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Abstract We propose a scheme for electronic cash based on symmetric
primitives. The scheme is secure in the framework for universal compos-
ability assuming the existence of a symmetric CCA2-secure encryption
scheme, a CMA-secure signature scheme, and a family of one-way, col-
lision-free hash functions. In particular, the security proof is not in the
random-oracle model. Due to its high efficiency, the scheme is well-suited
for devices such as smart-cards and mobile phones. We also show how the
proposed scheme can be used as a group signature scheme with one-time
keys.

1 Introduction

1.1 Background and Previous Work

The concept of electronic cash, e-cash, was introduced by Chaum et al. [7],
and several subsequent schemes have been proposed [2,9,21,20,18,16,15,4]. In
an e-cash scheme there are three types of participants – the bank, merchants,
and users. The users can withdraw coins from the bank and spend them at
merchants. An e-cash scheme is online or offline. In the former case the bank
is involved in every transaction, whereas in the second case payments can be
performed without contacting the bank. Obviously offline schemes are preferable
to online schemes. However, an electronic coin, being nothing but a string of
numbers, can be copied and spent more than once, and in an offline scheme such
double-spendings cannot be detected during the actual purchase. Rather than
preventing double-spending, offline schemes are designed so that double-spenders
are detected and identified.

Privacy is a crucial ingredient of e-cash schemes. It is desirable that merchants
cannot learn the identity of the user, or even determine whether two payments
were made by the same user or not. Many schemes also provide the same privacy
towards the bank. However, anonymity also works in favor of criminals using the
scheme for illegal activities protected by the privacy offered. To protect against
such events some schemes offer the possibility for trusted third parties to trace
a payment.

Most schemes require a merchant to deposit a coin after the purchase. A few
schemes allow a coin to be transferred between users in several steps before it is



deposited at the bank [17,18]. Such schemes are said to have transferable coins.
Another possible feature is divisability, i.e., that a coin may be spent only in
part [18,16,15].

1.2 Group Signatures and E-cash Schemes

Group signatures were introduced by Chaum and van Heyst [8]. In a group
signature scheme there is a group manager and group members. The group man-
ager delegates the right to generate signatures to the group members, and also
publishes a group public key. Members can sign messages, and a signature can
be verified against the group public key, but only the group manager can open
a signature to learn the identity of the signer. To anyone else the signature is
anonymous.

Group signatures bear many resemblances to electronic cash. Group signa-
tures are indistinguishable to anyone but the group manager in very much the
same way payments are indistinguishable in anonymous e-cash schemes. One
important difference is that there is no concept of double-spending for group
signatures. See, e.g., [13] for an example of an e-cash scheme based on group
signatures.

1.3 Our Contribution

All the above schemes involve trapdoor functions such as variants of ElGamal
encryption or RSA groups. A real-life electronic cash scheme would probably
be implemented on a portable device with low computational power such as
a smart-card or a mobile phone. For such schemes it is important that the
amount of computation is low, especially on the user side. The difference between
zero, one or two exponentiations in the payment protocol is significant, whereas
many schemes require tens, or in some cases hundreds, of exponentiations. The
merchant terminal is more comparable to a low-end PC, but also in this case it is
desirable to reduce the amount of computation to one or a few exponentiations.

Outline of Scheme. In this paper we propose a scheme which relies on symmet-
ric primitives such as symmetric encryption, hash functions and pseudo-random
functions. The only computations performed by the user during payment is eval-
uation of pseudo-random functions, and the merchant verifies a signature. It is
commonly believed that there exist efficient algorithms for the primitives needed,
e.g., AES and SHA-256. The scheme has been implemented on a mobile platform
[22]. Our scheme builds along the lines of the scheme by Sander and Ta-Shma
[20].

When a user U withdraws a coin, the bank encrypts the identity of U . Then
U uses a pseudo-random function to create a list of values and sends the hash
values of the pseudo-random values to the bank. The coin, consisting of the
encrypted identity and the hash values, is the inserted as a leaf into a Merkle
hash tree. After a certain amount of time, the bank builds the tree and publishes



the root. To spend a coin, the user reveals half of the preimages of the hash values
together with a path from the coin up to a published root. The merchant verifies
the correctness of the preimages, and in addition verifies that the chain of hash
values is valid.

If a user double-spends a coin, then she has revealed the preimage of more
than half of the hash values. If this happens the bank decrypts the encrypted
identity. From only the revealed preimages of a double-spent coin, it may be
possible to successfully spend the coin a third time. In other words, a user
double-spending a coin risks being held responsible for additional purchases.
This gives additional incentive not to double-spend.

The anonymity of the scheme follows from the security of the encryption
scheme, and unforgeability of coins follows since the hash function is collision-
free.

As an additional feature of our scheme the payment protocol is non-inter-
active. In other words, the user produces a coin that can only be deposited by
the designated merchant. This enables a user to prepare a coin for a certain
merchant. In addition, anyone can verify that the coin has been prepared for
that merchant. As an example, a parent can give a coin to their child which can
be spent only at a certain store.

We show security for our scheme in the framework for universal composability
(UC) [5]. We stress that our proof of security is in the plain model and not
in the random-oracle model. We only assume that the encryption scheme is
CCA2-secure, that the hash functions are one-way and collision-free, and that
the pseudo-random functions are indistinguishable from random functions. In
[12] a blind signature scheme secure in the plain model is described, from which
an e-cash scheme may be built. It is based on general methods for two-party
computation, and therefore not practical. We believe that the current scheme is
the first scheme for electronic cash with a security proof in the UC-model and
also the first practical scheme that does not use the random-oracle model for its
security proof.

