
Evolutionary Design of Trace Form Bent
Functions

Min Yang, Qingshu Meng, and Huanguo Zhang

school of computer science, Wuhan university, Wuhan Hubei, China
mqseagle@yahoo.com

Abstract. In order to design bent functions, evolutionary algorithm
based on truth table, algebraic normal form or Walsh spectra are al-
ready known. Evolutionary algorithm based on trace function form is
not known to authors’ knowledge. In this paper, we give an evolutionary
algorithm based on the trace representation of boolean function. With
the algorithm, we constructed many bent functions and made some anal-
ysis work. First we observe that all 3 affinely inequivalent bent classes in
6-variable can be written as the linear sum of 2 or 3 monomial trace func-
tions. We make a conclusion that affine transform can be used to change
the linear span, which lead to a method constructing perfect nonlinear
s-box of non-Niho type; Second, we find that some exponents take more
chances to construct bent functions while some exponents take less. By
this observation, we give each exponent a cost function, which make our
algorithm more efficient than exhaustive searching algorithm or random
algorithm. This is also the advantage over the algorithms based on the
algebraic normal form, truth table, or Walsh spectra because we don’t
know what kinds of algebraic normal form, truth table, Walsh spectra
are more possible to be used to construct bent functions; Third, we clas-
sify the obtained bent functions into affinely inequivalent classes and the
number of classes is reported.
keyword evolutionary algorithm, trace function, bent functions.

1 Introduction

Since the concept of bent function was proposed by Rothaus in 1976[1], there
are many papers, like [1–6], discussing bent function for interest in itself and for
its wide applications. In order to be resistant against the differential cryptanal-
ysis [7], a boolean function should have low absolute autocorrelation. In order
to be resistant against linear cryptanlysis[8], a boolean function should have
high nonlinearity. Bent functions have highest nonlinearity and zero autocorre-
lation. Therefore it can be used in cryptography area, especially in symmetric
cipher to construct S-box. It can also be used spread communication [9], where
Low peak-to-average power ratio is critical to multi-code code-division multiple-
access(MC-CDMA). Bent functions are used as code words to obtain the lowest
peak-to-average power ratio. Especially, in order to construct good codes, we
need construct bent functions as many as possible. To enumerate, construct and

classify bent function is a longstanding researching topic and old open topic[9,
10].

Recently evolutionary computing is introduced to design bent functions[11–
13] and is proved to be successful. In [11], using the algebraic normal form of
boolean function as evolutionary object, or more exactly using the quadratic
bent functions as the initial evolutionary object, Fuller, Dawson and Millan
designed many affinely inequivalent bent functions in 8-16 variables. In paper[12],
using the Walsh spectra as evolutionary object, Clark,Jacob,Matria and Stanica
proposed an algorithm designing 8-variable bent functions efficiently. In paper
[13], using the truth table as evolutionary object, Meng, Zhang, Wang, et.al gave
an algorithm designing almost all 6-variable bent functions. However the latter
two methods are both inefficient for 10 or more variables. Among the four kinds
of representation of boolean function: truth table, algebraic normal form, Walsh
spectra and trace form representation, the first three representations have been
used as the evolutionary objects. To the authors’ knowledge, algorithm using
the trace function as evolutionary object is not known before.

In this paper, boolean functions are represented as the linear sum of trace
functions. Using the trace form representation as evolutionary object, we give an
efficient algorithm to design bent functions. With the constructed bent functions,
we made a lots of analysis work. First we observe that all 3 affinely inequivalent
bent functions can be written as the linear combination of 2 or 3 monomial trace
functions. We make a conclusion that affine transform can be used to change the
linear span. By this observation, we give a method to construct perfect nonlinear
s-box of non-Niho type; Second, by observing the trace form of constructed bent
functions, we find that some exponents take more chances to construct bent
functions while some exponents take less. By this observation, we give each
exponent a cost function, which make our algorithm more efficient than purely
exhaustive searching algorithm. This is also the advantage over the algorithms
based on the algebraic normal form, truth table, or Walsh spectra because we
don’t know what kinds of algebraic normal form, truth table, Walsh spectra are
more possible to be used to construct bent functions; Third, our algorithm is so
efficient that we can obtain hundreds of bent functions in just one second. we
classify them into affinely inequivalent classes. And the number of inequivalent
classes is reported.

The rest of the paper is organized as follows. In Section two, we recite some
necessary definitions and notations. In Section three, we give our evolutionary
algorithm and the evolutionary results. In Section four, we have an analysis on
the obtained bent functions and get some interesting results. Finally a short
conclusion is made in Section 5.

2 Preliminary

Denote by F2 the field with two elements and by F2n the field with 2n elements.
Let F ∗2n = F2n \ 0.

