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Abstract

To help motivate the Weil pairing, we discuss it in the context of
elliptic curves over the field of complex numbers.

1 Introduction

At the workshop on “Pairings in Cryptography” in Dublin, Breno de Medeiros
suggested that it might be useful to explain or motivate pairings by considering
the point of view of elliptic curves over C. The aim of this note is to describe
pairings in this setting. The hope is that this might help readers understand
why certain properties of pairings naturally arise. We also comment on some
limitations of this point of view.

This note will not be submitted anywhere, it is just for the edification of the
community. Any comments are very welcome.

2 Elliptic curves over C
Almost every textbook on elliptic curves (e.g., [6]) contains a discussion of ellip-
tic curves over C. All we need to use is that an elliptic curve E can be written
as

C/〈1, τ〉

where τ ∈ C is a complex number with imaginary part Im(τ) > 0. Here 〈1, τ〉
is the lattice {n + mτ : n, m ∈ Z}.

Every point of E = C/〈1, τ〉 can be represented as a+ bτ where 0 ≤ a, b < 1.
The group law is simply (a+bτ)+(c+dτ) = (a+c)+(b+d)τ modulo 〈1, τ〉 and
the identity element is 0. Clearly, n(a + bτ) = (na) + (nb)τ modulo 〈1, τ〉. The
connection with Weierstrass equations is given by the Weierstrass ℘-function.
We don’t need to discuss that here.

Let l be a positive integer. The set E[l] of points of order l is given by

E[l] =
{

n
l + m

l τ : n, m ∈ Z, 0 ≤ n, m < l
}

.

From this description of E[l] it is immediately deduced that #E[l] = l2.
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3 A pairing on elliptic curves over C
Fix an elliptic curve E = C/〈1, τ〉 and a positive integer l. Let a + bτ, c + dτ ∈
E[l]. Then a, b, c, d ∈ 1

l Z = {n
l : n ∈ Z}.

Denote by µl the set of l-th roots of unity in C. We define the pairing

el : E[l]× E[l] −→ µl

by
el(a + bτ, c + dτ) = exp(2πil(ad− bc)).

The alert reader will clearly see the connection with determinants.
To clarify that the image is µl, write a + bτ = r

l + s
l τ and c + dτ = t

l + u
l τ

where r, s, t, u ∈ Z. Then the pairing is

exp(2πil(ru− st)/l2) = exp(2πi(ru− st)/l).

The basic properties of the Weil pairing are then easily deduced:

Bilinear: This is clear.

Non-degenerate: This is also clear, since given a + bτ we can choose c and d
so that the determinant is not in 1

l Z.

Alternating: This follows from the fact that the determinant of parallel vectors
is zero.

Compatible: This is the property that if a + bτ ∈ E[lm] and c + dτ ∈ E[l]
then

elm(a + bτ, c + dτ) = el(m(a + bτ), c + dτ).

The proof of this is easy:

elm(a + bτ, c + dτ) = exp(2πilm(ad− bc)) = exp(2πil((ma)d− (mb)c))

which is clearly el(m(a + bτ), c + dτ).

4 An interpretation in terms of the intersection
pairing

In [1] and Section 7 of [5] the above definition of the pairing is explained in
terms of the intersection pairing on homology. We briefly recall this description
here.

Recall that the first singular homology group H1(E, Z) is the quotient of
the group of singular n-cycles by the subgroup of singular n-boundaries. In the
case of an elliptic curve over C (i.e., a torus) this group is isomorphic to a free
group on two generators γ1, γ2 corresponding to the usual two non-homotopic
loops on the surface of the doughnut. In terms of C/〈1, τ〉 one can take γ1 as
the path from 0 to 1 and γ2 as the path from 0 to τ .

The intersection pairing on H1(E, Z) takes values in Z. It is determined
by γj · γj = 0 for j ∈ {1, 2} and γ1 · γ2 = 1 = −γ2 · γ1. In other words,
(aγ1 + bγ2) · (cγ1 + dγ2) = ad− bc.

To relate this to the discussion in the previous section, we identify

E[l] ∼= 1
l H1(E, Z)/H1(E, Z)

∼= H1(E, Z)/lH1(E, Z)
∼= H1(E, (Z/lZ))
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where the second isomorphism comes from multiplication by l.
The intersection pairing on H1(E, (Z/lZ)) is just the reduction modulo l of

the intersection pairing over Z. Hence, the intersection pairing induces a pairing

el : E[l]× E[l] −→ (Z/lZ).

Composing with the map (Z/lZ) → µl given by x 7→ exp(2πix/l) gives us the
same pairing as before.

5 Relation to functions and Miller’s algorithm

In practice we define and compute pairings on elliptic curves using the language
of divisors and functions. The connection between the complex pairing defined
above and the way pairings are usually described is explained in the appendix
“The skew symmetric pairing” to Chapter 18 of Lang’s “Elliptic functions” [3].

Lang gives the usual definition of the Weil pairing in terms of functions and
divisors. He proves Weil reciprocity using the Weierstrass sigma function (there
is a harmless typo: the sigma function is odd, not even). The connection with
the pairing given above is obtained from the sigma functions and the Legendre
relation. This connection is used in [3] to prove non-degeneracy of the Weil
pairing. In particular, this shows that the pairing defined above is the Weil
pairing for elliptic curves over C.
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