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Abstract

Constructing non-supersingular elliptic curves for pairing-based cryptosystems have
attracted much attention in recent years. The best previous technique builds curves
with p = Ilg(q)/lg(r) ~ 1 (k = 12) and p = Ig(q)/Ig(r) ~ 1.25 (k = 24). When k > 12,
most of the previous work address the question of representing r(x) as a cyclotomic
polynomial. In this paper, we propose a new method to find more pairing-friendly
elliptic curves with arbitrary embedding degree k£ by certain special polynomial
families. The new method generates curves with Ig(q)/lg(r) ~ 1 (k = 48) with random
forms of r(x). Different representations of »(x) allow us to obtain many new families
of pairing-friend elliptic curves. In addition, we propose a equation to illustrate how
to obtain small values of p by choosing appropriate forms of discriminant D and trace
t. Numerous parameters of certain pairing-friendly elliptic curves are presented with
support for the theoretical conclusions.

Keywords: pairing-friendly elliptic curves, special polynomial families, cyclotomic
polynomials

1. Introduction

After the propositions of identity-based encryption scheme [12] and short signature
scheme [13], paring-based cryptography has attracted significant attention in modern
public-key cryptography. Over pairing-based cryptosystems, Elliptic Curve Discrete
Logarithm Problem (ECDLP) on supersingular elliptic curves can be reduced to
Discrete Logarithm Problem (DLP) over an extension field by Weil Pairing [10] or
Tate Paring [15]. Although supersingular elliptic curves provides high efficiency for
pairing-based cryptosystems [19, 20], since these curves only can be built when



embedding degree k < 6 [11], researchers have explored other form of curves, e.g.
non-supersingular elliptic curves.

In 2001, Miyaji, Nakabayashi and Takano [8] first proposed a method to find
suitable non-supersingular elliptic curves for pairing-based cryptosystems. They
discussed the problem from the point of view of tract ¢. Scott and Barreto [1] extended
the method of Miyaji ef al. and found more suitable non-supersingular elliptic curves
when k& € /3, 4, 6]. Gallbraith, Mckee and Valenca [3] summarized the method
proposed by early researchers and presented some appropriate families of group
orders of such elliptic curves when embedding degree k£ < 6. Duan, Cui and Chan [5]
extended the work of Gallbraith et al. by proposing the idea of efficient polynomial
families of pairing-friendly elliptic curves.

For larger values of &, Brezing and Weng proposed an alternative method to find
these curves [7]. They used ¢t — 7 as a kth root of unity modulo prime . They
generated the curves with best performance so far as lg(g)/lg(r) = 1.25 (k = 24).
Dupont, Enge and Morain [16] proposed another method for finding the suitable
non-supersingular elliptic curves. Most of the curves they found had /g(q)/lg(r) ~2. In
their method, tract ¢ was chosen large enough to make 4g — 7 small as to produce
effective values of D. Barreto and Naehrig [17] generated non-supersingular elliptic
curves with /g(q)/lg(r) = I when embedding degree £ = /2. They presented the best
curves with prime group order known so far. Their work was actually generated by a
special polynomial family of ¢(x), #(x) and r(x), where 4¢(x) — £(x) can be factorized
as one square polynomial multiplying with one constant number. In the most recent
work, Murphy and Fitzpatrick [4] extended the work of Brezing et al. and generated
pairing-friend elliptic curves over prime fields with discriminant D > 4 for arbitrary
values of k.

In this paper we propose a new method for finding more pairing-friendly elliptic
curves. Compared to the previous works, we explicitly present the special polynomial
families for generating more elliptic curves with arbitrary values of embedding degree
k. We also illustrate the relation to obtain small values of p by choosing appropriate
forms of discriminant D, trace ¢ and embedding degree k. In addition, our method
allows to find more pairing-friendly elliptic curves with higher security and more
efficiency by various representations of r(x). In fact, the work of Brezing et al. [17]
and Murphy et al. [4] can be represented as a special case of our new method, since
they implement »(x) only as cyclotomic polynomial in their work.

