
One-Way Signature Chaining - A New Paradigm For Group

Cryptosystems And E-Commerce

Amitabh Saxena and Ben Soh
Dept. of Computer Science and Computer Engineering
La Trobe University, Bundoora, VIC, Australia 3086

December 5, 2006

Abstract

In this paper, we describe a new cryptographic primitive called (One-Way) Signature Chaining.
Signature chaining is essentially a method of generating a chain of signatures on the same message
by different users. Each signature acts as a “link” of the chain. The one-way-ness implies that the
chaining process is one-way in the sense that more links can be easily added to the chain. However,
it is computationally infeasible to remove any intermediate links without removing all the links. The
signatures so created are called chain signatures (CS). We give precise definitions of chain signatures
and discuss some applications in trust transfer. We then present a practical construction of a CS
scheme that is secure (in the random oracle model) under the Computational Diffie-Hellman (CDH)
assumption in bilinear maps.

1 Introduction

Over recent years, a lot of research in e-commerce systems has been on the problem of trust transfer.
Roughly speaking, trust transfer is the act of transferring the trust placed on the original user (the
trusted) to a proxy user (the trustee) such that some other user (the truster) can delegate the same
responsibilities to the trustee that he would have delegated to the trusted in some trust context (for
instance, a electronic transaction).

In this paper, we attempt to give a formal treatment of this trust transfer using the notion of Chain
signatures (CS). Chain signatures are similar to proxy signatures, where the original signer delegates
signing power to a proxy signer [1]. In addition, chain signatures ensure that the hierarchy of the
delegation is preserved and cannot be tampered with. The crucial difference is that chain signatures
are completely non-interactive and stateless - the signer can be completely oblivious of the receiver’s
identity. The intriguing part of chain signatures is that despite this anonymity, they provide sufficient
guarantee of the path from which this delegation was actually propagated. As an application of CS,
consider wireless and ad-hoc sensor networks, where routing information often needs to be transmitted
without prior knowledge of the topology.

Although the notion of chaining as described here has been informally discussed in several papers [2,
3, 4, 5, 6, 7], a proper security model and precise definitions are still lacking. In this paper, we fill this gap.
Unlike the schemes of [2] or [3], which require senders to authenticate the next-level path, our protocol
puts this responsibility on the receivers.

In many ways, CS are similar to transitive signatures [8] in that they allow trust to be transferred
between multiple entities. The difference is that transitive signatures attempt to hide the intermediate
nodes of trust transfer, while CS try to ensure that intermediate nodes cannot be removed. Intuitively,
chain signatures can be considered as a combination of Verifiably Encrypted Signatures (VES) [9, 10]
and sequential aggregate signatures [11, 12].

The rest of this paper is organized as follows. We give the motivation for chain signatures in Section 2.
We then formalize the intuition of chain signatures in Section 3.2. Finally, in Section 4 we present the

1

scheme and prove its security in Section 4.3. We then discuss some applications of chain signatures in
Section 5.

2 Motivation

To see the motivation behind chain signatures consider a scenario with three users Alice, Bob and Carol.
Alice signs some message m and sends the signature σA to Bob, after which she is not available for
interaction. Now Bob wants to convince Carol that Alice indeed signed the message m. However if Carol
later wants to convince a third party (using Bob’s proof) the statement “Alice signed the message
m” then she must only be able to do so by proving that “Bob knows about it too”.

2.1 Intuition Behind Chain Signatures

Assume that users A, B compute signatures σA, σB (on the same message) using private keys SKA, SKB

respectively. Define the following properties:

1. Aggregation: Given signatures σA, σB it is easy to compute a combined signature σ{A,B} that
can be verified using public keys PKA, PKB .

2. Delete Protection: Given {σ{A,B},PKA,PKB}, it must be infeasible to compute σA or σB

3. Strong Delete Protection: This is a stronger variant of the previous property.

• Given {σ{A,B},PKA,PKB ,SKA}, it must be infeasible to compute σB .

• Given {σ{A,B},PKA,PKB ,SKB}, it must be infeasible to compute σA.

A signature scheme that satisfies the aggregation and delete protection conditions is called a Chain
Signature (CS) scheme. A CS scheme that additionally satisfies the strong delete protection condition is
called a Strong Chain Signature (SCS) scheme. The above idea can be extended to an arbitrary number
of users.

It is fairly trivial to extend the previous argument to arbitrary number of distinct users. Assume
that users 1, 2, . . . n compute signatures σ1, σ2, . . . σn (on the same message) using private keys SK1,
SK2, . . . ,SKn respectively. We can then similarly define:

1. Aggregation: Given signatures σ1, σ2, . . . σn, it is easy to compute a combined signature σ{1,2,...,n}
that can be verified using public keys PK1,PK2, . . . ,PKn.

2. Delete Protection: Given {σ{1,2,...,n},PK1,PK2, . . .PKn}, it must be infeasible to compute σα for
any α ({1, 2 . . . n}

3. Strong Delete Protection: Given {σ{1,2,...,n},PK1,PK2, . . . ,PKn,SKβ1 ,SKβ2 , . . . ,SKβi} for i < n
and {β1, β2, . . . βi} ({1, 2, . . .}, it must be infeasible to compute σα for α = {1, 2, . . . n}\{β1, β2, . . . βi}.

Although in the above (informal) description we assumed that the combined signature is “unordered”,
in our formal definition we will also take into account the order in which the users contribute. Our model
of CS will not provide “strong delete protection”. However, it will provide “delete protection”.

2.2 Physical Analogue Of Chain Signatures

Chain signatures can be intuitively visualized by considering a box with a link and a set of “intermediate”
links with an asymmetric combination lock, as shown in Figure 1. In an asymmetric combination lock,
the opening combination is different from the closing combination and cannot be derived from it. The
initiator sends the box along with several open links and their closing combination(s) (but not the tags).
The opening combination(s) are kept secret. Each user may then add a private tag to the “message”,
which is the equivalent of authentication. A signature is considered valid if there are no “loops” in the
chain, each link has a tag, and all the tags are unique.

2

Figure 1: Physical analogue of a chain signature.

3 Formal Definition - Chain Signatures

In this section, we will formalize the above intuition of chain signatures. Since chain signatures inherently
deal with ordered elements (i.e. the public keys), we first develop some notation to deal with ordered
elements, which we call sequences.

1. A sequence is similar to a set except that the order of its elements matters. We require that the
elements of a sequence must be distinct. The elements of a sequence are written in order and
enclosed with 〈, 〉 symbols. For instance, 〈y1, y2, y3〉.

2. The symbol θ denotes the empty sequence with zero elements. The symbol ε denotes the empty
string of zero length.

3. Let La = 〈y1, y2, . . . , yk〉 be some non-empty sequence. For any other sequence Lb, we say that
Lb ≺ La if and only if Lb = 〈y1, y2, . . . , yi〉 and 0 ≤ i ≤ k.

4. We say that two sequences {La, Lb} overlap if there exists a non-empty sequence L′ such that
L′ ≺ La and L′ ≺ Lb. For instance, {〈y1, y2〉 , 〈y1〉} overlap, while {〈y1, y2〉 , 〈y2〉} do not.

