. If O’s answer is true, Agbdh outputs W as the
solution of the given instance of GBDH problem, and aborts the simulation.

(ii) Agbdh checks whether W = e(g1, g)µ or not. If it is true, then aborts the simulation.

3. Agbdh chooses a random x ∈ {0, 1}n+k.

4. Agbdh stores the tuple 〈W,x〉 to the Glist and outputs G(W ) = x.

H-queries: Aibe issues up to qH queries to the random oracle H. To respond to these queries algorithm
Agbdh forms a list of tuples 〈ID, bID, hID‖b̄ID

, hID‖bID
, rID, tID〉 as explained below. We call the list

Hlist. The list is initially empty. When Aibe give Agbdh a query (ID‖b) to the oracle H, Agbdh

responds as follows:

1. If the query ID already appears on the Hlist in a tuple 〈ID, bID, hID‖b̄ID
, hID‖bID

, rID, tID〉, then
outputs H(ID‖b) = hID‖bID

if b = bID and H(ID‖b) = hID‖b̄ID
otherwise.
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2. Agbdh picks a random bit bID ∈ {0, 1} and chooses random rID, tID ∈ Z∗
q .

3. Agbdh computes (hID‖b̄ID
, hID‖bID

) = (grID
2 , gtID).

4. Agbdh stores the tuple 〈ID, bID, hID‖b̄ID
, hID‖bID

, rID, tID〉 to the Hlist and outputs H(ID‖b) =
hID‖bID

if b = bID and H(ID‖b) = hID‖b̄ID
otherwise.

Ĥ-queries: Aibe issues up to qĤ queries to the random oracle Ĥ. To respond to these queries algorithm
Agbdh forms a list of tuples 〈W0, W1, ID,M, c0, c1, γ〉 as described below. We call the list Ĥlist

and it is initially empty. When Aibe give Agbdh a query (W0, W1, ID,M, c0, c1) to the oracle Ĥ,
algorithm Agbdh responds as follows:

1. If the query (W0, W1, ID,M, c0, c1) already appears on the Ĥlist in a tuple 〈W0,W1, ID,M, c0, c1, γ〉,
then outputs Ĥ(W0, W1, ID,M, c0, c1) = γ.

2. The algorithm Agbdh performs the two verifications as follows:

(i) For W = W0 and W1, Aibe submits (g, g1, g2, g3,W ) to O. If O’s answer is true, Agbdh

outputs W as the solution of the given instance of GBDH problem, and aborts the
simulation.

(ii) For W = W0 and W1, Agbdh checks whether W = e(g1, g)µ or not. If it is true, then
aborts the simulation.

3. Agbdh chooses a random γ ∈ {0, 1}k1 .

4. Agbdh stores the tuple 〈W0,W1, ID,M, c0, c1, γ〉 to the Ĥlist and output Ĥ(W0, W1, ID,M, c0, c1) =
γ.

Extraction queries: Aibe issues up to qE Extraction queries. The simulator behaves same in both
Phase 1 and Phase 2. When Aibe gives a query ID, Agbdh responds as follows:

1. Agbdh runs the algorithm for responding to H-queries to obtain bID and tID.

2. Agbdh sets skID = ((g1)tID , bID). Observe that skID = ((gtID)a, bID) and therefore skID is the
private key corresponding to the ID.

3. Agbdh outputs skID to Aibe.

Decryption queries: Aibe issues up to qD Decryption queries. The simulator behaves same in both
Phase 1 and Phase 2. When Aibe gives a query (ID, C), Agbdh responds as follows:

1. Agbdh runs the algorithm for responding to Extraction queries to obtain the private key skID

corresponding to the ID.

2. Using the private key skID, Agbdh decrypts C.

3. Agbdh outputs the result.

Challenge: Once algorithm Aibe decides that Phase 1 is over, it outputs public key ID∗ and two
messages M0,M1 on which it wishes to be challenged. Algorithm Agbdh responds as follows:

1. Agbdh runs the algorithm for responding to H-queries to obtain rID∗ and tID∗ such that
H(ID∗||b̄ID∗) = g

rID∗
2 and H(ID∗||bID∗) = gtID∗ .

2. Agbdh sets µ∗ = µ · t−1
ID∗ mod q, ω0, ω1 ∈R {0, 1}n+k and α∗ ∈R {0, 1}k1 .
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3. Agbdh sets c∗
b̄ID∗

, c∗bID∗ , c∗
Ĥ

as follows:

c∗b̄ID∗ = 〈(g3)r−1
ID∗ , ω0〉

c∗bID∗ = 〈gµ∗
, ω1〉

c∗
Ĥ

= α∗

where r−1
ID∗ is the inverse of rID∗ mod q.