This paper is organized as follows. In Sections 2 we give a description of the
mathematics background. In Section 3 we present the new method and discuss the
difference compared with previous works. In Section 4 certain special polynomial
families of pairing-friendly elliptic curves wit random forms of r(x) and arbitrary
embedding degree k are presented. In addition, we propose the idea to construct
curves with p = Ig(q)/Ig(r) ~ I for large values of k > 48. We draw the conclusion in



Section 5. The parameters of some pairing-friendly elliptic curves, based on the
proposed polynomial families, are presented in Appendix (a), (b), (¢) and (d) over
prime fields.

2. Mathematics Background

To find suitable elliptic curves for pairing-based cryptosystems, we need to solve
certain equations. Assume the cofactor / is an integer, 7 is the order of a point as a big
prime number and ¢ is the trace of an elliptic curve, we want to find an elliptic curve
over F,, where ¢ = p is a prime number (we only consider the prime fields in this
paper). ECDLP on such elliptic curves can be reduced to DLP over Fqk, where £ is the
smallest integer satisfying certain conditions, defined as the embedding degree [1].
The following equations determine whether such an elliptic curve exists or not.

In a strict sense, to find the suitable elliptic curves for pairing-based cryptosystems
[10], we need

rlq-1 M
However, under a mild condition [6], we just consider ¢ as a kth root of unity modulo »
[7]. Meanwhile, since & is the smallest integer satisfying » | ¢* — I, equation (1) should
be presented as 7 | qk — 1 and ¢’ — I is not divisible by » when 0 < i < k. From [14] we
have

dr =Di(q) 2
where d is an integer and @(q) is the cyclotomic polynomial of ¢ with embedding
degree k and

dr=d(q),0<i<k 3)
Besides these conditions we need

hr=q+1—t 4
where /4 is an integer. Combining equation (2) and (4) together, we obtain

sr=Dt—1) (5)
where s is also an integer[1]. Since k is the smallest integer, we have

srdt—-1),0<i<k (6)
By Hasse’s bound we need

1| <2¢" (7)
With all the above equations, we compute the elliptic curve by solving

DV =4qg—-+ (®)

where D is chosen by certain conditions [2].

All the above equations aim for finding suitable elliptic curves for pairing-based
cryptosystems in integer fields. But it is impossible to search the whole integer fields
to obtain the suitable solutions. We should transfer the problem into polynomial fields.
When analyzing in polynomial fields, we assume ¢, ¢, » as ¢(x), t(x) and r(x);
meanwhile 4, d, s, D and V should be considered as 4(x), d(x), s(x), D(x) and V(x).



Duan ef al. [5] have proposed a lemma which illustrates the fact that in polynomial
fields, equation (2) and (5) are already both efficient and necessary conditions.

Thus for finding suitable elliptic curves for pairing-based cryptosystems in
polynomial fields, the equations (2, 4, 5, 7, 8) are required and they can be rewritten
as:

d(x)r(x) =Du(q(x)) 9)
he)r(x) = q(x) + 1 —t(x) (10)
s(r(x) =By(t(x) — 1) (11)
lt(x)| < 29(x)"" (12)
D)V(x)’ = 4q(x) — £(x) (13)

How to build pairing-friendly elliptic curves by finding the polynomial families
satisfying equation (9) to (13) were presented in [1, 3, 5, 8, 17]. Most of the work
concentrated on embedding degree k£ < 6. Only one special polynomial family whe &
= ]2 was found by Barreto et al. [17], which built the best curves with prime group
order known so far.

For larger values of £, the polynomial families of g(x), #(x) and r(x) will not satisy
all the conditions from equations (9) to (13). Only some of the parameters will
maintain the polynomial relations and the other ones will only be valid for certain x as
Xo. Brezing and Weng [7] proposed a method to find these curves. In their method, in
polynomial fields, #(x) and r(x) will satisfy equation (11) by representing #(x) — I as a
kth root of unity modulo r(x). The irreducible polynomial »(x) is always set as a
cyclotomic polynomial. ¢ and DV? will not have the polynomial relations. They can
not be represented as polynomials in the cyclotomic field. But all the parameters are
satisfying equations (9) - (13) for a specific xy. In the next section, we will present a
new method for finding more pairing-friendly elliptic curves with arbitrary embeddin
degree k by some special polynomial families. The new method allows r(x) to be an
irreducible polynomial with different forms.

