
Zero-Knowledge Blind Identification For Smart Cards Using

Bilinear Pairings

Amitabh Saxena and Ben Soh
Computer Science and Computer Engineering

La Trobe University
Bundoora, VIC, Australia 3086

Serguey Priymak
Applied Science Department

RMIT University
Melbourne, VIC, Australia 3000

October 3, 2005

Abstract

Traditionally in an identification scheme, a passive adversary watching the communication gains
information intended only for the verifier. For instance, from watching the transcript in the Fiat-
Shamir zero knowledge identification scheme, an adversary also learns the outcome of the protocol
(i.e. whether the identification succeeds or not). We introduce the concept of blind identification
that eliminate this disadvantage while still ensuring zero knowledge. Informally in such a scheme,
only the verifier and the prover know the outcome of an identification protocol while a passive
adversary watching the entire communication does not gain any useful information. To achieve this,
our proposed protocol differs from traditional identification schemes in two contrasting features: (1)
The scheme requires the verifier to toss his coins before the prover. (2) The coin tosses of the verifier
are secret while the coin tosses of the prover are not. As a natural extension of the single user
identification, we present the concept of ‘all or none’ group identification protocol that can be used
to authenticate together an arbitrary number of users in a batch such that if the identification fails,
it is impossible for the users to know who cheated. Finally, we present some interesting applications
including hidden signatures, anonymous seller credit card transactions, two-round authenticated key
agreement, authenticated and deniable encryption and identity based cryptography.

Our protocol is secure assuming the hardness of a problem closely related to the Diffie-Hellman
Problem in bilinear groups. The cryptographic primitives can be efficiently encapsulated in smart
cards designed for Elliptic Curve Cryptography (ECC). The private key must be included in a tam-
perproof device inside the smart card.

1 Introduction

The user of zero-knowledge proofs for identification has interesting implications. For instance, a verifier
cannot later impersonate the prover using the transcript of the proof. Zero-knowledge identification does
not solve all the problems since it is still susceptible to a man-in-the-middle attack, where a passive
adversary simply relays the messages between the prover and the verifier. In a typical scenario, this
adversary has the same information as the verifier. We present a slightly stronger variation of zero-
knowledge identification where a passive adversary does not learn anything new from observing the
transcript of the protocol. This paper has two motivations; firstly, to provide a secure ‘pairing’ variant
of identification schemes based on the discrete logarithm problem and secondly, to provide an efficient
smart card based zero-knowledge identification scheme which does not leak any information to a passive
adversary. In other words, the scheme allows users to correctly identify a prover to a verifier such that
(a) if both the prover and verifier are honest, the protocol leaks only the same one bit of information
(that the prover’s statement is indeed true) in arbitrarily many runs of the protocol and (b) the protocol
leaks this one bit of information only to the honest verifier. A passive adversary watching the entire
communication still gains no knowledge about the correctness of prover’s statement after arbitrarily

1

many runs. To do this, we require the verifier to toss secret coins while requiring the prover to toss
public coins. Additionally, we require that the verifier toss his coins before the prover. We also give
some extensions of the scheme including two-way authentication, key agreement, single-key signcryption
(which allows a user Alice, for example to send a signed and encrypted message to another user Bob
without involving Bob’s keys at all!), hidden signatures (which allow Alice to send a message along with
a hidden signature to Bob) and online credit card/cheque payments.

The cryptographic primitives can be implemented efficiently in smart cards; one-way identification
requires only two elliptic curve point multiplications while two-way identification requires three multipli-
cations and two pairing computations for each user. Unlike most pairing based schemes which involve
identity based cryptography, our model is based on a standard certificate based infrastructure. Due to
this we lose certain benefits offered only by identity based mechanisms (like implicit key authentication).
However, at the same time we are unaffected by the key escrow problem inherent in all identity based
systems.

2 Background

In this section, we present a simple identification scheme using a public key cryptosystem. Assume that
Alice and Bob are two users and Alice wishes to identify herself to Bob. We only consider one-way
identification and ignore the case of Bob identifying himself to Alice.