Our scheme does not offer the same anonymity towards the bank as many
other schemes. It is an interesting question whether a scheme that does not
involve trapdoor functions can offer the anonymity towards the bank in the same
strong sense as, e.g., [7]. For a more thorough discussion on this, see Appendix
C.1.

Relations to Group Signatures. Although proposed as a scheme for elec-
tronic cash, our scheme has some similarities with group signatures. The bank
has the ability to open a coin to extract the identity in the same way the group
manager can open a signature. As a matter of fact, our scheme can be seen as
a group signature scheme with one-time keys. This is discussed in further detail
in Section 6.

Comparison with Sander-Ta-Shma. As in the scheme by Sander and Ta-
Shma [20], in our scheme the bank builds a hash tree and the merchant uses the



published root when verifying a coin. In their scheme a zero-knowledge protocol
is used by the user to prove ownership of a preimage of a hash value and a path
to some certified root. Focusing on efficiency, we avoid the zero-knowledge proof
by letting the user reveal preimages of κ/2 out of κ hash values. The cost for
this efficiency increase is that the bank always can identify the payer.

2 Notation and Definitions

2.1 Notation

String concatenation is denoted by ||. For two integers a and b their concatenation
a||b is the number created by concatenating their binary representations, e.g.,
a||b = 2kba + b, if b is a kb-bit number. By s ←R S we mean that s is chosen
independently and uniformly at random from the finite set S.

We denote {1, 2, . . . , n} by [n] Let I = {i1, i2, . . . , ik}, ij < ij+1, be a subset of
[n]. For a list of values v = (v1, v2, . . . , vn) we define vI = (vi1 , vi2 , . . . , vik

). Let
f be a function, S = {s1, s2, . . . , sm} a set, and v = (v1, v2, . . . , vn) a vector. We
define f(S) = {f(s1), f(s2), . . . , f(sm)} and f(v) = (f(v1), f(v2), . . . , f(vn)).

2.2 Basic Definitions

A function ε is said to be negligible if ε(κ) < 1/p(κ) for any polynomial p(κ)
and sufficiently large κ.

We define hash functions and pseudo-random functions as families of func-
tions. The most common way to realize a family of functions is to define the
function such that it depends on a key. A function is drawn from the family by
generating a key.

We use hash functions that are collision-free, sometimes called collision-
resistant, and one-way. Let Hκ be a family of hash functions that map values
in {0, 1}∗ to {0, 1}κ, and let H = {Hi}∞i=1. Intuitively H is collision-free if it is
infeasible to find two distinct inputs that hash to the same value and one-way if
it is hard to compute a preimage of a random value for H ←R Hκ.

Let Rκ be a family of functions from {0, 1}κ to {0, 1}κ, and let R = {Ri}
∞
i=1.

Let Uκ be the family of all functions from {0, 1}κ to {0, 1}κ. Informally R is said
to be pseudo-random if it is infeasible to distinguish a function from Rκ from a
function from Uκ.

A signature scheme SS = (Kg, Sig, Vf) is said to be correct if for (pk, sk)
generated by Kg and any message m it holds that Vfpk(m, Sigsk(m)) = 1. SS
is secure against chosen-message attacks, CMA-secure [10], if it is infeasible to
produce valid message-signature pair for any message, even if the adversary has
access to a signing oracle Sigsk(·).

A symmetric encryption scheme CS = (Kg, E, D) is secure against a chosen
cipher-text attack, CCA2-secure, if it is infeasible to distinguish between encryp-
tions of two messages of the attacker’s choice, even if the attacker is given access
to an encryption oracle and a decryption oracle. This is a natural extension of
CCA2-security for asymmetric encryption schemes [19].

Please see Appendix A for precise security definitions.



2.3 Merkle Trees and Hash Chains

Consider the task of proving that a value belongs to a set of certified values.
One way to achieve this is to create a binary tree with the values as leaves by
setting the value of every inner node to the hash value of the concatenation of
the values of its two children and publish the root in a certified way. This tree
is called a Merkle tree [14].

From a Merkle tree a hash chain from each leaf up to the root of the tree can
be constructed. For each step the chain contains a value and an order bit which
says whether the given value should be concatenated from the left or from the
right.

An example of a Merkle tree is given in Figure 1. From the tree in the figure we
can construct a hash chain from c121 up to the root as (c121, ρ, v2, r, v11, l, c122, r).
The values in the chain from c121 have been circled in the figure. Note that v1 and
v12 are not part of the chain, since these values are computed during verification.

ρ = H(v1, v2)

v1 = H(v11, v12)

v11 = H(c111, c112)

c111 c112

v12 = H(c121, c122)

c121 c122

v2 = H(v21, c22)

v21 = H(c211, c212)

c211 c212

c22

Figure 1. A Merkle tree with the values stored in the hash chain from c121 to the root
marked.

Definition 1 (Hash chain). A hash chain h of length d is a vector h =
(v, h0, h1, o1, h2, o2, . . . , hd−1, od−1) where oi ∈ {l, r}. A hash chain is said to

be valid under a hash function H if h0 = h′
0, where h′

d−1 = v and

h′

i−1 =

{

H(hi||h′
i) if oi = l

H(h′
i||hi) if oi = r

for i = d−1, d−2, . . . , 1. This is written isvalidH(h) = 1, or isvalid(h) = 1 if it is

clear from the context which hash function is used. We also define root(h) = h0

and leaf(h) = v.

