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Abstract. Since the publication of Differential Power Analysis (DPA)
in 1998, many countermeasures have been published to counteract this
very efficient kind of attacks. All these countermeasures follow the same
approach : they try to make sensitive operations uncorrelated with the
input. Such a method is very costly in terms of both timing and memory
space. In this paper, we suggest a new approach where block ciphers are
designed to inherently thwart DPA attacks. The idea we develop in this
paper is based on a theoretical analysis of DPA attacks and it essentially
consists in embedding existing iterated block ciphers in a secure layer.
We analyse the security of our proposal and we show that it induces very
small overheads.
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1 Introduction

When a new block cipher is designed, many criteria to counteract theoret-
ical attacks such as linear and differential cryptanalysis must be satisfied
[19,4]. However, if this algorithm is straightforwardly implemented on em-
bedded devices such as smart cards, many other specific attacks can then
be applied to recover secret parameters. One family of these attacks is
called side-channel attacks because it uses the characteristics of embed-
ded environments such as timing, power consumption or electromagnetic
radiations. Since their publication in 1996 [16], they have been success-
fully put into practice and numerous papers have been published on the
subject (see for instance [17,1,21]).

Despite the efficiency of side channel attacks on block ciphers, the
criterion of being side-channel resistant has never been required for the
design of new cryptosystems1. Thus, in order to protect cryptographic
1 However in the case of AES, the feasibility of adding countermeasures against power

analysis has been taken into account.



implementations from side-channel attacks, developers must implement
specific countermeasures [25,20]. The latter are always very costly in terms
of both memory space and timings.

In this paper we describe a way to obtain Differential Power Analysis
(DPA) resistant block ciphers. The idea we develop consists in adding a
layer before and after traditional block ciphers such as DES or AES. The
family of layers we propose do not decrease the theoretical security of the
underlying algorithm and induce a very small efficiency penalty compared
to the traditional countermeasures.

This paper is organized as follows. Firstly we recall some properties
about vectorial functions and we describe iterated block cipher cryptosys-
tems in a formal way. Then we study in detail Differential Power Analysis
on iterated block ciphers. In Section 4, this analysis is used to describe
a way of designing efficient DPA-resistant iterated block ciphers. In Sec-
tion 5, the security of our proposal is discussed. Finally, we conclude in
Section 6.

2 Notations and Preliminaries

2.1 Preliminaries About Vectorial Functions in Cryptography

We call (n, m)-function any mapping F from Fn
2 into Fm

2 and we denote
by Bn,m the set of (n, m)-functions. If m equals 1, then the function is
called Boolean.
If F ∈ Bn,m is affine, then we call direction of F the linear function
L ∈ Bn,m such that it exists a vector B ∈ Fm

2 for which F (X) = L(X)+B,
X ∈ Fn

2 .
A function F ∈ Bn,m is said to be balanced if every element Y ∈ Fm

2

admits the same number 2n−m of pre-images by F .
To every function F ∈ Bn,m, we associate the m-tuple (f1, · · · , fm) of

Boolean functions on Fn
2 such that we have F (X) = (f1(X), · · · , fm(X)).

The Walsh transform of a (n, m)-function F is defined on Fn
2 ×Fm

2 by
the formula:

WF (u, v) =
∑

X∈Fn
2

(−1)v·F (X)+u·X , (1)

where we recall that v · F equals the Boolean function
⊕m

i=1 vifi.

Remark 1. Notice that WF (0, v) equals ±2n iff v ·F is constant and equals
0 iff v · F is balanced.

As we recall in the following proposition, the balancedness of a func-
tion can be characterized through its Walsh transform’s coefficients.
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Proposition 1 Let n and m be two positive integers and let F be a
(n, m)-function, F is balanced iff WF (0, v) equals zero for every vector
v ∈ Fm

2
∗.

