
Zero-Knowledge Blind Identification For

Smart Cards Using Bilinear Pairings

Amitabh Saxena and Ben Soh
Dept. of Computer Science and Computer Engineering

La Trobe University
Bundoora, VIC, Australia 3086

Serguey Priymak
Applied Science Department

RMIT University
Melbourne, VIC, Australia 3000

September 28, 2005

Abstract

Identification protocols based on the Computational Diffie Hellman
Problem (CDHP) generally assume the intractability of the underlying
Decisional Diffie Hellman Problem (DDHP). Due to this, the security of
all such schemes in a pairing based scenario is doubtful. In this paper, we
propose a one-round zero-knowledge identification protocol using bilinear
pairings. Our proposed protocol has two contrasting features to tradi-
tional identification schemes: (1) The scheme requires the verifier to toss
his coins before the prover. (2) The coin tosses of the verifier are secret
while the coin tosses of the prover are not. As a consequence, we obtain a
blind identification scheme with complete zero knowledge. Traditionally
in an identification scheme, a passive adversary watching the communica-
tion gains information intended only for the verifier. For instance, from
watching the transcript in the Fiat-Shamir zero knowledge identification
scheme, an adversary also learns the outcome of the protocol (i.e. whether
the identification succeeds or not). The blinding property of our scheme
eliminates this disadvantage while still ensuring zero knowledge.

Finally, as a natural extension of our scheme, we present the concept of
‘all or none’ group identification protocol that can be used to authenticate
together an arbitrary number of users in a batch such that if the identifi-
cation fails, it is impossible for the users to know which one cheated. We
also prove the security of our scheme and give some interesting applica-
tions including anonymous seller credit card payments. The cryptographic
primitives can be efficiently encapsulated in smart cards designed for El-
liptic Curve Cryptography (ECC). The private key must be included in a
tamperproof device inside the smart card.

1

1 Introduction

The user of zero-knowledge proofs for identification has interesting implications.
For instance, a verifier cannot later impersonate the prover using the transcript
of the proof. Zero-knowledge identification does not solve all the problems since
it is still susceptible to a man-in-the middle attack, where a passive adversary
simply relays the messages between the prover and the verifier. In a typical
scenario, this adversary has the same information as the verifier. We present a
slightly stronger variation of zero-knowledge identification where a passive ad-
versary does not learn anything new from observing the transcript of the proto-
col. This paper has two motivations; firstly, to provide a secure ‘pairing’ variant
of identification schemes based on the discrete logarithm problem and secondly,
to provide an efficient smart card based zero-knowledge identification scheme
which does not leak any information to a passive adversary. In other words, the
scheme allows users to correctly identify a prover to a verifier such that (a) if
both the prover and verifier are honest, the protocol leaks only the same one bit
of information (that the prover’s statement is indeed true) in arbitrarily many
runs of the protocol and (b) the protocol leaks this one bit of information only to
the honest verifier. A passive adversary watching the entire communication still
gains no knowledge about the correctness of prover’s statement after arbitrarily
many runs. To do this, we require the verifier to toss secret coins while requiring
the prover to toss public coins. Additionally, we require that the verifier toss his
coins before the prover. We also give some extension of the scheme including
two-way authentication, key agreement, single-key signcryption (which allows
a user Alice, for example to send a signed and encrypted message to another
user Bob without involving Bob’s keys at all!), hidden signatures (which allow
Alice to send a message along with a hidden signature to Bob) and online credit
card/cheque payments.

The cryptographic primitives can be implemented efficiently in smart cards;
one-way identification requires only two elliptic curve point multiplications while
two-way identification requires three multiplications and two pairing computa-
tions for each user. Unlike most pairing based schemes which involve identity
based cryptography, our model is based on a standard certificate based in-
frastructure. Due to this we lose certain benefits offered only by identity based
mechanisms (like implicit key authentication). However, at the same time we
are unaffected by the key escrow problem inherent in all identity based systems.

2 Background

In this section, we will review some existing identification mechanisms. Assume
that Alice and Bob are two users and Alice wishes to identify herself to Bob.
We only consider one-way identification and ignore the case of Bob identifying
himself to Alice. First we give some notation. If A is a non-empty set, then
x ← A denotes that x has been uniformly chosen in A. A round of a protocol
involves the exchange of one message. A sequence of two synchronous (ordered)

2

message transmissions constitutes two separate rounds while any number of
asynchronous messages (i.e. messages that can be unordered) are part of the
same round. A single message passing is a one-round protocol.

2.1 Public Key Encryption

Alice has public encryption function Ea and a secret decryption function Da.

