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Abstract. Since the introduction of Identity-based (ID-based) cryptog-
raphy by Shamir in 1984, numerous ID-based signature schemes have
been proposed. In 2001, Rivest et al. introduced ring signature that pro-
vides irrevocable signer anonymity and spontaneous group formation. In
recent years, ID-based ring signature schemes have been proposed and
all of them are based on bilinear pairings. In this paper, we propose the
first ID-based threshold ring signature scheme that is not based on bilin-
ear pairings. We also propose the first ID-based threshold ‘linkable’ ring
signature scheme. We emphasize that the anonymity of the actual sign-
ers is maintained even against the private key generator (PKG) of the
ID-based system. Finally we show how to add identity escrow to the two
schemes. Due to the different levels of signer anonymity they support,
the schemes proposed in this paper actually form a suite of ID-based
threshold ring signature schemes which is applicable to many real-world
applications with varied anonymity requirements.
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1 Introduction

As the number of applications on the Internet continues to grow, more and more
traditional human interactions have been converted to their electronic counter-
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parts: messaging, voting, payments, commerce, etc. The increase in reliance on
the Internet potentially erodes personal privacy, the right of the individual to
be let alone [37], or the right to determine the amount of personal information
which should be available to others [38]. Privacy is important for many reasons,
such as impersonation and fraud. As more identity information is collected, cor-
related, and sold, it becomes easier for criminals to commit fraud. But privacy is
more than that, it also concerns about the secrecy of which websites we visited,
the candidates we voted for, etc.

Anonymity is one important form of privacy protection. In practice, anonymity
diversifies into various forms with different levels of anonymity. For example, look
at how anonymous remailers [21] have evolved over time – from type 0 to type
I to type II, every successor provides a higher level of anonymity, at the cost of
lower efficiency and higher resource consumption. On the other side, for some
applications, too high a level of anonymity can do more harm than good. For
example, while unconditional anonymity provides maximum protection to users
which can be useful for scenarios such as secret leaking [33]. However, uncondi-
tional anonymity may not be desirable for some other applications. For instance,
in some scenarios one would like to have a trusted third party to have the capa-
bility to trace users after the fact that the users have disbehaved, such as tracing
double-spenders in an e-cash system.

Designing secure cryptographic schemes with unconditional anonymity is un-
doubtedly challenging. However, designing schemes with a carefully adjusted
level of anonymity is sometimes even more challenging. It is also very reward-
ing due to the fact that these schemes find many applications in practice. For
example, a ring signature scheme [33] allows a signer to generate a signature on
behalf of a group of signers such that everyone can be sure that the signature is
generated by one of the group members yet no one can tell who the real signer
is. Different from group signature, there is no group manager, no member revo-
cation, and it is spontaneous (setup-free). While a linkable ring signature [28]
allows anyone to tell whether two signatures are generated by the same signer
while still maintaining the anonymity of the real signer as a conventional ring
signature scheme in the way that no one can revoke the real signer’s anonymity.

1.1 Background and Related Work

Identity-based Cryptography. In 1984, Shamir [34] introduced the notion of
Identity-based (ID-based) cryptography to simplify certificate management. The
unique feature of ID-based cryptography is that a user’s public key can be any
arbitrary string. Since then, many other ID-based signature schemes have been
proposed, despite the fact that the first practical ID-based encryption appeared
only until 2001 [9]. In 2004, Bellare et al. [6] developed a framework to analyze
the security of ID-based signature schemes and they proved the security (or
insecurity) of 14 schemes found in the literature. As in the case of standard
signature, there are also blind signature [41], proxy signature [39], proxy blind
signature [19], proxy ring signature [3, 41], and proxy signcryption [27] in the
paradigm of ID-based cryptography.
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Group-oriented Cryptography. This type of schemes has a group of users
involved, e.g. secret sharing schemes, group signature schemes, etc. In some of
them, group members participate equally well in all the processes and therefore,
there is no concern of anonymity. In some other schemes, however, the participa-
tion of only one or a proper subset of members is required to complete a process,
while the remaining members are not involved in (and are possibly unaware of)
the process. Such a distinction between participants and non-participants gives
anonymity a meaning. Specifically, a participant may prefer to be indistinguish-
able from the whole group of members, thus maintaining his privacy in par-
ticipating the process. According to the level of anonymity the group-oriented
cryptographic schemes provide, they can be categorized as follows.

No anonymity means the identities of the participating users are known to
everyone. Privacy is simply not a concern here. For example, in a multi-signature
scheme [25, 29], everyone can identify who has contributed in the signing process.

Anonymity means not everyone should be able to identify participating
users. A good example is ring signature [33], in which besides the actual signer,
no one can identify the actual signer of a signature among a group of possible
signers. There have been many different schemes proposed [1, 18] since the first
appearance of ring signature in 1994 [17] and the formal introduction of it in
2001 [33]. The first ID-based ring signature was proposed in 2002 [40]. To the
best of the authors’ knowledge, all the existing ID-based ring signature schemes
are pairing-based.

Revocable Anonymity can be summarized as “no anonymity to an au-
thority, but anonymity to anybody else”. In schemes with revocable anonymity,
there is always an authority who is capable of revoking the anonymity, e.g., un-
der dispute or court order. The authority is often assumed to be trusted not
to abuse power. Users are anonymous to everybody other than this authority.
Group signature schemes [16, 5, 8] provide revocable anonymity. Many credential
systems [11–13] also provide revocable anonymity.

Linkable Anonymity is “anonymity with a condition”. Schemes with link-
able anonymity give maximal anonymity to users who succeeded in satisfying the
condition and take away a certain degree of anonymity from users who failed as
a punishment. Let us illustrate the idea using a linkable ring signature scheme.
In this scheme, users are assumed to sign only once, in which case they enjoy
anonymity in full. However, if a user signs twice (or k times, in general), anyone
can tell if two signatures are produced by the same user or not, thus resulting
in a reduced level of anonymity. Linkable ring signature was introduced in [28].
[36] gave a separable construction that supports thresholding. The first constant-
sized linkable ring signature was proposed in [35]. Linkable group signature first
appeared in [30].

Linkable anonymity in all existing linkable ring signature schemes is only
computationally guaranteed, in contrast with ring signatures where anonymity
can be unconditional. In fact, it is an open problem to construct a linkable ring
signature scheme with linkable anonymity against computationally unbounded
adversary.
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A technical difficulty in constructing an ID-based linkable ring signature is
that there exists a Private Key Generator (PKG) in the system responsible for
issuing users’ secret keys yet linkable anonymity should be maintained, even
against the PKG. Our construction solves this by modifying the key extraction
algorithm such that user’s secret key is co-generated by the PKG and the user.
This idea is reminiscent to the idea of self-certified keys [23]. It also allows the
users in our ID-based linkable signature scheme to refute any framing attacks
launched by the PKG through generating another signature which is unlinked
to the forged signature.

1.2 Our Contributions

– We propose the first ID-based threshold ring signature scheme that is not
based on bilinear pairings. We show its security under the Strong RSA As-
sumption and the DDH Assumption, in the random oracle model [7]. In
particular, anonymity of the ring signers is maintained even against the
PKG.

– By extending on our basic construction, we propose the first ID-based link-
able threshold ring signature scheme. All previously proposed linkable ring
signature schemes are not ID-based.

– We show the method of adding identity escrow in both of our schemes. With
identity escrow, some trusted authority can revoke the anonymity of a ring
signature when it becomes necessary. The ability of revoking the real signer
can help prevent the signature scheme from being abused by misbehaving
users. The schemes, plus their identity-escrowed counterparts, form a suite
of ID-based signature schemes applicable to a wide variety of scenarios with
different anonymity requirements.