3. A New Method for Producing More Pairing - Friendly Elliptic

Curves with Special Polynomial Families

In this section the math evidence for the new method is provided. As proposed in [7],
from equation (4) and (8), difference between 4¢g and # can be obtained after knowing
tand r:

DV =dg—F =4(hr+t—1)—¢ (14)
Represented in polynomial fields, equation (16) can be rewritten as

DV(x) =4h(x)r(x) — (1(x) — 2)° (15)



where D is a square-free integer. This is the standard polynomial families as proposed
in [1, 3, 5, 8, 17] of pairing-friendly elliptic curves with satisfaction to equation (9) to
(13). In polynomial field, choose r(x) and #(x) as

s(x)r(x) =Di(t(x) — 1)
This can be viewed as

r(x) |Put(x) - 1) (16)
Here we should mention that polynomial families are hard to find with satisfying
equation (15) for large values of &, e.g. k > 12. To find more curves, we choose
suitable 7(x) and #(x) satisfying (16). Then for a specific xy, assuming equation (15) is
existing, this can be written as

DV (xg) =4h(xe)r(xe) — (t(x) — 2)° (17)
Dividing D from both sides of equation (17), we have
V(xo) = [4h(xo)r(xe) / D] — [t(x0) = 2]° / D (18)

where 4h(xy)r(xo) and [t(xy) — 2]° divides D. Assuming [t(xg) — 2 | 4Dh(xg), equation
(18) can be rewritten as

Vi(xo) = {[t(x)) = 2] / D }{[4Dh(xo)r(xo) / (t(x0) ~ 2)°] ~ D} (19)
Here we use a technique to consider 4Dh(xg)/ (t(xy) — 2)° as a polynimail /’(x) for
certain xy. This means for a specific xy, 4Dh(x;) divides [t(xy) — 2]2 and it can be
represented in polynomial fields as a polynomial %’(x). Then euqation (19) can be
represented as

V(o) = {[t(xo) = 2]° / D }{h’()r(x) = D} (20)
Thus if 4’(x)r(x) — D can be viewed as a square polynoial $°(x), in equation (20) all
parameters are represened in suqare forms. If 2’(x)r(x) — D = s (x), for any given xy,
equation (20) is satisfied and can be written as

Vi(xo) = {[t(xo) = 2]°/ D* }S°(x) 21
This equation represents a modified polynomia family. For the specific xy, we have

DV (xg) = {[t(x0) — 2]’ / D }S°(x0) (22)
Representing equation (14) into equation (22), we obtain

q=[C(x) + DV(x)] /4 (23)

We choose x; as to satisy that 7(xy) is a prime integer. Then for the specific x, if g =
[tz(xo) + DVz(X())] / 4 is a prime integer, we find all the suitable parameters with
satisfaction to a pairing-friendly elliptic curve.

The main idea can be presented as the following precedures. First we choose a
speicific 7(x) and trace polynomial #(x) with r(x) |@x(t(x) — 1). Then aftern choosing a
suitable discriminant D, we find polynomial families 4 ’(x) satisfying that /#’(x)r(x) —
D = §°(x) as a square polynomial. In the following step, we choose a suitable x, with
r(xg) is a prime integer and test whether g = {tz(xo) + [(t(xg) — 2)2 /D ]Sx0)} /4 1is a
prime integer. Is ¢ is according to the condition, we have found the suitable
parameters of a pairing-friendly elliptic curves. In the procedure, 4Dh(xy) / (t(xy) — 2)°
=h’(x), D | 4h(xg) and D | [t(xg) — 2] are three hiddern condtions since we represent
h’(x) as a polynomial.