First we give some notation. If A is a non-empty set, then x← A denotes that x has been uniformly
chosen in A. A round of a protocol involves the exchange of one message. A sequence of two synchronous
(ordered) message transmissions constitutes two separate rounds while any number of asynchronous
messages (i.e. messages that can be unordered) are part of the same round. A single message passing is
a one-round protocol.

2.1 Basic Two-Round Identification

Alice has public encryption function Ea and a secret decryption function Da.

1. Alice begins by claiming to know Da.

2. Bob generates a random challenge message m and encrypts it using Ea to get ciphertext c = Ea(m).
Bob sends c to Alice over an insecure channel.

3. Alice computes m′ = Da(c) and sends back m′ to Bob over the same insecure channel.

4. Bob accepts if m = m′.

This protocol is correct and sound but has an inherent disadvantage. It may be a security requirement
of Alice that only the sender of c (whether it is Bob or not) may know her identity. An adversary
watching the communication can also check that Ea(m′) = c and consequently obtain information about
the outcome of the identification that only Bob was supposed to have. The Fiat-Shamir identification
protocol [1] also suffers from this drawback. Additionally in this protocol, an adversary is able to obtain
decryption of an arbitrary ciphertext intended for Alice. A modified version of the protocol overcomes
this problem by using a hash function H : {0, 1}∗ 7→ {0, 1}∗. In step 3, instead of sending m, Alice sends
m′′ = H(m′) to Bob who accepts if m′′ = H(m). However, this protocol still does not satisfy our strong
notion of zero-knowledge because Alice’s reply is deterministic. If an adversary replays the same message
c to Alice later on and receives the same m′′, he can be reasonably confident that he is talking to Alice
without knowing m. To avoid this attack, Alice must insert some randomness into her reply each time.
In the second protocol described below, we incorporate this.

2

2.2 Modified Two-Round Identification

Alice has public encryption function Ea and a secret decryption function Da. Let H : {0, 1}∗ 7→ {0, 1}∗
be a cryptographic hash function.

1. Alice begins by claiming to know Da.

2. Bob generates a random challenge message m and encrypts it using Ea to get ciphertext c = Ea(m).
Bob sends c to Alice over an insecure channel.

3. Alice generates a random r ← {0, 1}∗ and computes s = H(Da(c)‖r). She sends back the tuple
〈r, s〉 to Bob over the same insecure channel.

4. Bob accepts if s = H(m‖r).

The protocol is unconditionally secure if H is a random oracle. Observe that Alice must toss coins
to insert randomness r into her reply to avoid the known ciphertext attack. The identification protocol
presented in this paper is based on a similar idea. However, instead of the difficulty of inverting the
public encryption function, we rely on the difficulty of computing discrete logarithms in certain groups.
Like the above protocol, our scheme is two-round and begins by the verifier tossing secret coins while the
prover then tosses public coins.

Identification schemes based on the discrete logarithm problem have been proposed earlier, for example
in [2, 3]. All these schemes, however, assume that the underlying DDH problem is computationally hard.
Due to this, some of their security properties are lost when used in a pairing based scenario where the
DDH is easy. Moreover, in most of the schemes, a passive adversary knows everything that the provers
and verifiers know. It may be a security requirement of Alice and Bob that a passive adversary must not
learn the outcome of the identification. The purpose of this paper is to present an identification protocol
for smart cards using bilinear pairings satisfying this requirement and not relying on hash functions or
random oracles. We coin the term blind identification to denote a protocol where a passive adversary
cannot learn the outcome of the protocol.