Paper Organization. We give some preliminaries in Sec. 2 and define a se-
curity model in Sec. 3. We then propose an ID-based threshold ring signature
scheme in Sec. 4 and an ID-based linkable variant in Sec. 5. In Sec. 6, we show
how to add identity escrow to our schemes.

2 Preliminaries

A safe prime p is a prime such that (p − 1)/2 is also prime. Although it has
never been proven, it is widely conjectured and amply supported by empirical
evidence, that safe primes are sufficiently dense. For positive real numbers a ≤ b,
bac denotes the greatest integer less than or equal to a; [a, b] denotes the set
{x ∈ Z|bac ≤ x ≤ bbc} and S(a, b) denotes [bac− bbc+ 1, bac+ bbc− 1]. If S is a
set, ℘(S) denotes the power set of S and ℘t(S) denotes the set of elements in ℘(S)
of size t, i.e. ℘t(S) .= {s ∈ ℘(S)| |s| = t}. A negligible function ν(λ) is a function
such that for all polynomial poly and sufficiently large λ, ν(λ) < 1/poly(λ).
When G is a finite cyclic group, define G(G) to be the set of generators of G,
i.e. {g ∈ G|〈g〉 = G}.
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2.1 Mathematical Assumptions

Definition 1 (Strong RSA [4, 22]). Let n = pq be an RSA modulus. Let G
be a cyclic subgroup of Z∗n of order u. Given n and z ∈R G, the Strong RSA
Problem is to find x ∈ G and e ∈ Z>1 such that z = xe mod n. The Strong
RSA Assumption says that there exists no PPT algorithm that can solve the
Strong RSA Problem, in time polynomial in the size of |u|.

In our schemes, we need to make restriction to safe primes for p and q in the
Strong RSA assumption. However, it is easy to see that the Strong RSA as-
sumption without this restriction implies the Strong RSA assumption with this
restriction, assuming that safe primes are sufficiently dense.

Definition 2 (Decisional Diffie-Hellman (DDH) [7]). Let G be a cyclic
group generated by g of order u. The DDH Problem is to distinguish between
the distributions (g, ga, gb, gc) and (g, ga, gb, gab), with a, b, c ∈R Zu. The DDH
Assumption says there exists no PPT algorithm solve the DDH Problem, in time
polynomial in the size of |u|.

2.2 Signature of Knowledge

A Σ-protocol for an NP-relation R is a 3-round two-party protocol, such that
for every input (x, y) ∈ R to a prover P and y to a verifier V, the first P-round
yields a commitment t, the subsequent V-round replies with a challenge c, and
the last P-round concludes by sending a response s. At the end of a run, V
outputs a 0/1 value, functionally dependent on y and the transcript π .= (t, c, s)
only. A transcript is valid if the output of the honest verifier is 1. Additionally,
we require a Σ-protocol to satisfy:

– (Special Soundness.) There exists a computable function K (Knowledge Ex-
tractor) that on input y in the domain of the second component of R and
a pair of valid transcripts (t, c, s) and (t, c′, s′), with the same commitment,
outputs x such that (x, y) ∈ R.

– (Special Honest-Verifier Zero-Knowledge (Special HVZK).) There exists an
efficient algorithm S (Simulator) that on input y in the domain of the second
component of R and a challenge c, outputs a pair of commitment/response
messages t, s, such that the transcript π .= (t, c, s) is valid, and it is dis-
tributed according to the distribution (P(x, y)↔ V(y)).

A signature of knowledge allows a signer to prove the knowledge of a secret with
respect to some public information non-interactively. Following [15], we call this
type of signatures “a signature based on proofs of knowledge”, SPK for short.
A HVZK Σ-protocol can be turned into a SPK by setting the challenge to the
hash value of the commitment together with the message to be signed [20]. Such
schemes can be proven secure against existential forgery under chosen-message
attack [24] in the random oracle model using the proofing technique introduced
in [31].
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3 ID-Based Threshold Ring Signature: Security Model

An Identity-Based Threshold Ring Signature (ID-TRS) scheme is a tuple of
probabilistic polynomial-time (PPT) algorithms below:

– ID-TRS.Setup. On input an unary string 1λ where λ is a security parameter,
the algorithm outputs a master secret key s and a list of system parameters
param that includes λ and the descriptions of a user secret key space S, a
message space M as well as a signature space Ψ .

– ID-TRS.Extract. On input a list param of system parameters, an identity
IDi ∈ {0, 1}∗ for a user and the master secret key s, the algorithm outputs
the user’s secret key si ∈ S. When we say identity IDi corresponds to user
secret key si or vice versa, we mean the pair (IDi, si) is an input-output pair
of ID-TRS.Extract with respect to param and s.

– ID-TRS.Sign. On input a list param of system parameters, a group size n of
length polynomial in λ, a threshold t ∈ [1, n], a set {IDi ∈ {0, 1}∗|i ∈ [1, n]}
of n user identities, a message m ∈ M, and a set {sj ∈ S|j ∈ Π} of t user
secret keys with some Π ∈ ℘t([1, n]), the algorithm outputs an ID-based
(t, n) threshold ring signature σ ∈ Ψ .

– ID-TRS.Verify. On input a list param of system parameters, a group size n
of length polynomial in λ, a threshold t ∈ [1, n], a set {IDi ∈ {0, 1}∗|i ∈ [1, n]}
of n user identities, a message m ∈ M, a signature σ ∈ Ψ , it outputs either
valid or invalid.

Correctness. An ID-TRS should satisfy the verification correctness – signatures
signed by honest signers are verified to be invalid with negligible probability.

3.1 Security Definitions

A secure ID-TRS scheme should be unforgeable and anonymous which will be
defined in a similar way to that of a traditional threshold ring signature scheme,
but will be a little bit stronger. In a security definition for a traditional threshold
ring signature scheme, it is usually defined to have a set of keys initialized by a
game simulator and the adversary can select keys to corrupt under a constraint
that those keys are initialized by the simulator. In our definitions for an ID-TRS
scheme, the adversary can choose any identity and corrupt the corresponding
key without being constrained to any pre-determined set of identities.

Let A be an adversary. The capabilities of A is modeled by making the
following queries to some oracles:

Hash queries: A can ask for hash values of any finite length strings.
Key queries: On input IDi, sIDi ← ID-TRS.Extract(param, IDi, s) is returned.

The oracle is stateful, meaning that if IDi = IDj , then sIDi
= sIDj

.
Master key queries: A can ask for the master secret key, s, of the system.
Signature queries: A chooses a group of n identities {IDi}i∈[1,n], a threshold

value t where t ∈ [1, n], a set S ∈ ℘t([1, n]) and a message m, the oracle
outputs a valid ID-based (t, n)-threshold ring signature denoted by σ ←
ID-TRS.Sign(param, n, t, {IDi|i ∈ [1, n]},m, {si|i ∈ S}).
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Definition 3 (Game Unforgeability).

– (Initialization Phase.) The challenger C takes a sufficiently large security
parameter λ and runs ID-TRS.Setup to generate the list param of system
parameters and master secret key s. C keeps s secret and sends param to A.

– (Probing Phase.) A makes a polynomial number of oracle queries (any ora-
cle) except master key query in an adaptive manner.

– (End Game Phase.) A outputs a group size n of length polynomial in the
security parameter λ, a threshold t ∈ [1, n], a set {IDi ∈ {0, 1}∗|i ∈ [1, n]}
of n identities, a message m ∈ M and an ID-based (t, n)-threshold ring
signature σ ∈ Ψ . The only restriction is that (m, {IDi}) should not appear in
any of the previous signature queries and strictly less than t secret keys of
{IDi} are returned by key queries.

