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Abstract. In this report we propose an effective method to integrate
revocation mechanism into some group signature schemes based on the
strong RSA assumption. In such mechanism, the group manager can
either update group member’s certificates, or revoke a group member.
More specifically, we propose a generic method for protocols of sign, ver-
ify, and revocation. We use an example to demonstrate the effectiveness
of the method by applying it to a well known group signature scheme.
The new construction has better performance while enjoying an efficient
revocation mechanism.
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1 Introduction

Group signature is a privacy-preserving signature scheme, which was introduced
by Chaum and Heyst in 1991 [16]. In such scheme, a group member can sign a
message on behalf of the group without revealing his identity. Only group man-
ager can open a signature and find its originator. With the widespread applica-
tions of Internet, people pay more attention to their privacy since information
technology can easily collect a person’s private data without awareness of their
owner. In recent years, group signature has attracted a lot of researchers and
many schemes were proposed in the literature [17, 14, 15, 13, 1, 11, 12, 2, 10, 24, 7,
8]. A complete list of bibliography of group signatures can be found at [25]. It
needs point out that the research of group signature has already evolved to more
broad scopes in these days, such as anonymous identity and authentication. In
such context, we treat anonymous signature as the proof that a member has been
authenticated by a trusted third party [23, 9]. It is not regarded as a signature
on behalf of a group any more.

Group signature is tightly coupled with its target applications compared
with other cryptographic primitive such as encryption scheme. Therefore, the
model of group signature scheme are some sort of informal in the literature
and application oriented. In this paper, we follow the model in [10] which is a



relaxation to a strict definition proposed in [4]. This relaxation is mainly about
group member revocation. To satisfy the requirements of the model in [4], it
is impossible to revoke a group member except that all valid group members
can somehow update their certificates. Our point of view about group signature
is the preference of revocation mechanism. The reason essentially comes from
the underlying assumption of group signature itself. We believe an underlying
motivation of group signature is “distrust” assumption, i.e., people tend to doubt
others would behave honestly. In group signature scheme, all group members are
anonymous. If a corrupted member can not be identified, it is unlikely we would
deploy such system. Otherwise we have to trust all group members would behave
in expected manners. Thus comes the controversy of trust: group members do not
trust others, and hope others would trust them. Therefore, a group signature
without revocation mechanism has to assume all group members are honest,
and this eventually conflicts with “distrust” assumption for a group signature.
Therefore, we adopt the model in [10] to discuss our method to implement group
signature.

Among group signature schemes in the literature, there are some construc-
tions that share similar certificate structure, and are based on the same secu-
rity assumption [13, 1, 12]. However, current schemes do not provide revocation
mechanism. In this paper, we propose an effective method to integrate revocation
mechanism into these constructions. We also give an example to demonstrate the
method.

The paper is organized as follows. Section 2 reviews the definitions and se-
curity assumptions. In section 3 we introduce the proposed method. We apply
this method to a well-known group signature scheme to implement efficient re-
vocation mechanism in section 4. The paper concludes in section 5.

2 Definitions and Preliminaries

We adopt the model for group signature introduced in [10]. It is a relaxation of
strict model in [4]. This model allows the revocation of a group member. As we
discussed before, it is a more realistic model. We only outline core ideas of the
model. Readers are encouraged to refer to [4, 10, 5] for formal treatment.

Definition 1 (The model). A group signature scheme includes a group man-
ager and group members. The group manager owns group master keys while each
member holds its group member key, or group member certificate. The scheme
consists of six protocols:

– KeyGen: the group manager uses KeyGen protocol to generate system pa-
rameters and its master key.

– Join: a party runs join protocol, together with the group manager, to obtain
a certificate to represent its group membership.

– Sign: a group member anonymous sign a message following sign protocol.
– Verify: a verifier uses verify protocol to check whether a signature is origi-

nated from a member in the group.



– Open: the group manager uses open protocol to find the signer of a signature.
– Revoke: the group manager uses revoke protocol to exclude a group member.