A fundamental principle introduced by Shannon [28] for the design
of conventional cryptographic systems is confusion, which aims at con-
cealing any algebraic structure. The main characteristic quantifying the
confusion induced into the system is the non-linearity. The non-linearity
NF of a (n, m)-function F can be defined through its Walsh transform’s
coefficients [8,23] by:

NF = 2n−1 − 1
2

max
v∈Fm

2
∗, u∈Fn

2

|
∑

X∈Fn
2

(−1)v·F (X)+u·X |. (2)

Let n be a positive integer and let f and g be two Boolean func-
tions defined on Fn

2 , then the correlation coefficient of f and g is defined
by Cor(f, g) = 1

2n

∑
X∈Fn

2
(−1)f(X)+g(X). The notion of correlation co-

efficient can be generalized to functions F,G ∈ Bn,m: let (u, v) be an
element of Fm

2

2
, then the correlation coefficient Coru,v(F,G) of F and G

with respect to (u, v) is defined by:

Coru,v(F,G) =
1
2n

∑
X∈Fn

2

(−1)u·F (X)+v·G(X) . (3)

Functions F and G are uncorrelated iff Coru,v (f, g) equals zero for
every pair of non-zero elements u, v ∈ Fm

2 . If outputs of F and G are
statistically independent, then F and G are uncorrelated.

A useful tool for quantifying the cryptographic resistance of functions
is the notion of derivative. The derivative of F with respect to a vector
a ∈ Fn

2 is the (n, m)-function DaF : X 7→ F (X) + F (X + a). The notion
of derivative is related to differential and higher-order differential attacks
[4,15,18]. An element a such that DaF is constant is called a linear struc-
ture of F . As argued by Evertse in [10], functions F used in block ciphers
must only admit the null-vector for linear structure.

2.2 Iterated Block Ciphers

Let n be a positive integer. To define an iterated block cipher in a formal
way, we consider a family (FK)K∈K of (n, n)-functions, indexed by a value
K ∈ K where K is called the round key space. The encryption function

3



Enck of an iterated block cipher with block size n, with R rounds and
with round functions FK is defined by:

X(i) = FKi

(
X(i−1)

)
for 1 ≤ i ≤ R, (4)

where X(0) is the plaintext and X(R) is the ciphertext.
The vector k = (K1, . . . ,KR) is called the key and its coordinates

are the round keys. The latter may be derived from a unique master key
which is shorter than the concatenation of all the round keys.

Round functions FK of iterated block ciphers are designed to ensure
the diffusion and the confusion of information. The confusion part is
usually obtained by composing two affine functions A and A′ with a non-
linear function S as follows:

FK(X) = A′ ◦ S ◦A(X + K), X ∈ Fn
2 . (5)

In such a system, the round key K is said to be introduced by addition.
The main role of the function S is to ensure the confusion of information
brought in the system, whereas the functions A and A′ only ensure the
diffusion of information. To allow an efficient computation of S, outputs
of this function are usually defined as the concatenation of independent
small vectors (usually of 8-bit length), each of them depending on a small
number of bits of the inputs. We call decomposition order of a (p, m)-
function S the smallest integer t such that it exists a family (S1, · · · , St)
of t functions from Fp/t

2 into Fm/t
2 satisfying the following relation for

every Y = (y1, · · · , yp) ∈ Fp
2:

S(Y ) = S1(Y1( p
t
))||S2(Y2( p

t
))|| · · · ||St(Yt( p

t
)) , (6)

where Yi(j) denotes the vector (y1+(i−1)j , · · · , yj+(i−1)j) and || denotes the
concatenation operation.

Let F = (f1, · · · , fm) be an element of Bn,m. For every index j ≤ m,
let us denote by Ij one of the smallest subsets of {1, · · · , n} such that
for every X = (x1, · · · , xn), the value fj(x1, · · · , xn) only depends on the
input-bits xi, with i belonging to Ij . We call here diffusion order of F
the value minj=1,··· ,m(#Ij).

In the rest of the paper, we focus our analysis on block ciphers where
round functions FK satisfy (5) and where the function S is defined as the
concatenation of smaller functions Si, usually called S-boxes. Moreover,
we assume that S is a (p, m)-function admitting t for decomposition order
and that A and A′ are two affine surjective functions from Fn

2 into Fp
2 and
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from Fm
2 into Fn

2 respectively. To make appear the main parameters, we
call (A,S,A′, R)-iterated block cipher the R-rounds iterated block cipher
defined by the functions A, S and A′.