4. Agbdh gives C∗ = 〈c∗0, c∗1, c∗Ĥ〉 as the challenge ciphertext to Aibe.

Guess: When Aibe decides that Phase 2 is over, Aibe outputs its guess bit β′ ∈ {0, 1}. At the same
time, algorithm Agbdh terminates the simulation.

Claim 1. If Agbdh does not abort during the simulation, then algorithm Aibe’s view is identical to its
view in the real attack. Furthermore, if Agbdh does not abort then Pr[β′ = β] ≥ 1/2 + εibe.

Proof. It is obvious that the responses to G, Ĥ queries are perfect. The responses to H are also as in
the real attack since each response is uniformly and independently distributed in G∗

1. Interestingly, the
responses to Extraction and Decryption queries are perfect as well. Notice that Agbdh can generate any
user’s private key including ID∗’s, and furthermore, can decrypt any ciphertext for any user by using
the private keys. Finally, we show that the response to Challenge is perfect if Agbdh does not abort the
simulation. Let the response to Challenge be C∗ = (〈u∗

0, v
∗
0〉, 〈u∗

1, v
∗
1〉, α∗). Then, both u∗

0 and u∗
1 are

uniformly and independently distributed in G∗
1 due to randoms logg g3 and µ, and therefore are as in

the real attack. Obviously, v∗0, v∗1 and α∗ are perfect. Therefore, by definition of Aibe, we have that
Pr[β′ = β] ≥ 1/2 + εibe. ut

Next, let us define by E1 an event assigned to be true if and only if a G-query coincides with
e(g, g)abc and by E2 an event assigned to be true if and only if a G-query coincides with e(g1, g)µ.
Similarly, let us define by E3 an event assigned to be true if and only if a Ĥ-query coincides with
(e(g, g)abc, ∗, ∗, ∗, ∗, ∗) or (∗, e(g, g)abc, ∗, ∗, ∗, ∗) and by E4 an event assigned to be true if and only if a
Ĥ-query coincides with (e(g1, g)µ, ∗, ∗, ∗, ∗, ∗) or (∗, e(g1, g)µ, ∗, ∗, ∗, ∗), where ∗ denotes any bit string.
We also define E = E1 ∨ E2 ∨ E3 ∨ E4.

Claim 2. We have that Pr[β′ = β|¬E] ≤ 1/2 + qD/2k1+1.

Proof. Since Mβ is concealed by one-time pad, it is impossible to obtain any information of Mβ unless
Aibe sends a query whose response contains information of G(e(g, g)abc) or G(e(g1, g)µ). There are only
two ways to make such a query, that is, (i) submit e(g, g)abc or e(g1, g)µ directly to G, or (ii) submit a
Decryption query such that Agbdh by itself has to calculate G(e(g, g)abc) or G(e(g1, g)µ) and return a
decryption result based on it.

Hence, if E = false, Aibe’s best strategy for guessing β is to observe a response to a Decryption query
(ID, 〈〈u0, v0〉, 〈u1, v1〉, α〉) such that at least one of e(hID||0, u0)a and e(hID||1, u1)a is identical to e(g, g)abc

or e(g1, g)µ without submitting (e(g, g)abc, ∗, ∗, ∗, ∗, ∗), (∗, e(g, g)abc, ∗, ∗, ∗, ∗), (e(g1, g)µ, ∗, ∗, ∗, ∗, ∗) nor
(∗, e(g1, g)µ, ∗, ∗, ∗, ∗) to Ĥ. Then, it is clear that the response to the query will be reject with probability
1 − 1/2k1 since Aibe has to guess α uniformly at random from {0, 1}k1 . Obviously, reject gives no
information on the plaintext. Hence, Aibe obtains no information with probability at least (1−1/2k1)qD .
Hence, we have

Pr[β′ = β|¬E] ≤ 1
2
· (1 − 1

2k1
)qD + 1 · (1 − (1 − 1

2k1
)qD)

≤ 1
2

+
qD

2k1+1
,
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which proves the claim.
ut

Claim 3. We have that Pr[E1 ∨ E3] = Pr[E2 ∨ E4].

Proof. From the symmetricity, it is sufficient to prove that Aibe can distinguish the value of bID∗ with
probability 1/2. Now, we prove that Aibe’s view is independent on the value of bID for any ID.