5. For any two sequences La, Lb, the symbol La ∪ Lb denotes the set of elements that belong to at
least one of {La, Lb}. Similarly La ∩Lb denotes the set of elements that belong to both La and Lb.
We denote by La � Lb to be the set of elements from the largest sequence L′ such that L′ ≺ La

and L′ ≺ Lb. Clearly, for two overlapping sequences {La, Lb}, we have that La � Lb 6= ∅.

3.1 Algorithms

A chain signature scheme is defined using three PPT algorithms KeyGen, ChainSign, ChainVerify as follows.
(It is more convenient to describe ChainVerify before ChainSign.)

KeyGen (Key Generation) This randomized algorithm takes as input a security parameter τ and outputs
a randomly selected key-pair (x, y) such that x is the private key and y is the public key. We say
that (xi, yi)

R← KeyGen on the ith run of this algorithm.

3

ChainVerify (Verification) This algorithm takes as input a tuple (m,σi, Li). Here Li = 〈y1, y2, . . . , yi〉 is
some sequence of i public keys and the pair (σi, Li) is a purported chain signature on message m.
The algorithm works as follows:

1. If Li = θ and σi = ε the algorithm outputs VALID and terminates.

2. If Li = θ and σi 6= ε the algorithm outputs INVALID and terminates.

3. If this step is executed then Li 6= θ. The algorithm invokes a deterministic poly-time procedure
after which it outputs either VALID or INVALID and terminates.

ChainSign (Signing) The ChainSign algorithm takes as input a tuple (xi, yi,m, σj , Lj). Here (xi, yi)
is a valid private-public key-pair (generated using the KeyGen algorithm), the pair (σj , Lj) is a
purported chain signature on message m, and Lj = 〈y1, y2, . . . , yj〉 is some sequence of j public
keys such that yi /∈ {y1, y2, . . . , yj}. The algorithm works as follows:

1. If any of the input conditions (as described above) are violated, the algorithm outputs ERROR
and terminates.

2. The algorithm invokes ChainVerify with (m,σj , Lj) as input (i.e. it checks whether (σj , Lj) is
a valid chain signature on m or not). If (σj , Lj) is not a valid chain signature on message m,
the algorithm outputs ERROR and terminates.

3. If this step is executed then no input conditions are violated and (σj , Lj) is a valid chain
signature on m. In this case this algorithm uses the private key xi to compute a new valid
chain signature (σi, Li) on message m such that Li = 〈y1, y2, . . . , yj , yi〉. It outputs (σi, Li)
and terminates.

The ChainVerify and ChainSign algorithms must satisfy the standard consistency constraint of signa-
tures. That is, if the input (m,σi, Li) to the ChainVerify is the output of the ChainSign algorithm then
the ChainVerify algorithm must output VALID. Note that ChainSign can be initialized by setting σj = ε
and Lj = θ.

3.2 Security Model

We define adaptive security of chain signatures using Game 1 below. For simplicity, we assume that the
adversary is not allowed to use a chosen private key. The adversary is, however, allowed to extract private
keys of choice. In this respect, our model is similar to an identity based system. We call this adaptive
security under known key and chosen message attack.

The reader should note that this is a weaker model than adaptive security under chosen key and
chosen message attack used in the aggregate signatures of [9]. We feel, however, that our notation is
more suitable in modeling the requirements of chain signatures (which are slightly different from aggregate
signatures).

Game 1

1. Setup: The challenger C sets a parameter τ and gives it to the adversary A, who then selects a
game parameter n. On receiving n, C generates n key-pairs (x1, y1), (x2, y2), . . . (xn, yn) R← KeyGen
and gives the set Y = {y1, y2, . . . yn} of n public keys to A. Denote by L the set of all non-empty
sequences with elements from Y .

2. Queries: Working adaptively, the adversary A issues at most qs chain sign queries and qe (private-
key) extract queries as follows:

(a) ChainSign: A chain sign query i (1 ≤ i ≤ qs) consists of a pair (ms(i), Ls(i)) ∈ Σ∗ × L. The
challenger responds with a valid chain signature (σs(i), Ls(i)) on ms(i) computed using the
ChainSign algorithm.

4

(b) Extract : An extract query j (1 ≤ j ≤ qe) consists of a public key ye(j). The challenger responds
with the private key xe(j).

3. Output : Finally A outputs a chain-signature-message pair (σA, (mA, LA)).

4. Result : A wins the game if all the following conditions hold:

(a) i. LA ∈ L and the ChainVerify algorithm accepts (σA, (mA, LA)) as valid.
ii. No chain sign query has been previously made on the pair (mA, LA).
iii. At least one private key corresponding to LA has not been extracted.

(b) For each chain sign query i, if (ms(i) = mA)∧ ({LA, Ls(i)} overlap), then there is at least one
key in (Ls(i) ∪ LA)\(Ls(i) � LA) which has not been extracted.

We use the random oracle model [13], where a hash function is implemented using a random oracle.
If the adversary needs to compute a hash value it queries the random oracle, which is also simulated by
the challenger. The requirement of a fair game is that the responses of the challenger (to hash queries)
are indistinguishable from the responses of a random oracle.

Definition 3.1. We say that the chain signature scheme is (n, τ, t, qs, qe, qh, ε)-secure under an adaptive
known-key and chosen-message attack if, for some parameters τ and n, there is no adversary A that
runs for at most time t; makes at most qs sign queries; makes at most qe extract queries; makes at most qh

hash queries; and wins Game 1 with probability at least ε. Otherwise, we say that A (n, τ, t, qs, qe, qh, ε)-
breaks the chain signature scheme under an adaptive known-key and chosen-message attack.

Although full adaptive security of chain signatures under known key attacks and chosen message
attacks is given by Definition 3.1, we will prove the security of our construction in a restricted model,
which we called weak adaptive known key and chosen message attacks. In this model, the attacker A
submits the extract queries before the challenge public keys are generated (for instance by specifying
their index numbers). This is a reasonable assumption considering that even though the adversary is not
allowed to actively corrupt participants, it is given unlimited access prior to the execution of the session.
We define this using a modified version of Game 1, which we call Game 1-a.

Game 1-a: This is a variation of Game 1 with the following differences: (1) In the setup phase, the
adversary submits not only the parameter n but also an n bit string extr, where the 1’s of extr denote
the indexes of the keys that the adversary wants to extract. (2) In the challenge phase, the challenger
responds, not only with the public keys Y , but also the extracted private keys X corresponding to the
non-zero bits of extr. (3) There are no private key extract queries in Game 1-a.

Definition 3.2. We say that the chain signature scheme is (n, τ, t, qs, qe, qh, ε)-secure under a weak
adaptive known-key and chosen-message attack if, for some parameters τ and n, there is no
adversary A that runs for at most time t; makes at most qs sign queries; makes at most qe extract
queries; makes at most qh hash queries; and wins Game 1-a with probability at least ε. Otherwise, we say
that A (n, τ, t, qs, qe, qh, ε)-breaks the chain signature scheme under an adaptive known-key and chosen-
message attack. Game 1-a is similar to Game 1, except that the adversary must submit the (indexes of
the) private key extract queries before the challenge phase is completed.

3.3 Analysis Of Game 1

Let us analyze the Result Section of Game 1. Clearly, Part (a) rules out the cases of a trivial win. The
intuition of CS is captured in Part (b). To see this, consider the illustration of the ChainSign algorithm
at some stage j.