Let Q = 2n − 1. We call an integer r is a coset leader modulo Q if r is the
minimum integer in set

{r2i mod Q|i = 0, 1, · · · , n− 1},
and its size is denoted by L(r). Denote by CS = {r|ris a coset leader}, the set
of coset leaders modulo Q.

The map trn
1 (x) from F2n to F2 is called trace function, defined as

trn
1 (x) = x + x2 + x4 + · · ·+ x2n−1

.

If n is known in context, the trace function can be simply denoted by tr(x).
Some properties are listed below, refer to [14] for more.

1. tr(α + β) = tr(α) + tr(β), for all α, β ∈ F2n .
2. tr(cα) = c · tr(α), for all c ∈ F2, α ∈ F2n .
3. tr(α2) = tr(α).

If boolean function is define as F2n → F2, it can be represented in trace form:

f(x) =
∑

d∈CS

tr(αxd), α ∈ F ∗2n , x ∈ F2n (1)

In formula (1), each trace function is called a monomial, d is called exponent
and

∑
d∈CS L(d) is called the linear span of f(x).

If boolean function is define as Fn
2 → F2, it can be represented in algebraic

normal form:

f(x) =
∑

s∈F n
2

asx
s, as ∈ F2, x ∈ Fn

2 , xs = xs0
0 xs1

1 · · ·xsn−1
n−1 . (2)

In formula (2), xs is also called monomial, and the degree of f(x) is defined as

deg(f) = maxas 6=0H(s),

where H(s) is the Hamming weight of s.
There is a one-to-one correspondence between the above two representations.

Let α be a primitive element of the field F2n and let (1, α, · · · , αn−1) be a basis
of F2n over F2, then the elements of F2n can be represented as

x0 + x1α + x2α
2 + · · ·+ xn−1α

n−1,

where xi ∈ F2, for i = 0, 1, · · · , n− 1. Now we have a map F2n ↔ Fn
2 defined by

x0 + x1α + x2α
2 + · · ·+ xn−1α

n−1 ↔ (x0, x1, · · · , xn−1).

This correspondence induce the correspondence between the trace form and al-
gebraic normal form. That is,

f(x) = f(
n−1∑

i=0

xiα
i) ↔ g(x0, x1, · · · , xn−1). (3)

Refer to [15] for detail.
For description convenience, we usually use an integer to represent a vector

x ∈ Fn
2 . For example, in F 3

2 ,
000↔0
001↔1
.
111↔7

.

Let x take value 0, 1, · · · , 2n − 1, we get a sequence (f(0), f(1), · · · , f(2n − 1)),
and it is called the truth table of the function f(x).

Definition 1 Let f(x), x ∈ Fn
2 be a boolean function. Define

sf (w) =
∑

x∈F n
2

(−1)f(x)(−1)w·x

as the Walsh spectrum of f(x) at vector w, where w ∈ Fn
2 .

Definition 2 [1] Let f(x), x ∈ Fn
2 be a Boolean function. If for any ω ∈ Fn

2 ,
sf (ω) = ±2n/2, then f(x) is called bent function.

Definition 3 [17]If an integer d < 2n − 1 such that

d = 2i mod 2k − 1,

then d is called Niho exponent, where i < n, and n = 2k.

If all the exponents in a trace form bent function are of Niho type, then the bent
function is called a Niho-type bent function.

Definition 4 [16] Vectorial function F (x) = {f1(x), f2(x), · · · , fk(x)} is called
vectorial bent function or perfect nonlinear s-box if any nonzero linear sum of
fi(x), i = 1, 2, · · · , k is a bent function, where k ≤ n/2, x ∈ Fn

2 , and each fi(x)
is a boolean function.

For its application in cryptography, perfect nonlinear s-box is discussed in pa-
pers[16, 18, 19].

The derivative function of f(x) in direction v is defined as fv(x) = f(x) +
f(x + v).

If S is a set, the notation |S| denote the size of the set S.
In this paper, we always let n = 2k, an even positive integer.

3 The Algorithm

Evolutionary computing is inspired by the evolution of nature and used to solve
problem which is not known or not known thoroughly. There are two key steps.
One is the evolutionary strategy , like how to code, how to mutate and mate,

which offspring to be reserved. The other key step is the cost function, which
judge if a gene, a mutation or mating is good or not.

In the paper, we represent boolean function in trace form. That is,

f(x) =
|CS|∑

i=0

tr(αix
di),

where di ∈ CS, αi ∈ F ∗2n . As the degree is at most k for a n variables bent
function, so only the coset leader di in CS satisfying the condition

H(di mod 2L(di) − 1) ≤ k

can be used to construct bent functions. Denote by BCS the set of coset leaders
satisfying the above condition.