1. Alice begins by claiming to know Da.

2. Bob generates a random challenge message m and encrypts it using Ea to
get ciphertext c = Ea(m). Bob sends c to Alice over an insecure channel.

3. Alice computes m′ = Da(c) and sends back m′ to Bob over the same
insecure channel.

4. Bob accepts if m = m′.

This protocol is correct and sound but has an inherent disadvantage. It may be
a security requirement of Alice that only the sender of c (whether it is Bob or
not) may know her identity. An adversary watching the communication can also
check that Ea(m′) = c and consequently obtain information about the outcome
of the identification that only Bob was supposed to have. The Fiat-Shamir
identification protocol [1] also suffers from this drawback. Additionally in this
protocol, an adversary is able to obtain decryption of an arbitrary ciphertext
intended for Alice. A modified version of the protocol overcomes this problem
by using a hash function H : {0, 1}∗ 7→ {0, 1}∗. In step 3, instead of sending
m, Alice sends m′′ = H(m′) to Bob who accepts if m′′ = H(m). However,
this protocol still does not satisfy our strong notion of zero-knowledge because
Alice’s reply is deterministic. If an adversary replays the same message c to
Alice later on and receives the same m′′, he can be reasonably confident that he
is talking to Alice without knowing m. To avoid this attack, Alice must insert
some randomness into her reply each time.

2.2 Diffie-Hellman Based Approaches

Let Zp be a multiplicative group where computing discrete logarithms is hard.
Let g be a generator of Zp. Alice has a private key x ∈ Zp−1 and public key
y = gx ∈ Zp. Let H : Zp 7→ {0, 1}∗ be a cryptographic hash function.

1. Alice begins by claiming to know x, the discrete logarithm of y to base g.

2. Bob generates a random challenge message u ∈ Zp−1 and sends v = gu to
Alice over an insecure channel.

3. Alice generates a random r ← Zp and computes w1 = H(w+r). She sends
back the tuple 〈w1, r〉 back to Bob.

4. Bob accepts if w1 = H(yu + r).

3

This protocol is correct and sound and an adversary watching the communica-
tion cannot tell the outcome of the protocol without knowing u. Bob cannot
obtain vx for any chosen v of his choice even if Alice has no guarantee that Bob
did indeed generate v properly. The protocol is unconditionally secure if H is a
random oracle. Observe that Alice must toss coins to insert randomness r into
her reply to avoid the chosen text attack. The identification protocol presented
in this paper is based on a similar idea. Like this one, the protocol is two-round
and begins by the verifier tossing secret coins. The prover then tosses public
coins. Our scheme also satisfies the security requirement of Alice that a pas-
sive adversary does not learn the outcome of the protocol. Other Identification
schemes based on the discrete logarithm problem have been proposed earlier, for
example in [2, 3]. All these schemes, however, assume that the underlying DDH
problem is computationally hard. Due to this, some of their security properties
are lost when used in a pairing based scenario where the DDH is easy. The
purpose of this paper was to present an identification protocol for smart cards
using bilinear pairings satisfying this requirement.

3 Bilinear Pairings

Pairing based cryptography is based on the existence of efficiently computable
non-degenerate bilinear maps which can be abstractly described as follows: Let
G1 be a cyclic additive group of prime order q and G2 be a cyclic multiplicative
group of the same order. Assume that computing the discrete logarithm in both
G1 and G2 is hard. A bilinear pairing is a map e : G1 ×G1 7→ G2 that satisfies
the following properties [4, 5]:

1. Bilinearity : e(aP, bQ) = e(P,Q)ab ∀P,Q ∈ G1 and a, b ∈ Zq

2. Non-degeneracy : P 6= 0⇒ e(P, P) 6= 1

3. Computability : e is efficiently computable

The above properties also imply:

e(P + Q,R) = e(P,R) · e(Q,R) ∀P,Q,R ∈ G1.

e(P,Q + R) = e(P,Q) · e(P,R) ∀P,Q,R ∈ G1

Typically, the map e will be derived from either the Weil or Tate pairing on
an elliptic curve over a finite field. Despite the complex mathematics involved
in constructing such maps, cryptographic protocols based on pairings can be
described entirely without ever referring to the actual implementation. We refer
the reader to [4, 5, 6] for more details. Pairings and other parameters should
be selected in proactive for efficiency and security. For appropriately selected
parameters, the following problems are computationally intractable [7]:

(a) Discrete Logarithm Problem (DLP): Given P, aP ∈ G1, compute a ∈ Zq

(b) Diffie Hellman Problem (DHP): Given P, aP, bP ∈ G1, compute abP ∈ G1

4

(d) Decisional Linear Diffie-Hellman Problem (DLDHP): Let x, y ← Zq. For
any given P,Q,R, xP, yQ, S ∈ G1, decide if S = (x + y)R. The security
of our protocol is based on a variant of the DLDHP.