Since we know that ChainSign can be “reversed” from σj (using the private key xj) to obtain σj−1,
we can also consider the following figure as a valid usage of this algorithm.

Therefore, if LA and Ls(i) overlap for some i and mA = ms(i) (we call such queries non-trivial queries),
then we know that ChainSign can be “reversed” from σs(i) and then “forwarded” to obtain σA using only
a subset of private keys for LA.

5

xj

��
σj−1 // ChainSign // σj

xj

��
σj−1 oo ChainSign oo σj

The security requirement of CS is that this is the only other way to generate σA without knowing
all the private keys of LA. The condition of Part (b) of the Result Section implies that if the adversary
does not know at least one private key needed for this “reverse-forward” operation, then this is a valid
win for the adversary.

3.4 Differences With Other Signature Schemes

In this section, we briefly demonstrate how chain signatures are different from other multi-user signature
schemes such as sequential aggregate signatures [11, 12], multisignatures [14], aggregate signatures [9],
and structured multisignatures [7]. We distinguish between two types of forgers for chain signatures.

Type 1 Forger This adversary either does not make any non-trivial queries or, if it makes one or more
non-trivial queries then for each non-trivial query j, we have that LA 6≺ Ls(j). We call such a
forgery an Ordinary Forgery.

Type 2 Forger This adversary makes one or more non-trivial queries j such that LA ≺ Ls(j). We call
such a forgery an Extraction Forgery.

All the above mentioned signature schemes only consider type 1 forgers, while chain signatures also
consider type 2. To see this, consider the following instance of Game 1 with n = 7 and Y = {yi|1 ≤ i ≤ n}.
The adversary outputs a valid chain-signature-message tuple (σA, (mA, LA)) after making five extract
queries on the keys {y1, y2, y3, y5, y6} and three non-trivial sign queries i (i.e, mA = ms(i)) such that
Ls(i) � LA 6= ∅. The sequences are (keys of extract queries have a gray box):

Ls(1) = 〈 y1 , y2 , y3 , y4, y5 , y6 , y7 〉

Ls(2) = 〈 y1 , y2 , y3 , y4, y6 , y7 〉

Ls(3) = 〈 y1 , y2 , y3 〉

LA = 〈 y1 , y2 , y3 , y4, y5 〉

Since for all the sequences Ls(i) (1 ≤ i ≤ 3), at least one private key needed for the reverse-forward
operation (described earlier) has not been extracted, the above configuration represents a win for the
adversary of Game 1. The same configuration, however, represents a loss for the adversary of a suitably
adapted game (adaptive chosen-key and chosen-message attack) in all the above mentioned schemes
([11, 14, 9, 7]) when we keep y4 as the challenge public key.

4 Chain Signatures Using Bilinear Maps

In this section we give a concrete example of chain signatures using bilinear maps. First we describe the
underlying primitives.

6

Let G1 and G2 be two cyclic multiplicative groups both of prime order q such that computing discrete
logarithms in G1 and G2 is intractable. A bilinear pairing is a map ê : G1 ×G1 7→ G2 that satisfies the
following properties [15, 16, 9].

1. Bilinearity : ê(ax, by) = ê(a, b)xy ∀a, b ∈ G1 and x, y ∈ Zq.

2. Non-degeneracy : If g is a generator of G1 then ê(g, g) is a generator of G2.

3. Computability : The map ê is efficiently computable.

The above properties also imply:

ê(ab, x) = ê(a, x) · ê(b, x) ∀a, b, x ∈ G1

ê(a, xy) = ê(a, x) · ê(a, y) ∀a, x, y ∈ G1

In a practical implementation, G1 is a subgroup of the (additive1) group of points on the elliptic curve
and G2 is the multiplicative subgroup of a finite field. The map ê is derived either from the modified Weil
pairing [15, 16] or the Tate pairing [17]. Typically q ≥ 2171 so that the fastest algorithm for computing
discrete logarithms in G1 (Pollard’s rho method [18, p.128]) takes ≥ 285 iterations [15].

4.1 BDH Parameter Generator

Using the idea of [15], we define a Bilinear Diffie-Hellman (BDH) parameter generator BDH as a ran-
domized algorithm that takes as input τ ∈ N and outputs (ê, q, G1, G2), where G1, G2 are the descriptions
of two cyclic multiplicative groups, each of prime order q such that q ≈ 2τ , and ê : G1 × G1 7→ G2 is a
bilinear map as defined above.

The security of chain signatures depends on the hardness of the following problem.

Computational Diffie-Hellman Problem CDH(g,G1): Let g
R← G1 be a generator of G1. Given

gx, gy ∈ G1 for unknown x, y ∈ Z, output gxy ∈ G1.

The Computational Diffie-Hellman Assumption (CDHA) states that the CDH(g,G1) problem is in-
tractable for any PPT adversary. This is formally stated below.

CDHA. Let A be an algorithm, and ν : N 7→ [0, 1] a function. We associate with any τ ∈ N the following
experiment.

Experiment Expcdh
A (τ)

(ê, q, G1, G2)
R← BDH(τ); g, h

R← G1\{1}; x
R← Zq; a← gx

c← A(ê, q, G1, G1, g, a, h)
If c = hx return 1 else return 0

We let
Advcdh

A (τ) = Pr
[
Expcdh

A (τ) = 1
]

denote the advantage of A on input τ , the probability computed over the random choices of the
inputs to A and the coins of A if any. We say that A has success bound ν for τ if Advcdh

A (τ) ≤ ν(τ)

Assumption CDHA: For all poly-time algorithms A there exists a negligible function ν and an
integer τ ′ ∈ N, such that for all τ > τ ′, A has success bound ν.

Definition 4.1. We say that algorithm A (τ, t, ε)-breaks the BDH parameter generator BDH if A runs
for time at most t, and Advcdh

A (τ) is at least ε.

1Although it is conventional to use the additive notation for the group G1, it is more convenient in our context to use
the multiplicative one.

7

4.2 Chain Signature Protocol

In this scenario, n ordered distinct users 〈1, 2, . . . n〉, m ∈ Σ∗ is the message or contract.

System Parameters A Trusted Authority (TA) sets the parameter τ and generates (ê, G1, G2, q)
R←BDH(τ).

Here, G1, G2 are descriptions of two groups each of prime order q ≈ τ bits and ê : G1 ×G1 7→ G2

is a bilinear mapping as defined above. The TA selects a one-way hash function H : Σ∗ 7→ G1 and
picks a random generator g of G1. The system parameters are 〈e, q, G1, G2,H, g〉.

KeyGen Each participant i generates xi
R← Z∗

q as the private key. The corresponding public key is
yi = gxi ∈ G1.

ChainSign Let Li = 〈y1, y2, . . . yi〉 and hi = H(m,Li) for i ≥ 1. Define σ0 = 1 ∈ G1 and define recursively

σi = σi−1h
xi
i ∈ G1 for i ≥ 1

The chain signature of user i on m is (σi, Li).

ChainVerify We accept the signature (σi, Li) on m as valid if the following equality holds:

ê(σi, g) ?=
i∏

j=1

ê(hj , yj)

The correctness of the verification process follows from the property of bilinear maps:

LHS = ê(σi, g) = ê(
i∏

j=1

h
xj

j , g) =
i∏

j=1

ê(hj , g
xj) = RHS

4.3 Security Of The Construction

We will reuse the proof of security of the signature scheme of Boneh, Lynn and Shacham [15] (hereafter
called BLS). The scheme is defined as follows.