The main step in the new method is to find a suitable discriminant D and speicial
polynomia families with /°(x), r(x), S(x) with h’(x)r(x) — D = $°(x). The other work to
test prime r(xg) and g(xy) is trivial. Here we must mention that when »(x) is taken as a
standard cyclotomic polynomial, finding suitable S(x) is equal to find the polynomial
representions of (-D)"” in cyclotomic field. This is because

S°(x) + D =0 mod r(x) (24)

In such circumstances, our method is same with the methods proposed by Brezing and
Weng [7] since equation (24) can be rewritten as

DV (x) = {[t(x) — 2] / D}S’(x) (25)
where S(x) is the representation of (-D)"? in cyclotomic field. This equation is same as
the main relation proposed in [7]. Thus the work of Brezing et al. is a special case of
our new method since in their method r(x) is only taken as the standard cyclotomic
polynomials. Our proposed method ignores the restriction imposed on the form of r(x).

By our method more pairing-friendly elliptic curves are found by vairous forms of

r(x).

Based on the above analysis, we propose a new algorithm for finding the suitable
polynomial families of pairing-friendly elliptic curves.

Algorithm 1
Input: embedding degree £, qk 2219 and r > 2%
Output: xg, g(x0), t(x0), r(x0), DV*(x0)
1. Choose an irreducible polynomial »(x).
2. Compute trace polynomial #(x) by @ (t(x) — 1) =0 mod r(x).
3. Choose a polynomial family 4’(x) and a suitable discriminant D with & ’(x)r(x)
— D = §(x), where $°(x) is a square polynomial.
4. Find a specific xy with r(x,) is a prime integer and g(xy) = {£'(xo) + S’ (x0) [(t(x0)
—2)?/D] } /4 is also a prime integer.
5. Output xg, g(xg), t(xq), r(xe), DV (xy)
6. Establish the elliptic curve by CM method with the above parameters.
7. If no suitable parameters are found, repeat from step 1

Because the key procedure of the new method is to find peicial polynomia

families with /°(x), 7(x), S°(x), in the next section we will list some families with
different embedding degree k, p = lg(q)/lg(r) and r(x).

4. Effective Polynomial Families for Producing More Pairing -

Friendly Elliptic Curves

In this section we will present some special polynomial families obtained by the new
method. These families can be used to generate more pairing-friendly elliptic curves



with different forms of r(x), small values of p and arbitrary values of embedding
degree k.

4.1 Special Polynomial Families with Small Values of p

By the new method, it can be found that the value of p is related to the choice of r(x),
t(x) and h’(x). It is because p = Ig(q)/lg(r) = degree(q(x)) / degree(r(x)). Since DV(xy)
= {[t(x)) — 2]° / D }{h'(x)r(x) — D}, we have degree(q(x)) = degree(DV’(x)) ~
2degree(t(x)) + degree(h’(x)) + degree(r(x)). Thus the value of p = degree(q(x)) /
degree(r(x)) = [2degree(t(x)) + degree(h’(x)) + degree(v(x))] / degree(v(x)) =1 +
[2degree(t(x)) + degree(h’(x))] / degree(r(x)). It is to say that p will always be larger
than 7. This can also be deduced from the condition used in the method. Since we
assume [t(xy) — 2]’ | 4Dh(xy) in the algorithm, when p = I, i(x) will be a constant
integer as h. Then [t(xy) — 2]° | 4Dh(x,) will not be satisfied since |(x0)| > 4Dh.
When the degree of 4 ’(x) is 0 (4’(x) is a constant number), p has the smallest values as
1 + 2degree(t(x)) / degree(r(x)). Thus for finding p close to /, 4’(x) should be chosen
as a constant number and #(x) should be chosen with smallest degree.