Since leakage of information on bID may occur only from responses to Decryption queries, it is
sufficient to prove that there exists no ciphertext such that its decryption result may become differ-
ent values according to the value of bID. Next, we prove this by contradiction. Assume that C =
〈〈u0, v0〉, 〈u1, v1〉, α〉 be a ciphertext such that Decrypt(params, C, sk0) 6= Decrypt(params, C, sk1),
where skb = ((hID||b)s, b), b ∈ {0, 1}. Without loss of generality, we assume that Decrypt(params, C, sk0) =
M(6= reject). Then, we have 〈u0, v0〉 = 〈gr0 , G(e(gpub, hID||0)r0) ⊕ (M ||r1)〉 for some r0, r1 ∈ Z∗

q . Since
M 6= reject , the following equations hold: M ′ = M , u0 = gr′0 , u1 = gr1 , and α = Ĥ(e(u0, (hID||0)s),
e(gpub, hID||1)r1 ,M, 〈u0, v0〉, 〈u1, v1〉), where (M ′||r′0) = v1⊕G(e(gpub, hID||1)r1). This means that 〈u1, v1〉 =
〈gr1 , G(e(gpub, hID||1)r1)⊕(M ||r0)〉, and it is obvious that Decrypt(params, C, sk1) = M which is a con-
tradition. ut

Finally, we calculate εgbdh from the above claims. From Claims 1 and 2, we have

Pr[β′ = β] = Pr[β′ = β|¬E] Pr[¬E] + Pr[β′ = β|E] Pr[E]

≤ (
1
2

+
qD

2k1+1
)(1 − Pr[E]) + Pr[E]

≤ 1
2

+
1
2

Pr[E] +
qD

2k1+1
.

From Claim 3, we have Pr[E1 ∨ E3] ≥ 1/2Pr[E], and therefore,

εgbdh = Pr[E1 ∨ E3] ≥
1
2

Pr[E].

Hence, we have that

Pr[β′ = β] ≤ 1
2

+ εgbdh +
qD

2k1+1
,

and consequently,

εibe ≤ εgbdh +
qD

2k1+1
.

From above discussions, it is easily seen that the claimed bound of the running-time of Agbdh holds.
This completes the proof of Theorem 1. ut

4 Secure IBE Constructions Based on the DBDH Assumption

In this section, we present two IBE schemes TightIBE2 and TightIBE3 whose security is tightly reduced
to the difficulty of the DBDH problem.
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4.1 Construction: TightIBE2

IND-ID-CCA security of IBE scheme TightIBE2 can be reduced to the DBDH problem in the random
oracle model. TightIBE2 adapts similar technique of TightIBE1, however, distinguishes itself from
TightIBE1 in performance: its enjoys more compact ciphertext size when the message is short. Moreover,
it is more computational efficient since it needs only 2 pairings and 2 scalar multiplications in encryption
and 2 pairings and 2 scalar multiplications in decryption. The computation time is even comparable
to the original Boneh-Franklin scheme, if parallel computation is considered.

Let G1 and G2 be two groups of order q (whose size is k) and g be a generator of G1. Let
e : G1 × G1 → G2 be a bilinear map. Let k = k1 + k2, G : {0, 1}∗ → (Z∗

q )2, H : {0, 1}∗ → G1 be
two cryptographic hash functions, φ : {0, 1}k → G2 be one-to-one function that its inverse is efficiently
computable. The message space is M = {0, 1}k1 . The TightIBE2 scheme consists of the algorithms
which are shown in Table 3.

TightIBE2

Setup (1k):
s ← Z∗

q ; gpub := gs

params := 〈q, G1, G2, e, k1, g, gpub, G,H, φ〉
master-key := s
return (params, master-key)

Extract† (ID, params, master-key):
bID ← {0, 1}
hID‖bID

:= H(ID‖bID); dID := (hID‖bID
)s

skID := (dID, bID)
return skID

Encrypt (ID, params,M):
hID‖0 := H(ID‖0); hID‖1 := H(ID‖1)

R ← {0, 1}k2

M̄ := φ(M ||R)
(r0||r1) := G(ID,M,R)

c0 := 〈gr0 , M̄ · e(gpub, hID‖0)r0〉
c1 := 〈gr1 , M̄ · e(gpub, hID‖1)r1〉

C := (c0, c1)
return C

Decrypt (C, params, skID):
parse C = (〈u0, v0〉, 〈u1, v1〉)

(M ′||R′) := φ−1(vbID
· e(ubID

, dID)−1)
(r′0||r′1) := G(ID, M ′, R′)

if c0 6= 〈gr′0 , φ(M ′||R′) · e(gpub, hID‖0)r′0〉∨
c1 6= 〈gr′1 , φ(M ′||R′) · e(gpub, hID‖1)r′1〉

return “reject”
else

return M ′

†Extract first checks to see if skID has been generated before. If it has, the previously-generated skID is output.