Preliminary Setup For BLS Signatures A Trusted Authority (TA) sets a security parameter τ and
generates (ê, G1, G2, q)

R←BDH(τ). Here, G1, G2 are descriptions of two groups each of prime order
q ≈ τ bits and ê : G1×G1 7→ G2 is a bilinear mapping as defined above. The TA selects a one-way
hash function H : Σ∗ 7→ G1 and picks a random generator g of G1. The system parameters are
〈e, q, G1, G2,H, g〉.

1. KeyGen Generate x
R← Z∗

q as the private key. The public key is y = gx ∈ G1.

2. Sign To sign message m under public key y, compute h = H(m) and σ = hx ∈ G1. The algorithm
outputs σ as a valid signature on message m under public key y.

3. Verify Accept the signature σ under the public key y as valid if the following holds:

ê(σ, g) ?= ê(H(m), y)

Security of BLS signatures is defined using Game 2.

Game 2

1. Setup: The challenger sets some security parameter τ ′ and generates a key pair (x, y) R←KeyGen. It
gives y, the challenge public key, along with τ ′ to the adversary.

2. Queries: Working adaptively, A issues at most q′s sign queries and q′h hash queries:

8

(a) Sign queries: For each sign query i on distinct messages mi for 1 ≤ i ≤ q′s, the challenger
responds with a valid BLS signature σi = H(mi)x ∈ G1.

(b) Hash queries: For each hash query j on distinct messages mh for 1 ≤ j ≤ q′h, the challenger
responds with H(mj).

3. Output : Finally A outputs a BLS signature σA.

4. Result : A wins if σA is a valid signature and no sign query was issued on mA.

Definition 4.2. We say that the BLS scheme is (τ ′, t′, q′s, q
′
hε′)-secure against existential forgery under

an adaptive chosen message attack if for some parameter τ ′, there is no adversary A that runs for
at most time t′; makes at most q′s sign queries and qh hash queries; and wins Game 2 with probability
at least ε′. Otherwise, if such an adversary A exists, then we say that A (τ ′, t′, q′s, q

′
h, ε′)-breaks the BLS

scheme.

To prove the security of chain signatures, we will use the following result from [15].

Theorem 4.3. ([15, Theorem 3.2]) If there exists an algorithm A that (τ ′, t′, q′s, q
′
h, ε′)-breaks the BLS

scheme under Definition 4.2, then then there exists another algorithm B that (τ ′′, t′′, ε′′)-breaks the BDH
parameter generator BDH under Definition 4.1, where;

τ ′′ = τ ′; t′′ ≤ t′ + c′G1
(q′h + 2q′s); ε′′ ≥ ε′

e(q′s + 1)

Here, c′G1
is a constant that depends on G1 and e is the base of natural logarithms.

Our security follows from Theorem 4.4 below.

Theorem 4.4. Let there exist an algorithm A that (n, τ, t, qs, qe, qh, e)-breaks the chain signature scheme
under Definition 3.2. Then there exists another algorithm B that (τ ′, t′, q′s, q

′
h, e′)-breaks the BLS scheme

under Definition 4.2, where;

τ = τ ′; t′ ≤ t + cG1

[
n(qh + 1) + qs(n + 1)

]
; q′s ≤ qs; q′h ≤ n(qh + qs); ε′ ≥ ε

e · qs

Here, cG1 is a constant that depends on G1 and e is the base of natural logarithms.

Proof. Let there exist an adversary A that (n, τ, t, qs, qe, qh, e)-breaks the chain signature scheme under
a weak adaptive known key and chosen message attack. Using A, we construct another algorithm B that
(τ ′, t′, q′s, q

′
h, e′)-breaks the BLS signature scheme under an adaptive chosen message attack.

Algorithm B simulates the adversary of Game 2 and is given a challenge public key (g, y) = (g, gx) ∈
G1

2 (for unknown x), along with a security parameter τ ′ by challenger C. Its goal is to forge a valid BLS
signature under y using adversary A, that can win Game 1-a.

Denote the BLS hash and sign oracles byHBLS and SignBLS respectively and denote the chain signature
hash oracle by H. The oracles HBLS and SignBLS will be simulated by C, while H will be simulated by B.

Setup. Algorithm B simulates the challenger of Game 1-a to adversary A. It gives the parameter τ = τ ′

to A, who returns an n bit value extr, indicating by 1 the private keys it wants to extract.

Denote the ith bit of extr by biti. Algorithm B maintains a table of n entries called the K-List.
Each entry i in the table is a tuple of the form (ai, ri, yi) ∈ {0, 1} × Z∗

q × G1 and is created as

follows. B generates ri
R← Zq and a bit ai

R← {0, 1} using a biased coin such that Pr[ai = 0] = 1/qs.
It then computes yi = yai(1−biti)gri ∈ G1 and adds the entry (ai, ri, yi) to the K-List. B gives the
set Y = {yi|1 ≤ i ≤ n} as the challenge public keys, along with the set X = {ri · biti|1 ≤ i ≤ n} as
the extracted private keys to A.

Queries. To handle the queries of A, algorithm B works as follows.

9

Hash: At any time A may query the random oracle H. To respond to hash queries, B maintains
another table called the H-List (which is initially empty and can have up to n(qh +qs) entries).
Each entry i in the list is of the form,

(mi, Li, bi, ui, hi, γi) ∈ Σ∗ × L× {0, 1} × Z∗
q ×G1 ×G1,

and can be interpreted using Table 1.

Entry i bi = 0 bi = 1
hi = HBLS(mi, Li)

hi = HBLS(mi, Li) γi = chain signature on (mi, Li)/hj
x

ui = 0 for some (mj , Lj , bj , uj , hj , γj) ∈ H-List
γi = chain signature on (mi, Li) such that

mi = mj ∧ Lj ≺ Li ∧ bj = 1 ∧ uj > 0
hi = gui/hj

for some (mj , Lj , bj , uj , hj , γj) ∈ H-List hi = HBLS(mi, Li)
ui > 0 such that

mi = mj ∧ Lj ≺ Li ∧ bj = 1 ∧ uj > 0 γi = chain signature on (mi, Li)/hi
x

γi = chain signature on (mi, Li)
ui > 1 Sign query issued to C on (mi, Li)

Table 1: H-List interpretation table.
.

For a hash query j on m∗
j , algorithm B first parses m∗

j as (mj , Lj) and scans the H-List for the
the unique entry (mj , Lj , bj , uj , hj , γj). If such an entry exists, B returns hj as its response to
the hash query. Otherwise, B adds the entry (mj , Lj , bj , uj , hj , γj) to the H-List as follows.

• First it parses Lj as
〈
yj(1), yj(2), . . . yj(|Lj |)

〉
and and scans the K-List to find the entry

(al, yl, rl) such that yl = yj(|Lj |).

• If |Lj | > 1 then B constructs the sequence L′
j =

〈
yj(1), yj(2), . . . yj(|Lj |−1)

〉
and simulates

a Hash query to itself on the value (mj , L
′
j).

• Let (mj , L
′
j , b

′
j , u

′
j , h

′
j , γ

′
j) be the entry in the H-List corresponding to (mj , L

′
j) whenever

|Lj | > 1.