3 Bilinear Pairings

Pairing based cryptography is based on the existence of efficiently computable non-degenerate bilinear
maps which can be abstractly described as follows: Let G1 be a cyclic additive group of prime order q
and G2 be a cyclic multiplicative group of the same order. Assume that computing the discrete logarithm
in both G1 and G2 is hard. A bilinear pairing is a map e : G1 × G1 7→ G2 that satisfies the following
properties [4, 5]:

1. Bilinearity : e(aP, bQ) = e(P,Q)ab ∀P,Q ∈ G1 and a, b ∈ Zq

2. Non-degeneracy : P 6= 0⇒ e(P, P) 6= 1

3. Computability : e is efficiently computable

The above properties also imply:

e(P + Q,R) = e(P,R) · e(Q,R) ∀P,Q,R ∈ G1

e(P,Q + R) = e(P,Q) · e(P,R) ∀P,Q,R ∈ G1

Typically, the map e will be derived from either the Weil or Tate pairing on an elliptic curve over a finite
field. Despite the complex mathematics involved in constructing such maps, cryptographic protocols
based on pairings can be described entirely without ever referring to the actual implementation. We refer
the reader to [4, 5, 6] for more details. Pairings and other parameters should be selected in proactive for
efficiency and security. For appropriately selected parameters, we will assume the following assumptions
hold unconditionally.

3

3.1 Assumptions

1. Discrete Logarithm Assumption: The Discrete Logarithm Problem (DLP) in G1 (and consequently
G2) is intractable. In other words, given any two elements P, Y ∈ G1, computing x ∈ Z∗

q such that
Y = xP is hard.

2. Diffie-Hellman Assumption: Given P, Y, R ∈ G1 such that Y = xP and R = rY for unknowns
x, r ∈ Z∗

q , computing U = rP is infeasible. This is the Diffie-Hellman Problem (DHP).

3. Extended Diffie-Hellman Assumption: Given P, Y, R ∈ G1 such that Y = xP and R = rY for
unknowns x, r ∈ Z∗

q , computing U = r2P is infeasible. We call this the Extended Diffie-Hellman
Problem (EDHP).

4. Extended Decisional Diffie-Hellman Assumption: Given P, Y, R,U ∈ G1 such that Y = xP and
R = rY for unknowns x, r ∈ Z∗

q , deciding if U = r2P with probability > 1/2 is infeasible. This
is the Extended Decisional Diffie-Hellman Problem (EDDHP). (We note that the Decisional Diffie-
Hellman Problem (DDHP), which requires deciding if U = rP is easy in this case, since it only
requires two pairing computations to decide if e(P,R) = e(Y, U). All pairing based schemes make
use of this observation [4]).

5. Linear Diffie-Hellman Assumption: Given P, Y, R ∈ G1 such that Y = xP and R = rY for
unknowns x, r ∈ Z∗

q , computing any pair 〈Z,Q〉 such that Z = rP + xQ is infeasible. We call this
the Linear Diffie-Hellman Problem (LDHP).

6. Linear Decisional Diffie-Hellman Assumption: This relates to the decisional variant of the LDHP.
Given P, Y, R,Z,Q ∈ G1 such that Y = xP and R = rY for unknowns x, y ∈ Z∗

q , deciding if
Q = yP + xR with probability > 1/2 is infeasible. We call this the Linear Decisional Diffie-
Hellman Problem (LDDHP).

3.2 Problem Hierarchy

Before describing the our identification protocol, we briefly describe the observed relationship between
the different problems considered above. An arrow indicates a reduction with the tail end representing
the harder problem. For each of the relationships, we consider P to be fixed.

EDHP +3

��

EDDHP

DLP +3 DHP
u}

5=sssssssss

sssssssss

!)KKKKKKKKK

KKKKKKKKK

LDHP +3 LDDHP

To see that DHP ⇒ EDHP, let DHPP (Y,R) be the output of an oracle that solves the DHP for some
fixed P and arbitrary Y, R. We can use this oracle to construct another oracle EDHPP (Y, R) that solves
the EDHP for the same tuple 〈P, Y, R〉 as follows: EDHPP (Y,R) = DHPP (DHPP (DHPP (Y, R), Y), R).

To see that EDHP ⇒ DHP, let EDHPP (Y, R) be the output of an oracle that solves the EDHP for
some fixed P and arbitrary Y, R. We can use this oracle to construct a DHPP (Y,R) oracle that solves
the DHP for the same tuple 〈P, Y, R〉 as follows: DHPP (Y, R) = 1

2 (EDHPP (Y, Y +R)−EDHPP (Y,R)−P).