3 Multi-bit DPA Attacks on Iterated Block Ciphers

The aim of this section is to describe DPA attacks on (A,S,A′, R)-iterated
block ciphers. In particular, we point out the relationship between the
efficiency of these attacks and the decomposition order t of S.

3.1 Introduction

In [17], Kocher introduced a new kind of attacks called Differential Power
Analysis, especially efficient for cryptanalyzing algorithms embedded in
smart cards (cf. [20,25]). Kocher’s method is based on the fact that com-
puters and microchips leak information about the operations they process.
Initial attack of Kocher, called single-bit DPA attack, was generalized in
multi-bit DPA attack in [21]. Since an algorithm which thwarts multi-
bit DPA attacks is also resistant to single-bit DPA attacks, we only pay
attention in the rest of this paper for the multi-bit case.

The goal of a cryptanalyst performing a DPA attack on the first round
of a block cipher is to obtain information about the secret round key K̇.
This information is deduced by analyzing the values taken by a particular
function, usually called power consumption function and denoted by CK̇ ,
on a set of well-chosen plaintexts {X(0)}.

Let (Ai)i≤t be the family of the t affine (n, p/t)-functions such that
A = A1||A2|| · · · ||At. When the block cipher is an (A,S,A′, R)-iterated
block cipher, a multi-bit DPA attack on its first round is a divide-and-
conquer attack. Indeed, several multi-bit DPA attacks are simultaneously
applied to each function Si ◦ Ai, i ≤ t, and the first round key is recov-
ered by putting together all the information obtained from these parallel
attacks.

In what follows, we describe without lost of generality the multi-bit
DPA attack on S1 ◦A1.

3.2 Power Consumption Function

In a multi-bit DPA attack on S1 ◦ A1, each value CK̇(X), X ∈ Fn
2 , can

be viewed as the energy required to flip bits from a previous state to
state S1 ◦ A1(X + K̇). To have a formal definition of CK̇ , one has to
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introduce a theoretical model for the power consumption of devices. In
this paper, we use the Hamming distance model introduced in [5] as a
generalization of the Hamming weight model (cf. [2]). In the Hamming
distance model, it is assumed that switching a bit from 0 to 1 requires
the same amount of energy as switching it from 1 to 0. We denote by λ the
average power consumption to switch a bit from 0 to 1 and we denote by
α(X, K̇) the value of the data which is replaced by S1◦A1(X+K̇). We call
state function the function α : (X, K) ∈ Fn

2

2 7→ α(X, K). For every pair
(X, K), we assume throughout this paper that the power consumption
CK(X) satisfies the following relation:

CK(X) = λ×H (α(X, K) + S1 ◦A1,K(X)) + µ , (7)

where A1,K denotes the function X 7→ A1(X + K), H denotes the Ham-
ming weight function and we assume here that µ denotes a random noise.

Remark 2. Equality v · F = 1
2 −

1
2(−1)v·F is satisfied for every function

F ∈ Bn,m and for every vector v ∈ Fm
2 . By applying it to Relation (7), we

have CK(X) = nλ
2 − λ

2 ×
∑

u∈Fn
2

H(u)=1

(−1)u·(α(X,K)+S1◦A1,K(X)) + µ.

In the rest of the paper, we consider the restriction α(·, K̇) of the state
function α to the set Fn

2 × {K̇}, where K̇ denotes the actual round key.
To simplify notations, we denote by α the function X 7→ α(X, K̇).