Algorithm B uses Table 2 to compute its response. It adds (mj , hj , bj , uj , hj , γj) to the H-List
and returns hj as its response to the hash query.2

ChainSign: For each chain sign query i (1 ≤ i ≤ qs) on (ms(i), Ls(i)), algorithm B scans the
H-List to find the unique entry (mj , Lj , bj , uj , hj , γj) such that (mj , Lj) = (ms(i), Ls(i)). If
such an entry does not exist, B adds it by simulating a hash query on the message-sequence
(ms(i), Ls(i)).

1. If bj = 1, algorithm B finds the entry (mk, Lk, bk, uk, hk, γk) ∈ H-List such that
(mk = ms(i)) ∧ (Lk ≺ Ls(i)) ∧ (bk = 1) ∧ (uk > 0) ∧ (Lk is the largest sequence).3

• If uk = 1, B sets uk ← 2 and updates the H-List tuple (mk, Lk, bk, uk, hk, γk).

B then sets σs(i) ← γj · SignBLS(mk, Lk) by making a sign query to C and returns σs(i) as its
response to the chain sign query. Note that SignBLS(mk, Lk) = hk

x

2. If bj = 0, algorithm B sets σs(i) ← γj and returns σs(i) as its response to the chain sign query.

In either case it can be verified that σs(i) is a valid chain signature on (ms(i), Ls(i)). B also keeps
track of all such queried messages.

2If |Lj | = 0, B simply replies with hj = HBLS(mj) without storing the value in the H-List. B’s replies to A’s hash
queries are indistinguishable from those of a random oracle. Therefore, the hash simulation provided by B is perfect.

3It is possible that j = k. By analyzing Table 2, we can conclude that such an entry must necessarily exist.

10

IF |Lj | > 1 |Lj | = 1
hj ← HBLS(mj , Lj) hj ← HBLS(mj , Lj)

al = 0 bj ← b′j ;uj ← 0 bj ← 0;uj ← 0
γj ← γ′j · hj

rl γj ← hj
rl

hj ← HBLS(mj , Lj)
b′j = 0 bj ← 1;uj ← 1

γj = γ′j · hj
rl

bj ← 0; uj
R← Z∗

q hj ← HBLS(mj , Lj)
al = 1 hj ← guj /hk, where bj ← 1;uj ← 1

b′j = 1 (mk, Lk, bk, uk, hk, γk) ∈ H-List such that γj ← hj
rl

mk = mj ∧ Lk ≺ Lj ∧ bk = 1 ∧ uk > 0 ∧ Lk is
the largest such sequence

γj ← γ′j · yuj · hj
rl

Table 2: H-List computation table.
.

Output. Finally A outputs a chain-signature-message pair (σA, (mALA)).

Algorithm B ensures that an entry for the pair (mA, LA) exists in the H-List. (If necessary, by
simulating a hash query on (mA, LA).)

Result. If (mA, (σA, LA)) is not a winning configuration (by adversary A) of Game 1-a, Algorithm B
reports Failure and terminates.

We know that (mA, (σA, LA)) is a winning configuration of Game 1-a. Algorithm B finds the entry
(mA, LA, bA, uA, hA, γA) in the H-List.

1. If bA = 0, algorithm B reports Failure and terminates.

2. We know that bA = 1. B finds the entry (mk, Lk, bk, uk, hk, γk) ∈ H-List such that
(mk = mA) ∧ (Lk ≺ LA) ∧ (bk = 1) ∧ (uk > 0) ∧ (Lk is the largest sequence).4

If uk > 1, B reports Failure and terminates.

We know that
bA = 1 ∧ uk = 1 (1)

Therefore, by definition γA = σA/hk
x, where hk = HBLS(mk, Lk). In other words, σA/γA is a valid

BLS signature under public key y on the message (mk, Lk). Additionally, uk = 1 implies that B
did not make a BLS sign query to C on the message (mk, Lk).5

Algorithm B returns (σA/γA, (mk, Lk)) to C, thereby winning Game 2.

Probability: We need the probability ε′ that B wins Game 2. Consider the events:

E1: A wins Game 1-a.
E2: Event E1 and bA = 1 ∧ uk = 1 in Equation 1.

B succeeds if both these events happen.

∴ ε′ = Pr[E1] · Pr[E2|E1]

The following three claims give the bound on ε′.
4It is possible that Lk = LA. By analyzing Table 2, we can conclude that such an entry must necessarily exist.
5To visualize this, consider the example of Section 3.4 with n = 7. Assume that b5 = b7 = 1, while bi = 0 ∀ yi (i 6= 5, 7).

In other words, keys y5 and y7 are “fake”, while the others are “real”. In this instance of the game Lk = 〈y1, y2, y3, y4〉.
Observe that B would never have made a sign query to C on the message (mA, 〈y1, y2, y3, y4〉).

11

Claim 1. Pr[E1] ≥ ε

Proof. Since the simulation provided by B is indistinguishable from a real game, the probability of
A winning the simulated Game 1-a is the same as the probability of A winning Game 1-a. Thus,
Pr[E2|E1] ≥ ε.

Claim 2. Pr[E2|E1] = 1/(e · qs)

Proof. Let qs > 1. Using Equation 1, define events:

E3 : bA = 1
E4 : Event E3 and uk = 1

∴ Pr[E2|E1] = Pr[E4|E3 ∧ E1] · Pr[E3|E1].
For any key yl ∈ Y , define al to be the first element of the entry (al, rl, yl) in the K-List corre-
sponding to yl. For any sequence L∗ ∈ L or set L∗ ∈ 2Y , define

Sum(L∗) =
∑

yl∈L∗

al

Now consider the Result Section of Game 1-a (reproduced below):

(a) i. LA ∈ L and the ChainVerify algorithm accepts (σA, (mA, LA)) as valid.
ii. No chain sign query has been previously made on the pair (mA, LA).
iii. At least one private key corresponding to LA has not been extracted.

(b) For each chain sign query i, if (ms(i) = mA)∧ ({LA, Ls(i)} overlap), then there is at least
one key in (Ls(i) ∪ LA)\(Ls(i) � LA) which has not been extracted.

By checking Table 2, we can verify that

E3 ⇒ Sum(LA) ≡ 1 (mod 2)

E4 ⇒ (Sum(Ls(i)\Lk) = 0) ∧ (mA = ms(i)) ∧ (Lk ≺ Ls(i)) = False ∀ i (1 ≤ i ≤ qs)

For event E3, we require that of the unextracted keys in LA, an odd number of keys yl have al = 1.
Thus, 1− 1/qs ≥ Pr[E3|E1] ≥ 1/qs.

To get the probability of E4, assume for simplicity that all keys except the ones restricted by the
winning condition have been extracted. Consider the following three cases:

• Case 1: A did not make any non-trivial chain sign queries. In this case uk = 1 (necessarily),
and Pr[E4|E3 ∧ E1] = 1.

• Case 2: A made some sign queries i such that (mA = ms(i)) ∧ (LA � Ls(i) 6= ∅) but for each
such query i, at least one key (say yl) in LA\LA�Ls(i) is unextracted. Then with probability
1−1/qs, we would have al = 1, in which case uk = 1, and so we have Pr[E4|E3∧E1] ≥ 1−1/qs.