In the following paragraph, we construct a table with all the different special
polynomial families for embedding degree k € [12, 14, 15, 16] over cyclotomic field
(k = 13 does not contain such polynomial families). All the results are satisfying the

nice representations of (-D)U ? in the work of Murphy and Fitzpatrick [4].

h’(x) 1(x) D S*(x) t(x) | p
k=12 x>+ 1 Dp(x) | 1 x° x+1| 2
k=12 4 Dn(x) | 3 2x* -1y x+1]| 15
k=14 | 4x*+4x+8 Oux) | 7 | (2x*+2x*-2x+ 1) | x+1| 1.66
k=15 4x* +4x +4 Di5(x) | 3 (2x°+ 1) x+1| 15
k=15 | 4x°+4x° —4x*+ | Os(x) | 15| @x' -2 +4x* -2 [x+1| 2
8x° + 4x* + 24 x> +2x% + 4x = 3)

Table 1: Special polynomial families when k = 12, 14, 15

In Table 2 we tabulate all the possible special polynomial families when k£ = 28.
When r(x) is fixed as the cyclotomic polynomial with embedding degree £, the special
polynomial families should be taken as /’(x) and #(x) with smallest degree to obtain
the smallest values of p. Thus #(x) always should be taken as x + [ if r(x) = @(x).
Although in cyclotomic field we can modulo /#(x) - 2)]° / D by ®(x) to a smaller
integer; from the deductions of section 3 we can find that the best choice is still to set
t(x) as x + 1. Murphy et al. [4] implemented #(x) as x* + 1 with standard cyclotomic
polynomial r(x) when k = 28. They found the elliptic curves with p ~ 1.8. We will
present some pairing-friendly elliptic curves when £ = 15 and 28 in Appendix (a).
These curves have smaller values of p compared to the work of Murphy et al. [4]
when representing #(x) as x + 1.



h’(x) r(x) |D S*(x) t(x) | p
k=28 x>+ 1 Dog(x) | 1 x' x+1]13
k=28 | 4x'+4x°+8 | Dp(x) | 7| (2x°—2x*+2x°—1)* | x+1 |15

Table 2: Special polynomial families when k = 12, 14, 15

Brezing et al. [7] and Murphy et al. [4] have implemented r(x) as @y(x) for a
given embedding degree k, where i is an integer. In fact, such techniques can not
obtain elliptic curves with smaller values of p. The reason is when taken r(x) as @y(x),
degree(r(x)) = degree(Dy(x)) =i x degree(Dy(x)); meanwhile, i x degree(t(x)) (r(x) is
Dy(x)) = degree(t(x)) (r(x) is @y(x)) and i x degree(h’(x)) (r(x) is Dx)) =
degree(h’(x)) (r(x) is @y(x)). Thus the value of p is not related to the choice of
cyclotomic polynomials since the degrees of r(x), #(x) and /’(x) are increased at same
times. Brezing et al. [7] have found the best curves with p ~ 1.25, k = 24. They took
r(x) as @u(x) and t(x) as x° + 1. In Table 2, we will tabulate some polynomial
families when k£ = 24 which illustrates that p ~ /.25 is also obtained for £ = 24 when
t(x) =x + I, r(x) = Dyy(x). These polynomial families prove that the value of o has no
relation with the choice of the degrees of @(x) and #(x).

h’(x) 1(x) D S(x) t(x) p
k=24 4 D24(x) 3 x* = 1) x+1 1.25
k=24 4 Dy5(x) 3 x5 - 1) x>+ 1 1.25
k=24 | x*+2 D24(X) 2 X +x°—x)* x+1 1.5
k=24 | x'+2 Dy5(x) 2 | x+x x| xP+1 1.5

Table 3: Special polynomial families when k = 24
4.2 Special Polynomial Families with Arbitrary Values of k

As finding the special polynomial families, we notice a fact which can be
implemented to construct pairing-friendly elliptic curves with arbitrary embedding
degree k. When £ is an even integer, @y (x) will have the same form as @(x) where s
= 2' (i is a positive integer). The only difference is that x in @(x) will be represented
as X’ in @y(x). Meanwhile, /’(x) will also have the same property. Thus if we find a
special polynomial family for embedding degree k, we can easily obtain the families
with the same forms for embedding degree sk (s = 2'). The only work is to represent x
as x°, where s is a positive integer power of 2.