4

Finally, we note the DHP is considerably harder than the LDHP since there does not appear to be any
simple oracle-based reduction from the LDHP to the DHP. In fact the results of Boneh et al. [7] indicate
that making a DHPP (Y, R) oracle from an LDHPP (Y, R) oracle is as hard as solving the DHP itself. (the
task of a DHPP (Y,R) oracle is to compute rP while the task of an LDHPP (Y, R) oracle is to compute
many (say n) pairs (Zi, Qi) such that Zi = rP + xQi (1 ≤ i ≤ n). Thus to solve the DHP using the
LDHP oracle would be equivalent to extracting rP from rP + xQi given Qi (1 ≤ i ≤ n). The aggregate
signature scheme of [7] assumes that such an extraction is impossible if the value of n is polynomially
bounded).

4 Setup PKI

In the rest of the discussion, we will using a PKI which will be setup as follows: A central authority is
responsible for generating the security parameters. A trusted CA is responsible for certifying the public
keys. To participate in the protocol each user must have a certified public key (the process of certification
is outside the scope of our protocol). The setup proceeds as follows:

1. Let e : G1 × G1 7→ G2 be a bilinear mapping and P ∈ G1 be a generator of G1. The parameters
〈e, G1, P 〉 are generated by the trusted authority and made public in an authentic way.

2. Each participant IDi generates xi ← Zq as the private key. The corresponding public key is
Yi = xiP ∈ G1. Each user also obtains a certificate from the CA linking the identity IDi and the
public key Yi. In other words, the CA fixes the pairs 〈Yi, IDi〉.

5 Blind Identification

Assume that user ID having secret key x ∈ Zq and public key Y = xP ∈ G1 wants to prove to server S,
the knowledge of x. Additionally, ID wants to ensure that no one except the verifier S gets convinced
of this fact from watching the communication (in other words, the proof needs to be verifier dependent
and a dishonest verifier does not get convinced about the statement). We will assume the infrastructure
of section 4. The protocol is graphically described in figure 1.

Figure 1: Blind Identification

5

1. ID starts by claiming to know x ∈ Zq, the discrete logarithm of Y ∈ G1 to base P .

2. The verifier S generates r ← Zq and computes R = rY and U = r2P . It sends 〈R,U〉 as its
challenge to ID. Typically the challenge should have a very short lifetime.

3. ID computes V = 1
xR and verifies e(V, V) = e(U,P). If this test passes, ID is ensured that R was

indeed randomly generated. ID generates Q← G1 and computes Z = V + xQ. It sends 〈Z,Q〉 as
its proof to S.

4. S accepts if e(Z − rP, P) = e(Q,Y).

6 Security Proof (Sketch)

We claim that this test will pass with a high probability if and only if ID knows x and S knows r. If
the former is false, the verification fails with a high probability while if the latter is false, no knowledge
about x is given out in the process and the outcome of the proof is undecidable.

1. Correctness: The properties of bilinear maps ensure that the verification is always successful if no
one cheats.

2. Soundness: We will analyze the soundness assuming that one of the parties is dishonest. The trivial
case when both parties are dishonest is ignored. The soundness property holds because:

(a) Dishonest Prover: Given P, xP, rxP , Computing a pair Z ′, Q′ such that Z ′ = rP + xQ′ is
infeasible without knowledge of r or x due to the hardness of the LDHP as shown in theorem
4.4 of [8] (cf. aggregate extraction). Additionally, an honest verifier keeps r secret. Thus, the
proof is sound from a verifier’s view (see appendix A.2 for an informal proof).

(b) Dishonest Verifier: A dishonest verifier will generate R non-randomly. In other words, a
dishonest verifier will not know r corresponding to R. Due to this it will be hard to generate
U such that e(1

xR, 1
xR) = e(U,P). Thus a dishonest verifier will not be able to make ID

accept the challenge as valid (see appendix A.1 for an informal proof).

3. Zero Knowledge: We will analyze the zero knowledge property of the protocol from the following
perspectives. The case of dishonest verifier is ignored due to the reasoning above (item 2b).