A wins the game if ID-TRS.Verify(param, n, t, {IDi},m, σ) returns accept. The
advantage of A is defined as the probability that A wins.

An ID-based threshold ring signature scheme is existential unforgeable against
adaptive chosen-message-and-identity attacks (or EUF-IDTR-CMIA secure) if
no PPT adversary has a non-negligible advantage in Game Unforgeability above.

We first informally describe the rationale behind Game Anonymity. To model
the scenario that the adversary colludes with the PKG in an attempt to find out
the identity of the real signer, we equip the adversary with the master key query
oracle which allows the adversary to corrupt the master secret key of the system.
Obviously, this oracle is not allowed in the case of forgery attack as the PKG
can always forge signatures on any identities in an ID-based system.

Definition 4 (Game Anonymity).

– (Initialization Phase.) C takes a sufficiently large security parameter λ and
runs ID-TRS.Setup to generate param and master secret key s. C keeps s
secret and sends param to A.

– (Probing Phase I.) A makes a polynomial number of oracle queries (any
oracle) in an adaptive manner.

– (Challenge Phase.) A gives C a group size n of length polynomial in λ, a
threshold t ∈ [1, n], a set {IDi ∈ {0, 1}∗|i ∈ [1, n]} of n identities and a mes-
sage m ∈ M. C picks randomly an index set Π ∈R ℘t([1, n]) and computes
σ ← ID-TRS.Sign(param, n, t, {IDi},m, {si|i ∈ Π}), where each si is user’s
secret key corresponding to IDi.

– (Probing Phase II.) A makes a polynomial number of oracle queries (any
oracle) in an adaptive manner.

– (End Game Phase.) A outputs an index π̂.

A wins the game if π̂ ∈ Π. The advantage of A is defined as the probability that
A wins minus t

n .
An ID-based threshold ring signature scheme is signer indistinguishable against

adaptive chosen-message-and-identity attacks (or IND-IDTR-CMIA secure) if
no PPT adversary has a non-negligible advantage in Game Anonymity above.
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4 The ID-TRS Scheme

We first give an overview of our construction. For an identity ID, the correspond-
ing secret key is (a, x), with x > 1, such that ax ≡ Hid(ID) (mod N), where
Hid : {0, 1}∗ → QR(N) is some hash function. The modulus N is a product of
two equal-length safe primes with factorization only known to the PKG.

A user proves the knowledge of his secret key by running the Σ-protocol
given by:

PK{(a, x) : y ≡ ax ∧ x ∈ Γ}

for y = Hid(ID) and some suitable range Γ . An ID-based signature scheme is
readily available after carrying out the Fiat-Shamir transformation on the Σ-
protocol:

SPK1{(a, x) : y ≡ ax ∧ x ∈ Γ}(M). (1)

Now, to extend the IBS scheme construction above into a threshold ring setting,
we implement the following signature of knowledge (SPK):

SPK2

(αi, χi)n
i=1 :

∨
J∈℘d([1,n])

∧
i∈J

yi ≡ αχi

i ∧ χi ∈ Γ

 (M) (2)

with yi = Hid(IDi) for all i ∈ [1, n]. This SPK proves that there exists d identities
in {ID1, · · · , IDn} such that the prover knows the secret keys corresponding to
these identities. To implement SPK2, we incorporate the polynomial interpola-
tion technique [17] into SPK1.

We now describe the details of our ID-based (d, n)-threshold ring signature
scheme.

– ID-TRS.Setup. On input a security parameter λ, the algorithm randomly
generates a safe prime productN = pq = (2p′+1)(2q′+1), where |p′| = |q′| =
λ. It then selects two cryptographic hash functions Hid : {0, 1}∗ → QR(N)
and Hsig : {0, 1}∗ → Z2κ . It also randomly picks g1, g2, g3 ∈ QR(N) that
are generators of QR(N).
To implement Hid using a conventional string-based hash function, we need
to randomly choose another generator g of QR(N) and define Hid as ID →
gh(ID) mod N , where h : {0, 1}∗ → {0, 1}2λ+θ is a hash function. The param-
eter θ > 0 defines the quality of the hash output of Hid. A good construction
of Hid should have the hash value distributed uniformly on QR(N). It can
be seen that the construction above can yield a good distribution when θ is
large enough. In practice, we may consider setting θ to 8.
Let κ, γ1, γ2 ∈ N and 1 < ε ∈ R be further security parameters such that
γ1 − 2 > ε(γ2 + κ) > 2λ. Define Γ ′ .= S(2γ1 , 2γ2), and Γ

.= S(2γ1 , 2ε(γ2+κ)).
The master secret key is set to msk := (p, q). The list of system parameters
is param := (λ, κ, ε,N,Hid,Hsig, g1, g2, g3, Γ

′, Γ ).
To achieve security comparable to the standard 1024-bit RSA signature,
λ = 512, κ = 160, ε = 1.1, γ1 = 1080, γ2 = 800 can be used as the security



A Suite of ID-Based Threshold Ring Signature Schemes 9

parameters. For security analysis, we require that all these security parame-
ters to be sufficiently large. It is also important for the generators g, g1, g2, g3
are generated independently, that is, their relative discrete logarithm should
not be known to anyone. This is to prevent the secret keys of users from
being known from the auxiliary commitments which is defined below and
make sure that the proper implementation of Hid described above.

– ID-TRS.Extract. On input a new user ID IDi, the algorithm computes yi :=
Hid(IDi), picks a prime xi ∈R Γ ′, and then solves axi

i ≡ yi (mod N) for
ai using the master secret key msk. It finally returns the user’s secret key
ski := (ai, xi). An entry 〈IDi, yi, ai, xi〉 is recorded. On input an old user ID,
the algorithm retrieve the corresponding entry to maintain consistency.

– ID-TRS.Sign. On input the list of system parameters param, a group size
n ∈ N of size polynomial in λ, a threshold d ∈ [1, n], a set of n IDs Y =
{ID1, · · · , IDn}, a list of d secret keys X = {skπ1 , · · · , skπd

} such that the
corresponding public key IDπi

of each skπi
= (aπi

, xπi
) is contained in Y,

a message M ∈ {0, 1}∗, the algorithm first sets I := {π1, · · · , πd} ⊆ [1, n],
computes yi := Hid(IDi) for all i ∈ [1, n] and then does the following:
1. (Auxiliary commitment.) For all i ∈ I, pick ui ∈R ±{0, 1}2λ and com-

pute wi := uixi. Compute in modulo N :

Ai,1 := gui
1 , Ai,2 := aig

ui
2 , Ai,3 := gxi

1 g
ui
3 .

For all i ∈ [1, n]\I, pick Ai,1, Ai,2, Ai,3 ∈R QR(N).
2. (Commitment.) For all i ∈ I, pick ri,x ∈R ±{0, 1}ε(γ2+κ), ri,u ∈R

±{0, 1}ε(2λ+κ), ri,w ∈R ±{0, 1}ε(γ1+2λ+κ+1). Compute in modulo N :

Ti,1 := g
ri,u

1 , Ti,2 := g
ri,x

1 g
ri,u

3 , Ti,3 := A
ri,x

i,1 g
−ri,w

1 , Ti,4 := A
ri,x

i,2 g
−ri,w

2 .