Once a Merkle tree has been built for a set of values and its root value has
been published, constructing a hash chain for a value not in the set implies
finding a collision for the hash function. Since this is assumed to be infeasible,
Merkle trees give a method of proving membership.

We define the randomized function buildtreeH(S) with input a set S =
{s1, s2, . . . , sn} to build and output a hash tree of depth ⌈log2 n⌉ where the



leaves have values s1, . . . , sn in random order. When n is a power of two, all
leaves have equal depth d− 1, and otherwise some leaves have depth d− 2. The
function getchainT (s) returns the hash chain from the first leaf with value s to
the root in the tree T and ∅ if no such leaf exists.

It is possible to join two Merkle trees into a new Merkle tree by creating a
new root which has the two trees as children. Sander and Ta-Shma describe how
the number of active roots can be reduced by joining the existing trees. In our
scheme we do not join trees in this way, although the scheme could be modified
to do so.

3 The Protocol

3.1 Security Parameters

Two security parameters, κ1 and κ2, are used in the protocol. The parameter κ1

can be thought of as key length for the symmetric cipher, and κ2 is the number
of bits needed so that each merchant can be identified by a κ2-bit number with
κ2/2 number of ones.

3.2 The Players

The players in the protocols are denoted B, P1, . . . , Pm. To simplify the descrip-
tion we also write P0 for B. Except for the bank, any player may act as a
customer, i.e., withdraw and spend coins, as well as a merchants, i.e., accept
payments and deposit coins. We abuse notation and let Pi represent both the
identity of the player and the Turing machine taking part in the protocol.

We let I be a public map from identities to [κ2] such that I(Pi) has cardin-
ality κ2/2 and I(Pi) 6= I(Pj) for Pi 6= Pj . I can be thought of as a collision-free
hash function which maps its input to {0, 1}κ2 with the additional property that
the number of 1’s in the output is always exactly κ2/2, although it is probably
more practical to realize the map with a table. We define

spanI ({Pi1 , Pi2 , . . . , Pik
}) =







P | I(P ) ⊆
k
⋃

j=1

I(Pij
)







.

Given preimages of a coin corresponding to players Pi1 , Pi2 , . . . , Pik
one can com-

bine the preimages to spend the coin at any player in spanI({Pi1 , Pi2 , . . . , Pik
}).

It holds that P ∈ spanI(S) if P ∈ S. Since I is injective spanI({P}) = {P}.

4 The Ideal Functionality

4.1 Introduction

In this section we define the ideal functionality FEC and discuss why it captures
the properties of an e-cash scheme.



We use a model where the ideal functionality is linked to the players through
a communication network CI . The communication network forwards a message
m from a player P as (P, m) to the ideal functionality. When CI receives (P, m)
from the functionality, it forwards the message m to player P . Except for im-
mediate functions, defined as a message from a player P immediately followed
by a response to the same player P , the ideal adversary S is informed of when a
message is sent, but not of the content. The ideal adversary is allowed to delay
the delivery of such a message, but not change its content.

The functionality described here has only one non-immediate function – the
withdrawal protocol.

The adversary is allowed to choose an arbitrary number of players to corrupt
at start-up. For further discussion on this, see Appendix C.2. We do not allow
the adversary to corrupt B. It would be possible to give a functionality that
allows the adversary to corrupt B. In such a functionality even a corrupted B
would not be able to “revoke” an issued coin. However, since this would make
the functionality more complex, we describe FEC for a trusted bank.

4.2 Informal Description

The ideal functionality FEC for an e-cash scheme accepts the following messages.

– KeyGen to set up keys.
– Issue Coin to issue a coin to the designated user.
– Tick to build a new hash tree.
– Prepare Coin to mark a coin for spending at a certain merchant.
– Verify Coin to verify whether or not a coin can be spent at a certain mer-

chant.
– Open Coin to let the bank extract the identity of the user the coin was issued

to.
– Check Doublespent to check whether a coin has been spent more than once.

There is no separate message for depositing a coin at the bank. To deposit the
merchant hands the coin to the bank, who runs the Verify Coin algorithm to
check that the coin is valid.

4.3 Definition of the Ideal Functionality

The ideal functionality FEC holds a counter t that is initialized to 0 and indexed
sets Ci for coins that have been issued in period i. For convenience we let C =
⋃

i Ci. For e = (c, ·, k, ·) ∈ C we define valH(e) = c||H(k1)||H(k2)|| · · · ||H(kκ2
).

The functionality holds a set of signed roots Tsigned and a set of coins ready

to be spent Tprepared. The sets Ci, Tsigned, Tprepared are initialized to ∅. The

tables stored by the functionality are summarized in Table 1.
The functionality must be indistinguishable from the protocol, which implies

that it must output data on the same format as the real protocol, and therefore
in some way depend on the implementation of the real protocol. This can be



Table 1. The tables stored by the ideal functionality FEC.

Name Content

Ci (c, Pi, k, h), where c is a bit-string, Pi the coin-owner, k the
coin-secret and h the hash chain.

Tprepared Coins which are about to be spent.