The beauty of this property is to find curves with larger embedding degree & with
smaller p. It is because p = I + [2degree(t(x)) + degree(h’(x))] / degree(r(x)). When
degree of r(x) is increased with same multiples of 4 ’(x), if the degree of #(x) is not
chanced, the value of p will be decreased. When /4’°(x) is a constant integer, the
situations are more easily to analyze. Since if we always choose #(x) as x + I, the
values of p equals I + [2 / degree(r(x))]. By choosing larger values of embedding
degree £, the degree of r(x) will increase, then the value of p will be decreased (but it
can not reach / for ever).



Koblitz and Menezes [18] have suggested to find pairing-friendly elliptic curves
with k& = 2'3 as large as possible. In Table 3, we tabulate the polynomial families
when k = 12, 24, 48, 96. The value of p is decreased to / when taking larger values of
k. When k = 48, we construct the parameters of certain paring-friendly elliptic curves
with p ~ 1. 125. When k = 96, we construct the parameters of certain paring-friendly
elliptic curves with p =~ I. 06. These curves have better performance compared to
previous works, since they have smaller values of p for larger values of £. The results
are presented in Appendix (b).

X)) | rx) | D S*(x) t(x) p
k=12 4 Op(x) | 3 | @xX-1) x+1 1.5
k=24 4 Dux) | 3 | @x*—1) x+ 1 1.25
k=48 4 Dux) | 3 | @x*—1) x+ 1 1.12
k=96 | 4 Dog(x) | 3 | @x"—1) | x+1 1.06

Table 4: More special polynomial families when k = 12, 24, 48, 96

With this technique we could find any pairing-friendly elliptic curves with
arbitrary embedding degree k, e.g. finding curves with larger & than 96 is not a hard
task. But since the suitable values of x become sparse when £ is increased, finding
parameters of elliptic curves with the essential security level (7 is a /60 bits prime) [9]
is more difficult with large k. This is the reason we find the parameters of an elliptic
curve with r as a 416 bits prime integer when £ = 96. . In addition, it is still not aware
how large the embedding degree k£ should be for a pairing-friendly curve with best
performance. (To find curves with prime » close to /60 bits integer for larger values of
k, e.g. k = 96, we should use some other techniques. This question will be further
discussed in section 4.4.)

4.3 Special Polynomial Families with Different Forms of r(x)

Brezing and Weng [7] had successfully found pairing-friendly elliptic curves with
arbitrary embedding degree. But the limitation of their work was that »(x) was only
represented as the standard cyclotomic polynomial. It was because their method was

to derive kth root of unity and polynomial representations of (-D)"?

in the cyclotomic
field. They had not given any explanations to the circumstances when r(x) was taken
as an arbitrary irreducible polynomial. The work of Murphy and Fitzpatrick [4] was

also based on the standard representation of r(x) as @y(x).

Our method ignores the limitation imposed on the form of r(x) since we only need
to find 4’(x) and D with h’(x)r(x) — D = S°(x). For this equation, r(x) can be any
irreducible polynomials satisfying r(x) |Dx(¢(x) — 1). This point allows us to find much
more ellitpc curves for various representations of 7(x). In Table 5 we will tabulate



more special polynomial families with different »(x) when k = 12, 14. The trace #(x) is
taken with degree as small as possible to obtain desired values of p. In Appendix (¢)
we generate certain parameters of pairing-friendly elliptic curves by some polynomial
families in Table 5.

k r(x) t(x)

12 | 36x"+36x°+18x* + 6x + 1 6x>+ 1
12 | 4x*+4x° +2x° +2x + 1 2x3+ 1
12| 2197x* — 1352x° + 299x* — 28x + 1 13x— 1
12| 2197x* — 4056x° + 2795x* — 852x + 97 13x—5
14 | 16807x° — 16807x° + 7203x* — 1715x> + 245x* — 21x + 1 7x

14 | 20511149x° — 30413083x” + 18803919x* — 6205739x° + 1153069x> — | 29x — 6

114381x + 4733

Table 5: More special polynomial families with different »(x)

Table 5 just tabulates some new polynomial families of different »(x) when k = 12,
14. By our new method, more such families can be found for other values of k. These
new polynomial families can be implemented for finding much more pairing-friendly
elliptic curves.