While the following problem is always easy:

(e) Decisional Diffie Hellman Problem (DDHP): Given P, aP, bP,Q ∈ G1,
decide if Q = abP

4 Setup PKI

In the rest of the discussion, we will using a PKI which will be setup as follows:
A central authority is responsible for generating the security parameters. A
trusted CA is responsible for certifying the public keys. To participate in the
protocol each user must have a certified public key (the process of certification
is outside the scope of our protocol). The setup proceeds as follows:

1. Let e : G1 × G1 7→ G2 be a bilinear mapping and P ∈ G1 be a generator
of G1. Also define a cryptographic hash function H : G1 7→ G1. The pa-
rameters 〈e, q, G1, P,H〉 are generated by the trusted authority and made
public in an authentic way.

2. Each participant IDi generates xi ← Zq as the private key. The corre-
sponding public key is Yi = xiP ∈ G1. Each user also obtains a certificate
from the CA linking the identity IDi and the public key Yi. In other
words, the CA fixes the pairs 〈Yi, IDi〉.

5 Blind Identification

Assume that user ID having secret key x ∈ Zq and public key Y = xP ∈ G1

wants to prove to server S, the knowledge of x. Additionally, ID wants to ensure
that no one except the verifier S gets convinced of this fact from watching the
communication (in other words, the proof needs to be verifier dependent and a
dishonest verifier does not get convinced about the statement). We will assume
the infrastructure of section 4. The identification is done as follows:

1. ID starts by claiming to know x ∈ Zq, the discrete logarithm of Y ∈ G1

to base P .

2. The verifier S generates r ← Zq and computes a challenge R = rY . It
makes R public. Typically the challenge should have a very short lifetime.

3. ID generates Q← G1 and computes Z = H(1
xR) + xQ. It sends Z,Q as

its proof to S.

4. S accepts if e(Z −H(rP), P) = e(Q,Y).

5

6 Security Proof (Sketch)

We claim that this test will pass with a high probability if and only if ID
knows x and S knows r. If the former is false, the verification fails with a high
probability while if the latter is false, no knowledge about x is given out in the
process and the outcome of the proof is undecidable.

1. Correctness: The properties of bilinear maps ensure that the verification
is always successful if no one cheats.

2. Soundness: We will analyze the soundness assuming that one of the parties
is dishonest. The trivial case when both parties are dishonest is ignored.
The soundness property holds because:

(a) Dishonest Prover: Given P, xP, rxP , Computing a pair Z ′, Q′ such
that Z ′ = H(rP) +xQ′ is infeasible without knowledge of r or x due
to the hardness of the DHP in G1 as shown in theorem 4.4 of [8] (cf.
aggregate extraction). Additionally, an honest verifier keeps r secret.
Thus, the proof is sound from a verifier’s view.

(b) Dishonest Verifier: A dishonest verifier will generate R non-randomly.
In other words, a dishonest verifier will not know r. We note that
given P, xP, rxP, Q,Z, deciding if Z = H(rP)+xQ is infeasible with-
out knowledge of r or x if H is a random oracle and the DHP in G1

is hard.

3. Honest Verifier Zero-Knowledge: S can simulate the proof without inter-
action by generating an accepting transcript {Z ′, r,Q′, R, Y, P} as follows:
Generate r, α← Zq. Compute R = rY , Q′ = αP , Z ′ = H(rP)+αY . It is
easy to see that the simulated and real distributions are indistinguishable.
Also observe that an unlimited number of accepting transcripts can be
generated using the same coin tosses r.

4. Computational Zero-Knowledge: It is easy to see that the notion of dis-
honest verifier in our context is irrelevant since the notion of an ‘accepting’
proof is meaningless if the outcome is undecidable. Thus, in simulating
a dishonest verifier we could very well generate a random message and
’tell’ the verifier that this is an accepting transcript. We give a slightly
different and intuitive definition of computational zero-knowledge (with-
out using a black-box). Suppose that a dishonest verifier could gain some
trivial information about x from interaction with an honest prover. The
protocol is computationally zero-knowledge if this distribution (learned
from interaction with the honest prover) is indistinguishable from the dis-
tribution generated from an honest-verifier simulation. In other words,
the dishonest verifier could very well have simulated the interaction. It
is easy to see that if the coin tosses of the prover are truly random, the
values (Z,Q) sent in step 2 of each round of the proof (irrespective of the
verifier) are uniformly distributed. Another way of saying this is that the

6

information gained by a dishonest verifier is less than or equal to that
gained by an honest verifier. We observe that our system is equivalent to
a non-interactive zero knowledge proof since the zero-knowledge property
is independent of the coin tosses of the verifier.