Table 3: The algorithms of TightIBE2

Theorem 2. Suppose (tdbdh, εdbdh)-DBDH assumption holds in G1. Suppose the hash functions G,H
are random oracles. Then, TightIBE2 is (tibe, εibe)-IND-ID-CCA secure such that

εibe ≤ 2εdbdh +
qG

2k2

tibe ≤ tdbdh − Θ(τ(2qH + 3qE + 9qD))

as long as IND-ID-CCA adversary Aibe makes at most qG G-queries, qH H-queries, qD Decryption
queries, and qE Extraction queries. Here, τ is the maximum time among time for computing an
exponentiation in G1, G2, and pairing e.

The proof of Theorem 2 is given in Appendix A.

4.2 Construction: TightIBE3

Next, we propose a public verifiable IBE scheme TightIBE3 whose IND-ID-CCA security can be reduced
tightly to the decision bilinear Diffie-Hellman assumption in the random oracle model. This is a
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straightforward application of the idea given in [13] to the double encryption paradigm proposed in
[14] with non-malleable and non-interactive zero-knowledge proof in the random oracle model.

Public verifiability of ciphertexts is especially effective in cases when its private key is distributed
among a multiple of players and these players are required to collaborately prove the validity/invalidity
of the ciphertext when they decrypt/reject it. Such a case can be found in some of mix-net schemes.
These collaborations are tends to be complex task if ciphertexts are not publicly verifiable.

Let G1 and G2 be two groups of order q (whose size is k) and g be a generator of G1. Let
e : G1 × G1 → G2 be a bilinear map. Let H : {0, 1}∗ → G1 and G : {0, 1}∗ → Zq be a cryptographic
hash functions. The message space M = G2. The TightIBE3 scheme consists of the algorithms which
are shown in Table 4.

TightIBE3

Setup (1k):
s ← Z∗

q ; gpub := gs

params := 〈q, G1, G2, e, g, gpub, G,H〉
master-key := s
return (params, master-key)

Extract† (ID, params, master-key):
bID ← {0, 1}
hID‖bID

:= H(ID‖bID); dID := (hID‖bID
)s

skID := (dID, bID)
return skID

Encrypt (ID, params,M):
hID‖0 := H(ID‖0); hID‖1 := H(ID‖1)

r0, r1 ← Zq

c0 = (u0, v0) := (gr0 ,M · e(gpub, hID||0)r0)
c1 = (u1, v1) := (gr1 ,M · e(gpub, hID||1)r1)

s0, s1, rM , sM ← Zq

cM := (1/M) · e(g, g)rM

u′
0 := gs0

u′
1 := gs1

v′0 := e(gpub, hID||0)s0 · e(g, g)sM

v′1 := e(gpub, hID||1)s1 · e(g, g)sM

c := G(G1, G2, g, gpub, ID,
c0, c1, cM , u′

0, u
′
1, v

′
0, v

′
1)

t0 := r0c + s0

t1 := r1c + s1

tM := rMc + sM

C := (c0, c1, cM , c, t0, t1, tM )
return C

Decrypt (C, params, skID):
parse C = (〈u0, v0〉, 〈u1, v1〉, cM , c, t0, t1, tM )

e0 := gt0u0
−c

e1 := gt1u1
−c

e2 := e(g, g)tme(gpub, hID||0)t0(v0cM )−c

e3 := e(g, g)tme(gpub, hID||1)t1(v1cM )−c

if c 6= G(G1, G2, g, gpub, ID,
c0, c1, cM , e0, e1, e2, e3)

return “reject”
else

M := vbID
· e(ubID

, dID)−1

return M

Note that no secret key is required to decide
whether to accept the ciphertext or not, which is
the property of publicly verifiability.

†Extract first checks to see if skID has been generated before. If it has, the previously-generated skID is output.