From trace representation, if we only consider boolean functions with not
too much monomials, we can reduce the computation complexity. What’more,
by giving each exponent a cost function C(di), our algorithm is better than ex-
haustive searching algorithm in term of efficiency. This can be seen from the
following Section 4. The algorithm is as follows (take tr(αixd1 + αjxd2) as ex-
ample):

Algorithm 1 Input: n, the number of variable; Output:bent functions.
NN1 = 2n;
int r[NN1],s[NN1],t[NN1];
for(d1 ∈ BCS) C(d1) = 0;
for(d1 ∈ BCS)
{

for(d2 ∈ BCS and d2 > d1)
if(C(d1) > λ1 and C(d2) > λ2)
{

for(i = 0; i < NN1− 2; i + +)
{

tratofun(i, d1, r);
for(j = 0; j < NN1− 2; j + +)
{

tratofun(j, d2, s);
for(k = 0; k < NN1; k + +) t[k]=r[k]+s[k];
If t is bent function, the C(d1), C(d2) increased;
else C(d1), C(d2) decreased.

If d1 can’t construct bent function for sequential d2 above N1

times , begin the next d1.
If d2 can’t construct bent function for sequential j above N2

times, begin the next d2.
}

}
}

}

Notes: C(di) is the cost function of the exponent di. If the exponent can be used
to construct bent function, the value of the cost function get higher, else the
value get lower. tratofun(i, d, s) calculates the truth table s of function tr(αixd),
where α is a primitive element of F2n . λ1, λ2, N1, N2 are four properly selected
thresholds.

By the above algorithm, we can design bent functions in 6-16 variables with
a few number of monomials, like f(x) = tr(αixd1) + tr(αjxd2), or f(x) =
tr(αixd1) + tr(αjxd2) + tr(αkxd3), where α is a primitive of corresponding field.
Here we give some examples.

In 6 variables case, let F64 = {0, 1, α, α2, · · · , α62}, where α is a root of x6+x+
1 = 0. We list some parameters (d1, d2) in tr6

1(α
ixd1+αjxd2) form bent functions:

(3, 5), (3, 9), (3, 21), (3, 27), (5, 9), (7, 9), (7, 21), (7, 27), (9, 11), (9, 21), (9, 27). By se-
lecting the value of (i, j), we can get many bent functions. However they can be
classified into only two affinely inequivalent bent functions tr6

1(α
0x3 +α5x5) and

tr6
1(α

3x7+α0x9). Some parameters of form (d1, d2, d3) are (3, 5, 7), (3, 5, 11), (3, 5, 13),
(3, 7, 13), (5, 9, 21), (7, 13, 21), (11, 13, 21). From them, we get another affine in-
equivalent function tr6

1(α
1x3 +α6x7 +α60x13). So we get all 3 affine inequivalent

bent functions.
In 8 variable case, let F256 = {0, 1, α, α2, · · · , α254}, where α is a root of x8 +

x4+x3+x2+1 = 0. Some parameters of form (d1, d2) are: (3, 51), (5, 15), (5, 45),
(9, 85), (15, 17), (15, 45), (17, 23), (25, 45), (45, 85). Some parameters of form (d1, d2, d3)
are (3, 5, 9), (3, 9, 17), (3, 15, 27), (5, 9, 17), (5, 15, 25), (5, 25, 45), (9, 15, 21),
(15, 25, 45), (17, 21, 27), (17, 25, 45). By change the value of (i, j) or (i, j, k), we
get at least 53 affinely inequivalent bent functions, see Appendix 1. We also get
some bent functions of four monomials. For example some parameters of form
(d1, d2, d3, d4) are (5, 15, 25, 45), (5, 15, 25, 85), (5, 15, 45, 85), (5, 25, 45, 85),
(15, 25, 45, 85). By changing the coefficients, we get at least another 67 affinely
inequivalent bent functions, see Appendix 1. Similarly, we can get many bent
functions in 10-16 variables. For example, in 10 variables, only by changing the
coefficients (i, j) for tr10

1 (αix31 + αjx93), we can get several hundreds of affinely
inequivalent bent functions. It is a very desirable property that by changing the
coefficients, we can get affinely inequivalent bent functions.

4 Analysis of the results

4.1 On the Affine Transform on x

One obvious shortage of our obtained bent functions is that the number of mono-
mials is very low or in other words, the linear span is very low. But generally, a
simple form in trace representation doesn’t mean a simple form in its algebraic
normal norm. What’s more, the shortage can be easily overcome by a simple
method due to the following observation.