The security requirements for a group signature should have following properties:

– Full-traceability. This property says that any valid signature can eventually
be traced back to a legitimate group member. It should never happen that we
cannot find the signer of a valid signature. Full-traceability has two implica-
tions: (1) a valid group certificate can only be created by the group manager,
(2) a valid signature can only be generated by a legitimate group member if
the secrets of the member is not exposed to any third party.

– Anonymity. This property says that if both the group manager’s secret and
a member’s secret are not exposed, it is infeasible to find the signer of a
signature, or link the signatures by a signer.

The model in [4] defines Full-Anonymity which says even a member’s secrets
are exposed, it is still impossible to decide the signatures by this member. Ob-
viously, under this strict model, we cannot revoke a member by exposing its
secrets. Just as mentioned before, this property essentially precludes the possi-
bility to revoke a group member explicitly.

Next, we review some definitions and widely accepted complexity assump-
tions that we will use in this paper.

Definition 2 (Special RSA modulus). An RSA modulus n = pq is called
special if p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ also are prime numbers.

Definition 3 (Quadratic Residue Group QRn). Let Z∗

n be the multiplicative
group modulo n, which contains all positive integers less than n and relatively
prime to n. An element x ∈ Z∗

n is called a quadratic residue if there exists an
a ∈ Z∗

n such that a2 = x (modn). The set of all quadratic residues of Z∗

n forms
a cyclic subgroup of Z∗

n, which we denote by QRn. If n is the product of two
distinct primes, then |QRn| = 1

4 |Z
∗

n|.

Property 1 If n is a special RSA modulus, with p, q, p′, and q′ as in Def-
inition 2 above, then |QRn| = p′q′ and (p′ − 1)(q′ − 1) elements of QRn are
generators of QRn.

Property 2 If g is a generator of QRn, then ga mod n is a generator of QRn

if and only if GCD(a, |QRn|) = 1.

The security of our techniques relies on the following two assumptions, which
are widely accepted in the cryptography literature (see, for example, [3, 19, 6]).

Assumption 1 (Strong RSA Assumption) Let n be a special RSA modu-
lus. The Flexible RSA Problem is the problem of taking a random element
u ∈ Z∗

n and finding a pair (v, e) such that e > 1 and ve = u (modn). The
Strong RSA Assumption says that no probabilistic polynomial time algorithm
can solve the flexible RSA problem with non-negligible probability.



Assumption 2 (Computational Diffie-Hellman Assumption for QRn) Let
n be a special RSA modulus, and let g be a generator of QRn. Then given ran-
dom gx and gy, there is no probabilistic polynomial-time algorithm that computes
gxy (mod n) with non-negligible probability.

Assumption 3 (Decisional Diffie-Hellman Assumption for QRn) Let n be
a special RSA modulus, and let g be a generator of QRn. For two distributions
(g, gx, gy, gxy), (g, gx, gy, gz), x, y, x ∈R Zn, there is no probabilistic polynomial-
time algorithm that distinguishes them with non-negligible probability.

3 The Method to Implement Revocation Mechanism

In this section we introduce the method to implement revocation mechanism.
We outline basic methodology without any real implementation. A specific con-
struction depends on the requirements of target application, system parameters,
and join protocol.

3.1 Group Member Certificate

Group signature schemes [13, 1, 12] are constructed over quadratic residue group
QRn where n is a special RSA modulus. The security of these schemes are based
on the strong RSA assumption. In these schemes, a group certificate is in the
form of

(A = ge−1

, e),

where g is a generator of QRn, and e−1 is the inverse of a prime number e
modulo the order of QRn. g could have some substructure such as g = axia0 in
[1].

3.2 Sign and Verify Protocols

To anonymously sign a message, a group member needs to hide its identity. It
uses ElGamal encryption scheme [18] as

T1 = Ayw, T2 = gw,

where y is the group manager’s ElGamal public key such that y = gx mod n.
The group member also computes

T3 = gwe.