7 Blind Group Identification

This scheme enables a group of users to identify themselves to a server such
that: (a) The identification test passes if none of the users cheat, (b) if any
users cheat, the test will fail with a high probability, (c) it is not possible for the
server or the users to know which person cheated. An important application for
this type of scheme is in the following type of group systems: Assume that two
users Alice and Bob want to identity themselves jointly to a server (for example,
because they don’t trust each other to individually login to the server without
the other’s approval). Alice wants to ensure that the identification succeeds if
and only if the other user is really Bob. Bob has a similar requirement.

Assume that {ID1, ID2, . . . IDn} are the set of users who want to jointly
identify themselves. It is necessary that each user IDi must have a certified
public key Yi as described earlier. The goal of the protocol is that all users will
simultaneously identify themselves to a server S.

In other words, each user IDi will prove possession of the discrete logarithm
xi of Yi (to base P) such that S cannot be convinced about any of the individual
statements separately. That is, the proof is valid only on all the statements
together: “IDi knows xi” ∀i : 1 ≤ i ≤ n but not on any of the individual
statements like “ID1 knows x1” or “ID2 knows x2” independently of the others.
Such a proof is called an additive zero knowledge proof [9]. We will assume the
infrastructure of section 4. The identification is done as follows:

1. The n provers ID1, ID2 . . . IDn start by claiming to S that they know
the discrete logarithms x1, x2, . . . xn ∈ Zq of Y1, Y2, . . . Yn ∈ G1 (to base
P) respectively.

2. The verifier S generates r1, r2, . . . rn ← Zq and computes Ri = riYi. It
makes the list of challenges Ri, IDi public. The challenge values have a
short lifetime (up to a few minutes).

3. Each IDi generates Qi ← G1 and computes Zi = H(1
xi

Ri) + xiQi

4. All users then collaborate to jointly compute the value Z =
∑j=n

j=1 Zj . This
computation is hidden from S so that individual values Zj are effectively
hidden the it’s view. The combined proof {Z,Q1, Q2 . . . Qn} is sent to S.

5. S accepts if e(Z −
∑j=n

j=1 H(rjP), P) =
∏j=n

j=1 e(Qj , Yj).

7

8 Security Proof (Sketch)

We claim that this test will pass if and only if each IDi knows xi. To summarize
the goals of the protocol, the individual users can jointly authenticate themselves
to the server such that:

(a) If all users are honest, the server always accepts.

(b) If any of the users are dishonest, the server rejects with a high probability.

(c) The protocol is zero knowledge. It is not possible for anyone (including
the server) to know which user cheated.

(d) Collusions are possible between users but not with the server (the server
is trusted).

The protocol is secure based on the following observations:

1. Correctness: The properties of bilinear maps ensure that the verification
is always successful if none of IDi cheat.

2. Soundness: We discuss the soundness using a similar reasoning as above.
The soundness property holds because:

(a) Dishonest Prover: Computing individual proofs Zi, Qi without knowl-
edge of xi is infeasible due to similar reasoning as above for single
user blind identification. Consequently the verifier will reject.

(b) Dishonest Verifier: A dishonest verifier does not gain any information
about the correctness of the statements after interaction with the
provers. The above reasoning for single user identification can be
extended here.

3. Zero Knowledge: For simplicity, we will ignore the dishonest verifier case
where the coin tosses of S are non-randomly generated since the reasoning
of the single user scenario above suffices. We will prove the zero-knowledge
property of the protocol from the following perspectives:

(a) Honest Verifier Zero Knowledge: S can generate a valid accepting
transcript on its own corresponding to {r1, R1, Q1} ∀i : 1 ≤ i ≤ n as
follows: S generates αi ← Zq ∀i and computes Qi = αiP , Ri = riYi.
Then Z =

∑j=n
j=1 H(riP) + αiYi.

(b) Honest Prover Secrecy: Assume that all the provers are honest and
thus, S accepts. In this case computing individual proofs Zi just
from Z,Q1, Q2 . . . Qn such that Zi = H(riP) + xiQi ∀i is infeasible
without knowledge of each xi due to the hardness of the DHP in G1

as shown in theorem 4.4 of [8] (cf. aggregate extraction).