In 6-variable case, all 3 affinely inequivalent bent functions are : tr6
1(α

0x3 +
α5x5), tr6

1(α
3x7 + α0x9) and tr6

1(α
1x3 + α6x7 + α60x13). But there exist a lot of

bent functions with 7 or more monomials. All these functions must be got from

the 3 inequivalent functions by the affine transform on input x. That is, affine
transform can change the linear span. Recently, Dr W.Millan pointed out it is
a well known fact that linear span can be changed by affine transform. Here we
give a theoretical analysis and use it to solve our problem.

Theorem 1 The probability of boolean functions with linear span 2n − 2 is
almost 1.

Proof For boolean function f(x) =
∑

r∈CS tr(δrx
r), δr ∈ F2n , the size of

set CS can be estimated to be k = 2n/n. Then the number of function of form
f(x) = tr(δ1x

r1 + δ2x
r2 + · · ·+ δix

ri) is

Ci
k(2n − 1)i, i ≤ k.

So the number of functions with linear span 2n − 2 is

Ck
k (2n − 1)2

n/n = (2n − 1)2
n/n.

As

lim
n→+∞

(2n − 1)2
n/n

22n = 1,

this ends the proof.
We don’t know the distribution of bent functions in the whole boolean func-

tions space. But with experiments, we found the linear spans of most of bent
functions are large.

However we can solve the problem proposed in the first paragraph of this sec-
tion. Suppose f(x), x ∈ F2n is a sum of two or three monomials, and by formula
3 we can suppose g(x), x ∈ Fn

2 is its algebraic normal form . Let GL(n, 2) be the
general linear group. Given any a matrix A ∈ GL(n, 2), g(xA) is also a bent func-
tion, but usually there are much more monomials in its trace representation. For
example, let f(x) = tr8

1(x
5+x15+x53), x ∈ F256. Let g(x) be its algebraic normal

form. Randomly choose a matrix A = (0xd4, 0x5d, 0x25, 0x38, 0x9, 0x7d, 0x5a, 0x3),
where each hex number is a row vector, then the function g(xA) is also a bent
function, but its trace form representation is tr8

1(α
183x1 + α105x3 + α107x5 +

α133x7 + α41x9 + α234x11 + α167x13 + α100x15 + α203x19 + α141x21 + α33x23 +
α25x25+α234x27+α199x29+α177x37+α68x43+α146x45+α123x53)+tr4

1(α
238x17+

α238x51) + tr2
1(α

170x85). The fast generation of matrix A and the calculation of
f(xA) can be seen in Appendix 2.

By this simple method, we can construct perfect nonlinear s-box of non-Niho
type. Due to Dobbertin and Leander[20] we can get a perfect nonlinear s-box
F (x) = {f(x), f(γ1x), · · · , f(γk−1x)} from a Niho-type bent function f(x), where
{1, γi ∈ F2k , i = 1, 2, · · · , k − 1, } are linearly independent. Suppose G(x) is the
algebraic normal form representation of F (x). Obviously for any randomly given
A ∈ GL(n, 2), G(xA) is still a perfect nonlinear s-box, but usually not of Niho-
type. We give one example. Take f(x) = tr4

1(x
17) + tr8

1(x
23) as example and let

γ0 = 1, γ1 = α17, γ2 = α34, γ3 = α51 ∈ F16 are linearly independent, where α is
the same to that in Section 3. Now F (x) = {f(x), f(γ1x), f(γ2x), f(γ3x)} is a

perfect nonlinear s-box of Niho-type. Let G(x) be the algebraic normal form of
F (x) and randomly choose A = (0xd4, 0x5d, 0x25, 0x38, 0x9, 0x7d, 0x5a, 0x3) ∈
GL(8, 2), where each hex number is the row vector, then G(xA) is still a perfect
nonlinear s-box, but is of non-Niho type. Its four output functions are listed
below:

1. tr8
1(α

193x1+α194x3+α136x5+α223x7+α40x9+α253x11+α180x13+α126x15+
α148x19 +α192x21 +α95x23 +α64x25 +α157x27 +α34x29 +α79x37 +α108x39 +
α205x43 + α154x45 + α238x53 + tr4

1(α
17x51) + tr2

1(α
0x85),

2. tr8
1(α

57x1 + α184x3 + α0x5 + α150x7 + α85x9 + α152x11 + α102x13 + α30x15 +
α69x19+α236x21+α233x23+α120x25+α17x27+α242x29+α120x37+α127x39+
α100x43 + α61x45 + α129x53) + tr4

1(α
0x17 + α0x51)tr2

1(α
0x85),

3. tr8
1(α

250x1 + α99x3 + α90x5 + α12x7 + α17x9 + α32x11 + α128x13 + α166x15 +
α1x19 +α163x21 +α130x23 +α21x25 +α221x27 +α197x29 +α17x37 +α176x39 +
α102x43 + α0x45 + α61x53) + tr4

1(α
170x17 + α170x51),

4. tr8
1(α

79x1 + α39x3 + α127x5 + α79x7 + α18x9 + α19x11 + α211x13 + α216x15 +
α254x19 +α123x21 +α105x23 +α140x25 +α3x27 +α37x29 +α185x37 +α60x39 +
α224x43 + α48x45 + α40x53) + tr4

1(α
221x17 + α0x51) + tr2

1(α
0x85).