• Case 3: The only case left to consider is when one or more chain sign queries i have been
made such that

(mA = ms(i)) ∧ (LA � Ls(i) 6= ∅) ∧ (All keys in LA\(LA � Ls(i)) are extracted)

Let us denote this set of queries by Q. This implies that for each such query i ∈ Q, there is
at least one key in Ls(i)\(LA � Ls(i)) that has not been extracted. Now consider the set of
queries Q∗ ⊆ Q defined as

Q∗ = {i|(i ∈ Q) ∧ (Lk ≺ Ls(i))}

12

Then for each i ∈ Q∗, there is (necessarily) at least one key in Ls(i)\Lk that has not been
extracted. Event E4 implies that for each of these |Q∗| unextracted keys y∗l , the corresponding
bits a∗l in the K-List are 1.
From the simulation, it is clear that the values of the above bits a∗l are independent of A’s view
and so Pr[a∗l = 1] = 1− 1/qs independent of the other bits. Since there can be a maximum of
qs queries of this type, therefore,

Pr[E4|E3 ∧ E1] = Pr[All bits a∗l = 1 in qs queries] =
(
1− 1

qs

)qs

≥ 1
e

∴ Pr[E2|E1] = Pr[E4|E3 ∧ E1] · Pr[E3|E1] ≥
1

e · qs

Combining Claims 1 and 2, we get the bound on ε′.
Hash queries to C: For each entry in the H-List, B makes at most one hash query to C. Also, A

can make up to qh hash queries on arbitrary message-sequence pairs (m∗, L∗), and each sequence L∗ may
contain up to n keys (and therefore, up to n sub-sequences). Consequently, each hash query by A can
cause at most n entries to be added to the H-List. Additionally, adversary A may make sign queries on qs

distinct message-sequence pairs (m∗, L∗) without making any hash queries on them. These sign queries
may cause up to nqs more entries to be added to the H-List. Thus, for a total of qh hash queries and qs

sign queries, the number of entries in the H-List (and the number of hash queries made by algorithm B
to challenger C) is upper-bounded by n(qh + qs).

Sign queries to C: For each chain chain sign query by adversary A, algorithm B makes at most one
sign query to challenger C. Therefore, q′s ≤ qs.

Running time of B: It only remains to bound the running time t′ of B. This is the running time
of A, plus the time required to generate up to n public keys; the time required to add up to n(qh + qs)
entries in the H-List. Each signature query involves up to one multiplication in G1. Assuming that the
lists are efficiently indexed, the time for searching the H-List and K-List can be ignored. Adding each
entry in the H-List and generating a public key requires 1 exponentiation and up to 1 multiplication in
G1. Therefore, for a maximum of n(qh + qs) entries in the H-List, a maximum of n public keys, and a
maximum of qs signature queries, we have t′ ≤ t + cG1(n(qh + 1) + qs(n + 1)), where cG1 is the time for
1 exponentiation and 1 multiplication in G1.

This completes the proof of Theorem 4.4.

The above proof is similar to the proof of security of Verifiably Encrypted Signatures (VES) of [9].
In fact, the security of CS in the weak known key attack model is very similar to the security of VES
against signature extraction and forgery.

4.4 Adaptive Security In the Chosen Key Model

We note that above construction of chain signatures is also secure in the sense of adaptive chosen key
attacks, where the adversary includes randomly chosen public keys in the chain signature of the Output
phase of Game 1, provided that at least one of the keys in the chain signature is authentic (and not
extracted). However, the security definition becomes complicated. To see how the the above construction
is also secure in the chosen key model, observe that any chain signature (σ∗, (m∗, L∗)) is also an aggregate
signature on some (distinct) messages under public keys y∗ ∈ L∗. It is proved in [9, Theorem 3.2], that
the aggregate signature scheme is secure under adaptive chosen key and chosen message attacks, provided
that all the messages in the signature of the Output phase of Game 1 are distinct. Clearly, for any output
chain signature (σA, (mA, LS)), it must necessarily hold that all the messages signed under the individual
keys yl ∈ LA are distinct.

13

4.5 Chain Signatures On Distinct Messages

In our model, chain signatures are defined only in a situation when many users sign the same message.
However, in many situations users may need to sign different messages and still enjoy the benefits of
chain signatures. This is not a major problem and we describe two approaches to solve it. The first
and obvious approach is to simply include the individual messages in the hash before the chain signature
is computed. However, the security reduction becomes quite complicated in this case. We suggest an
alternate and simpler approach that does not require any modification of the chain signature protocol.
The idea is to use chain signatures (on a random message) to authenticate the path independently of the
actual message(s) in question and then link the message from the chain signature to the actual message(s)
using any standard signature scheme that provides non-repudiation. This is the approach we will follow
in the example of Section 5.1.1.

4.6 Efficiency Of Chain Signatures

Since for typical security, the value q = |G1| will be roughly 171 bits, elements of G1 can be represented
in at most 22 bytes. Consequently, the keys and signatures will be at most 22 bytes. The benchmarks
of [19] indicate that each pairing operation using these parameters takes ≈ 8.6ms and each elliptic curve
point exponentiation takes ≈ 1.5 ms. These results were obtained on a desktop PC with an AMD Athlon
2100+ 1.8 GHz, 1 GB RAM and an IBM 7200 RPM, 40 GB, Ultra ATA/100 hard drive [19]. Using these
values and neglecting the faster operations, we obtain the following performance estimates of the above
protocol (assuming n users in the chain):

1. Signing: one exponentiation in G1, one multiplication in G1, and one computation of H (total
< 2ms).

2. Verification: n pairing computations and multiplications in G2, and n computations of H (giving
< 1 second for n = 100).

5 Applications of Chain Signatures

Considering that chain signature enable us to correctly validate the path of any received message using
very short signatures and provides non-repudiation, we can consider several applications: mobile agent
authentication [20, 5], group e-commerce, work-flow enforcement, secure routing, authenticated mail
relaying, Grid computing and Mobile IP. Here, we discuss one such application: stateless routing.

5.1 Stateless Routing

The most common and robust interior and exterior routing protocol is the Border Gateway Protocol
(BGP) [21, 22]. It is a Path Vector Routing protocol, in which routers repeatedly advertise ‘better’
routes (along with the path details) to their immediate neighbors. On receiving an update, a router
checks its routing table to decide if this advertised route is better than its existing routes. If so, the
router updates its table and advertises the new route to all its other immediate neighbors. Although
BGP is very robust, it has many security vulnerabilities [23, 24]. For instance, a rogue router could send
forged updates or extract intermediate routes from legitimate updates and claim to a shorter route (we
call the latter a Path Extraction Attack). This is best explained using an example.

Consider the network of routers given in Figure 2. The numbers on the links indicate the metric.
Assume that E is a rogue router who would like to intercept traffic sent from D to A, which would
ordinarily be routed directly via router C.