Table 4: The algorithms of TightIBE3

Theorem 3. Suppose (tdbdh, εdbdh)-DBDH assumption holds in G1. Suppose the hash functions G,H
are random oracles. Then, TightIBE3 is (tibe, εibe)-IND-ID-CCA secure such that

εibe ≤ 2εdbdh +
2(qG + qH)

q

tibe ≤ tdbdh − Θ(τ(2qH + 3qE + 13qD))
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as long as IND-ID-CCA adversary Aibe makes at most qG G-queries, qH H-queries, qD Decryption
queries, and qE Extraction queries. Here, τ is the maximum time among times for computing an
exponentiation in G1, G2, and pairing e.

The proof of Theorem 3 is given in Appendix B.

5 Conclusion

We presented three new efficient and chosen ciphertext secure identity-based encryption schemes which
are the first ones in the literature that enjoy tight security reductions in the random oracle model.

It is still an open problem to build chosen ciphertext secure identity based systems that obtain tight
security reductions under reasonable assumptions in the standard model.
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A The Proof of Theorem 2

Proof. We show how to construct an algorithm Adbdh that solves the DBDH problem in G1 by using
an adversary Aibe that breaks IND-ID-CCA security of our scheme. The algorithm Adbdh is given an
instance 〈g, ga, gb, gc, T 〉 in G1 from the challenger and tries to distinguish whether it is a valid BDH
tuple or not. Let g1 = ga, g2 = gb, g3 = gc. Adbdh works by interacting with Aibe in an IND-ID-CCA
game as follows:
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Setup: Adbdh picks a random R0, R1 ∈R {0, 1}k2 , and flips coins β and COIN ∈R {0, 1}. Also, Adbdh

gives Aibe the system parameter params = 〈q, G1, G2, e, k1, g, g1, G,H〉. Here, random oracles
G,H are controlled by Adbdh as described below.

G-queries: Aibe issues up to qG queries to the random oracle G. To respond to these queries algorithm
Adbdh forms a list of tuples 〈W,x〉 as explained below. We call this list Glist. The list is initially
empty. When Aibe gives Adbdh a query W to the oracle G, Adbdh responds as follows:

1. If the query W already appears on the Glist in a tuple 〈W,x〉, then outputs G(W ) = x.

2. If W = (∗, ∗, Rβ), Adbdh outputs “T = e(g, g)abc” and aborts the simulation.

3. If W = (∗, ∗, Rβ̄) and COIN = 1, Adbdh outputs “T 6= e(g, g)abc” and aborts the simulation.

4. Adbdh chooses a random x ∈ Z∗
q .

5. Adbdh stores the tuple 〈W,x〉 to the Glist and outputs G(W ) = x.

H-queries: Aibe issues up to qH queries to the random oracle H. To respond to these queries algorithm
Adbdh forms a list of tuples 〈ID, bID, hID‖b̄ID

, hID‖bID
, rID, tID〉 as explained below. We call this list

Hlist. The list is initially empty. When Aibe gives Adbdh a query (ID‖b) to the oracle H, Adbdh

responds as follows:

1. If the query ID already appears on the Hlist in a tuple 〈ID, bID, hID‖b̄ID
, hID‖bID

, rID, tID〉, then
outputs H(ID‖b) = hID‖bID

if b = bID and H(ID‖b) = hID‖b̄ID
otherwise.

2. Adbdh picks a random bit bID ∈ {0, 1} and chooses random rID, tID ∈ Z∗
q .

3. Adbdh computes (hID‖b̄ID
, hID‖bID

) = (grID
2 , gtID).

4. Adbdh stores the tuple 〈ID, bID, hID‖b̄ID
, hID‖bID

, rID, tID〉 to the Hlist and outputs H(ID‖b) =
hID‖bID

if b = bID and H(ID‖b) = hID‖b̄ID
otherwise.

Extraction queries: Aibe issues up to qE Extraction queries. The simulator behaves same in both
Phase 1 and Phase 2. When Aibe gives a query ID, Adbdh responds as follows:

1. Adbdh runs the algorithm for responding to H-queries to obtain bID and tID.

2. Adbdh sets skID = ((g1)tID , bID). Observe that skID = ((gtID)a, bID) and therefore skID is the
secret key corresponding to the ID.