(a) Honest Verifier Zero-Knowledge: An honest verifier can generate an accepting transcript
{Z ′, r,Q′, R, U, Y, P} without interaction with a prover as follows: Let r, α ← Zq, R = rY ,
U = r2P , Q′ = αP and Z ′ = rP + αY . It is easy to see that the simulated and real distrib-
utions are indistinguishable. Also observe that an unlimited number of accepting transcripts
can be generated using the same coin tosses r.

(b) Honest Verifier Secrecy: As shown in appendix B, it is impossible for a passive adversary to
decide the honesty of the verifier. That is, given P, xP, R,U , deciding if e(1

xR, 1
xR) = e(U,P)

is infeasible without knowledge of r or x due to the hardness of the DHP in G1.

(c) Honest Prover Secrecy: It is not possible for a passive adversary to decide the honesty of the
prover: Given P, xP, rxP, r2P,Q,Z, deciding if Z = rP + xQ is infeasible without knowledge
of r or x due to the hardness of the LDDHP in G1 as shown in appendix B.

7 Blind Group Identification

This scheme enables a group of users to identify themselves to a server such that: (a) The identification
test passes if none of the users cheat, (b) if any users cheat, the test will fail with a high probability, (c)
it is not possible for the server or the users to know which person cheated. An important application for
this type of scheme is in the following type of group systems: Assume that two users Alice and Bob want

6

to identity themselves jointly to a server (for example, because they don’t trust each other to individually
login to the server without the other’s approval). Alice wants to ensure that the identification succeeds
if and only if the other user is really Bob. Bob has a similar requirement.

Assume that {ID1, ID2, . . . IDn} are the set of users who want to jointly identify themselves. It is
necessary that each user IDi must have a certified public key Yi as described earlier. The goal of the
protocol is that all users will simultaneously identify themselves to a server S.

In other words, each user IDi will prove possession of the discrete logarithm xi of Yi (to base P) such
that S cannot be convinced about any of the individual statements separately. That is, the proof is valid
only on all the statements together: “IDi knows xi” ∀i : 1 ≤ i ≤ n but not on any of the individual
statements like “ID1 knows x1” or “ID2 knows x2” independently of the others (we intuitively coin
the term additive zero knowledge for this [9]). We will assume the infrastructure of section 4. The
identification is done as follows:

1. The n provers ID1, ID2 . . . IDn start by claiming to S that they know the discrete logarithms
x1, x2, . . . xn ∈ Zq of Y1, Y2, . . . Yn ∈ G1 (to base P) respectively.

2. The verifier S generates r1, r2, . . . rn ← Zq and computes Ri = riYi and Ui = r2
i P . It makes the

list of challenges 〈IDi, Ri, Ui〉 public.

3. Each IDi computes Vi = 1
xi

Ri and checks that e(Vi, Vi) = e(Ui, P). If this test passes, it generates
Qi ← G1 and computes Zi = Vi + xiQi

4. All users then collaborate to jointly compute the value Z =
∑j=n

j=1 Zj . This computation is hidden
from S so that individual values Zj are effectively hidden the it’s view. The combined proof
{Z,Q1, Q2 . . . Qn} is sent to S.

5. S accepts if e(Z −
∑j=n

j=1 rjP, P) =
∏j=n

j=1 e(Qj , Yj).

8 Security Proof (Sketch)

We claim that this test will pass if and only if each IDi knows xi. To summarize the goals of the protocol,
the individual users can jointly authenticate themselves to the server such that:

(a) If all users are honest, the server always accepts.

(b) If any of the users are dishonest, the server rejects with a high probability.

(c) The protocol is zero knowledge. It is not possible for anyone (including the server) to know which
user cheated.

(d) Collusions are possible between users but not with the server (the server is trusted).