3.3 Multi-bit DPA Attacks

Assume that a cryptanalyst measured all the values CK̇(X(0)), X(0) ranges
over Fn

2 . It has been shown in [26] that a multi-bit DPA attack on S1 ◦A1

is done by searching for round keys K ∈ Fn
2 which maximize the value:

δK̇(K) =

∣∣∣∣∣∣∣
∑

v∈Fm/t
2 , H(v)=1

∆K,K̇(v)

∣∣∣∣∣∣∣ , (8)

where ∆K,K̇(v) is defined by:

∆K,K̇(v) =
−1

2n−1

∑
X(0)∈Fn

2

(−1)v·(S1◦A1,K)(X(0))CK̇(X(0)) . (9)
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Remark 3. In a cryptographic context, Relation (9) can be rewritten (cf.
[26]) as:

∆K,K̇(v) = λ
∑

u∈Fm/t
2

H(u)=1

Corv,u

(
S1 ◦A1,K , S1 ◦A1,K̇ + α

)
.

In practice, the computation of ∆K,K̇(v) (and thus the one of δK̇(K))
can be made much more efficiently than summing 2n elements. To ex-
plain how the particular structure of the function S1 ◦ A1,K can be used
to simplify the computations, we make the following two assumptions
whose relevances in the context of symmetric cryptography are argued in
[5,12,26]:

Assumption 1 2 Let u and v be two distinct elements of Fm/t
2 such that

H(u) = H(v) = 1. For every pair (K, K̇) of round keys, functions v · (S1 ◦
A1,K) and u · (S1 ◦A1,K̇) are uncorrelated.

Assumption 2 The state function α is constant.

Moreover, to simplify notations we assume that the state function α is
the null function. The generalization of the study to the case of a constant
function α different from zero is straightforward.

When α is the null function, then Assumption 1 and Remark 3 imply
∆K,K̇(v) = λ

2n WDK+K̇(S1◦A1) (0, v). Moreover, if A1 is surjective (which is
the case in practice), then we have:

∆K,K̇(v) =
λ

2p/t
WDL1(K+K̇)S1 (0, v) , (10)

where L1 denotes the direction of A1. Thus, one can deduce the following
relation from (8):

δK̇(K) = 21−p/t

∣∣∣∣∣∣∣∣∣
∑

v∈Fm/t
2

H(v)=1

∑
X∈E1

(−1)v·(S1◦A1[X+K])CK̇(X)

∣∣∣∣∣∣∣∣∣ , (11)

where E1 denotes one pre-image set of Im(A1).

2 Even if this assumption is not always true (for DES for instance), it is usually highly
recommended that an S-box has the property described in this assumption.
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Remark 4. From (11), we deduce that the computation of δK̇(K) is re-
duced to a summation of m/t × 2p/t terms and to the computation of a
set E1.

From (8) and (10), one deduces that δK̇(K) satisfies relation 0 ≤ δK̇(K) ≤
λm
t for every (K, K̇). Moreover, for every K̇, the upper bound λm

t is
achieved iff WDL1(K+K̇)S1 (0, v) equals ±2p/t for every v ∈ Fm/t

2 of Ham-
ming weight equal to 1. Thus, one deduces from Remark 1 that δK̇(K) is
maximal iff DL1(K+K̇)S1 is constant, i.e. iff L1(K+K̇) is a linear structure

of S1. Since the null-vector 0 p
t

on Fp/t
2 is a linear structure of S1, then for

every K̇ the value δK̇(K) is maximal when K satisfies L1(K + K̇) = 0 p
t
,

i.e. when K belongs to K̇ + Ker(L1). Since E1 contains exactly one ele-
ment of K̇ +Ker(L1), one deduces the following procedure for a multi-bit
DPA attack on S1 ◦A1:

Procedure 3.1 Multi-bit DPA attack on S1 ◦A1

Inputs: two functions A1 and S1 and an expected round key K̇

Output: a subset D1 ⊆ Fn
2 of keys K such that δK̇(K) is maximal

1. E1 = ∅
2. for all Y ∈ Im(A1)

compute one element X(0) such that X(0) ∈ A−1
1 (Y )

add X(0) to E1

3. for all X(0) ∈ E1

measure CK̇(X(0))

4. for all K ∈ E1

compute δK̇(K) = 2−p/t+1

�
�
�
�
�

P
v∈Fm/t

2
H(v)=1

P
X(0)∈E1

(−1)v·(S1◦Ai,K)(X(0))CK̇(X(0))

�
�
�
�
�

if δK̇(K) is maximal then store K in D1

Fact 1 The complexity of the construction of E1 is about O
(
n3

)
. As the

function A1 is surjective from Fn
2 into Fp/t

2 , then #E1 equals 2p/t. Thus,
Procedure 3.1 requires 2p/t measurements and the complexity of the main

loop (Step 4) is O(m
t 2

p2

t2 ).