3. Adbdh outputs skID to Aibe.

Decryption queries: Aibe issues up to qD Decryption queries. The simulator behaves same in both
Phase 1 and Phase 2. When Aibe gives a query (ID, C), Adbdh responds as follows:

1. Adbdh runs the algorithm for responding to Extraction queries to obtain the secret key skID.

2. Using the private key skID, Adbdh decrypts C.

3. Adbdh outputs the result.

Challenge: Once algorithm Aibe decides that Phase 1 is over, it outputs public key ID∗ and two
messages M0,M1 on which it wishes to be challenged. Algorithm Adbdh responds as follows:

1. Adbdh runs the algorithm for responding to H-queries to obtain rID∗ such that H(ID∗||b̄ID∗) =
g

rID∗
2 .
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2. Adbdh sets C∗ = 〈c∗0, c∗1〉 as follows:

c∗b̄ID∗ = 〈gr−1
ID∗

3 , M̄β · T 〉
c∗bID∗ = 〈gr, M̄β · e(hID∗||bID∗ , g1)r〉 if COIN = 0

= 〈gr, M̄β̄ · e(hID∗||bID∗ , g1)r〉 if COIN = 1,

where M̄β = φ(Mβ ||Rβ), M̄β̄ = φ(Mβ̄ ||Rβ̄), r ∈R Z∗
q and r−1

ID∗ is the inverse of rID∗ mod q.
3. Adbdh gives C∗ = 〈c∗0, c∗1〉 as the challenge ciphertext to Aibe.

Guess: When Aibe decides that Phase 2 is over, Aibe outputs its guess bit β′ ∈ {0, 1}. At the same
time, algorithm Adbdh outputs “T = e(g, g)abc” if β′ = β, or “T 6= e(g, g)abc” otherwise. Without
loss of generality, we can assume that Aibe always outputs 0 or 1.

Next, let us define by E an event assigned to be true if and only if Adbdh outputs “T = e(g, g)abc”.

Claim 4. Aibe’s view is independent to the value of bID for any ID.

Proof. Since leakage of information on bID may occur only from responses to Decryption queries, it
is sufficient to prove that there exists no ciphertext such that its decryption result may become
different values according to the value of bID. Next, we prove this by contradiction. Assume that
C = 〈〈u0, v0〉, 〈u1, v1〉〉 be a ciphertext such that Decrypt(params, C, sk0) 6= Decrypt(params, C, sk1),
where skb = ((hID||b)s, b), b ∈ {0, 1}. Without loss of generality, we assume that Decrypt(params, C, sk0) =
M(6= reject). Then, we have 〈u0, v0〉 = 〈gr0 , φ(M ||R) · e(gpub, hID||0)r0〉 for some r0 ∈ Z∗

q and R ∈
{0, 1}k2 . Since M 6= reject , following equations hold: (r0||r′1) = G(ID,M,R), u0 = gr0 , u1 = gr′1 ,
v1 · e(gpub, hID||1)−r′1 = φ(M ||R) for some r′1 ∈ Z∗

q . This means that 〈u1, v1〉 = 〈gr′1 , φ(M ||R) ·
e(gpub, hID||1)r′1〉, and it is obvious that Decrypt(params, C, sk1) = M which is a contradiction. ut

Claim 4 guarantees symmetricity of c∗0 and c∗1 in C∗.

Claim 5. We have that Pr[E|T = e(g, g)abc, COIN = 0] ≥ 1/2+Adv, where Adv is Aibe’s advantage.

Proof. When T = e(g, g)abc, COIN = 0 and Adbdh doesn’t abort, it is clear that Aibe’s view is identical
to the real attack. Hence, we have

1
2

+ Adv = Pr[β′ = β|Evld ∧ Eabrt] · Pr[Eabrt|Evld] + Pr[β′ = β|Evld ∧ ¬Eabrt] · Pr[¬Eabrt|Evld],

where Evld denotes the event (T = e(g, g)abc ∧ COIN = 0) and Eabrt denotes the event assigned to be
true if and only if Adbdh aborts during the simulation. Also, we have the following equation:

Pr[E|Evld] = Pr[E|Evld ∧ Eabrt] · Pr[Eabrt|Evld] + Pr[E|Evld ∧ ¬Eabrt] · Pr[¬Eabrt|Evld]
= Pr[Eabrt|Evld] + Pr[E|Evld ∧ ¬Eabrt] · Pr[¬Eabrt|Evld].

From the above, we finally have

Pr[E|Evld] ≥ Pr[Eabrt|Evld] + (
1
2

+ Adv − Pr[β′ = β|Evld ∧ Eabrt] · Pr[Eabrt|Evld])

=
1
2

+ Adv + (1 − Pr[β′ = β|Evld ∧ Eabrt]) · Pr[Eabrt|Evld]

≥ 1
2

+ Adv,

which proves the claim. ut
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Claim 6. If T = e(g, g)abc and COIN = 1, then Adbdh’s view is independent to β and hence, Pr[E|T =
e(g, g)abc, COIN = 1] = 1/2.