The protocol is secure based on the following observations:

1. Correctness: The properties of bilinear maps ensure that the verification is always successful if none
of IDi cheat.

2. Soundness: We discuss the soundness using a similar reasoning as above. The soundness property
holds because:

(a) Dishonest Prover: Computing individual proofs 〈Zi, Qi〉 without xi or ri is infeasible using
similar reasoning for the single user scenario (section 5). Using the idea of aggregate signatures
of [8], the same applies to the multiuser case. Consequently the verifier will reject.

7

(b) Dishonest Verifier: A dishonest verifier will generate R non-randomly and will therefore not
know ri corresponding to Ri. Due to this it will be hard for this verifier to generate Ui such
that e(1

xi
Ri,

1
xi

Ri) = e(Ui, P) due to the hardness of the EDHP. Thus a dishonest verifier will
not be able to make anyone accept his/her challenge as valid. The above reasoning for single
user identification can be extended here.

3. Zero Knowledge: As before, we will analyze the zero knowledge property from the following per-
spectives:

(a) Honest Verifier Zero Knowledge: S can generate a valid accepting transcript on its own cor-
responding to {ri, Ri, Ui} ∀i : 1 ≤ i ≤ n as follows: S generates αi ← Zq ∀i and computes
Qi = αiP , Ri = riYi. Then Z =

∑j=n
j=1 riP + αiYi.

(b) Honest Verifier Secrecy: We require that it is impossible for a passive adversary to decide the
honesty of the verifier. The reasoning for the single user case can be extended here. That is,
given P, xiP,Ri, Ui, deciding if e(1

xi
Ri,

1
xi

Ri) = e(Ui, P) is infeasible without knowledge of ri

or xi due to the hardness of the DHP in G1 [7].

(c) Honest Prover Secrecy: Assume that all the provers are honest and thus, S will eventually
accept. We require that it is impossible for a passive adversary (including the provers) to
decide the honesty some prover. We note that given P, xiP, rixiP, r2

i P,Qi, Zi, deciding if
Zi = riP + xiQi is infeasible without knowledge of r or x due to the hardness of the LDDHP
in G1 as shown in appendix B. Thus a passive adversary cannot decide the outcome of the
identification.

(d) Dishonest Prover Secrecy: Assume that some of the provers are dishonest. In this case,
deciding if any given Zi = 1

xi
Ri + xiQi is infeasible without knowledge of xi or ri due to the

decisional linear Diffie-Hellman assumption. That is, given P, xiP, rixiP,Q,Zi ∈ G1, deciding
if Zi = riP + xiQ is infeasible without knowing at least one of {xi, ri}. Therefore if S rejects,
none of the provers know which pairs 〈Zi, Qi〉 correspond to invalid proofs (if the individual
coin tosses ri of S are kept secret and S is honest, no information is leaked to the provers).
Similarly if the individual values Zi are kept secret (from S), the identity of the dishonest
provers is still concealed since computing individual proofs Zi just from Z,Q1, Q2 . . . Qn such
that Zi = riP + xiQi ∀i is infeasible without knowledge of each xi due to the hardness of the
DHP in G1 as shown in theorem 4.4 of [8] (cf. aggregate extraction). Consequently, even the
verifier S does not have the ability to decide which of the provers are dishonest.
Finally, if the joint computation of Z is carried out in a way that any one individual prover
or a small coalition of provers can know Zi’s for only a small fraction of users, the identities
of dishonest provers can still be effectively hidden, even if S can be coerced to reveal all the
coin tosses ri.

9 Other Extensions

In this section we will provide several extensions of our scheme. We refer to the definitions of sections 4
and 5. The private keys xi can either be generated by users or a trusted authority. The public key are
assumed to be certified in the former case. Note that the identification is a two-round protocol, with the
verifier sending the challenge R in the first step and the prover sending the response Z,Q in the second
step. The private key for each smart card is encapsulated in a tamperproof chip. Signing access to this
key is given via some access control mechanism like a PIN number. The corresponding public key is
also present in the smart card along with a certificate. Smart cards may be purchased from a (reputed)
third party and must be registered with the relevant authority (like a bank) before they can be used. To
register a smart card, the authority simply provides a certificate.