A signer proves to a verifier that T1, T2, T3 are constructed in such way that
the hidden value A in T1 is e-th root of g, and T3 is the e-square of T2. The build-
ing blocks for the proof are statistical honest-verifier zero knowledge protocols of
knowledge related to discrete logarithm over QRn [19, 20, 13]. They may include
the protocols such as the knowledge of the discrete logarithm, the knowledge of
equality of two discrete logarithms, the knowledge of the discrete logarithm that
lies in certain interval, etc.



3.3 Group Member Revocation

We distinguish two group member revocation methods. The first one is to up-
date all certificates for valid group members. In this way an excluded member
indirectly loses its membership. We call it Certificate Redistribution. Another
method is based on Revocation List which contains entries for the identification
of revoked members. These two methods are complementary with each other.

In the context of group signature, due to the complex of join protocol, it is
undesirable for valid group members to re-run join protocol to exclude a member
implicitly. The problem is how to efficiently implement certificate redistribution
without re-running join protocol. At the other side, frequently updating group
certificates is not a satisfactory solution. We should be able to use revocation list
to identify small number of revoked members. Ideally, a desirable solution would
be first using revocation list to identify revoked members. When revocation list
grows larger to a certain threshold, the group manager then updates all certifi-
cates for valid group members to exclude all revoked members, and revocation
list is reset to empty. Our method can achieve such goal effectively.

We adopt certificate redistribution method which has been introduced in
[2] without explicit addressing its security 1. Recall that one component of a

member certificate is A = ge−1

. To update a valid certificate, the group manager
picks a random integer r such that GCD(r, |QRn|) = 1, computes

A′ = Ar = gre−1

= (gr)e−1

= g′e
−1

.

Due to property 2, g′ will be another generator of QRn. The group manager
sends new certificates to valid group members in secure way.

It can be easily observed that this method does not need to re-run join pro-
tocol, and most computation can be completed by the group manager alone off-
line. This implies that the group manager can pre-compute all new certificates,
and only distribute them to group members which are still legitimate. After
certificate redistribution, each member still keeps its secrets. Consequently and
significantly, redistribution could be done in nearly real-time.

This method has not been considered a good solution in [2]. However, we have
a quite different opinion. We believe it is an effective method in many applica-
tions. The main negative comment about this method in [2] is that the group
manager needs to perform O(n) cryptographic operations for every revoked mem-
ber. However, this is not necessarily a bad thing in practice. In most situation,
group manager may be server(s) with high computing capability. However, a
group member could actually be a crypto-processor or smart card with limited
resources, such as TPM (Trusted Platform module) in [23]. For the purpose of
fast certificate redistribution, it is reasonable to let powerful servers undertake
most computation task. In fact, any certificate redistribution method needs O(n)
operations. The real issues are about (1) the total computation overhead, and

1 We independently devised the method in other place. Later, we noticed this method
has already been introduced in [2]. However, our point of view to the method is quite
positive.



(2) how to distribute computation overhead among participants. Actually, some
certificate redistribution methods just push the computation overhead to the
group members [2, 10, 12], and some scheme has much higher total computation
overhead. This may not be desirable if group members are resource limited.

Another advantage is the pre-computation of certificates. In the introduc-
tion we mentioned that group signature is not merely treated as an anonymous
signature in these days. A lot of times we use it to implement anonymous ac-
cess control/authentication in interactive manners [21, 1, 23]. In such application,
when a corrupted member is being identified, the group manager needs immedi-
ately notify all verifiers (servers) that authentication should be based on some
new system parameters. When a user tries to anonymously access a server, it will
find access parameters have been updated. Then it needs to retrieve its new cer-
tificate from the group manager. Most of time, the group manager has already
sent encrypted new certificates to valid members in secure way before a user
notices system parameters have been changed. We have devised an encryption
method which is similar to ElGamal encryption scheme. The group manager
encrypts a new certificate A′ as

(Ar, grA′),

where r is a large random integer in Zn. Since A = ge−1

, only group member itself
can compute (Ar)e = gr, then it can further obtain A′. Most computation can
be accomplished by the group manger in advance, without considering which
group member is going to be excluded. And each valid group member only
needs one decryption operation. It is even possible that the group manager can
create multiple certificates for later use when a party joins the group. The pre-
computation is a nice property. A seemingly inefficient method now becomes
quite a good solution to fast certificate redistribution. We treat it is an effective
method in certain context.