The set D1 contains one element of K̇ + Ker(L1). Finally, the key
K̇ is retrieved by applying Procedure 3.1 to all the functions Si ◦ Ai,
i = 1, · · · , t, and by obtaining one element of each coset K̇ + Ker(Li)
(which implies the computation of the sets E1, . . . , Et).
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3.4 Examples of the Construction of the Ei Sets

DES The non-linear function S used in DES is a (48, 32)-function de-
fined as the concatenation of 8 S-boxes S1, ..., S8 from F6

2 into F4
2. The

input of the round function is a 32-bit length vector which is trans-
formed by a public expansion function Exp in a 48-bit length vector.
The computation of Exp(X) and the computation of Exp−1[Exp(X)],
X ∈ F32

2 , being immediate one can assume that inputs of the round func-
tions of DES are 48-bit length. For DES, if one chooses Ai the function
(x1, · · · , x48) 7→ (x6i−5, · · · , x6i), the computation of Ei is immediate:
Ei = {06i−6} × F6

2 × {048−6i}.

AES The S-box used is a permutation on F128
2 defined as the concate-

nation of 16 permutations S1, ..., S16 on F8
2. All the functions Si are

equal to the same function X ∈ F28 7→ (1+δ0(X))X−1 (where δ0 denotes
the Dirac function). One can assume that mappings Ai in AES are the
functions (x1, · · · , x128) 7→ (x8i−7, · · · , x8i). The computations of Ei are
immediate : Ei = {08i−8} × F8

2 × {064−8i}.

4 A New Way to Counteract DPA Attacks

4.1 Introduction

In Section 3.3, we showed that a DPA attack on an (A,S,A′, R)-iterated
block cipher can be efficiently mounted when the computation of sets
Ei is feasible and when the number t × 2p/t of required measurements
is small. As n and t are lower than 128 in practice, the computation
of sets Ei is very fast (indeed the complexity of such a computation is
O

(
t× n3

)
). Moreover, for many block ciphers (such as DES or AES) the

value t × 2p/t is small (see Section 3.4). Thus, DPA attacks are usually
very efficient and must be thwarted by adding specific countermeasures
when implementing on embedded devices (see for example [11,3,9,25,20]).
In this section, we develop another way to counteract DPA attacks. Our
approach consists in designing DPA-resistant block ciphers which do not
require additional DPA-countermeasures. To achieve this aim, we add a
layer before traditional iterated block ciphers to increase the complexity
of the computation of the sets Ei. Of course, such a layer is also added
after the block cipher to counteract DPA attacks on the last round.

In this section, we describe a way to design the layers P 0
k′ and P 1

k′ such
that DPA attacks on the system depicted in Fig. 1 are unfeasible. To reach
this goal, layers P 0

k′ and P 1
k′ , parameterized by a secret key k′ ∈ K′, must
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Plaintext X(0)

↓
Layer P 0

k′

↓
Traditional encryption function Enck

↓
Layer P 1

k′

↓
Ciphertext P 1

k′ ◦ Enck ◦ P 0
k′(X

(0))

Fig. 1. Schematic representation of our DPA-resistant block cipher

fulfil several security requirements. Moreover, these layers must be easy
to implement and effective from both timing and memory points of view.