In BGP, assume that (ordinary) signatures are used to authenticate updates. Then the following
update messages will be sent. (Consider only routes to A. The symbol / denotes a path)

Example 1. BGP updates

1. A→ B : {SignA(A/)}

14

ONMLHIJKC
1

1

ONMLHIJKD

1

ONMLHIJKA
1 ONMLHIJKB ONMLHIJKE

1

@@@@@@@@@

Figure 2: Scenario for a Path Extraction Attack

2. B → C : {SignA(A/), SignB(A / B)}

3. C → D,E : {SignA(A/), SignB(A / B), SignC(B / C)}

4. D → E : {SignA(A/), SignB(A / B), SignC(B / C), SignD(C / D)}

5. E → D : {SignA(A/), SignB(A / B), SignC(B / C), SignE(C / E)}

In this setup, traffic originating from D and destined for A will never pass through E. However, if
E wants, it can simply extract the last two signatures in the update received from C and claim (to D)
that it has a direct route to A by sending it the update {SignA(A), SignE(A / E)}. In this case, D will
assume that E has a more efficient path to A and use it to forward that traffic. Secure BGP (S-BGP) [3]
mitigates this attack by requiring that “links” in the updates be two-way (i.e. contain signatures from
each endpoint authenticating the other). In S-BGP, the routing updates would be as follows:

Example 2. S-BGP updates

1. A→ B : {SignA(A / B)}

2. B → C : {SignA(A / B), SignB(B / C)}

3. C → D : {SignA(A / B), SignB(B / C), SignC(C / D)}

C → E : {SignA(A / B), SignB(B / C), SignC(C / E)}

4. D → E : {SignA(A / B), SignB(B / C), SignC(C / D), SignD(D / E)}

5. E → D : {SignA(A / B), SignB(B / C), SignC(C / E), SignE(E / D)}

Although the protocol of Example 2 is secure from the path extraction attack, it has two drawbacks:
(1) Each router must be “aware” of its neighbors, and (2) In the example, router C can no longer broadcast
the same message to its neighbors. This can cause scalability problems as follows. Firstly, each router
must establish authenticity of each of its peer(s). Secondly, each update is peer-specific and therefore,
even a single path change could result in a large number of messages sent by a host with many neighbors.
It would be much simpler if the underlying routing protocol resisted path extraction attacks and required
each router to broadcast only one short message on each update without being aware of its neighbors (as
in Example 1). We call such a protocol a Stateless Routing Protocol. Such stateless-ness is useful if
path vector routing is used over broadcast networks (such as ad-hoc wireless/sensor networks).

Current research on S-BGP authentication assumes the above stateful scenario of Example 2 and is
focused on methods to reduce the number of signatures transmitted and/or processing time for signing
and verification [6, 9, 25]. For instance, aggregate signatures have been proposed to keep the signature
payload to a constant size [9]. The authors of [3] propose the use of Signature Amortization [25] coupled
with aggregate or sequential aggregate signatures [12] to reduce the size of update messages and the
signing time. However, all the above works assume some sort of stateful environment, where information
about peers is pre-distributed or known. In this work, we focus on how to achieve security under path
extraction attacks in a stateless implementation of BGP. Our proposed protocol, called Stateless Secure-
BGP (SS-BGP) is based on chain signatures and provides the following benefits.

15

1. It is fully stateless. Routers need not be aware of their neighbors.

2. The update size is constant irrespective of the number of peers. Additionally, only one message
needs to be transmitted if using broadcast.

3. The signing time is constant. The verification time is linear to the size of the path and is comparable
to efficient stateful S-BGP based on aggregate signatures [3].

5.1.1 Stateless S-BGP (SS-BGP)

In this implementation, we will assume the same routing logic of BGP. However, we will use Example 1
in our scenarios and assume that routers may not be aware of their immediate neighbors. We will assume
that routers can be directly identified using their public keys.

1. Let Signi, Verifyi denote sign and verify functions of user i under another existentially unforgeable
signature scheme, such as BLS.

2. Denote by yi the public key of user i under a chain signature scheme.

3. Denote by Li = 〈y1, y2, . . . yn〉 some ordered sequence of (public keys of) routers that would be
affected by a given routing update. Note that there will be many such distinct sequences for the
same update and y1 would be the first name (i.e., key) all these sequences.

4. Each individual router may want to add additional information to the update. Denote this addi-
tional information by router i (intended for routers i + 1) by Mi.

5. Denote by Ui the update message of i that is sent to i + 1 describing this update.

The SS-BGP protocol is as follows.

Initialize First, the initiator, 1 generates a message M ∈ {0, 1}∗ describing this update (i.e., the name
of the Originating AS and a time-stamp). Let M1 be the additional information (if any). To start
the update user 1 computes Sig1 = Sign1(M,M1) and (σ1, (M,L1)), a chain signature on (M,L1).
It broadcasts the update U1 = (σ1,M,L1,M1, Sig1) to all its neighbors.

Update On receiving update Ui = (σi,M,Li,Mi, Sigi), router i + 1 does the following.

Accept Router i accepts this update if the following checks pass (and aborts otherwise):

1. (σi, (M,Li)) is a valid chain signature.
2. Verifyi(Sigi, (M,Mi)) =True.
3. The destination and time-stamp defined in M are correct.
4. Routes to each of the links specified in Li exist and all the nodes in Li are trusted.

It then checks Mi for additional information regarding this update (if any).

Propagate If the update is valid, router i + 1 propagates it as follows:

1. It constructs the sequence Li+1 by appending its own public key yi to Li and computes a
chain signature (σi+1, (M,Li+1)) using σi and its private key xi+1.

2. It constructs a message Mi+1 with additional routing information (if any) and computes
the signature Sigi+1 = Signi+1(M,Mi+1).

3. It broadcasts the update Ui+1 = (σi+1,M,Li+1, , Mi+1, Sigi+1).

Let us analyze this method:

1. Security : The use of chain signatures ensures that router i + 1 cannot prove a direct route to any
router j < i without access to the chain signature sent by j. Consequently, path extraction attacks
are infeasible. The use of the time-stamp avoids any replay attacks. The use of Sigi ensures that
some correlation is maintained between an advertised route and the actual destination.

16

2. Storage: To be able to validate the signatures, each host must be able to store/obtain public keys of
all routers in question, which may lead to scalability problems. This problem is easily solved using
Identity Based Chain Signatures (IBCS) (briefly discussed in the conclusion) and Identity Based
Signatures (IBS) where the IP address of a host acts as the public key. The security model of IBCS
would be identical to the model described here.

3. Overhead : The overhead incurred by (M,Mi, Sigi) in update Ui cannot be avoided. The chain
signature additionally incurs the overhead of (σi, Li). Assuming that public keys can be uniquely
identified by IP addresses, the sequences Li can be constructed from the IP addresses of the nodes
in the path. Consequently, Li is part of the update message itself and does not incur any overhead.
The only overhead is then the size of a chain signature, which will be less than 22 bytes using the
parameters of [9].

4. Multiple Updates Aggregation: In the above description, we assumed that each advertisement Ui

contains only one route and is transmitted instantaneously. In the real world, each advertisement
contains multiple routes and is sent periodically. Fortunately, both the chain signature and individ-
ual signature schemes used above allow for signature aggregation and aggregate verification where
a large number of (chained or individual) signatures can be verified at once [9].6

6 Summary

In this paper, we introduced the notion of Chain Signatures as an extension of Boneh et al.’s short
signatures [15]. Although chain signature arise naturally from the aggregate signatures of [9] due to
the inherent properties of bilinear maps, the security requirements of chain signatures is significantly
different as demonstrated in Sections 3.2 and 3.4. We note that chain signatures without using bilinear
maps were independently proposed in [5, 4] in which the authors used hypothetical primitives called
Strong Associative One-Way Functions (SAOWFs).