For an excluded group member, with existing certificate A that uses generator
h, updating to a new certificate means computing A′ = g′e

−1

= gre−1

based on
ge−1

and g′ = gr without knowing r or e−1, which is equivalent to solving
the computational Diffie-Hellman problem 2. Therefore, we have the following
theorem.

Theorem 1. If there exists an algorithm that can compute an updated group
member certificate without knowledge of the group manager’s secret value, then
there exists an algorithm that solves the computational Diffie-Hellman problem
over QRn.

Our method to implement revocation list is straightforward. The group man-
ager puts a revoked member’s ei on list. To identify a revoked group member, a
verifier checks

T ei

2 =? T3

2 g′ or certain substructure of g′ will be published by the group manager according to
a specific construction. Here we assume g′ is being published.



for all ei on the list. If the equation holds for one ei, it shows the signature comes
from a revoked member. This is a quite simple and efficient method (Of course,
the list should be constrained to a reasonable size). This method is also called
“Verifier-Local Revocation” in [8].

Remark 1. It needs to point out that revocation list method implements full
revocation defined in [10], or unconditional linkability defined in [2], i.e., all the
signatures by a revoked member can be identified. Therefore a group signature
scheme using this method only enjoys anonymity, not full anonymity. However,
certificate redistribution method will not bring any issues related to anonymity.
Therefore, in practice, we can adaptively choose either one to satisfy some criteria
such as (1) system performance, or (2) privacy policy. For example, we may use
revocation list to revoke members in one category, and certificate redistribution
to preclude members in another category. The combination of these methods
could provide us desirable flexibility.

3.4 Open Protocol

To open a signature, the group manager uses ElGamal decryption algorithm [18]
to recover the identity of a group member

A = T−x
2 T1.

4 A Real Example

In this section we give an example to show the effectiveness of the method
in previous section. ACJT scheme is a well-known group signature construction
introduced in 2000 [1]. It is a practical and provable secure construction for large
group. However, it does not provide revocation mechanism. In the following we
would like to adopt exact same notions as original paper. Thus, readers can easily
compare the new scheme with original one, and see how our method integrates
revocation mechanism into the original scheme.

We should notice that ACJT scheme achieves full anonymity without revoca-
tion mechanism, while new scheme provides revocation mechanism and achieves
only anonymity. Again, we make it clear that this is an issue about how we are
going to apply group signature to a specific application.

4.1 The System Parameters

– a special RSA modulus n = pq, p = 2p′ + 1, q = 2q′ + 1, p, p′, q, q′ are all
prime.

– random elements a, a0, g ∈ QRn of order p′q′, i.e., these numbers are the
generators of QRn.

– a random secret elements x ∈R Z∗

p′q′ , and y = gx(mod n).
– security parameters used in protocols: ǫ > 1, k, lp.



– length parameters λ1, λ2, γ1, γ2. λ1 > ǫ(λ2+k)+2, λ2 > 4lp, γ1 > ǫ(γ2+k)+2,
and γ2 > λ1 + 2.

– integer range Λ =]2λ1 − 2λ2 , 2λ1 + 2λ2 [ and Γ =]2γ1 − 2γ2 , 2γ1 + 2γ2 [.
– H : {0, 1}∗ → {0, 1}k is a strong collision-resistant hash function
– m ∈ {0, 1}∗ is a message to be signed.
– the public parameters is (n, a, a0, y, g).
– the secret parameters for the group manager is (p′, q′, x).

4.2 Join Protocol

We use the same join protocol as original scheme. A group member’s certificate
is in the form of Ai = (axia0)

1/ei mod n where xi ∈ Λ is the secret of a
group member, and ei ∈R Γ is a random prime number. axia0 can be seen as
a generator of QRn due to property 1. In new scheme, (Ai, ei) MUST be kept
secret by the group manager and a group member itself. In ACJT scheme, even
though (Ai, ei) is kept secret by the group manager and a group member, it
would not affect the security of the scheme if it is publicly known due to its full
anonymity property.