In communication area, sequence with larger linear span is expected and
emphasized in many papers. As sequence can also be represented in trace form,
the technique should be useful in designing sequence with large linear span.

4.2 On the Exponents

d is called a bent exponent if there exists α ∈ F2n such that f(x) = tr(αxd) is
a bent function. A survey on known bent exponents is given in [20]. The known
bent exponents are Gold type of form 2r+1 (r is a natural number), Dillon type of
form 2k−1, k = n/2[3], Dillon-Dobbertin[21] type of form 22r−2r+1, gcd(r, n) =
1, and the one by Canteaut of form (2r + 1)2, n = 4r.

By studying exponents in the designed bent functions, we have the following
observation: If the number of monomials in bent function is relatively small,
then the elements in set BCS play different roles in constructing bent functions.
More exactly, when d1, d2, · · · is one of bent exponents, one of the multiple of
bent exponent or one of the factors of bent exponent, the function tr(αi1xd1 +
αi2xd2 + · · ·) is more possible to be bent function, while some exponents in BCS
can’t be used to construct bent function.

The difference is a desirable property in evolutionary algorithm. If an element
in BCS can’t be used to construct bent function, only after a few number of
program run, its cost function get very small. By choosing a proper threshold, it
can be discarded directly in the following run of the program and thus make our
algorithm more efficient than purely exhaustive searching algorithm or random
algorithm. This is also the advantage over the algorithms based on the algebraic
normal form, truth table, or Walsh spectra because we don’t know what kinds of
algebraic normal form, truth table, Walsh spectra are more possible to be used
to construct bent functions;

We give two contrast examples. In 8 variables case, there are 22 coset leaders
in BCS = {3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 37, 39, 43, 45, 51, 53, 85, 119}.
When designing bent function of form tr(αixd1 + αjxd2), only after a few num-
ber of runs, the cost functions of some coset leaders, like 37, 43, 53, get very
small. By selecting proper threshold λ1, λ2, they are discarded directly. This
is one example. The following is a contrast example. When d1, d2, d3, d4 ∈
{odd multiple of Dillon exponent}⋂

BCS, for 8-16 variables, all combinations
(d1, d2) of two monomials, all combinations (d1, d2, d3) of three monomials and
all combinations (d1, d2, d3, d4) of four monomials can design bent functions ex-
cept the following four cases. The four cases occur in 14 variable. They are
(381, 2667), (381, 1143), (1143, 2667) and (381, 1143, 2667).

4.3 On Classification of Obtained Functions

Our algorithm is so efficient that we can obtain hundreds of bent function only
in one second. we classify the obtained functions under the action of affine group
and the number of inequivalent classes is reported.

The affinely classification of boolean functions is already discussed in several
papers[3, 22–24]. In order to classify the obtained bent functions, we use the
method in [3, 24].

Two functions f(x), g(x) are called equivalent if there exists A ∈ GL(n, 2), b, l ∈
Fn

2 , c ∈ F2 such that f(x) = g(xA+b)+ lx+c. A map M from the set of boolean
functions to a set of numbers is called an invariant if M(f) = M(g) holds for any
two equivalent functions f(x), g(x). All functions with same invariant value are
taken as one equivalent class. By this way, invariant is good tool to classify set. If
we know T , the number of equivalent classes under some equivalent relationship,
and an invariant just takes T different values, then the set is already classified.
On this occasion, the invariant is called a discriminant of the set. The following
is a special case of theorem 2.1 in [3].

Proposition 2 [3] If f(x) = g(xA + b) + lx + c, where x, b, l ∈ Fn
2 , A ∈

GL(n, 2), c ∈ F2, then {fv(x)|v ∈ Fn
2 } is affinely equivalent to {gv(x)|v ∈ Fn

2 }.

Due to Preneel[25], the distribution of absolute Walsh spectra is invariant.
We give all functions of same distribution of absolute Walsh spectra a same
number N(walsh(h)), where h(x) is one of these functions. By Proposition 2,
the set {N(walsh(fv(x))|v ∈ Fn

2 } is equal to the set {N(walsh(gv(x))|v ∈ Fn
2 }.