For all i ∈ [1, n]\I, pick ci ∈R Z2κ , si,u ∈R ±{0, 1}ε(2λ+κ), si,x ∈R

±{0, 1}ε(γ2+κ), si,w ∈R ±{0, 1}ε(γ1+2λ+κ+1). Compute in modulo N :

Ti,1 := g
si,u

1 Aci
i,1, Ti,2 := g

si,x−ci2
γ1

1 g
si,u

3 Aci
i,3,

Ti,3 := A
si,x−ci2

γ1

i,1 g
−si,w

1 , Ti,4 := A
si,x−ci2

γ1

i,2 g
−si,w

2 yci
i .

3. (Challenge.) Compute

c0 := Hsig(param, n, d, (yi, Ai,1, Ai,2, Ai,3)n
i=1, (Ti,1, · · · , Ti,4)n

i=1,M).

4. (Response.) Generate a polynomial f over GF (2κ) of degree at most
(n − d) such that c0 = f(0) and ci = f(i) for all i ∈ [1, n]\I. For all
i ∈ I, compute ci := f(i), and compute in Z:

si,u := ri,u − ciui, si,x := ri,x − ci(xi − 2γ1), si,w := ri,w − ciwi.

5. (Signature.) Set σ′ := (f, (si,u, si,x, si,w)n
i=1).
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6. (Output.) Return the signature as: σ := ((Ai,1, Ai,2, Ai,3)n
i=1, σ

′).
Remark : step 2 to 4 together contribute to the signing algorithm of:

SPK3


ui,
xi,
wi

n

i=1

:
∨

J∈℘d([1,n])

∧
i∈J

Ai,1 ≡ gui
1 ∧Ai,3 ≡ gxi

1 g
ui
3 ∧

Axi
i,1 ≡ g

wi
1 ∧A

xi
i,2 ≡ g

wi
2 yi∧

xi ∈ Γ

 (M),

(3)
which is an instantiation of SPK2. The signature of SPK3 is σ′ in step
5.

– ID-TRS.Verify. On input param, a group size n of length polynomial in λ,
a threshold t ∈ [1, n], a set {IDi ∈ {0, 1}∗|i ∈ [1, n]} of n user identities, a
message m ∈ M, a signature σ ∈ Ψ , the algorithm computes yi := Hid(IDi)
for all i ∈ [1, n] and then does the following.
1. Check if f is a polynomial over GF (2κ) of degree at most (n− d).
2. For all i ∈ [1, n], compute ci := f(i) and compute in modulo N :

T ′i,1 := g
si,u

1 Aci
i,1, T ′i,2 := g

si,x−ci2
γ1

1 g
si,u

3 Aci
i,3,

T ′i,3 := A
si,x−ci2

γ1

i,1 g
−si,w

1 , T ′i,4 := A
si,x−ci2

γ1

i,2 g
−si,w

2 yci
i .

3. Check if the following statements hold: si,u

?
∈ {0, 1}ε(2λ+κ)+1, si,x

?
∈

{0, 1}ε(γ2+κ)+1, si,w

?
∈ {0, 1}ε(γ1+2λ+κ+1)+1, for all i ∈ [1, n], and

f(0) ?= Hsig(param, n, d, (yi, Ai,1, Ai,2, Ai,3)n
i=1, (T

′
i,1, · · · , T ′i,4)n

i=1,M).

4. Accept if all checks pass and reject otherwise.
Remark : The above verification actually verifies SPK3.

The proof for correctness is straightforward. We show its security in Appendix
B.

5 ID-Based Linkable Threshold Ring Signature

In this section, we propose the first ID-based linkable threshold ring signature
(ID-LTRS) and present its security analysis.

5.1 Syntax of ID-LTRS

Informally speaking, ID-LTRS consists of three entities, namely, PKG, user(or
signers) and verifier. The user with identity ID obtains the secret key sID by par-
ticipating in a extract protocol with PKG. It then uses sID to produce signatures
where a verifier can verify. A crucial requirement of ID-LTRS is that, the PKG
should not be able to slandering a user(to forge signature that is linked to an
honest user’s signature), despite the fact that PKG can forge signatures on any
identity in an ID-based system. This leads to the modification of the syntax of
extract. Specifically, an ID-based linkable threshold ring signature (ID-LTRS)
scheme is a tuple of five PPTs:
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– ID-LTRS.Setup. Same as ID-TRS.Setup, except: (1) it additionally gets as
input k ∈ N of length polynomial in the security parameter λ, and (2) the
list of system parameters param additionally includes an event-ID space E .

– ID-LTRS.Extract Protocol. User with identity IDi engage with PKG in
the protocol with common input a list param of system parameters. User
possess identity IDi ∈ {0, 1}∗ and the PKG possess the master secret key s.
After the protocol, user output is the secret key sIDi

∈ S.
– ID-LTRS.Sign,Verify. Same as ID-TRS.Sign,Verify, except they both

additionally get as input an event-ID e ∈ E .
– ID-LTRS.Link. On input the list of system parameters param, an event-ID
e ∈ E , two group sizes n1, n2 ∈ N of length polynomial in the security
parameter λ, two thresholds t1 ∈ [1, n1] and t2 ∈ [1, n2], two identity sets
Yj = {ID(j)

i ∈ {0, 1}∗|i ∈ [1, nj ]} for j = 1, 2, two messages m1,m2 ∈ M,
and two signatures σ1, σ2 ∈ Ψ such that valid← Verify(param, e, nj , tj , Yj ,
mj , σj) for j = 1, 2, the algorithm returns either linked or unlinked.

Correctness. In addition to verification correctness as for ID-TRS schemes,
an ID-LTRS scheme must also satisfy the linking correctness – signatures signed
by the same signer are unlinked with negligible probability and those signed by
different signers are linked with negligible probability.

Remark : According to [35], linkability for threshold ring signatures is diversi-
fied into individual-linkability and coalition-linkability, our construction belongs
to the former type. That is, two signatures are linked if and only if they shared
at least one common signer even though two identity sets are different.

Security Model. The security requirements of ID-LTRS schemes include Un-
forgeability, Anonymity, Linkability and Non-slanderability. The definition of Un-
forgeability for ID-LTRS is virtually the same as that for ID-TRS schemes.

For anonymity, a crucial difference between Anonymity for ID-LTRS and
Anonymity for ID-TRS schemes is that in the former, the adversary cannot
query signatures of a user who appears in the challenge phase. The rationale is
that if the adversary obtain signature of user i in ID-LTRS, it can tell if the
signature for challenge is generated by this user due to the linking property. The
key query oracle also change to adapt the fact that ID-LTRS.Extract becomes a
two party protocol, where the adversary now act as user, following the protocol,
and obtain the secret key of an identity. Again, to model the case when the
adversary colludes with the PKG, we allow the query of master key oracle.
Formal definition is as follow:

Definition 5 (Game L-Anonymity).

– (Initialization Phase.) C takes a sufficiently large security parameter λ and
runs ID-TRS.Setup to generate param and master secret key s. C keeps s to
himself and sends param to A.

– (Probing Phase I.) A makes a polynomial number of oracle queries (any
oracle) in an adaptive manner. Suppose A makes a total number of v key
queries. The only restriction is that v < n− t.
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– (Challenge Phase.) A gives C a group size n of length polynomial in λ, a
threshold t ∈ [1, n], a set {IDi ∈ {0, 1}∗|i ∈ [1, n]} of n identities and a mes-
sage m ∈M. C picks randomly an index set Π ∈R ℘t([1, n]) such that every
element in Π is not contained in any signature query and key query made
by A in Probing Phase I, and computes σ ← ID-TRS.Sign(param, n, t, {IDi},
m, {si|i ∈ Π}), where each si is the user secret key that corresponds to IDi.