Tsigned The certified roots.

achieved by querying the ideal adversary for any such output, or the functionality
can produce the output itself. In the former case, the ideal adversary needs to be
tailor-made for a certain implementation of the protocol, whereas in the latter
case the functionality must be parameterized by the implementation. We choose
the second approach in this paper.

The functionality is parameterized by a symmetric encryption scheme CS =
(Kg, E, D), a signature scheme SS = (Kg, Sig, Vf), a family of pseudo-random
functions R and collision-free, one-way hash functions H drawn from a fam-
ily of hash functions Hκ1

. To simplify the description we assume that SS is
correct. Instead of parameterizing the functionality it is possible to give a non-
parameterized description, where the functionality is given (a description of) the
function families from S at startup. The definition of FEC is given in Figure 2.

FEC captures some specifics of the current scheme, such as the tree update
function, the specific format of a coin, the weaker anonymity, a non-interactive
payment protocol, and the possibility to transfer prepared coins to other users.
Therefore a generic ideal functionality for electronic cash would differ from ours.

4.4 On the Ideal Functionality

In this section we discuss why FEC captures the security requirements for elec-
tronic cash. The five messages KeyGen, Issue Coin, Tick, Prepare Coin, and
Check Doublespent are all straight-forward. They manipulate tables, and use
H,R, CS,SS only to produce output that has the format of a coin. When an-
swering the Open Coin query, the functionality decrypts c if it is not found in
the table. This is so since the CCA2-security of CS does not prevent Z from
producing a valid cleartext-ciphertext pair and use it to determine whether it
interacts with the functionality or the real protocol.

Since the most involved message is Verify Coin, we discuss it in more detail.
As noted in [6], messages created by corrupted players or messages created with
keys that do not originate from the protocol must be verified according to the real
protocol rather than rejected. Otherwise the environment Z could distinguish
between the ideal functionality and the real protocol by creating a new pair of
signature keys and sign a root with this new key pair. The same holds for a
corrupted U which might leak its secret to Z to let Z prepare coins internally
without interacting with the protocol.



Functionality 1 (FH,R,CS,SS

EC ). Until (B, KeyGen) is received all messages except
(B, KeyGen) are ignored.

– Upon reception of (Pi, KeyGen) proceed as follows:
1. If Pi = B, set key← Kg(κ1), (pk, sk)← Kg(κ1), and return (B, KeyGen, pk).
2. Else record Pi in the member list and draw U i from the family Uκ1

and
return (Pi, KeyGen).

– Upon reception of (B, Issue Coin, Pi), verify that Pi is in the member list. If
not, return (B, Not A Member) and quit. Set

c← Ekey(0), kj ← (U i(c||j))κ2

j=1, z ← H(k) ,

where k = (k1, k2, . . . , kκ2
). Add (c, Pj , k, ∅) to Ct. Hand (S ,New Coin, Pi)

and (Pi, New Coin, c, z) to CI .
– Upon reception of (B, Tick), set T ← buildtreeH(valH(Ct)) and modify each

e = (c, Pi, k, ∅) ∈ Ct into (c, Pi, k, getchainT (valH(e))). Set σ ← Sigsk(root(T ))
and add root(T ) to Tsigned. Return (B, Tick, T, σ) to CI . Set t← t + 1.

– Upon reception of (Pi, Prepare Coin, c, z, Pj), find k such that (c, Pi, k, ·) ∈ C.
If no such k exists, then hand CI the message (Pi, Reject Prepare Coin) and
quit. Otherwise set k̃ ← kI(Pj), return (Pi, Prepared Coin, c, k̃) to CI and
store (c, Pj) in Tprepared.

– Upon reception of (Pi, Verify Coin, c, z, k̃, Pj , h
′, σ, pk′), find Pl, k, h such

that (c, Pl, k, h) ∈ C. Return (Pi, Verify Coin, c, Pj , invalid) to CI if at least
one of the following holds:

1. No such entry exists.
2. pk = pk′ and root(h) /∈ Tsigned.

3. Vfpk′(root(h), σ) = 0.
4. h′ 6= h.
5. Pl is not corrupted, and

(k̃ 6= kI(Pj)) ∨
“

Pj /∈ span
I
({P | (c, P ) ∈ Tprepared})

”

.

6. Pl is corrupted and H(k̃) 6= zI(Pj).

Otherwise return (Pi, Verify Coin, c, Pj , valid) to CI .
– Upon reception of (B, Open Coin, c), find a value (c, P, ·, ·) in C. If no such

entry exists, then set P ← Dsk(c). Return (B, Open Coin, c, P ).
– Upon reception of (Pl, Check Doublespent, c, z, k̃1, k̃2, h, σ, Pj1 , Pj2) from CI ,

execute (Verify Coin, c, z, k̃i , h, σ, Pji
) for i = 1, 2.

1. If at least one execution returns (Verify Coin, c, Pji
, invalid), then re-

turn (Pl, Check Doublespent, c, invalid) to CI .
2. If Pj1 = Pj2 then return (Pl, Check Doublespent, c, no), otherwise return

(Pl, Check Doublespent, c, yes) to CI .

Figure 2. The definition of FH,R,CS,SS

EC .