That is, M(f) = {N(walsh(fv(x))|v ∈ Fn
2 } is invariant. It can be used to classify

bent functions. Table 1 lists the number of inequivalent bent functions we get.

4.4 On the number of monomials

In 6 variables case, all 3 kinds of inequivalent bent functions are obtained from
2 and 3 monomials. Could all affinely inequivalent 8-variable bent functions be
obtained only from 2,3 and 4 monomials? what’s the case for more variables?
Or in other words, for any bent function with large linear span, does there exist

Table 1. Number of Affinely Inequivalent Bent Functions

Variable Number Number of bent

8 120

10 above 300

a bent function with small linear span affinely equivalent to it? If the answer
is yes, it would be very promising to know the structure of bent functions in
more details because we can only study these bent functions whose linear span
is small.

5 Conclusion

The space of boolean functions is very complex, what we know is only a small
part. Though there are many research on bent functions, we still don’t know it
in detail. On this occasion, evolutionary computing is a useful method. Usually
it can provide practical solution to problem, what’s more, it can lead to theory
progress by theoretical analysis of the obtained results.

In this paper, we give an efficient evolutionary algorithm designing bent
functions. With it, we obtained many bent functions and made some analysis on
them.

First we observe that all 3 affinely inequivalent bent classes in 6-variable
can be written as the linear sum of 2 or 3 monomial trace functions. We make
a conclusion that affine transform can be used to change the linear span. The
conclusion can be used to design bent functions both of large linear span and
small linear span and to design perfect nonlinear s-box of non-Niho type.

Second, we find that some exponents take more chances to construct bent
functions while some exponents take less. By this observation, we give each ex-
ponent a cost function, which make our algorithm more efficient than exhaustive
searching algorithm or random algorithm. This is also the advantage over the
algorithms based on the algebraic normal form, truth table, or Walsh spectra
because we don’t know what kinds of algebraic normal form, truth table, Walsh
spectra are more possible to be used to construct bent functions.

Third, we classify the obtained bent functions into affinely inequivalent classes.
And the number of affinely inequivalent classes is reported.

Acknowledge: we would like to thank Dr W.Millan for pointing out several
mistakes in the paper.

References

1. O. S. Rothaus, On ”Bent” Functions, J. Combin. Theory Ser. A.,1976, 20, 300-305.

2. R.L.McFarland, A family of noncyclic difference sets, Journal of combina-
torics(series A) 15,1-10,1973.

3. J. F. Dillon. Elementary Hadmard Difference Sets. in Proc. Sixth S-E conf.
Comb. Graph Theory and Comp., F.Hoffman et al.(Eds), Winnipeg Utilitas
Math(1975),237-249.

4. C. Carlet. Two new classes of bent functions, Advance in cryptology-eurocrypt’93,
LNCS765. 77-101, 1994.

5. C. Carlet. Generalized Partial Spreads. IEEE Transacion on I.T., Vol 41, No. 5,
1482-1487, 1995.

6. X. Hou. On the Coefficients of Binary Bent Functions. Proceeding of the American
Mathematical Society, Vol. 128, No. 4, 987-996, 1999.

7. E. Bihama, A.Shamir,Differential cryptanalysis of DES-like cryptosystems, Journal
of Cryptology, Vol.4, No.1 (1991) 3-72.

8. M. Matsui, Linear cryptanalysis method for DES cipher. LNCS 765, Eurocrypt93,
1994,386-397.

9. K. G. Paterson, Sequences for OFDM and Multi-code CDMA: two problems in al-
gebraic Coding Theory, in T.Helleseth, P.V. Kumar and K.Yang editors, Proceed-
ings of sequence and their applications, SETA01,46-71, Springer-verlag, London,
2002.

10. F. J. Macwillams, J. A. Solane. The Theory of Error-correcting Codes. North-
holland Publishing Company, Amsterdam, 1978.

11. J.Fuller,E. Dawson, W. Millan, Evolutionary generation of bent functions for cryp-
tography,Vol. 3, 1655-1661,the 2003 congress on Evolutionary Computation.

12. J.A.Clark,S. Jacob, S. Matria,P. Stanica. Almost boolean functions: the design of
boolean fucntions by spectral inversion. Computational Intelligence, Volume 20,
Number 3,446-458, 2004

13. Q. Meng, H. Zhang,Z. Wang, et al. Designing bent functions using evolving com-
puting. Acta electronica sinica, 2004, No.11 1901-1903.