Proof. It is obvious from Claim 4. ut

Claim 7. We have that |Pr[E|T 6= e(g, g)abc, COIN = 0] − Pr[¬E|T 6= e(g, g)abc, COIN = 1]| ≤
qG/2k2.

Proof. If T 6= e(g, g)abc, then c∗
b̄ID∗

is uniformly distributed in G1 ×G2 due to the random logg g3. Since

c∗bID∗ = 〈gr, M̄β · e(hID∗||b̄ID∗ , g1)r〉 if COIN = 0

= 〈gr, M̄β̄ · e(hID∗||b̄ID∗ , g1)r〉 if COIN = 1,

distribution of c∗bID∗ for the case of (β = b) ∧ (COIN = 0) is statistically indistinguishable from that
for the case of (β = b̄) ∧ (COIN = 1) for any b ∈ {0, 1}. We notice that Aibe distinguishes the
above distributions only when it submits a G-query (∗, ∗, Rb), where ∗ denotes any bit string. Hence,
|Pr[E|T 6= e(g, g)abc, COIN = 0] − Pr[¬E|T 6= e(g, g)abc, COIN = 1]| ≤ qG/2k2 holds. ut

Now, we are back to the proof of the theorem. We calculate the advantage of Adbdh by using the
above claims.

εdbdh ≥ |Pr[E|T = e(g, g)abc] − Pr[E|T 6= e(g, g)abc]|

≥ 1
2

Pr[E|T = e(g, g)abc, COIN = 0] +
1
2

Pr[E|T = e(g, g)abc, COIN = 1]

−1
2

Pr[E|T 6= e(g, g)abc, COIN = 0] − 1
2

Pr[E|T 6= e(g, g)abc, COIN = 1]

≥ 1
2

Pr[E|T = e(g, g)abc, COIN = 0] +
1
2

Pr[E|T = e(g, g)abc, COIN = 1]

−(
1
2

Pr[E|T 6= e(g, g)abc, COIN = 0] + (
1
2
− 1

2
Pr[¬E|T 6= e(g, g)abc, COIN = 1]))

≥ 1
2
(
1
2

+ Adv) +
1
2
· 1
2
− (

1
2

+
1
2
· qG

2k2
)

=
1
2
Adv − qG

2k2+1
.

Hence, we have that

2εdbdh +
qG

2k2
≥ Adv,

and consequently,

2εdbdh +
qG

2k2
≥ εibe.

From above discussions, it is easily seen that the claimed bound of the running-time of Adbdh holds.
This completes the proof of Theorem 2. ut
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B The proof of Theorem 3

Proof. The theorem follows from Claim 8 below. ut

We prove this theorem by using “game-based technique”[1, 17] unlike the proofs of Theorems 1
and 2. We are able to reduce distinguishing of two successive games into solving a certain problem.
Majority of procedures in these reductions are the same as those given in the proofs of Theorem 1 and
2. Hence, in the followings, we concentrate mostly on their differences.

Definition 1. Game 0-4 are defined as in the following:
Game 0:

Same as the real game. Let X0 is an event that the adversary output β′ which is equal to β. Events
X1, . . . , X4 in Game 1,2,3, and 4 are defined in the same way.
Game 1:

Suppose that (A,B,C) which is randomly chosen from uniform distribution of (G1)3, and D ∈ G2,
which is the solution of computational bilinear Diffie-Hellman problem with respect to (A,B,C), is
given.

Game 1 is the same as Game 0 except in the following points:

Setup: We let gpub = A instead of letting gpub = gs.

H-queries: H is an ordinary random oracle except that its output is chosen in the following way: For
H query with respect to ID||b, randomly choose bID ∈R {0, 1} and (rID, tID) ∈R (Zq)2 and then let
(hID||bID

, dID) = (grID , ArID) and hID||b̄ID
= BtID.

Challenge: Challenge ciphertext is generated as follows: First, choose random w ∈R Zq and generate

c∗b∗
ID∗

= (gw, Mb · e(gpub, hID∗||b∗
ID∗ )w)

c∗b̄∗
ID∗

= (CtID∗ ,Mb · D)

Other variables are simulated by choosing random oracles.

Game 2:
Same as Game 1 except that D is randomly chosen.