When a coin is verified, Condition 1 says that it should be considered invalid
if it has not been issued by B. Condition 2 say that if the coin is being verified
with the correct key public key, then it is valid only if B actually signed the
root, and Condition 3 ensures a correct answer when the coin is verified with
a different public key. Because of the correctness of SS, Condition 3 always
holds for pk = pk′ if the coin has been signed. Condition 4 says that the correct
path must be given. Condition 5 says that if the coin owner is not corrupted,
the coin must have been prepared for the designated receiver Pj . (Recall that
spanI({P}) = {P}.) Alternatively if the coin has been prepared more than once,
then Pj must be in the span of the set of receivers. Condition 6 says that for a
corrupt coin owner, the coin is accepted if the given preimages actually hash to
the correct values.

Anonymity. In the ideal protocol, c is an encryption of 0, and thus the coin
does not contain any information about the owner. The only information that
is disclosed to the merchant is to which tree the coin belongs. The amount of
information this contains depends on the size of the tree. The larger the tree,
i.e., the longer the interval between Tick messages, the smaller the amount of
information released to the merchant.

Fairness. By fairness we mean that if a player (or coalition of players) prepares
l + 1 coins that pass Verify Coin after withdrawing only l coins, at least one
withdrawn coin will be detected as double-spent. Since the only coins that can
be successfully spent are the coins in the database C, and the only way to have
a coin being added to the database is to engage in the withdrawal protocol, by
the pigeon hole principle at least one coin has been prepared twice in this case.
The implementation of the double-spending detection in the ideal functionality
guarantees that the double-spender is revealed.

Non-frameability. A coalition of players should not be able to spend coins
withdrawn by someone outside of the coalition. Since the Prepare Coin al-
gorithm checks that it is called by the coin owner, this requirement is fulfilled.

Detection of double-spenders. A user that spends a coin at two different
merchants will by construction have to produce two different sets of ki’s and will
always be detected by the bank.

Since double-spending at a single merchant will not be detected by the bank,
it is the responsibility of the merchant to detect such actions, holding a list of
the coins spent at that merchant. However, a simple modification of the scheme
allows the merchant to remember only the coins spent the same day. To achieve
this, we include the date in the computation of the index set. In the other words,
rather than disclosing the list kI(Pi), the list kI(Pi,date) is disclosed.



Correctness. An e-cash scheme is correct if a coin withdrawn by an honest
player always, or almost always, can be spent at an honest merchant and the
merchant can deposit the coin at the bank. It is immediate from the construction
that this property holds for the ideal functionality provided that the signature
scheme SS is correct.

5 The Real Protocol

5.1 Definition of the Protocol

We give the definition of the protocol in the FSIG-hybrid model. The ideal sig-
nature functionality FSIG [1,6] accepts messages KeyGen, Sign, Verify to set up
keys, sign a message, and verify a signature. We use the definition of FSS

SIG given
in Figure 3, slightly modified from [6] in that the functionality is parameterized
by the signature scheme, and that SS is assumed to be correct.

Functionality 2 (FSS

SIG [6]).

– Upon reception of (B, KeyGen), set (pk, sk)← Kg. Hand (B, pk) to CI .
– Upon reception of (B, Sign, m), set σ ← Sigsk(m), store m, and hand

(B, Signature, m, σ) to CI .
– Upon reception of (Pi, Verify, m, σ, pk′), set f = 0 if B is uncorrupted, m is not

stored, and pk = pk′. Otherwise set f = Vfpk′(m,σ). Hand (Pi, Verify, m, f)
to CI .

Figure 3. The definition of FSS

SIG.

We are now ready to define the protocol πH,R,CS
EC .

Protocol 1 (πH,R,CS
EC ).

– The bank B acts as follows:

• Upon reception of (KeyGen), B creates and stores a symmetric key key←
Kg(κ1), requests pk from FSIG, sets C ← ∅ and returns (KeyGen, pk).
• Upon reception of (Issue Coin, Pi), B initiates the following protocol

with Pi:

1. B computes c← Ekey(Pi) and sends (Withdrawal Request, c) to Pi.
2. Pi sets kj ← Ri(c||j), z ← H(k). Then it outputs (New Coin, c, z)

and hands (Withdrawal Response, c, z) to B.
3. B stores (c||z1||z2|| . . . ||zκ2

) in C.

• Upon reception of (Open Coin, c), B returns (Open Coin, c, Dkey(c)).
• Upon reception of (Tick), B computes a new hash tree T from all stored

values, i.e., sets T = buildtreeH(C). It acquires a signature σ on root(T )
from FSIG, sets C = ∅, and returns (Tick, T, σ).



– A non-bank player Pi, i.e., i > 0, acts as below:
• Upon reception of (KeyGen), Pi creates and stores a pseudo-random func-

tion Ri ←R Rκ1
and returns (KeyGen).

• Upon reception of (Prepare Coin, c, z, Pj), Pi sets kl ← Ri(c||l) for l =
1, . . . , κ2 and verifies that z = H(k). If this does not hold, it outputs the
message (Reject Prepare Coin) and quits. Otherwise it sets k̃ = kI(Pj)

and outputs (Prepared Coin, c, k̃).
• Upon reception of (Withdrawal Request), Pi acts as described above.

– In addition to the above, any player Pi, including the bank, acts as follows.
• Upon reception of (Verify Coin, c, z, k̃, Pj , h, σ, pk), Pi proceeds as fol-

lows:
1. Pi sends (Verify, root(h), σ, pk) to FSIG. If FSIG returns 0, then Pi

returns (Verify Coin, c, Pj , invalid) and quits.
2. Pi verifies that H(c, z) = leaf(h) and that isvalidH(h) = 1. If this

is not the case, then Pi returns (Verify Coin, c, Pj , invalid) and
quits.