4.3 Sign Protocol

– Generate a random value w ∈R {0, 1}2lp and compute:

T1 = Aiy
w mod n, T2 = gw mod n, T3 = gwei mod n.

– Randomly choose r1 ∈R ±{0, 1}ǫ(γ2+k), r2 ∈R ±{0, 1}ǫ(λ2+k), and r3 ∈R

±{0, 1}ǫ(λ1+2lp+k+1) and computes
• d1 = T r1

1 /(ar2yr3) mod n, d2 = T r1

2 /gr3 mod n, d3 = T r1

2 mod n;
• c = H(g||y||a0||a||T1||T2||T3||d1||d2||d3||m);
• s1 = r1 − c(ei − 2γ1), s2 = r2 − c(xi − 2λ1), s3 = r3 − ceiw (all in Zn).

– Output (c, s1, s2, s3, T1, T2, T3).

Remark 2. The main difference between new sign protocol and the original pro-
tocol is T3, d3. Our new method hide ei as T ei

2 . The original protocol in fact
uses another ElGamal encryption to hide it as geihw. r4, d4, s4 in the original
protocol are not used in new protocol. This roughly reduces thirty percent of
computation overhead compared to the original protocol.

4.4 Verify Protocol

– Compute

c′ = H(g||y||a0||a||T1||T2||T3||a
c
0T

s1−c2γ1

1 /(as2−c2λ1

ys3)||T s1−c2γ1

2 /gs3 ||T s1−c2γ1

2 T c
3 ||m)

– Accept the signature if and only if c = c′ and s1 ∈ ±{0, 1}ǫ(γ2+k)+1, s2 ∈
±{0, 1}ǫ(λ2+k)+1,s3 ∈ ±{0, 1}ǫ(λ1+2lp+k+1)+1.

Remark 3. New verify protocol roughly reduces thirty percent of computation
overhead compared to the original one.



4.5 Revocation Protocol

Based on idea introduced in previous section, the group manager picks a random
large integer r such that GCD(r, |QRn|) = 1, computes a′ = ar, a′

0 = ar
0, and

updates all certificates for valid group members to

A′

i = Ar
i = (axirar

0)
1/ei = (a′xia′

0)
1/ei mod n.

Group manager publish a′, a′

0 and sends new certificates to valid group members
in secure manner. This implements certificate redistribution.

To revoke a group member, the group manager adds ei on revocation list and
publish revocation list to all verifiers. A revoked group member can be identified
by checking

T ei

2 =? T3 mod n.

4.6 Security Properties of the New Protocol

Before discuss the security of the new scheme, we first introduce a lemma due
to Shamir [22] that will be used shortly.

Lemma 1. Let n be an integer. For given values u, v ∈ Z∗

n and x, y ∈ Zn such
that GCD(x, y) = 1 and vx = uy mod n, there is an efficient way to compute
the value z such that zx = u mod n.

Proof. Since GCD(x, y) = 1, we can use the Extended GCD algorithm to find
a and b such that ay + bx = 1, and let z = vaub. Thus

zx = vaxubx = uay+bx = u mod n.

⊓⊔

Full-traceability is achieved by zero knowledge property of join protocol
and coalition-resistance property of the group certificate which both have been
proved in the original paper. We recall “coalition-resistance” property here.

Theorem 2 (Coalition-resistance). Under the strong RSA assumption, a
group certificate [Ai = (axia0)

1/ei mod n, ei] with x ∈ Λ and ei ∈ Γ can be
generated only by the group manager provided that the number K of certificates
the group manager issues is polynomially bounded.

Next, we address the zero knowledge property of the group signature scheme.
Since the new scheme has some difference with the original one, it is necessary
to show it still keep this property. We recall the theorem in the original paper.

Theorem 3. Under the strong RSA assumption, the interactive protocol under-
lying the group signature scheme is a statistical zero-knowledge (honest-verifier)
proof of knowledge of a membership certificate and a corresponding membership
secret key.