– (Probing Phase II.) A makes a polynomial number of oracle queries (any
oracle) in an adaptive manner. Suppose A makes a total number of v′ key
queries in this phase. The only restriction is that v′ < n − t − v. If any
signature query or key query contains an identity d such that d ∈ Π, C halts.

– (End Game Phase.) A outputs an index π̂.

If C does not halt, A wins the game if π̂ ∈ Π. The advantage of A is defined as
the probability that A wins minus t

n−(v+v′) . An ID-based threshold ring signature
scheme is signer indistinguishable against adaptive chosen-message-and-identity
attacks (or IND-IDLTR-CMIA secure) if no PPT adversary has a non-negligible
advantage in Game L-Anonymity above.

Linkability means that an adversary with adaptive hash, key and signature
queries cannot produce two valid but unlinked signatures given that he has only
corrupted at most one user. It is obvious that in case adversary collude with
PKG, he can always produce signature which is not linked and thus master key
query is not allowed. Also, for each identity, adversary is only allowed to query
the key query once. We define linkability more generally in a formal way as
follow:

Definition 6 (Game Linkability).

– (Initialization Phase.) The challenger C takes a sufficiently large security
parameter λ and runs ID-LTRS.Setup to generate param and master secret
key s. C keeps s to himself and sends param to the Adversary A.

– (Probing Phase.) A makes a polynomial number of oracle queries except
master key query in an adaptive manner.

– (End Game Phase.) A outputs two group sizes n1, n2 ∈ N of length polyno-
mial in λ, an event-ID e ∈ E, two thresholds t1 ∈ [1, n1] and t2 ∈ [1, n2],
two identity sets Y1 = {IDi ∈ {0, 1}∗|i ∈ [1, n1]} and Y2 = {IDi ∈ {0, 1}∗|i ∈
[1, n2]}, two messages m1,m2 ∈ M, an ID-based (t1, n1)-linkable threshold
ring signature σ1 ∈ Ψ and another ID-based (t2, n2)-linkable threshold ring
signature σ2 ∈ Ψ . The only restriction is that (m1,Y1), (m2,Y2) should not
appear in any of the previous signature queries and strictly less than t1 + t2
secret keys of Y1 ∪ Y2 are returned by key queries.

A wins the game if ID-LTRS.Verify(param, e, nj , tj ,Yj ,mj , σj) returns accept
for j = 1, 2 and ID-LTRS.Link(param, e, t1, t2, n1, n2,Y1,Y2,m1,m2, σ1, σ2) re-
turns unlinked. The advantage of A is defined as the probability that A wins. An
ID-based linkable threshold ring signature scheme is linkable (or IDLTR-LINK
secure) if no PPT adversary has a non-negligible advantage in Game Linkable
above.
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Informally speaking, non-slanderability ensure that no adversary, even with
the help of the PKG, can frame an honest user for signing a signature. That
is, an adversary cannot produce a valid signature that is linked to a signature
generated by a user. To model the attack scenario, we allow the adversary to
have the master secret key. On a side note, this property provides a way for a
user to refute a forged signature from the PKG (framing). Formally it is defined
as follow:

Definition 7 (Game Non-slanderability).

– (Initialization Phase.) The challenger C takes a sufficiently large security
parameter λ and runs ID-LTRS.Setup to generate param and master secret
key s. C keeps s to himself and sends param to the Adversary A.

– (Probing Phase I.) A makes a polynomial number of oracle queries in an
adaptive manner.

– (Challenge Phase.) A gives C a group size n ∈ N of length polynomial in
λ, an event-ID e ∈ E, a thresholds t ∈ [1, n], an identity set Y = {IDi ∈
{0, 1}∗|i ∈ [1, n]}, a set of insider identity V ⊆ Y, and a messages m ∈ M.
C makes key queries to generate secret keys of all members in V and invoke
ID-LTRS.Sign to produce a signatures σ.

– (Probing Phase II.) A makes a polynomial number of oracle queries in an
adaptive manner.

– (End Game Phase.) A outputs a set of identities Y ′, a threshold value t′, a
group size n′, a message m′, and a signature σ′ such that ID-LTRS.Verify
(param, e, n′, t′,Y ′,m′, σ′) returns accept and it is not an output of any sign-
ing query.

A wins the game if ID-LTRS.Link(param, e, t, t′, n, n′,Y,Y ′,m,m′, σ, σ′) returns
linked. The advantage of A is defined as the probability that A wins. An ID-based
linkable threshold ring signature scheme is non-slanderable (or IDLTR-NON-
SLAND secure) if no PPT adversary has a non-negligible advantage in Game
Non-slanderability above.

5.2 Our Proposed Construction

The key idea is to include a tag to the original ID-TRS signature for the purpose
of linking. Such a tag is a one-way and unique image of the signer’s secret signing
key. To prevent PKG from learning the signer identity from the tag, we modify
the extract protocol so that the secret signing key is co-generated by signer and
PKG. The signature, besides proving the knowledge of a secret signing key, now
also proves that the tag is formed correctly. To test whether two signatures are
linked, one simply checks if the two signatures contain the same tag. Below is
our construction.

– ID-LTRS.Setup. Same as ID-TRS.Setup, except it additionally picks ei ∈R

G(QR(N)) for all i ∈ [1, k] and sets E := {ei|i ∈ [1, k]}. It also pict one more
generator h ∈R G(QR(N)). Define λ1, λ2 such that γ2 > λ1+2, λ1 > ε(λ2+κ)
and λ2 > 2λ. Define Λ̃′ =]0, 2λ2 [, Λ′ = S(2λ1 , 2λ2) and Λ = S(2λ1 , 2ε(λ2+κ))
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– ID-LTRS.Extract Protocol. User i with ID IDi engage with PKG in the
following protocol.
1. User randomly generates d̃i ∈R Λ̃′, a random r̃ ∈R ±{0, 1}2λ and sends
C1 = gd̃i

1 g
r̃
2, together with knowledge of representation of C1 with respect

to g1 and g2 to PKG. It also sends IDi together.
2. PKG checks that the proof is valid and randomly selects α, β ∈R Λ̃′ and

sends α, β to user.
3. User computes di = 2λ1 +(αd̃i+β mod 2λ2) and sends C2 = hdi together

with the proof of validity to PKG. This can be done by SPK{(u, v, w) :
Cα

1 g
β
1 = gu

1 g
2λ2v
1 gw

2 ∧ C2 = hu ∧ u ∈ Λ′}(M)
4. PKG checks if the proof is valid, and picks a prime xi ∈R Γ ′, and then

solves axi
i ≡ yiC2 (mod N) for ai using the master secret key msk, where

yi = H(IDi). Return (ai, xi) to user and record the entry 〈IDi, yi, ai, xi〉.
5. User checks if axi

i = yih
di (mod N)

We remark that this structure is used by the ACJT group signature [2].
– ID-LTRS.Sign. Compute τi := edi mod N for all i ∈ I and τi := eti mod N

with ti ∈R Λ′ for all i ∈ [1, n]\I. The algorithm is subsequently modified
from ID-TRS.Sign to also prove that the τi’s are correctly formed. Specifi-
cally, the algorithm now implements:

SPK4

(ai, xi, di)n
i=1 :

∨
J∈℘d([1,n])

∧
i∈J

yih
di ≡ axi

i ∧ τi ≡ e
di ∧ di ∈ Λ, xi ∈ Γ

 (M)

(4)
which is instantiated as:

SPK5

(ui, xi, wi)n
i=1 :

∨
J∈℘d([1,n])

∧
i∈J

Ai,1 ≡ gui
1 ∧ Ai,3 ≡ gxi

1 g
ui
3 ∧

Axi
i,1 ≡ g

wi
1 ∧ Axi

i,2 ≡ g
wi
2 yih

di ∧
τi ≡ edi ∧ xi ∈ Γ ∧di ∈ Λ

 (M).