3. Pi verifies that H(k̃) = zI(Pj) . If this is not the case, then it returns
(Verify Coin, c, Pj , invalid) and quits.

Pi returns (Verify Coin, c, Pj , valid).
• Upon reception of (Check Doublespent, c, z, k̃1, k̃2, h, σ, Pj1 , Pj2), Pi ex-

ecutes (Verify Coin, c, z, k̃i, h, σ, Pji
) for i = 1, 2.

1. If at least one execution returns (Verify Coin, c, Pji
, invalid), then

Pi returns (Check Doublespent, c, invalid) and quits.
2. If Pj1 = Pj2 then Pi returns (Check Doublespent, c, no), otherwise

it returns (Check Doublespent, c, yes).

5.2 On the Real Protocol

The protocol relies on the existence of an ideal signature functionality. Such a
functionality can be implemented with a CMA-secure signature scheme [1,6]. It
is possible that a merchant will verify several coins from the same tree. In these
cases the merchant can save time by only verifying the signature once.

The scheme relies on the roots being constructed after a certain amount of
time, and therefore coins may not be immediately usable. The scheme can also
be used without this delay by constructing a tree of size one for each coin is-
sued and returning the signature to the user immediately. This increases coin
size since there is a separate signature for each coin, but does not increase the
amount of computation the user has to perform. This modification also elimin-
ates linkability issues when coins with same owner are placed in the same tree.

5.3 Security of the Real Protocol

In Appendix B we prove the following theorem:

Theorem 1. The protocol πH,R,CS
EC securely realizes FH,R,CS,SS

EC in the FSS
SIG-

hybrid model if H is drawn from a collection H of one-way collision-free hash

functions, R is a collection of pseudo-random functions, and CS is a CCA2-
secure encryption scheme.



6 Comparison to Group Signatures

Our scheme is in some ways similar to group signatures. A coin can be viewed
as a signature on the identity of the merchant. Signatures by different users are
indistinguishable by the merchant, but not by the bank. This corresponds to a
group signatures scheme where the bank acts as group manager.

A user can only sign once for every coin she withdraws. For electronic cash
this is a fundamental property, but it differs, of course, from ordinary group
signatures. Also when used a group signatures scheme, there is no exculpability
against the group manager. In other words the group manager can frame a group
member.

Some group signature schemes offer revocation. When converting our scheme
into a group-signature like scheme this can be achieved by publishing the coins
issued to the revoked player. When verifying a signature, the verifier first checks
the coin against the revocation list.

7 Conclusions

We have given a scheme for electronic cash that is based on symmetric primitives.
The construction is efficient, and can be implemented on mobile phones or smart-
cards without a cryptographic co-processor. We have also showed how to convert
the scheme into a group signature scheme with one-time keys.
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A Definitions

We use hash functions that are collision-free, sometimes called collision-resistant,
and one-way. Intuitively a hash function is collision-free if it is infeasible to find
two distinct inputs that hash to the same value and one-way if it is hard to
compute a preimage of a random value. The following two experiments define
these two properties. Let Hκ be a family of hash functions that map values in
{0, 1}∗ to {0, 1}κ, and let H = {Hi}∞i=1.

Experiment 1 (Collision-free function, Expcol
H,A(κ)).

H ←R Hκ

(m0, m1)← A(guess, H)
if (m0 6= m1) ∧ (H(m0) = H(m1)) then

return 1
else

return 0
end if

Experiment 2 (One-way function, Expow
H,A(κ)).

H ←R Hκ

x←R Im(H)
y = A(guess, H, x)
if H(y) = x then

return 1
else

return 0
end if

The advantage of an adversary A in the experiments above is defined as
Adv

col
H,A(κ) = Pr[Expcol

H,A(κ) = 1] and Adv
ow
H,A(κ) = Pr[Expow

H,A(κ) = 1], re-

spectively. H is collision-free and one-way if Advcol
H,A(κ) and Advow

H,A(κ), re-
spectively, are negligible for any polynomial-time adversary A.

Let Rκ be a family of functions from {0, 1}κ to {0, 1}κ, and let R = {Ri}∞i=1.
Let Uκ be the family of all functions from {0, 1}κ to {0, 1}κ. Informally R is said
to be pseudo-random if is infeasible to distinguish a function from R from a
random function. The following experiment is used to formalize this.

Experiment 3 (Pseudo-random, Exp
prf−b
R,A (κ)).

if b = 0 then

f ←R Rκ



else

f ←R Uκ

end if

return Af(·)(guess)

The advantage of an adversary A is

Adv
prf
R,A(κ) = |Pr[Exp

prf−0
R,A (κ) = 1]− Pr[Exp

prf−1
R,A (κ) = 1]| .

The ensembleR is pseudo-random if Adv
prf
R,A(κ) is negligible for any polynomial-

time adversary A.
A signature scheme SS = (Kg, Sig, Vf) is secure against chosen-message at-

tacks, CMA-secure [10], if it is infeasible to produce valid message-signature pair
for any message, even if the adversary has access to a signing oracle Sigsk(·).
Formally we use the following experiment for the definition

Experiment 4 (CMA, Expcma
SS,A(κ)).