The protocol presented here uses a standard certificate-based PKI. However, it is possible to construct
Identity Based Chained Signatures (IBCS) because of the observation that the Identity Based Signature
(IBS) schemes of [26, 27] support signature aggregation with the property that once aggregated, individual
signatures cannot be extracted.

Considering that chained signatures enable us to correctly validate the path of any received message
and provide non-repudiation, we can consider several applications: mobile agent authentication [4, 5],
electronic auctions, relaying, token based authentication. As a practical demonstration of applications,
we presented a novel method for stateless routing.

The main feature of chain signatures that distinguishes them from other multi-user signature schemes
is that chain signatures provide delete-protection (See Section 2.1). The chain signature scheme presented
here, however, does not provide strong delete-protection. Signatures that also provide strong delete
protection are called Strong Chain Signatures (SCS). However, whether practical SCS schemes exist or
not, is still an open question at this stage.

References

[1] Masahiro Mambo, Keisuke Usuda, and Eiji Okamoto. Proxy signatures for delegating signing op-
eration. In CCS ’96: Proceedings of the 3rd ACM conference on Computer and communications
security, pages 48–57, New York, NY, USA, 1996. ACM Press.

[2] G. Karjoth, N. Asokan, and C. Gülcü. Protecting the computation results of free-roaming agents.
In MA ’98: Proceedings of the Second International Workshop on Mobile Agents, pages 195–207,
London, UK, 1999. Springer-Verlag.

6The use of aggregate signatures in BGP advertisement verification has already been discussed in [9]. We additionally
suggest using chain signatures for increased scalability.

17

[3] Meiyuan Zhao, Sean W. Smith, and David M. Nicol. Aggregated path authentication for efficient bgp
security. In CCS ’05: Proceedings of the 12th ACM conference on Computer and communications
security, pages 128–138, New York, NY, USA, 2005. ACM Press.

[4] Amitabh Saxena and Ben Soh. A novel method for authenticating mobile agents with one-way
signature chaining. In Proceedings of The 7th International Symposium on Autonomous Decentralized
Systems (ISADS 05), pages 187–193, China, 2005. IEEE Computer Press.

[5] Amitabh Saxena and Ben Soh. Authenticating mobile agent platforms using signature chaining
without trusted third parties. In Proceedings of The 2005 IEEE International Conference on e-
Technology, e-Commerce and e-Service (EEE-05), pages 282–285, Hong kong, 2005. IEEE computer
press.

[6] Huafei Zhu, Feng Bao, Tieyan Li, and Yongdong Wu. Sequential aggregate signatures for wireless
routing protocols. In Proceedings of the IEEE Wireless Communications and Networking Conference,
volume 4, pages 2436–2439. IEEE Computer Press, March 2005.

[7] Mike Burmester, Yvo Desmedt, Hiroshi Doi, Masahiro Mambo, Eiji Okamoto, Mitsuru Tada, and
Yuko Yoshifuji. A structured elgamal-type multisignature scheme. In PKC ’00: Proceedings of the
Third International Workshop on Practice and Theory in Public Key Cryptography, pages 466–483,
London, UK, 2000. Springer-Verlag.

[8] Silvio Micali and Ronald L. Rivest. Transitive signature schemes. In CT-RSA, pages 236–243, 2002.

[9] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In Eli Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes
in Computer Science, pages 416–432. Springer, 2003.

[10] Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. Efficient verifiably encrypted signature
and partially blind signature from bilinear pairings. In Thomas Johansson and Subhamoy Maitra,
editors, INDOCRYPT, volume 2904 of Lecture Notes in Computer Science, pages 191–204. Springer,
2003.

[11] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential aggregate
signatures and multisignatures without random oracles. In Serge Vaudenay, editor, EUROCRYPT,
volume 4004 of Lecture Notes in Computer Science, pages 465–485. Springer, 2006.

[12] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential aggregate signa-
tures from trapdoor permutations. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT,
volume 3027 of Lecture Notes in Computer Science, pages 74–90. Springer, 2004.

[13] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In ACM Conference on Computer and Communications Security, pages 62–73, 1993.

[14] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-
Diffie-Hellman-group signature scheme. In PKC ’03: Proceedings of the 6th International Workshop
on Theory and Practice in Public Key Cryptography, volume 2567 of Lecture Notes in Computer
Science, pages 31–46, London, UK, 2003. Springer-Verlag.

[15] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. J. Cryptology,
17(4):297–319, 2004.

[16] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. SIAM J.
Comput., 32(3):586–615, 2003.

[17] Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott. Efficient algorithms for pairing-
based cryptosystems. In CRYPTO ’02: Proceedings of the 22nd Annual International Cryptology
Conference on Advances in Cryptology, pages 354–368, London, UK, 2002. Springer-Verlag.

18

[18] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied Cryptography.
CRC Press, Inc., Boca Raton, FL, USA, 1996.

[19] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-
encryption schemes with applications to secure distributed storage. Cryptology ePrint Archive,
Report 2005/028, 2005.

[20] Amitabh Saxena and Ben Soh. A mobile agent authentication protocol using signature chaining with
bilinear pairings. Cryptology ePrint Archive, Report 2005/272, 2005.

[21] Y. Rekhter, T. Li, and S.Hares. RFC 4271: A Border Gateway Protocol 4 (BGP-4), January 2006.

[22] Jennifer Rexford, Jia Wang, Zhen Xiao, and Yin Zhang. Bgp routing stability of popular destinations.
In ACM SIGCOMM IMW (Internet Measurement Workshop) 2002, 2002.

[23] S. Murphy. RFC 4272: BGP Security Vulnerabilities Analysis, January 2006.

[24] Ratul Mahajan, David Wetherall, and Tom Anderson. Understanding bgp misconfiguration. In
SIGCOMM ’02: Proceedings of the 2002 conference on Applications, technologies, architectures, and
protocols for computer communications, pages 3–16, New York, NY, USA, 2002. ACM Press.

[25] Jung Min Park, Edwin K. P. Chong, and Howard Jay Siegel. Efficient multicast packet authentication
using signature amortization. In SP ’02: Proceedings of the 2002 IEEE Symposium on Security and
Privacy, page 227, Washington, DC, USA, 2002. IEEE Computer Society.

[26] Jae Choon Cha and Jung Hee Cheon. An identity-based signature from gap Diffie-Hellman groups. In
Yvo Desmedt, editor, Public Key Cryptography, volume 2567 of Lecture Notes in Computer Science,
pages 18–30. Springer, 2003.

[27] B. Libert and J. Quisquater. The exact security of an identity based signature and its applications.
Technical Report 2004/102, Cryptology ePrint Archive, 2004.

19

	Introduction
	Motivation
	Intuition Behind Chain Signatures
	Physical Analogue Of Chain Signatures

	Formal Definition - Chain Signatures
	Algorithms
	Security Model
	Analysis Of Game 1
	Differences With Other Signature Schemes

	Chain Signatures Using Bilinear Maps
	BDH Parameter Generator
	Chain Signature Protocol
	Security Of The Construction
	Adaptive Security In the Chosen Key Model
	Chain Signatures On Distinct Messages
	Efficiency Of Chain Signatures

	Applications of Chain Signatures
	Stateless Routing
	Stateless S-BGP (SS-BGP)

	Summary