Game 3:
Same as Game 2 except that the distribution from which D is chosen is the same as that in Game

1 and that challenge ciphertext is generated as follows: Randomly choose M ∈ G2 and generate

c∗b∗
ID∗

= (gw, M · e(gpub, hID∗||b∗
ID∗ )w)

c∗b̄∗
ID∗

= (CtID∗ ,Mb · D).

Other variables are simulated by choosing random oracles.
Game 4:

Same as Game 3 except that D is randomly chosen.

Claim 8. The followings hold:

1. εibe − Pr[X0] = 0

2. |Pr[X0] − Pr[X1]| ≤ qG/q
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3. There exists tdbdh-time algorithm Adbdh such that

εdbdh ≥ |Pr[X1] − Pr[X2]| and tdbdh ≤ tibe + Θ(τ(2qH + 3qE + 13qD)

4. |Pr[X2] − Pr[X3]| ≤ qG+2qH
q

5. There exists tdbdh-time algorithm Adbdh such that

εdbdh ≥ |Pr[X3] − Pr[X4]| and tdbdh ≤ tibe + Θ(τ(2qH + 3qE + 13qD)

6. Pr[X4] − 1/2 = 0

Proof. 1. The 1st and the 6th relations clearly hold.

2. With respect to the 2nd relation, Pr[X0]−Pr[X1] = 0 holds unless the simulation fails. Therefore,
from Claim 9, the result follows.

3. It is easy to see that the 3rd and the 5th relations hold. The algorithm Adbdh needs Θ(τ(2qH +
3qE +13qD) times more than Aibe to simulate H oracle, the Decryption oracle, and the Extraction
oracle. The simulations can be done similarly to those in the proofs of Theorems 1 and 2.

4. With respect to 4th relation, Pr[X0]−Pr[X1] = 0 holds unless the behavior of Decryption oracle
depends on the value of b∗ID. Therefore, from Claim 10, the result follows.

ut

Claim 9. Given (u0, v0, u1, v1), (cM , c, t0, t1, tM ) are perfectly simulatable by choosing random oracle
with the probability of at least 1 − qG/q.

Proof. cM , c, t0, t1, tM are uniformly and randomly distributed in G2 × (Zq)4 because of random choice
of rM , s0, c, s1, sM (by Encrypt and a random oracle). Hence, by randomly choosing cM , c, t0, t1, tM and
a consistent random oracle, which succeeds with the probability of at least 1− qG/q, perfect simulation
is possible. ut

Claim 10. A ciphertext C will not be accepted with the probability more than qG+2qH
q unless its both

decryptions by secret keys ((hID||0)s, 0) and ((hID||1)s, 1) coincide.

Proof. We will show that no adversary whose resources are unbounded, with the exception that it may
ask random oracles only polynomial number of times, is able to generates a ciphertext that can be
accepted with non-negligible probability unless the results of two decryptions are the same.

Suppose that r0, r1, r
′
0, r

′
1, rM , s0, s1, s

′
0, s

′
1, sM , s′M , s′′M , α0, and α1 are such that

u0 = gr0

v0 = M · e(gpub, hID||0)
r′0 = Me(g, g)α0r′0

u1 = gr1

v1 = M · e(gpub, hID||1)
r′1 = Me(g, g)α1r′1

cM = (1/M) · e(g, g)rM

u′
0 = gs0

u′
1 = gs1

v′0 = e(gpub, hID||0)
s′0e(g, g)sM

v′1 = e(gpub, hID||1)
s′1e(g, g)s′M

c′M = M · gs′′M
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hold. Then, for randomly chosen c, equations

t0 = r0c + s0

t1 = r1c + s1

tM + α0t0 = (α0r
′
0 + rM )c + sM + α0s

′
0

tM + α1t1 = (α1r
′
1 + rM )c + s′M + α1s

′
1

must hold for the ciphertext to be accepted. That is,

{α0(r′0 − r0) − α1(r′1 − r1)}c + {α0(s′0 − s0) − α1(s′1 − s1)} + (sM − s′M ) = 0

must holds for randomly chosen c. Hence, the ciphertext will be accepted at most with the probability
of qG+2qH

q unless equation

α0(r′0 − r0) = α1(r′1 − r1)

holds. In this case when the equation holds, the following equation

v0 · e(u0, (hID||0)
s)−1 = Me(g, g)α0r′0e(g, g)−α0r0

= Me(g, g)α0r′0−α0r0

= Me(g, g)α1r′1−α1r1

= Me(g, g)α1r′1e(g, g)−α1r1

= v1 · e(u1, (hID||1)
s)−1

holds. Thus, the claim is proved. ut
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