(pk, sk)← Kg(κ)
(m, σ)← ASigsk(·)(pk)
return Vfpk(m, s) = 1

The advantage of the adversary is defined as

Advcma
SS,A(κ) = Pr[Expcma

SS,A(κ) = 1] .

A signature scheme SS is CMA-secure if Advcma
SS,A(κ) is negligible for all poly-

nomial-time adversaries A.
Given a symmetric encryption scheme CS = (Kg, E, D) the following exper-

iment is used to define chosen cipher-text security (CCA2) [19]. Here Q(f(·))
denotes the set of questions answered by the oracle for f(·).

Experiment 5 (CCA2, Expcca2−b
CS,A (κ)).

(sk)← Kg(κ)
(m0, m1, state)← AEsk(·),Dsk(·)(choose)
c← Esk(mb)
d← AEsk(·),Dsk(·)(guess, c, state)
if c ∈ Q(Dsk(·)) then

return 0
else

return d
end if

Let the advantage of A be

Advcca2
CS,A(κ) = |Pr[Expcca2−0

CS,A (κ) = 1]− Pr[Expcca2−1
CS,A (κ) = 1]| .

The encryption scheme CS is CCA2-secure if Advcca2
CS,A(κ) is negligible for any

polynomial-time adversary A.



B Proof of Theorem 1

Proof. We divide the proof into subsections. First we define the simulator, then
we define the hybrids used and finally we describe how to break one of the
assumptions if an environment can distinguish between the ideal functionality
and the protocol.

Description of the Simulator. The simulator works as follows: For each player
Pi that the real-world adversary A corrupts, the ideal adversary S corrupts the
corresponding dummy player P̃i. When a corrupted dummy player P̃i receives a
message m from Z, the simulator S lets Z ′ send m to Pi. When a corrupted Pi

outputs a message m to Z ′, then S instructs the corrupted P̃i to output m to
Z. This corresponds to Pi being linked directly to Z.

FEC

CI

P̃1 P̃2 P̃3 P1 P2 P3

A

Z ′

Z

§

Figure 4. The simulator for a protocol with three players where P2 is corrupted. The
dashed edges represent simulated connections.

The simulated real-world adversary A is connected to Z, i.e., when Z sends
m to S, Z ′ hands m to A, and when A outputs m to Z ′, S hands m to Z.
All non-corrupted players are simulated honestly. The corrupted players run
according to their respective protocols.

If S receives the message (New Coin, Pi) from FEC, then it instructs Z ′ to
send (Issue Coin, Pi) to B. All other functions are local and need not be simu-
lated for A.

Building the Hybrids. Now assume there exists an environment Z that can
distinguish between an execution of the ideal protocol and an execution of the
real protocol for any ideal adversary S. Then it can distinguish between the two



for the simulator described above. We will create a chain of protocols π0, . . . , πt

such that π0 is the ideal protocol and πt the real protocol. We construct such a
chain of polynomially many intermediate steps. If Z can distinguish between the
ideal protocol and the real protocol, then there must exist an i such that Z can
distinguish between πi and πi+1. We now build the chain and describe how Z can
be turned into a machine that solves one of the problems assumed to be hard. To
simplify the description we build the hybrid chains as several subchains called
π0, π1 etc. We assume all chains have the same length m. Should a chain πr as
described below have length m′ < m we can always “pad” by letting πr

i = πr
m′

for i = m′ + 1, . . . , m. The chain built in this way is shown in Figure 5.

π0
0

// π0
1

// · · · // π0
m−1

// π0
m
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1
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π5
0

// π5
1

// · · · // π5
m−1

// π5
m

Figure 5. The chain of hybrid protocols.

We let π0
0 be the ideal protocol. We then let π0

i be the same protocol with
the difference that up to the ith coin issued we set c to be an encryption of the
identity, c = Ekey(Pi), rather than c = Ekey(0).

We define π1
0 to be π0

m. Define π1
i to be π1

0 with the modification that for
the first i calls to Open Coin actually decrypt c according to the real protocol
instead of looking up the answer in the table.

Let π2
0 = π1

m. Define π2
i to be π2

0 with the difference for player P1, . . . , Pi a
pseudo-random function is used to generate ki instead of the random function
U i.

Let π3
0 = π2

m. Define π3
i to be π3

0 with the modification that up to the ith
time Check Doublespent is called yes is returned if more than κ2/2 hash values
have been opened rather than using the table.

The protocol π4 is defined as π3 with the difference that the ith call to
Verify Coin checks whether the path p is valid rather than checks that the coin
exists in the table.



Finally the hybrid π5 is defined to be π4 with the modification that for π5
i

the i first times the Verify Coin algorithm is called it is checked that κ2/2
values ki hash to zi rather then checking them against the tables Tprepared and

Tsigned.

Breaking the Assumption. Assume Z can distinguish between π0
i and π0

i+1 for
some i. We show how to use Z to build an algorithm A that breaks the CCA2-
security of CS. Participating in Experiment 5 A has access to an encryption and
a decryption oracle. No symmetric key is generated, but instead the encryption
oracle is used to correctly form the first i coins, and the decryption oracle is used
to open coins. When the (i + 1)st coin is about to be created with identity Pj ,
A asks the challenge oracle to encrypt either 0 or Pj . All subsequent coins are
created according to the ideal functionality.