8

(c) Dishonest Prover Secrecy: Assume that some of the provers are dis-
honest. In this case, deciding if any given Zi = H(1

xi
Ri) + xiQi

is infeasible without knowledge of xi or ri due to the Linear Diffie
Hellman Assumption [7]. That is, given P, xiP, rixiP,Q,Zi ∈ G1,
deciding if Zi = (riP) + xiQ is infeasible without knowing at least
one of {xi, ri}. Therefore if S rejects, none of the provers know which
pairs of (Zi, Qi) correspond to invalid proofs (if the individual coin
tosses ri of S are kept secret and S is honest, no information is leaked
to the provers). Similarly if the individual values Zi are kept secret
(from S), the identity of the dishonest provers is still concealed from
S.
Finally, if the joint computation of Z is carried out in a way that any
one individual prover or a small coalition of provers can know Zi’s
for only a small fraction of users, the identities of dishonest provers
can still be effectively hidden, even if S can be coerced to reveal all
the coin tosses ri.

9 Other Extensions

In this section we will provide several extensions of our scheme. We refer to
the definitions of sections 4 and 5. The private keys xi can either be generated
by users or a trusted authority. The public key are assumed to be certified
in the former case. Note that the identification is a two-round protocol, with
the verifier sending the challenge R in the first step and the prover sending
the response Z,Q in the second step. The private key for each smart card is
encapsulated in a tamperproof chip. Signing access to this key is given via a
secure Key Encapsulation Mechanism (KEM). The corresponding public key
is also present along with a certificate. Smart cards may be purchased from
a (reputed) third party and must be registered with the relevant organization
(like a bank) before they can be used. To register a smart card, a bank simply
provides a certificate.

9.1 Authenticated Encryption (Signcryption)

Assume that user ID is identifying itself to the server S using the blind identifi-
cation scheme of section 5. ID can encrypt a random message M ∈ G1 intended
for S using the challenge R as follows: Let M = xQ. Using this relation, ID
computes Q = 1

xM and Z = H(1
xR) + xQ as before. The authenticated ci-

phertext is (Z,Q). An honest verifier S can compute the message M as follows:
First it checks that the identification condition is true (i.e. it checks that (Z,Q)
is indeed an accepting configuration). Then it computes M = Z − H(rP).
Authentication is provided due to the zero-knowledge property; the verifier is
assured that the sender is indeed ID. It may appear that non-repudiation as
such is not provided because S cannot later prove in a court that the message

9

was sent by ID since S could very well have generated an accepting transcript
without interaction with the prover by simulating the entire protocol.

However, note that in most cases when the transcript is simulated, the result-
ing message M will be meaningless. If S presents the tuple 〈M,Q〉 in a court, a
judge can verify that that e(M,P) = e(Q,Y). If the message is meaningful and
the equality is valid, the judge is convinced that Q was indeed computed by ID
and not by S. Hence Q also serves as a signature on M . The signature and en-
cryption scheme is secure against Chosen Plaintext Attacks (IND-CPA) under
the Diffie-Hellman assumption in G1 [4]. However, it is insecure against Chosen
Ciphertext Attacks (IND-CCA) because (a) existential forgery of signatures is
always possible and (b) given two ciphertext {(Z,Q), (Z ′, Q′)} and one of the
plaintexts {xQ, xQ′}, it is always possible to associate it with its corresponding
ciphertext.

Despite having the disadvantage of being IND-CCA insecure, our scheme
offers an interesting feature; if in addition to 〈M,Q〉, the verifier S also produces
〈Z, r〉 in the court and Z has been signed by ID (using some scheme, which are
irrelevant to us), then S can also claim that the message was directly received
from ID. To validate this, the judge checks if e(Z − H(rP), P) = e(Q,Y).
This tells the judge that the message was signed by ID and also intended for
the holder of r (which turns out to be S in this case) since even ID does not
have the ability to compute r. Observe that this encryption/non-repudiation is
provided from using only ID’s certified public key(s) in contrast to most other
schemes that require a certified key for each party. This feature is a new type
of non-repudiation (or commitment) that can be used in electronic payment
systems as described later.

9.2 Signatures

To construct an IND-CCA secure signature scheme from the protocol of sec-
tion 5, we simply remove the verifier from the protocol and set its challenge
R = 0 ∈ G1. The prover’s response is extracted from the message using a hash
function. That is, Q = H1(M) where M is a message and H1 : {0, 1}∗ 7→ G1

is a cryptographic hash function. The signature of user ID is S = xQ. This is
exactly the short signature scheme of Boneh et al. [4]. To verify that (M,S) is
a valid message-signature pair, check that e(S, P) = e(H1(M), Y).

9.3 Hidden Signatures

In the scenario where user ID identifies to the server S (section 5), ID can
also send plaintext messages along with hidden signatures such that only S can
extract the signature. Of course, once extracted, the signatures provide the
same non-repudiation as ordinary signatures. Like the previous scheme, the
message to be signed is M and Q = h(M). However, in this case, the verifier
is not ignored. The hidden signature of ID on M is Z = H(1

xR) + xQ. On
receiving Z, an honest verifier can extract the original signature S = Z−H(rP).
The verification condition is e(S, P) = e(h(M), Y) like before.