4.4 More r with a small factor

In fact, when it is allowed that 7 contains a small factor s as » = sn (n is a prime larger
than 2’°), much more suitable elliptic curves are found. The same technique has been
used in [1]. When r = sn, n should be a large prime bigger than 2/’ and cofactor A
will be multiplied with the small factor s. Brezing et al. [7] and Murphy et al. [4] only
implemented 7 as a large prime in their methods. By our find it is easy to find that the
condition of prime r(x) can be loosed to » = sn without effecting the values of p much.
Thus more elliptic curves different with their work are found. The value of p will not
increase much if s is carefully chosen. In Appendix (d), we presented some examples
with this technique when £ = 96. By this technique, we effectively decrease the length
of r.

5. Conclusion

In this paper, we propose a new method to find more pairing-friendly elliptic curves
with arbitrary embedding degree k by certain special polynomial families. This
method allows us to obtain new families of pairing-friend elliptic curves by
representing »(x) with various forms. In addition, we propose a new technique to let
prime r contain a small factor s. Numerous parameters of new pairing-friendly elliptic
curves are found with the proposed method. These curves have higher security (k > 48)



and more efficiency (p < 1.2) compared to the previous work for paring-based
cryptosystems.
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Appendix

(a) Special Polynomial Families with Small Values of p

(1) k=15,p= 1.5
S(x) =4x""+4x’ +1=(2x’ + 1), D=3, h'(x) = 4x’ + 4x + 4, 1(x) = x" - x/ +x" - x*
+x3—x+1;t=x+1

x =962542

r=736812625806875488411619464155914329720828004251 (160 bits)

t=962543
q=210821116242423781273928707154678491170030343072612390007530063190082481
DV = 843284464969695125095714828618713964680121372290449560030119326271303075

x=963691

r=743878444107727695162122767267461445685217722161 (160 bits)

t=963692
q=213860944736631842553256727901553298223449065045182728561325970849274791
DV’ = 855443778946527370213026911606213192893796260180730914245302954694828300

2)k=28,p=13
S =x"=(xV,D=1Lhx)=x"+1,1x)=x"-x"+x*-x+x'-x*+1

x =9803

r=787604206770071823093201411395167729501255763497 (160 bits)

t=9804
q=1818006543181202958475850993256242972686798649470526225526834373
DV? =7272026172724811833903403973024971890747194597882104902011219076

x=11137

r=3640982842728443680116187727215542591828879918337 (162 bits)

t=11138
q=14000821814204596012836731558538128718548474370588182108224768897
DV? = 56003287256818384051346926234152514874193897482352728432775020544

(3)k=28,p=~15
S(x)* =4x"0+ 8x' — 8x'0 + 8x* — 8x° + 8x* - 4x* + I = (-2x* - 2x*+ 2x* — 1), D=7,
h'(x)=4x* +4x* + 8, r(x) =x? - x"+x* - x’+x* - x>+ 1; t=x+ 1

x=41707
r=27701763920994110467659972445730100441267452808766711657 (160 bits)
t=41708



q=
2082774586426592862621431740645932199371663902467509995499965232003037929837367
2379

DV’ =
8331098345706371450485726962583728797486655609870039981999860928012151719175513
2252

(b) Special Polynomial Families with Arbitrary Values of £

(1) k=24,p~125
Sxy*=4x*—4x*+1=(2x"- 1), D=3, h'(x) =4, r((x) =x" —x* + 1

x =962833

r=738597331833134695682651527040098006595721222721 (160 bits)
t=962834
q=228237767803155599843901956912501345675531789475531151146001
DV?=912951071212622399375607827650005382702127157901197555272448

x = 965365

r=754279653484785063609361644146986474789548990001 (160 bits)
t=965366
q=234311355599190690060865477933001341274428958628739903196197
DV’ = 937245422396762760243461911732005365097715834514027681270832