(5)
The actual steps implementing the SPK5 above follow closely those im-
plementing SPK3 in ID-TRS.Sign and are thus not verbosely enumerated .
Denote by σ5 the signature output of SPK5. Note that it includes τ1, · · · , τn.
In addition, generate a signature σ6 for the following SPK using the knowl-
edge of xi’s for i ∈ I and ti’s for i ∈ [1, n]\I:

SPK6

{
(αi)n

i=1 :
n∧

i=1

τi ≡ eαi

}
(M). (6)

The detailed implementation of the above SPK is given in Appendix A.
Finally the signature is output as σ := (σ5, σ6).

– ID-LTRS.Verify. Given a signature σ = (σ5, σ6), verify the validity of σ5

with respect to SPK5 and that of σ6 with respect to SPK6. Again we omit
the verification algorithm for SPK5 as it can be adapted in a straightforward
manner from ID-TRS.Verify. Verification for SPK6 is given in Appendix A.
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– ID-LTRS.Link. On input the list of system parameters param, an event-ID
e ∈ E , two group sizes n1, n2 ∈ N of length polynomial in the security
parameter λ, two thresholds t1 ∈ [1, n1] and t2 ∈ [1, n2], two identity sets
Yj = {ID(j)

i ∈ {0, 1}∗|i ∈ [1, nj ]} for j = 1, 2, two messages m1,m2 ∈ M,
and two signatures σ1, σ2 ∈ Ψ such that valid ← Verify(param, e, nj , tj ,
Yj , mj , σj) for j = 1, 2, the algorithm parses σ1 for the tags (τ (1)

1 , · · · , τ (1)
n1 )

and σ2 for the tags (τ (2)
1 , · · · , τ (2)

n2 ). If there exists a tag from the first set
and a tag from the second set such that the two tags are equal in value, the
algorithm outputs linked. Otherwise it returns unlinked.

Correctness of our scheme is straightforward and we show its security in
Appendix B.1.

6 Identity Escrow

As mentioned earlier, the anonymity provided by ring signatures can be unde-
sirably strong in some situations. Authorities prefer providing only revocable
anonymity to their users. Their ability of revocation serves as a mechanism that
prevents them from being suffered from the presence of misbehaving users. In-
troducing a trusted authority who can reveal the true identity of the user under
certain circumstances is formally known as identity escrow [26].

To add identity escrow to ring signature schemes, one could variably encrypt
any information sufficient for identifying the signer, and then include in the sig-
nature the resulting ciphertext plus a proof that it is correctly formed. In fact,
verifiable encryption [10, 14] has been frequently used (though sometimes implic-
itly) to achieve revocable anonymity. For instance, the generic constructions of
group signatures [5, 8]. As a concrete example, in [2], part of the user’s secret key
5 is ElGamal encrypted under the public key of an authority. The unforgeability
of the signature scheme implies that valid signatures are actually proofs of the
fact that encryption was done according to specification.

Our Construction. We use the same technique as in [2] to add identity escrow
to the two schemes proposed above. The resulting schemes are virtually the
same as their respective original schemes without identity escrow, except that in
Setup, g2 is not generated randomly. Instead it is generated in a way such that
the revocation manager knows the discrete logarithm of g2 in base g1, i.e. he
knows an integer s such that g2 ≡ gs

1 (mod N). Assume the revocation manager
is trusted not to abuse his knowledge of s in the sense that he does not collude
with any adversary and only uses s when trying to revoke the anonymity of a
signature with eligible reasons, e.g. under court orders. Then the two schemes
with identity escrow still enjoy all the security notions we proved for original
schemes.

To see how the anonymity can be revoked, the revocation manager can com-
pute from a signature a part of the secret key (ai, xi), namely ai, of all partici-
pating users by computing Ai,2/A

s
i,1 mod N for all i ∈ [1, n]. The unforgeability

5 Also known as the user’s signing certificate in the context of group signatures.
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of the signature scheme forces at least d pairs of Ai,1 and Ai,2 to be formed cor-
rectly. These pairs are exactly those belonging to the participating users. The
remaining ai could just be some random numbers. All n ai’s are passed to the
key issuing manager, whom can then look up in his database the identity of the
user possessing ai as a part of his secret key, for each i ∈ [1, n]. In this way, the
d actual signers can be identified.

The revocation manager cannot frame a user if he is required to prove (in
zero-knowledge of s) the statement g2 ≡ gs

1 ∧ Ai,2 ≡ aiA
s
i,1. The key issuing

manager cannot frame a user as well if he is required to prove (in zero-knowledge
of xi) the statement axi

i ≡ yi, where yi = Hid(IDi).
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A Implementations of SPK6

SPK6. To sign a signature for SPK6, do the following:

1. (Commitment.) Pick ρi ∈R ±{0, 1}ε(λ2+κ) and compute Ti := gρi mod N for
all i ∈ [1, n].

2. (Challenge.) Compute c := Hsig(param, n, g, (τ1, T1)n
i=1, M).

3. (Response.) Compute si := ρi − cxi for all i ∈ I and si := ρi − cti for all
i ∈ [1, n]\I.

The signature for SPK6 is thus σ6 := (c, s1, . . . , sn).
Verification for σ6 = (c, s1, . . . , sn) is done by first computing T ′i := gsiτ c

i mod

N for all i ∈ [1, n] and then checking if si

?
∈ {0, 1}ε(λ2+κ)+1 for all n ∈ [1, n], and

c
?= Hsig(param, n, g, (τ1, T ′1)

n
i=1, M).

B Security Proofs

Theorem 1 (Unforgeability). Under the condition that both λ and κ are suf-
ficiently large, the ID-TRS scheme proposed in Sec. 4 is existential unforgeable
against chosen-message-and-identity attacks (EUF-IDTR-CMIA secure) under
the Strong RSA Assumption, in the Random Oracle Model.

Proof. Suppose the challenger C receives a random instance (Y,N) of the Strong
RSA problem, where N is a product of two equal-length safe primes and Y ∈R

QR(N), and is to compute x, e such that xe = Y mod N . C runs A and acts as
A’s challenger in Game Unforgeability. During the game, C simulates answers to
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Hsig, Hid and Key queries made by A. These answers are randomly generated
accordingly with consistency maintained and collision avoided. To do so, C keeps
track of all the previous queries and answers. Due to the random oracle assump-
tion, we assume that A has queried for Hid(ID) before ID is used. In the game, C
randomly picks g1, g2, g3 ∈ QR(N) such that they are generators of QR(N) and
chooses γ1, γ2 ∈ N and 1 < ε ∈ R accordingly. C gives A the list param of system
parameters. In the following, we give more details on how the Hid queries and
Signature queries are simulated.

Hid queries: Besides maintaining consistency and avoiding collision, for
eachHid query, C randomly generates a prime x and a number a of suitable range,
and returns ax mod N . There is one exception: in the game, C also randomly
chooses one of the Hid queries and sets the answer as Hid(ID∗) = Y , where
ID∗ is the value of the query. Since Y is an random instance of the strong RSA
problem, it does not affect the randomness of simulated Hid. However, a Key
query on identity ID∗ will make C fail.