10

9.4 Authenticated Key Agreement

Using the protocol of section 5, authenticated key agreement between any two
parties is possible. User IDa having public key xaP and private key xa wants to
establish a shared key with user IDb having public key xbP and private key xb.
The protocol is essentially an extension of the two-round identification protocol.
We provide two variants, the first for illustrative purposes.

9.4.1 Three-Round Key Agreement

This protocol requires three rounds (or three message exchanges) and is based
on the traditional model for two-way authentication. In addition to two-way
authentication, this protocol can also be used for key agreement.

1. IDa generates ra ← Zq and computes Ra = raYb = raxbP . IDa initiates
the protocol by sending Ra to IDb

2. IDb generates Q← G1 and rb ← Zq. IDb computes Zb = H(1
xb

Ra)+xbQ

and Rb = rbYa = rbxaP . It sends 〈Zb, Q,Rb〉 to IDa.

3. IDa accepts IDb’s authentication if e(Zb − H(rP), P) = e(Q,Yb). If so,
it also computes Za = ra

xa
Rb = rarbP and sends Za to IDb.

4. IDb accepts IDa’s authentication if e(rbRa, P) = e(Za, Yb). That is, IDb

checks that 〈Za, Yb, rbRa〉 is indeed a valid DDH tuple. After this step,
both parties are authenticated to each other. The shared key can be either
of {raP, rbP, xbQ}.

In the first three steps, IDb identifies itself to IDa. In the fourth step, IDa

identifies itself to IDb by proving the knowledge of ra, the discrete logarithm of
Ra to base Yb that was sent in step 1 (since a correct value Za simultaneously
proves knowledge of xa and ra). We note that the protocol is still zero-knowledge
because a passive adversary is unable to decide if the authentication was suc-
cessful after watching the communication. We note that it is possible to combine
the first and last steps together as demonstrated in the next variant.

9.4.2 Two-Round Key Agreement

Using the protocol of section 5, a two-round authenticated key agreement is
also possible. As before, user IDa having public key xaP and private key xa

wants to establish a shared key with user IDb having public key xbP and private
key xb. The protocol is essentially a proof of ‘knowledge of knowledge’ and is
unconditionally secure under the following scenario: IDb proves knowledge of
IDa’s knowledge. That is, IDa initiates by saying “I know xa and r” and IDb

replies by saying “I know xb if you know xa and r”.

1. IDa generates r ← Zq. It computes R = rYb and Za = H(rP) + xaH(R)
and initiates the protocol by sending (R,Za) to IDb

11

2. On receiving (R,Za), IDb computes S = H(1
xb

R) and Qa = H(R). It
checks that e(Za − S, P) = e(Qa, Ya) and if this test passes IDb accepts
IDa’s authentication. If IDb decides to continue with the process it gen-
erates Qb ← G1, computes Zb = S + xbQb and sends (Zb, Qb) to IDa as
its response. It also keeps 1

xb
R as the shared key.

3. IDa accepts IDb’s authentication if e(Zb −H(rP), P) = e(Qb, Yb). If so,
it keeps rP as the shared key.

We claim that in the second step, IDb will accept if and only if IDa knows
ra and xa. To see this, first note that (Za, Qa) is a zero knowledge identification
proof of IDa. Due to this, there is no guarantee that the proof was generated by
IDa (since it could also have been efficiently simulated according to section 5).
However, observe that if this protocol is simulated, the resulting Qa will almost
certainly be random. A simulator cannot choose a predetermined value of Qa

since there appears to be no way to output an accepting configuration for a
specific Qa without knowledge of xa. The use of the hash function additionally
ensures that the simulator did not have control even over the random coin tosses
r. Hence, for this particular instance, we can safely assume that the simulation
must have been carried out by IDa. The second and third steps of the protocol
involve the identification of IDb to IDa using the protocol of section 5 keeping
r as the random coin tosses of verifier IDa. We feel that this brief analysis is
sufficient to understand the security of the protocol.

9.5 Online Credit Card Payments

In this section, we will present a simple online payment system with some inter-
esting security features. The protocol requires only one certified key. The seller
of a product need not provide a certified key to the buyer, effectively remain-
ing anonymous. The seller must produce some identification to the credit card
processor or the bank to ensure that the payment is successful. If the buyer
notices a disputed transaction on his credit cart statement, he can ask the bank
to reveal the identity of the party who received the money. If the transaction is
not disputed, the seller can remain completely anonymous. Moreover, we pro-
vide the additional advantage of ‘single-use’ transactions, that is after having
successfully processed a payment, the seller cannot later reuse the same infor-
mation to process another identical payment. We will assume the identification
scheme of section 5 where the buyer is ID and the seller is S. The protocol
also involves a third party B which could be a bank or a credit card processor.
The certified public key of ID is Y = xP . This key could itself serve as a credit
card number. We also use a cryptographic hash function H1 : {0, 1}∗ 7→ G1.