Proof. Just as the original paper, we only address the proof of knowledge part.
Considered that our construction has only minor difference with the original
protocol, we only provide knowledge extracting method which is different from
the original proof.

We should show that a knowledge extractor is able to recover the group
certificate when it has found two accepting tuples under the same commitment
and different challenges from a verifier. Let (T1, T2, T3, d1, d2, d3, c, s1, s2, s3) and
(T1, T2, T3, d1, d2, d3, c

′, s′1, s
′

2, s
′

3) be such tuples.

Since d2 = T s1−c2γ1

2 /gs3 = T
s′

1
−c′2γ1

2 /gs′

3 mod n, we have

T
(s′

1
−s1)+(c−c′)2γ1

2 = gs′

3
−s3 mod n.

If GCD((s′1 − s1) + (c − c′)2γ1 , s′3 − s3) = k, k 6= 1, then we have following
equations for some v, v′.

(s′1 − s1) + (c − c′)2γ1 = kv, s′3 − s3 = kv′,

(T k
2 )v = gkv′

mod n.

Since GCD(kv′, v) = 1, due to lemma 1, we can find a solution (u, v) such that
uv = g mod n. This is infeasible under the strong RSA assumption. Therefore,
(s′1 − s1) + (c − c′)2γ1 has to divide s′3 − s3, then we have

w = (s′3 − s3)/((s′1 − s1) + (c − c′)2γ1)

such that T2 = gw mod n. Due to the property of QRn, T2 is the generator of
QRn.

Since d3 = T s1−c2γ1

2 T c
3 = T

s′

1
−c′2γ1

2 T c′

3 mod n, we have

T
(s′

1
−s1)+(c−c′)2γ1

2 = T c−c′

3 mod n.

Following the same method as above, under the strong RSA assumption,
c − c′ has to divide (s′1 − s1). We obtain

ei = (s′1 − s1)/(c − c′) + 2γ1

such that T3 = T ei

2 mod n.
Based on the knowledge of w, ei, we can further recover Ai, xi the same way

as the original proof. Therefore a knowledge extractor can fully recover group
certificate. ⊓⊔

Anonymity property, NOT FULL anonymity in ACJT scheme, relies on the
difficulty to decrypt T1 which is encrypted by ElGamal encryption algorithm.
Also it relies on the unlinkability of the two arbitrary signatures which has been
proved in the original paper. Since we define a new T3 in the new protocol, we
need to show this modification still keep unlinkability property. Similar to the
case in ACJT scheme, the problem of linking two tuples (T2, T3), (T

′

2, T
′

3) reduces



to decide the equality of the discrete logarithms of T3, T
′

3 with base T2, T
′

2
3,

respectively. This is assumed to be infeasible under the decisional Diffie-Hellman
problem. Therefore, we have the following corollary.

Corollary 1. Under the decisional Diffie-Hellman assumption for QRn, there
exists no probabilistic polynomial-time algorithm that can make the linkability
decision for any two arbitrary tuples (T2, T3), (T

′

2, T
′

3) with non-negligible proba-
bility.

4.7 Related Works

After ACJT group signature scheme was introduced in 2000, several construc-
tions have been proposed to integrate revocation mechanism to the scheme [2,
11, 24] . However, all these constructions are less efficient than the original one.

5 Conclusion

In this paper we introduced a generic method to integrate revocation into some
group signature scheme. We demonstrated its effectiveness by applying this
method to the well-known ACJT group signature scheme, and obtained a more
efficient group signature scheme. This contrasts with other efforts such as [2, 11,
24] which result in less efficient constructions.

The same method can be applied to some group signature schemes in [13, 12]
to implement revocation mechanism. We need to keep in mind a group signature
scheme based on the method only achieves anonymity, not full anonymity in a
more strict model. However, full anonymity is mainly interesting in theory. In
practice, anonymity should be a more appropriate choice. Many research papers
discuss such level of privacy protection such as [2, 11, 24, 8, 10].
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