Signature queries: A chooses a group {IDi}i∈[1,n] of n identities, a thresh-
old value d where d ∈ [1, n], a set S ∈ ℘d([1, n]) and a message m ∈ {0, 1}∗, and
asks for a signature. If ID∗ /∈ S, C is in possession of all secret keys correspond to
identities in S and can simulate a signature accordingly. Otherwise, C generates
the signature by following the steps below. Without loss of generality, we assume
S = [1, d] and IDd = ID∗.

1. (Auxiliary commitment.) For all i ∈ [1, d−1], pick ui ∈R ±{0, 1}2λ and com-
pute wi := uixi. Compute in modulo N : Ai,1 := gui

1 , Ai,2 := aig
ui
2 , Ai,3 :=

gxi
1 g

ui
3 . For all i ∈ [d, n], randomly pick Ai,1, Ai,2, Ai,3 ∈R QR(N).

2. (Commitment.) For all i ∈ [1, d − 1], pick ri,x ∈R ±{0, 1}ε(γ2+κ), ri,u ∈R

±{0, 1}ε(2λ+κ), ri,w ∈R ±{0, 1}ε(γ1+2λ+κ+1). Compute in modulo N :

Ti,1 := g
ri,u

1 , Ti,2 := g
ri,x

1 g
ri,u

3 , Ti,3 := A
ri,x

i,1 g
−ri,w

1 , Ti,4 := A
ri,x

i,2 g
−ri,w

2 .

For all i ∈ [d, n], pick ci ∈R {0, 1}κ, si,x ∈R ±{0, 1}ε(γ2+κ), si,u ∈R ±{0, 1}ε(2λ+κ),
si,w ∈R ±{0, 1}ε(γ1+2λ+κ+1). Compute in modulo N :

Ti,1 := g
si,u

1 Aci
i,1, Ti,2 := g

si,x−ci2
γ1

1 g
si,u

3 Aci
i,3,

Ti,3 := A
si,x−ci2

γ1

i,1 g
−si,w

1 , Ti,4 := A
si,x−ci2

γ1

i,2 g
−si,w

2 yci
i .

3. (Challenge.) Generate a polynomial f over GF (2κ) of degree at most (n−d)
such that and ci = f(i) for all i ∈ [d, n] and setHsig(param, n, d, (yi, Ai,1, Ai,2,
Ai,3)n

i=1, (Ti,1, · · · , Ti,4)n
i=1,M) = f(0).

4. (Response.) For all i ∈ [1, d− 1], compute ci := f(i), and compute in Z:

si,u := ri,u − ciui, si,x := ri,x − ci(xi − 2γ1), si,w := ri,w − ciwi.

5. (Signature and Output.) Set σ := ((Ai,1, Ai,2, Ai,3)n
i=1, f, (si,u, si,x, si,w)n

i=1).

When A outputs a forged ID-based (d, n)-threshold ring signature for a group
Y such that ID∗ ∈ Y, and A only issues up to d − 1 key queries corresponding
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the identities in Y \ {ID∗}, the following will be carried out by C for solving the
Strong RSA problem. Otherwise, C fails.

It follows from the forking lemma [32] that if A is a sufficiently efficient forger
in the above interaction, we can construct a Las Vegas machine A′ that outputs
two signatures:

σ = ((Ai,1, Ai,2, Ai,3)n
i=1, f, (si,u, si,x, si,w)n

i=1),
σ′ = ((Ai,1, Ai,2, Ai,3)n

i=1, f
′, (s′i,u, s

′
i,x, s

′
i,w)n

i=1).

C achieves this result by keeping all the random tapes in two invocations of A
the same except c0 returned by Hsig of the forged message.

Next we consider the probability that ID∗ is the chosen target of forgery. Let
π be the index of ID∗ in Y. Since f(0) 6= f ′(0), and the degree of f and f ′ is at
most n − d, there are at least d values k1, k2, · · · , kd such that f(ki) 6= f ′(ki).
With probability at least 1/n, ki = π.

Given σ and σ′, C solves the Strong RSA problem as follows. Denote f(π)
and f ′(π) by cπ, c′π. For clarity, we drop the subscript π, thus A1 denotes Aπ,1,
su denotes sπ,u, etc. Since A1

cg1
su = A1

c′g1
s′u , it follows that g1su−s′u = A1

c′−c.
Let du = gcd(su− s′u, c′− c), that is, there exists αu, βu such that αu(su− s′u)+
βu(c′ − c) = du. Hence,

g1 = g
αu(su−s′u)+βu(c′−c)

du
1 = (Aαu

1 g1
βu)

c′−c
du

Under the strong RSA assumption, c′− c = du (otherwise the c′−c
du

-th root of g1
is computed). This implies (su − s′u) = û(c′ − c) such that g1û = A1. Next con-
sider A3

cg1
sx−c2γ1

g3
su = A3

c′g1
s′x−c′2γ1

g3
s′u , it follows that g1sx−s′xg3

su−s′u =
(A3g1

−2γ1 )
c′−c

. By (su − s′u) = û(c′ − c), ( A3
g12γ1 gû

3
)c′−c = g1

sx−s′x . Under the
strong RSA assumption and similar argument as above, we have sx − s′x =
x̃(c′ − c) such that ( A3

g12γ1 gû
3
) = g1

x̃. That is, A3 = gû
3 g

(x̃+2γ1 )
1 . Denote x̂ =

x̃ + 2γ1 . Then consider A1
(sx−c2γ1 )g1

−sw = A1
(s′x−c′2γ1 )g1

−s′w , it follows that
A1

sx−s′xA1
(c′−c)2γ1 = g1

sw−s′w . By sx − s′x = x̃(c′ − c), (A1
x̂)c′−c = g1

sw−s′w .
Under the strong RSA assumption and similar argument as above, we have
sw − s′w = ŵ(c′ − c) such that Ax̂

1 = gŵ
1 . This implies g1ûx̂ = gŵ

1 and ŵ =
ûx̂. Finally, consider A2

(sx−c2γ1 )g2
−swyc = A2

(s′x−c′2γ1 )g2
−s′wyc′ , it follows that

A2
sx−s′xA2

(c′−c)2γ1
g2

s′w−sw = yc′−c. By sx−s′x = x̃(c′−c) and sw−s′w = ŵ(c′−c),
we have (A2

x̂g2
−ŵ)c′−c = yc′−c. It follows that ( A2

g2û )x̂ = y.
C returns ( A2

g2û , x̂) as the solution to the Strong RSA problem.
The success probability of C is computed as follows. For C to succeed, key

query on ID∗ should never be issued (i.e. ID∗ is not corrupted) and the corre-
sponding probability is qHid

−qKey

qHid
, where qHid

and qKey are the number of Hid

queries and Key queries, respectively. Suppose na identities in the group Y of
the forged signatures are corrupted using key queries. Here 0 ≤ na ≤ d−1. With
probability n−na

qHid
−qKey

, ID∗ is in Y, given that ID∗ is not corrupted. C can com-
pute at least d out of n secret keys in the group since there are at least d values
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k1, k2, · · · , kd such that f(ki) 6= f ′(ki). Suppose nb secret keys corresponding to
uncorrupted identities in Y are computed. Here 1 ≤ nb ≤ d. With probability

nb

n−na
, the secret key of ID∗ is computed. Combining all the events, the success

probability of C is given by qHid
−qKey

qHid

n−na

qHid
−qKey

nb

n−na
which is at least 1

qHid
. ut

Theorem 2 (Anonymity). Under the condition that both λ and κ are suf-
ficiently large, the ID-TRS scheme proposed in Sec. 4 is signer indistinguish-
able against adaptive chosen-message-and-identity attacks (IND-IDTR-CMIA
secure) under the DDH Assumption in the random oracle model.