1. The buyer ID begins by visiting the website of S and initiating a purchase
transaction. The details of the transaction are encapsulated in a request
REQ. The tuple 〈ID,REQ, Y 〉 is sent to S

12

2. S generates random r ← Zq and computes R = rY = rxP . It also creates
a contract CON containing the payment amount, transaction date, time
and other details (though it will possibly not mention the identity of the
seller or the commodity for sale to protect privacy). It sends 〈CON , R〉
to ID. It is understood that transactions are accepted as valid by the
bank only for a short specified deadline (say five minutes) from the time
mentioned in the contract.

3. ID checks that the contract is correct and computes Q = H1(CON). To
initiate the payment, ID computes Z1 = H(1

xR) + xQ and Z2 = xH(Z1).
It sends 〈Z1, Z2〉 back to S and saves 〈CON , R〉 in its database until it
receives its next credit card statement from the bank.

4. S computes Q = H1(CON) and verifies that e(Z1 −H(rP), P) = e(Q,Y)
and e(Z2, P) = e(H(Z1), Y). If both checks pass, S forwards the tuple
〈Z1, Z2, r, Y, ID,S, CON〉 as a payment request to the bank B.

5. On receiving a payment request, B does the same verification as S; that is,
it computes Q = H1(CON) and verifies e(Z1 −H(rP), P) = e(Q,Y) and
e(Z2, P) = e(H(Z1), Y). It also ensures that the 〈r, ID〉 pair has not been
previously used by checking its database. Finally, the bank checks the date
and time specified in CON and ensures that it is within the specified expiry
period (five minutes) of the current time. If all checks pass, B accepts this
transaction, deducts the amount specified in Q from ID’s account, credits
that amounts to S’s account, saves the tuple 〈Z1, Z2, ID,S, CON , r〉 in
its database and returns success to S.

6. The bank’s reply is forwarded to the buyer along with a receipt of a
successful transaction.

7. If the bank receives another transaction with the same 〈r, ID〉 pair in
the future, it outputs failure. For security reasons, it also saves the
corresponding 〈S,S ′, r, ID〉 in a blacklist where S ′ is the identity of the
other seller corresponding to the same pair. This blacklist can be used for
further investigation if necessary.

8. Sometime in the future, the bank sends CON in a credit card statement
to ID. If some transaction is disputed, ID reports the corresponding
〈CON , R〉 back to the bank, along with some evidence (eg. a transaction
receipt with a failure response). The bank can easily trace the disputed
seller S using its database after validating that R = rY .

9.6 Identity Based Cryptography

Using the primitives for identification of section 5, any smart card user S can
setup an identity based encryption scheme with a group of smart cards dynam-
ically. The interesting feature of our scheme is that the private keys can be
distributed over an insecure channel. The infrastructure is roughly as follows:

13

messages for a user ID can be encrypted using the public key ID. The private
key for decryption is given out by S over an insecure public channel but masked
using the signcryption procedure of 9.1. Only the real user is able to extract
the secret key. Before this is done, however, user ID must first produce some
personal authenticating information (like a passport photocopy) that can truly
establish the identity and is a one-time requirement. This request for a private
key can be sent over an unencrypted channel as long as it can be authenticated;
that is, it must be ensured that the person requesting the key for ID is indeed
ID. For our purpose, we assume that a signature is used. The private key of
the user S who acts as the KGC for this setup is x ∈ Zq and the corresponding
public key is Y = xP ∈ G1. Let H1 : {0, 1}∗ 7→ G1 be a cryptographic hash
function. The public key of IDi is implicitly understood to be Qi = H1(IDi)

1. All users must have a prior certified public key to authenticate its requests
to S. Each user IDi generates ri ← Zq and computes Ri = riY = rixP .
IDi then signs Ri using its certified private key and sends Ri to S over
an insecure channel.

2. The KGC S verifies the signatures and thus authenticates the request of
users. For each valid request Ri of IDi, the KGC computes Qi = H1(IDi)
and Zi = H(1

xRi)+xQi. It makes each Zi public via an insecure channel.

3. If IDi knows corresponding ri, he/she can compute the private key xQi

after authenticating it using the method described in section 9.1. The
encryption/decryption can be done exactly as described in [5] after this
step. The zero-knowledge property ensures that only the right user can
compute the private key from Zi.