4.2 Our Proposal

For simplicity reasons, we denote the layer P 0
k′ by Pk′ . Let us assume that

K′ equals Fn′
2 . For every k′ ∈ Fn′

2 , we define the layer Pk′ by :

Pk′ : Fn
2 → Fn

2

X 7→ L ◦ πk′ ◦ L(X)
, (12)

where L is an involutive linear function whose diffusion order is greater
than or equal to n/2 and where (πk′)k′∈Fn′

2
is a family of bit-permutations

indexed by the elements k′. Let π : k′ 7→ πk′ be the function which
associates to every k′ the corresponding bit-permutation πk′ . The family
(πk′)k′∈Fn′

2
is defined such that π is an injective highly non-linear function

from Fn′
2 into the set of bit-permutations on Fn

2 (which implies that n′

must be chosen lower than or equal to log2(n!)).
For security reasons, we use the function πk′ as the secret parameter

of the layer Pk′ . This implies that the key of the layer is not the vector k′

but the function πk′ itself. Thus the derivation of πk′ from k′ has to be
done as part of the set up of the new DPA-resistant block cipher described
in Fig. 13.

To cipher and decipher, most of block ciphers such as DES use the
same core and only differ in the key scheduling. In order to keep this
involutive property, we define the layer P 1

k′ as the inverse of the layer
Pk′ . The layer P 1

k′ is thus the function X ∈ Fn
2 7→ L ◦ π−1

k′ ◦ L(X) ∈ Fn
2

3 For instance, πk′ can be pre-computed on a computer and stored into the device
during the personalization step.
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(recall that L = L−1 since L is involutive). As πk′ is a bit-permutation,
the function π−1

k′ is also a bit-permutation.

Remark 5. Let Deck denotes the decryption function corresponding to
the function Enck. Choosing P 1

k′ = P−1
k′ implies a DPA-resistant decryp-

tion function which is built by using exactly the same layers used to build
our DPA-resistant encryption function. Indeed, one can easily check that
P−1

k′ ◦Deck ◦ Pk′ inverts the function P−1
k′ ◦ Enck ◦ Pk′ .

4.3 Discussion about Pk′

The Diffusion Part. Since L is a linear function having a diffusion order
greater than or equal to n/2, it can be represented by a binary matrix
whose row vectors have an Hamming weight greater than or equal to n/2.

Example 1. On can choose for function L the one which is represented
by the complementary to the Identity matrix, i.e.

L =


0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0

 .

This matrix, which has a diffusion order equal to n − 1, is also used
in the linear layer of ICEBERG [29]. As L is involutive, L−1 also admits
n− 1 for diffusion order.

The Confusion Part. In the layer Pk′ , the function (x, k′) 7→ πk′(x)
plays the role of an S-box. For reasons which are discussed in Section 5.2,
this function is defined to be linear in x and highly non-linear in k′. For
every k′ ∈ Fn′

2 , let us represent a permutation πk′ on Fn
2 by the n-tuple

(i1, · · · , in) such that πk′ maps 1 to i1, 2 to i2, ..., n to in. The function
π : k′ ∈ Fn′

2 7→ πk′ used in (12) can thus be defined as an application
which injectively associates to a vector k′ the binary representation of
the n-tuple (i1, · · · , in) associated to πk′ . If one denotes by ` the value
dn log2(n)e, then π can be viewed as a function from Fn′

2 into I = {y ∈ F`
2;

y is the binary representation of a bit-permutation on Fn
2}. To design an

injective highly non-linear (n′, `)-function π, one can for instance easily
adapt the constructions proposed in [7,23,14]. As the average non-linearity
of (n′, `)-functions is high [24,27], another solution consists in choosing
the (n′, `)-function π at random among the injective functions from Fn′

2

into I.
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4.4 Implementation Efficiency

From a developer’s point of view, the operation L is a binary matrix
multiplication which can be efficiently implemented by using shifts and
logical operations AND and XOR. For example, if one chooses the func-
tion L suggested in Example 1, the multiplication with the ith row can
be done by XORing every bit of the input except the ith one. Moreover,
it means that the matrix representing this function L does not need to
be stored in the card.

Regarding the implementation of π, once the parameter k′ is cho-
sen, the representation of the bit-permutation πk′ as index table is pre-
computed and is stored in the card. In practice, this operation can be
done in the factory during the personalization of the card.