Proof. Suppose the challenger C receives a random instance of the DDH problem
in the group QR(N): (g, gα, gβ , gγ) and is to decide if γ = αβ mod ord(g). C
runs A and acts as A’s challenger in Game Anonymity. C sets g1 = g, g2 = gk

and g3 = gβ where k is randomly generated. It chooses γ1, γ2 ∈ N and 1 <
ε ∈ R accordingly, and gives A the list param of system parameters. During
the game, C answers A’s queries similar to that described in the simulation of
Game Unforgeability above. In particular, consistency should be maintained and
collision should be avoided. Similarly, we assume that A has asked for Hid(ID)
before ID is used.

Challenge Phase: In the challenge phase of Game Anonymity, A gives C
a group size n, a threshold d, a set {IDi}i∈[1,n] of identities and a message m. C
picks randomly Π ∈R ℘d([1, n]). Without loss of generality, we assume Π = [1, d]
and C computes σ as follows.

1. (Auxiliary commitment.) For all i ∈ [1, d−1], pick ui ∈R ±{0, 1}2λ and com-
pute wi := uixi. Compute in modulo N : Ai,1 := gui

1 , Ai,2 := aig
ui
2 , Ai,3 :=

gxi
1 g

ui
3 . For i = d, set Ai,1 = gα, Ai,2 = ai(gα)k, Ai,3 = g1

xigγ . For all
i ∈ [d+ 1, n], pick Ai,1, Ai,2, Ai,3 ∈R QR(N).

2. (Commitment.) For all i ∈ [d − 1], pick ri,x ∈R ±{0, 1}ε(γ2+κ), ri,u ∈R

±{0, 1}ε(2λ+κ), ri,w ∈R ±{0, 1}ε(γ1+2λ+κ+1). Compute in modulo N :

Ti,1 := g
ri,u

1 , Ti,2 := g
ri,x

1 g
ri,u

3 , Ti,3 := A
ri,x

i,1 g
−ri,w

1 , Ti,4 := A
ri,x

i,2 g
−ri,w

2 .

For all i ∈ [d, n], pick ci ∈R {0, 1}κ, si,x ∈R ±{0, 1}ε(γ2+κ), si,u ∈R ±{0, 1}ε(2λ+κ),
si,w ∈R ±{0, 1}ε(γ1+2λ+κ+1). Compute in modulo N :

Ti,1 := g
si,u

1 Aci
i,1, Ti,2 := g

si,x−ci2
γ1

1 g
si,u

3 Aci
i,3,

Ti,3 := A
si,x−ci2

γ1

i,1 g
−si,w

1 , Ti,4 := A
si,x−ci2

γ1

i,2 g
−si,w

2 yci
i .

3. (Challenge.) Generate a polynomial f over GF (2κ) of degree at most (n−d)
such that and ci = f(i) for all i ∈ [d, n] and setHsig(param, n, d, (yi, Ai,1, Ai,2,
Ai,3)n

i=1, (Ti,1, · · · , Ti,4)n
i=1,M) = f(0).

4. (Response.) For all i ∈ [1, d− 1], compute ci := f(i), and compute in Z:

si,u := ri,u − ciui, si,x := ri,x − ci(xi − 2γ1), si,w := ri,w − ciwi.
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5. (Signature and Output.) Set σ := ((Ai,1, Ai,2, Ai,3)n
i=1, f, (si,u, si,x, si,w)n

i=1).

When A outputs an index π̂, C returns that (g, gα, gβ , gγ) is a valid DDH-tuple if
π̂ = d. Otherwise, with half of the chances, C returns that it is a valid DDH-tuple,
and with the other half, C returns that it is not a DDH-tuple.

Now we evaluate the winning probability of C. Suppose the winning proba-
bility of A in a real Game Anonymity is d/n + εA for some non-negligible εA.
There are three cases that C will win. Case 1: A outputs π̂ = d and the challenge
is a valid DDH-tuple. Case 2: A outputs π̂ 6= d and C’s wild guess is correct.
Since half of the chances, the challenge is a valid DDH-tuple, the probability
that A outputs π̂ ∈ [1, d] given that the challenge is a valid DDH-tuple is εA. As
the value of d is also randomly chosen, the probability of case 1 is 1/2n+ εA/2d.
For case 2, there are two sub-cases. In the first sub-case, the challenge is a valid
DDH-tuple. Since C simply makes wild guess in this sub-case, the probability of
winning for C in this sub-case is therefore 1

4 (1−( 1
n + εA

d )). The second sub-case is
when the challenge is not a DDH-tuple. From the steps of simulating signature σ
above, we can see that (Ad,1, Ad,2, Ad,3) has no difference from (Ai,1, Ai,2, Ai,3)
for i ∈ [d+1, n], i.e. same as those non-signers. Hence the probability of the sec-
ond sub-case is equal to one minus the probability that π̂ = d and the challenge
is not a DDH-tuple. The probability of π̂ = d given that the challenge is not a
DDH-tuple is ψ = (1− (d/n+ εA))/(n−d+1). Hence the probability of winning
for C in the second sub-case is 1

4 (1 − ψ) = 1
4 −

1−d/n−εA
4(n−d+1) . Combining all cases,

we have the winning probability of C to be at least 1
2 + εA

4d . ut

B.1 Security Arguments of ID-LTRS

Unforgeability : it can be proved in a similar manner as in the case of ID-TRS.
The signature using a random number as the tag (i.e., using a random number
instead of edi) can still be simulated using standard techniques. Distinguishing a
random number from a correctly formed tag require solving the DDH problem.

Anonymity : a signature for ID-LTRS is different from a signature for ID-
TRS as the former includes tags. The same signer will always produce the same
tag. If the signer signs only once, distinguishing the actual signer solves a DDH
instance of (g1,e,g1di , edi). Thus, signers who signed only once won’t reveal their
identity under the DDH assumption.

Linkability : due to the soundness of the SPK, a signer is forced to use a correct
tag for yielding a valid a signature. If an adversary can produce two distinct tag
using one secret key, it is able to compute H(ID) = a1

e1h−d1 = a2
e2h−d2 for

some distinct d1, d2. With this, it is easy to set up a simulator to solve the Strong
RSA problem and thus linkability is ensured under the Strong RSA assumption.

Non-slanderability : in order to slander, an adversary must produce a valid
signature with a same tag of the person-to-be-slandered. Due to the soundness
of SPK, the adversary must know the secret key of that person.

We outline how to simulate the key queries in the proofs of ID-LTRS.
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Given a random instance (Y,N) of the strong RSA problem, randomly chooses
xk ∈R Γ ′ for k = [1, qk] \ {j} for some j ∈ [1, qk], where qk is the number of key
queries. Also chooses dk ∈R Λ′ for k = [1, qk].

The public key h is set to be Y Πxk . For the ith, i 6= j key query, set H(IDi) =
hri for ri ∈R Λ′. Upon receiving C1 , perform a rewind simulation and obtain
d̃i, r̃i. Choose α, β such that 2λ1 + (αd̃i + β mod 2λ2) = di. Compute Ai =
Y (di+ri)Πk 6=idi . The secret key is (Ai, xi).

For the jth query, set H(IDj) = A
xj

j /hdi for some Aj = hrj where rj ∈R Λ′.
The secret key is (Aj , xj).

In fact, for fixed IDi, it is possible to simulate the key query and generate
different secret keys using different C1 as follow. H(IDi) is of the form ht where
t = ri or rjxj − di. Additional secret keys on IDi can be generated by unused xk

as (Ai = Y (t+ri)Πl 6=kxl , xk).
However, from practical point of view, a PKG should not allow users to

obtain different secret keys for the same IDi.