14. R.Lidl, H. Niederreiter, finite field, encyclopedia of mathematics and its applica-
tions.

15. A.M. Youssef, G.Gong, Hyper-bent functions, Eurocrypto’01, LNCS 2045, 406-
419,springer-verlag,2001.

16. K.Nyberg, Perfect non-linear s-boxes, Advances in crypto-eurocrypt’91, LNCS.
Vol.547, Springer-verlag,378-386.

17. Y. Niho, Multivalued cross-correlation functions betweeen two maximal linear re-
cursive sequences, Ph.D. Thesis, Univeristy of Southern California. 1972.

18. T.Satoh, T. Iwata,K.kurosawa,on cryptographically secure vectorial boolean func-
tions. Asiacrypt’99,20-28. Springer-verlag.

19. Wenying Zhang, Shiqu Li, Peili Fu, the construction of multi-output bent functions
with highest algebraic degree, Mathematica Applicata,2004,17(3),444-449.

20. H. Dobbertin, G. Leander, A survey of some recent results on bent functions, Third
International ConferenceSequences and Their Applications - SETA 2004,LNCS
3486, Springer 2005,1-29.

21. J.F.Dillon, H. Dobbertin, new cyclic difference sets with singer parameters, finite
field and applications, 2004,342-389.

22. J.A. Maiorana, A classification of the cosets of the reed-muller code R(1, 6), math.
Comp.57,403-414,1991.

23. Fuller. J., Millan. W.. Linear redundancy in S-box. In: Fast Software Encryption,
LNCS 2887, Springer-Verlag, 2003, 74-86.

24. Q. Meng, M. Yang, H. Zhang,Y.Liu, Analysis of affinely equivalent boolean func-
tions, The first workshop on boolean functions and application on cryptography,
also available at http://eprint.iacr.org, 2005/025.

25. B. Preneel, Analysis and design of cryptographic hash functions, Ph.D thesis, KU
Leuven(Belgium),February 1993.

Appendix 1: inequivalent 8-variable bent functions
The 53 affinely inequivalent bent functions of form tr8

1(α
ixd1+αjxd2+αkxd3).

The parameter (i, d1, j, d2, k, d3) is as follows:

0 3 1 5 0 51 0 3 17 9 0 27 0 3 0 15 0 27
1 3 30 39 5 51 0 5 0 15 0 17 0 5 0 15 0 25
2 5 16 15 9 25 2 5 20 15 17 25 2 5 23 15 0 25
0 5 0 15 0 53 3 5 2 25 1 45 3 5 21 25 8 45
0 5 0 45 0 53 8 9 0 17 63 39 0 15 0 17 5 45
0 15 0 17 15 45 0 15 0 17 17 45 0 15 1 17 0 45
3 15 0 17 7 45 5 15 0 17 0 45 0 15 4 25 17 45
0 15 23 25 10 45 1 15 31 25 17 45 7 15 4 25 9 45
7 15 17 25 14 45 10 15 27 25 16 45 4 15 31 27 46 45
3 15 2 27 13 51 0 15 17 39 0 45 4 17 2 19 19 53
0 5 17 15 51 25 1 5 1 15 53 25 1 5 10 15 127 25
1 5 23 15 90 25 1 5 53 15 84 25 1 5 70 15 78 25
1 5 100 15 66 25 1 5 122 15 22 25 1 5 122 15 33 25
2 5 25 15 84 25 2 5 34 15 73 25 2 5 35 15 1 25
2 5 53 15 7 25 3 5 77 15 49 25 3 5 94 15 2 25
4 5 2 15 99 25 0 15 13 25 169 45 1 15 48 25 181 45
1 15 64 25 173 45 3 15 47 25 177 45 3 15 62 25 194 45
7 15 29 25 123 45 7 15 29 25 162 45

The 67 affinely inequivalent bent functions of form f(x) = tr8
1(α

ixd1+αjxd2+
αkxd3 + αlxd4). The parameter (i, d1, j, d2, k, d3, l, d4) is as follows:

0 5 1 15 5 25 229 45 0 5 1 15 77 25 130 45 0 5 1 15 85 25 155 45
0 5 1 15 85 25 188 45 0 5 3 15 35 25 249 45 0 5 3 15 43 25 207 45
0 5 3 15 170 25 42 45 0 5 5 15 170 25 91 45 0 5 5 15 170 25 181 45
0 5 7 15 85 25 216 45 0 5 7 15 168 25 66 45 0 5 7 15 170 25 161 45
0 5 7 15 186 25 204 45 0 5 11 15 160 25 118 45 0 5 13 15 85 25 26 45
0 5 13 15 85 25 161 45 0 5 13 15 85 25 177 45 0 5 17 15 85 25 68 45
0 5 31 15 170 25 229 45 0 5 43 15 170 25 89 45 1 5 0 15 252 25 110 45
1 5 2 15 96 25 241 45 0 5 1 15 5 25 229 45 0 5 1 15 5 25 229 45
0 5 3 15 35 25 249 45 0 5 3 15 43 25 207 45 0 5 4 15 53 25 10 45
0 5 13 15 10 25 13 45 0 5 22 15 65 25 236 45 1 5 0 15 56 25 155 45
1 5 1 15 56 25 15 45 1 5 2 15 56 25 233 45 1 5 4 15 56 25 19 45
1 5 6 15 56 25 84 45 1 5 11 15 56 25 51 45 1 5 11 15 56 25 74 45
1 5 13 15 56 25 129 45 1 5 16 15 56 25 17 45 1 5 26 15 56 25 33 45
1 5 41 15 56 25 164 45 1 5 56 15 55 25 126 45 1 5 62 15 56 25 143 45
2 5 5 15 9 25 160 45 2 5 18 15 9 25 193 45 3 5 6 15 2 25 27 45
0 5 7 15 33 25 9 85 0 5 27 15 29 25 1 85 0 5 51 15 34 25 1 85
0 5 57 15 19 25 5 85 1 5 14 15 1 25 5 85 1 5 27 15 39 25 5 85
1 5 37 15 5 25 9 85 1 5 37 15 10 25 9 85 1 5 63 15 10 25 1 85
2 5 3 15 16 25 9 85 2 5 3 15 58 25 9 85 2 5 6 15 27 25 5 85
2 5 11 15 38 25 5 85 2 5 41 15 55 25 5 85 3 5 7 15 29 25 9 85
3 5 43 15 19 25 9 85 3 5 43 15 32 25 5 85 3 5 48 15 13 25 1 85
0 5 0 15 51 45 5 85 1 5 17 15 18 45 1 85 1 5 31 15 13 45 9 85
1 5 37 15 60 45 5 85

Appendix 2: fast generation of invertible matrix and f(xA)
In this appendix, we give an expand algorithm to generate invertible matrix

and to calculate the truth table of f(xA), given the truth table of f(x) and the
matrix A.

For any given set of size n, like A = (a1, a2, · · · , an) there are 2n kinds of
different combinations. If we take + as the combination relationship, then all

combinations are

0, a1, a2, a1 + a2, a3, a1 + a3, a2 + a3, a1 + a2 + a3, · · · , a0 + a1 + · · ·+ an.

They can be writen into matrix form:



0· · ·0 0
0· · ·0 1
0· · ·1 0
0· · ·1 1
.
1· · ·1 1



×




an

an−1

an−2

an−3

. . . .
a1




=




0
a1

a2

a1 + a2

.
a1 + a2 + · · ·+ an




(4)

From the left part of the equation 4, we can give an efficient algorithm.
Expand ALgorithm
input :array a[],the elements of the set, and n, the size of the set.
output: all kinds of 2n combinations c[0], c[1], · · · , c[2n − 1].

Expand(int a[],int n, int c[]);
{
c[0]=0;
for(i=0;i<n;i++)

for(j=0;j<(1<<i);j++) c[j+1<<i]=c[j]+a[i];
}

From above algorithm, the computation is

1 +
n−1∑

i=0

2i = 2n.

It is optimum in term of computation.
We will use the above algorithm to generate invertible matrix randomly.

First we can randomly choose a nonzero element a1 ∈ Fn
2 ; Second, we choose

the second nonzero element a2 such that a2 6= a1; Thirdly, we choose the third
nonzero element a3 such that a3 is not in the linear space generated by the
elements a1, a2; and so on, until we get n elements. We notice that one frequently
used computation is generating the linear span from a group of elements. Our
expand algorithm can solve this problem.

algorithm: generate invertible matrix randomly
input n,the dimension of the matrix.
output: the row vector r1, r2, · · · , rn of the generated matrix.

int flag[1<<n];
int modu=(1<<n)-1;
int t[1<<n];
for(i=0;i<(1<<n);i++) flag[i]=1;

for(i=0;i<n;i++)
{

while(!flag[tmp]) tmp=rand()&modu;
r[i]=tmp;
Expand(r,i+1,t);
for(j=0;j<(1<<(i+1));j++) flag[t[j]]=0;

}
}

Now we discuss how to get the truth table of f(xA), given the truth table of
f(x) and the matrix A = (r1, r2, · · · , rn), where ri is the i-th row vector.

Let vector v = (rn, rn−1, · · · , r1), calculate Expand(v,n,c), then the truth
table of g(x) = f(xA) can be obtained as follows: g(x) = f(c[x]).

In the ordinary method, to calculate f(xA), the computation is 2nn2, while
the computation in our method is 2n. Obviously, much computation is saved by
our algorithm. As a basic algorithm, Expand will be used in many areas.