We briefly describe the encryption scheme here (details can be obtained
from [5]). Let H2 : G2 7→ {0, 1}k be a cryptographic hash function. A random
k bit message M for IDi is encrypted as follows: generate α ← Zq, compute
Qi = H1(IDi), C1 = M⊕H2(e(αQi, Y)) and C2 = αP . The ciphertext (C1, C2)
is sent to IDi who decrypts M = C1 ⊕H2(e(C2, xQi)).

10 Summary

In this paper, we proposed the notion of zero knowledge blind identification.
Informally, in such a protocol, an honest prover reveals only one (intended)
bit of information to an honest verifier and reveals less than that information
to a dishonest verifier. In effect, using our scheme, any user can correctly
identify to a random server and a passive adversary cannot learn anything about
the outcome of the identification. Hence we coin the term blind identification.
This is an additional feature provided by our scheme in contrast to previously
proposed schemes. In an intuitive sense, ours is a model of a non-interactive zero
knowledge proof since the security of the protocol is independent of the honesty
of the verifier. The constructions presented in this paper arise from the work
on identity based encryption [5], group signatures [7], aggregate signatures [8],

14

chained signatures [10, 11] and additive zero knowledge proofs [9]. The security
of our protocol relies on the hardness of deciding if Z = H(1

xR) + xQ for given
P , xP , Q, Z and a chosen R. We feel that this problem should be further
studied. The use of the hash function H in the above expression can be avoided
if it can be guaranteed that generating elements from G1 with a small chosen
order is not possible.

In section 9, we show how these simple identification primitives can be used
for constructing complex mechanisms like key agreement, digital signatures, en-
cryption and signcryption. As a simple application of our smart card scheme,
we propose a model for online credit card and cheque transactions. The protocol
can be used in conjunction with the Secure Electronic Transaction (SET) spec-
ification or in a completely different infrastructure. As some other applications,
we mention subliminal identification, designated verifier proofs and multiuser
authentication. For optimal security, the primitives for signing are best im-
plemented in a tamperproof chip supporting elliptic curve point addition and
doubling operations. As observed, all the verification primitives require one or
two pairing computations and deal with public keys only. Consequently, they
are not restricted to a secure tamperproof device and can be implemented on
faster processors. We refer the reader to [4] for details on constructing the hash
functions used in this paper.

References

[1] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions
to identification and signature problems. In Proceedings on Advances in
cryptology—CRYPTO ’86, pages 186–194, London, UK, 1987. Springer-
Verlag.

[2] Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, CRYPTO, volume 435 of Lecture Notes in Com-
puter Science, pages 239–252. Springer, 1989.

[3] Constantin Popescu. An identification scheme based on the elliptic curve
discrete logarithm problem. 2(2):624, 2000.

[4] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing. In ASIACRYPT ’01: Proceedings of the 7th International
Conference on the Theory and Application of Cryptology and Information
Security, pages 514–532, London, UK, 2001. Springer-Verlag.

[5] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the
weil pairing. In CRYPTO ’01: Proceedings of the 21st Annual Interna-
tional Cryptology Conference on Advances in Cryptology, pages 213–229.
Springer-Verlag, 2001.

[6] Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott. Ef-
ficient algorithms for pairing-based cryptosystems. In CRYPTO ’02: Pro-

15

ceedings of the 22nd Annual International Cryptology Conference on Ad-
vances in Cryptology, pages 354–368, London, UK, 2002. Springer-Verlag.

[7] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures.
In Advances in Cryptology—CRYPTO 2004, volume 3152 of Lecture Notes
in Computer Science, pages 41–55. Berlin: Springer-Verlag, 2004.

[8] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and
verifiably encrypted signatures from bilinear maps. In Eli Biham, editor,
EUROCRYPT, volume 2656 of Lecture Notes in Computer Science, pages
416–432. Springer, 2003.

[9] Amitabh Saxena and Ben Soh. Authenticating mobile agent platforms
using signature chaining without trusted third parties. In Proceedings of
The 2005 IEEE International Conference on e-Technology, e-Commerce
and e-Service (EEE-05), pages 282–285, Hong kong, 2005. IEEE computer
press.

[10] Amitabh Saxena and Ben Soh. One-way signature chaining: A new para-
digm for group cryptosystems and e-commerce. Cryptology ePrint Archive,
Report 2005/335, 2005.

[11] Amitabh Saxena and Ben Soh. A mobile agent authentication protocol
using signature chaining with bilinear pairings. Cryptology ePrint Archive,
Report 2005/272, 2005.

16