The RAM consumption of the layer Pk′ is negligible. Indeed, Pk′ can
be performed by using the same n-bit temporary buffer which is used
during the execution of Enck to store the temporary results.

To conclude, the implementation of Pk′ only requires basic assem-
bly instructions and does not require any supplemental RAM memory
compared to the embedded function Enck. The layer Pk′ can thus be
efficiently implemented in a smart card environment.

5 Security Analysis of our Solution

In this section, we assume that a computation requiring more than 264

elementary operations is impossible to perform in practice. Moreover, we
assume that n and n′ are greater than or equal to 64.

The encryption function depicted in Fig. 1 is DPA-resistant if the
layer Pk′ satisfies three requirements: render impossible a DPA attack on
the underlying block cipher, being resistant to DPA attacks and thwart
the classical attacks (such as the linear or the differential attack).

5.1 DPA Attacks on the Underlying Encryption Function

In the solution proposed in (12), we adapt the classical principles applied
to design round functions of iterated block ciphers by mixing diffusion
operations with confusion operations. Thus, as it is classical in symmetric
cryptography, one can assume the following property for Pk′ and P−1

k′ .

Property 1. For every y ∈ Fn
2 , the probability of finding a vector x ∈ Fn

2

such that y = Pk′(x) (resp. y = P−1
k′ (x)) equals 2−n when k′ is unknown.

Moreover, knowing a pair (x, y) such that y = Pk′(x) (resp. y = P−1
k′ (x)),
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there does not exist an attack more efficient than the exhaustive search
on Fn′

2 to retrieve k′.

As argued in Section 3, a DPA on the first round of an (A,S,A′, R)-
iterated block cipher is a divide and conquer attack: the round key is
recovered by mounting several DPA-attacks separately on all the S-boxes
Si◦Ai. Moreover, we relate the efficiency of a DPA-attack on any function
Si ◦ Ai to the number of plaintexts needed to design a set Ei such as
defined in Procedure 3.1. Let us assume that the (A,S,A′, R)-iterated
block cipher is embedded as described in Fig. 1. By definition, the set Ei

is a set of 2p/t plaintexts satisfying Ai◦Pk′(Ei) = Fp/t
2 . Thus, designing Ei

is equivalent to inverse the function Pk′ on a set I such that Ai(I) = Fp/t
2 .

Let us assume that we can find out one of the sets Ei in less than 2n

elementary operations and with a probability of success greater than 2−n.
This implies that we are able to find 2p/t pre-images of Pk′ in less than
2n elementary operations and with a probability of success greater than
2−n. As this contradicts Property 1, one deduces that the design of a set
Ei requires at least 2n elementary operations: this makes the DPA attack
inefficient when n is greater than or equal to 64.

5.2 DPA Attacks on the Layer Pk′

Since the diffusion order of L is greater than n/2, then every output-bit
of y = πk′ ◦ L(X(0)) depends on at least n/2 bits of the plaintext X(0).
This makes the computation of the coefficients ∆k̇′,k′ and δk̇′(k

′) by using
Relations (8) and (9) impossible when n × n′ is greater than 64. As a
consequence, a single-bit (or a multi-bit) DPA attack cannot be mounted
directly on the function πk′ .

As the parameter k′ is not introduced by addition, the manipulation
of the coordinates of x depends on the value of k′. This makes a decom-
position of (x, k′) 7→ πk′(x) such as performed for S in (6) impossible.
Consequently, the decomposition order t of this function is 1 and a multi-
bit DPA attack such as described in Section 3 is inefficient. Let Z denotes
the value L(X(0)). As done in Section 3, a cryptanalyst can try to obtain
information on k′ by mounting one or several DPA-attack(s) on some
parts of the computation of the values πk′(Z) when Z ranges over Fn

2 .
However, as the decomposition order of (x, k′) 7→ πk′(x) equals 1, then it
is impossible for an attacker to re-build the bit-permutation πk′ step by
step as the concatenation of smaller bit-permutations (acting for example
on 8-bit words).
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Let us assume that πk′ is given by its index representation (i1, · · · , in).
To counteract any other kind of Power Analysis on the computation of
πk′(Z) from Z, one can for instance operate on the bits of Z (that is to
access to the index representation) in a random order.