Note that if the challenge oracle encrypts 0, the protocol executed is π0
i , and

if it encrypts Pj , the protocol is π0
i+1. Since Z is able to distinguish between π0

i

and π0
i+1 with non-negligible probability it will break the CCA2-security of CS.

The protocols in hybrid chain π1 answer the Open Coin query identically,
and thus Z cannot distinguish between them.

Assume Z can distinguish between π2
i and π2

i+1 for some i. We show how
to use Z to build an algorithm A that is able to distinguish between a pseudo-
random function R and a random function U , thus contradicting the assumption
that R is pseudo-random. A is given oracle access to a function f . For players
P1, . . . , Pi a pseudo-random function is used as in the real protocol. When coins
are created for player Pi+1, the oracle for f is used to generate kj , and for players
Pl, l > i + 1, the random function is used as in the ideal protocol.

If f is drawn from Uκ1
, then the protocol described is π2

i , and if f is drawn
from Rκ1

, then the protocol is π2
i+1. Thus if Z is able to distinguish between

π2
i and π2

i+1 with non-negligible probability p, then A can distinguish between
pseudo-random functions and random functions with the same probability p.

By construction instances of π3 are indistinguishable, since no two Pi 6= Pj

have the same associated index set.
Assume Z distinguishes between π4

i and π4
i+1. This means that Z with non-

negligible probability has created a coin (c, z) and corresponding path h such
that

– root(h) was signed by B.
– h was not in the original tree created by B.

From this we can construct an algorithm A that given a key for the hash function
finds a collision, contradicting the assumption that H is collision-free.

Assume Z distinguishes between π5
i and π5

i+1 with non-negligible probability
p1. In that case, Z has succeeded to provide Verify Coin with c, z and values
ki such that either

– no entry c, Pj exists in Tprepared, or

– the values ki do not match the values in the database.

and H(ki) = zi.



In the first case, the corresponding Prepare Coin has not been executed, and
thus the values of ki have not been revealed. We can now produce an algorithm A
that given y computes x ∈ H−1(y), contradicting the assumption that H is hard
to invert. Let us assume that coin verified in the (i + 1)st call to Verify Coin

was issued to P in the jth call to Issue Coin with non-negligible probability p2.
A runs the protocol honestly except that zl = y, where l is the smallest index in
the index set I(P ). Since Z is able to make Verify Coin accept, it must have
provided x such that H(x) = y. A then outputs x. Under the assumptions A
succeeds with probability at least p1p2.

In the second case, we can construct an algorithm that finds a collision in
the hash function.

We have now shown that if Z can distinguish between πEC and FEC, it can
be used either to break the CCA2-security of CS, to break the CMA-security of
SS, to distinguish between R and random functions, to find a collision in H , or
to compute H−1(x) for a random x. Since this is assumed to be hard, the proof
is concluded.

C Additional Notes

C.1 Can We Do Better?

As seen above, the proposed scheme lacks some of the properties one could ask
from an e-cash scheme. Also, when used as a group signature scheme, it it does
not have all the properties one could wish for. The reason for this is that we base
the scheme on symmetric rather than asymmetric primitives. A natural question
to ask is whether one could do better using only symmetric primitives.

It is known [3] that the existence of a group signature scheme implies exist-
ence of a CCA2-secure public-key encryption scheme. Impagliazzo and Rudich
[11] show that it is unlikely that a public-key encryption scheme can be based
only on the assumption of the existence of one-way functions where the function
is used as a black box. Actually, the existence of such a construction would give
a proof that P 6= NP. Therefore a construction of a group signature scheme
from black-box access to symmetric primitives is likely to be extremely involved.

For electronic cash the situation is less clear. If double-spenders are detected
only by the bank and not by anyone else (including the merchant), then it is
possible to reduce CCA2-encryption to electronic cash in the same way as for
group signatures. The same holds if there is a trusted third party that can
identify coin owners. However, we are not aware of such a reduction from e-cash
in general.

These restrictions only hold when there is only black-box access to symmetric
primitives. When one is allowed access to the circuit computing a one-way func-
tions, it is possible to, e.g., prove in zero-knowledge the knowledge of a preimage
of a value under a hash function. Although polynomial, such proofs would most
likely be highly inefficient.



C.2 On Adaptive Security

The security proof assumes that the adversary corrupts players in a non-adaptive
way. An adversary that is allowed to corrupt adaptively would be able to dis-
tinguish between the real protocol and the ideal functionality. In the ideal func-
tionality, the preimages a user U uses are random numbers, whereas in the real
protocols they are pseudo-random numbers. When corrupting U , the adversary
expects to receive a key for the pseudo-random function that matches the preim-
ages. In the ideal protocol the probability that such a key even exists is negligible.

We can modify the real protocol to solve the problem. If U instead of gener-
ating the preimages from a pseudo-random function generates random numbers,
the above scenario does not apply. The drawback is that the amount of data
that U needs to store increases.

C.3 Coin Size and External Databases

As the reader may have noted, the hash chains do not contain any sensitive
information. Therefore they can be stored in public databases rather than by
the user. This gives a way to reduce the size of the coins by storing only an
index of the hash root together with the path in the tree as a {0, 1} string. The
merchant can retrieve the hash values and (c, z) from a public database.

Since the databases do not need to be authenticated as long as the roots are
signed, they could be provided by untrusted third parties, and not necessarily by
the bank. By verifying the hash chain the merchant would detect if a database
is corrupted. A large merchant could even have its own database.