(2Q)k=48,p~1.125
Sx)P=4x"-4x*+1=(2x*- 1), D=3 h'x) =4, r(x) =x"—x*+ I; t=x+1

x =2470

r=1919337073641697218700435018344997774751611743900000001 (181 bits)
t=2471
q=3900067982257971406335440851621796993324203292652129302034457
DV’ = 15600271929031885625341763406487187973296813170608517202031987

x =5479

r=0659509122132996966757981555872075218495015674349333558784961 (199 bits)
t= 15480
q=6596956313127361783001807130560758413668060647820395503153853875187
DV = 26387825252509447132007228522243033654672242591281582012615385470348

(3)k=96,p~1.06
S(x)’ =4x" —4x'*+ 1= (2"~ 1), D=3, h(x) =4, 1(x) =x* - x"* + I t=x + 1

x = 8053
r=978692749574626480538230483695999678074871490897268541981732772686715308827



46626642467570423271029692259277387159136085590721 (416 bits)
t= 28054
q=211510849085390112587526446980689883706931943167877001092990725747474905933
6578748454299585997310640624280446883451996334997687068581
DV = 8460433963415604503501057879227595348277277726715080043719629029898996237
346314993817198343989242562497121787533807985339990683407408

(c) Special Polynomial Families with Different Forms of r(x)

(k=12
r(x) =2197x* — 1352x7 +299x* — 28x + 1, t(x) = 13x — 1

x = 137438953782

r=783915802287873738784769281395853185119086316917 (160 bits)

t= 1786706399165

q = 10844209581049657402029453962827548199750866489317427585866728276041510847
DV’ =
43376838324198629608117815851310192799003465957266518023710095943853346163 =
3 x 38024920917822051230350291383772163117

p=1.5

2) k=14
r(x) = 20511149x° — 30413083x> + 18803919x" — 6205739x> + 1153069x — 114381x
+4733, 1(x) = 29x - 6

X = 5936652

r = 897923694407722064866709188398349353035596592369 (160 bits)

t= 172162902

q=
3268117597208355647147327757975032364479131112678536579179167805224211886883682
901

DV’ =
1307247038883342258858931103190012945791652445071414631671667122086720748270967
0000 =

7 x 43214531928893387981478510718557618084100°

p=1.7

(d) More r with a small factor

(1) k=96

x =790
r=10434720951603582380562581218122202100877840495787457852353 (193 bits)



t=791

DV? =3 x 12106516682165495677419277453752459999999999999737°

q=
1099258096316635811122336014177943098887778245198159688444869289939580950444946
54530000000000208297

p=1.67

x=1075

r=

9602444773024990186558868308887683846050319720923974013729 (193 bits)

h=193 x 189697 x 5 548897 x 44511 743233 x 116 517189 305089

t=1076

DV? = 3 x 22774478984574661338473130929283797740936279296871422

q=
3890076697641246730562081232369331604964649595391041195746149947453587042305725
812911987304687500385567

p~1.75

x = 1462

r=
7998565106006563123727929799215532040801815430031249192586457180982904662797185
1073 (276 bits)

h =97 x 24464261226891361

t=1463

DV? =3 x 424342879248671780299130728442658508419523779578691097°

q=
1350501593767896295636611624949417029237878640082933592245628749468902953393294
79610347558831805883810832649

p=13

x = 1990
-
4995305491877891169028998357156355876186080752202802023341143310844554193252311
7458511731692993 (315 bits)

h =769 x 95237953

t=1991

DV =3 x 80203393950668375604161093376178805581259999999999999337

q=
4824438300904581439705987191429784714447307101960946270233407918237857756509183
337390177849436930000000001320697

p~1.17

(5)
x =2344



r=
3265344136080389756117061362948346136410185602877472164948887012210851476357245
6390768929387700504882561 (344 bits)

h=21121

t=2345

DV? =3 x 1297187476163217640262247450446080231619521501549215874291°

q=
1262021511236023750235671121066961149610353271316025640749876413335944371477169
742695240677028410003616420637439267

p=1.1