Remark 6. Usually, computing the output-bits of a cryptographic func-
tion in a random order is a very costly operation. For instance, in the
case of AES each output-bit of the inverse function Z ∈ F28 7→ Y =
(1 + δ0(Z))Z−1 depends on 8 bits of Z. Thus, the computation of every
bit-coordinate of Y from the ones of Z requires a large number of logical
operations. In our case, since πk′ is itself a bit-permutation, randomizing
the execution of πk′ is for free.

5.3 Resistance of Pk′ to Classical Attacks

To prevent statistical attacks, functions involved as cryptographic primi-
tives must be balanced. The following proposition proves that the confu-
sion part of Pk′ is balanced.

Proposition 1. The (n× n′, n)-function (x, k′) 7→ πk′(x) is balanced.

Proof. Functions in (πk′)k′∈Fn′
2

being bit-permutations on Fn
2 , they are

balanced on Fn
2 . This implies that for every y ∈ Fn

2 and every k′ ∈ Fn′
2 ,

there exists exactly one vector x ∈ Fn
2 such that πk′(x) = y. Function

π being injective, for every y ∈ Fn
2 the number of pairs (x, k′) such that

y = πk′(x) is 2n′ . One deduces that π is balanced from Fn
2 × Fn′

2 into
Fn

2 . ut

Remark 7. Functions πk′ being linear, the (n × n′, n)-function (x, k′) 7→
πk′(x) belongs to the class of vectorial Maiorana-MacFarland’s functions
(see [7,22,13] for more details about the cryptographic properties of these
functions).

To prevent a differential analysis, two parameters k′1 and k′2 differing
in a small number of bits must imply two functions πk′1

and πk′2
which are

as different as possible. To ensure this property, the function π has been
chosen to be highly non-linear.

In many attacks (such as the linear, the differential or the higher-
order cryptanalysis), statistical properties of the round functions of block
ciphers are used to make appear a relationship (a statistical bias) which
must be satisfied after the penultimate round. These so-called last round
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attacks use this statistical bias as a distinguisher to retrieve one round
key after another in ascending order (see for instance [6]).

The function P−1
k′ plays the role of the last round in the functions

P−1
k′ ◦Enck ◦ Pk′ and P−1

k′ ◦Deck ◦ Pk′ . Thus, if there exists a last round
attack on these functions then there exists a family of plaintexts (Xi)i

whose images after the penultimate round satisfy a particular relationship
for almost all the pairs (k, k′). The images of the plaintexts Xi after
the penultimate round correspond to the outputs of either Enck ◦ Pk′ or
Deck ◦Pk′ . So, if the functions Enck and Deck are immunized against last
round attacks, then one can assume that for every k ∈ Fn

2 the functions
Enck and Deck act as random permutations on Fn

2 . In this case, for
any family (Xi)i, the images of the plaintexts Xi through Enck ◦ Pk′

or Deck ◦ Pk′ are statistically independent since the distribution of the
outputs of Pk′ (which is composition of balanced functions) is uniform.
One deduces that if the functions Enck and Deck are immunized against
last round attacks, then the functions P−1

k′ ◦Enck◦Pk′ and Pk′◦Deck◦P−1
k′

are also resistant to this kind of attacks.

6 Conclusion

In this paper we study in detail DPA attacks on iterated block ciphers.
Based on this theoretical analysis, we suggest a way to design DPA-
resistant iterated block ciphers by using a diffusion layer which is non-
linearly parameterized by a secret parameter. The solution we suggest in
this paper is designed to be very efficient in practice and easy to apply
to any kind of existing iterated block cipher. In the area of embedded
cryptography, this new approach allows a cryptologist to design specific
block ciphers which are much more efficient in practice than usual block
ciphers on which traditional DPA countermeasures must be added.

References

1. D. Agrawal, B. Archambeault, J. Rao, and P. Rohatgi. The EM Side-Channel(s). In
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