8

9.1 Authenticated Encryption (Signcryption)

Assume that user ID is identifying itself to the server S using the blind identification scheme of section 5.
ID can encrypt a random message M ∈ G1 intended for S using the challenge R as follows: Let M = xQ.
Using this relation, ID computes Q = 1

xM . It then checks that (R,U) is indeed a valid challenge by
computing V = 1

xR and checking that e(V, V) = e(U,P). If this check passes, it computes Z = V + xQ
as before. The authenticated ciphertext is (Z,Q). An honest verifier S can compute the message M
as follows: First it checks that the identification condition is true (i.e. it checks that (Z,Q) is indeed
an accepting configuration). Then it computes M = Z − rP . Authentication is provided due to the
zero-knowledge property; the verifier is assured that the sender is indeed ID. It may appear that non-
repudiation as such is not provided because S cannot later prove in a court that the message was sent by
ID since S could very well have generated an accepting transcript without interaction with the prover
by simulating the entire protocol.

However, note that in most cases when the transcript is simulated, the resulting message M will be
meaningless. If S presents the tuple 〈M,Q〉 in a court, a judge can verify that that e(M,P) = e(Q, Y). If
the message is meaningful and the equality is valid, the judge is convinced that Q was indeed computed
by ID and not by S. Hence Q also serves as a signature on M .1 The signature and encryption scheme is
secure against Chosen Plaintext Attacks (IND-CPA) under the Diffie-Hellman assumption [4]. However,
it is insecure against Chosen Ciphertext Attacks (IND-CCA) because (a) existential forgery of signatures
is always possible and (b) given two ciphertext {(Z,Q), (Z ′, Q′)} and one of the plaintexts {xQ, xQ′}, it
is always possible to associate it with its ciphertext.

Despite having the disadvantage of being IND-CCA insecure, our scheme offers an interesting feature;
if in addition to 〈M,Q〉, the verifier S also produces 〈Z, r〉 in the court and Z has been signed by ID
(using some scheme, which is irrelevant to us), then S can also claim that the message was directly
received from ID. To validate this, the judge checks if e(Z − rP, P) = e(Q, Y). This tells the judge that
the message was signed by ID and also intended for the holder of r (which turns out to be S in this case)
since even ID does not have the ability to compute r. Observe that this encryption/non-repudiation is
provided from using only ID’s certified public key(s) in contrast to most other schemes that require a
certified key for each party. This feature is a new type of non-repudiation (or commitment) that can be
used in electronic payment systems as described later.

9.2 Signatures

To construct an IND-CCA secure signature scheme from the protocol of section 5, we simply remove the
verifier from the protocol and set its challenge R = 0 ∈ G1. The prover’s response is extracted from the
message using a hash function H : G1 7→ G1. That is, Q = H(M) where M ∈ G1 is a message. The
signature of user ID is S = xQ. This is exactly the short signature scheme of Boneh et al. [4]. To verify
that (M,S) is a valid message-signature pair, check that e(S, P) = e(H(M), Y).

9.3 Hidden Signatures

In the scenario where user ID identifies to the server S (section 5), ID can also send plaintext messages
along with hidden signatures such that only S can extract the signature. Of course, once extracted,
the signatures provide the same non-repudiation as ordinary signatures. Like the previous scheme, the
message to be signed is M ∈ G1 and Q = H(M). However, in this case, the verifier’s challenge is not
ignored. As always, the prover first computes V = 1

xR and checks that e(V, V) = e(U,P). The hidden
signature of ID on M is then Z = V + xQ. The tuple 〈M,Z〉 is sent to S who can extract the original
signature S = Z − rP . The verification condition is e(S, P) = e(H(M), Y) like before.

1Observe that even though the message M is encrypted, the signature 1
x

M = Q is not. Suppose the security requirement
is that even the signature must be encrypted. This is easily done by redefining Q = M + rP . Then we have Z = rP +xQ =
rP + xM + rxP . In this case the recipient extracts the message M = Q − rP and the signature S = xM = Z − rP − R.
To verify a signature we check if e(S, P) = e(M, Y)

9

9.4 Authenticated Key Agreement

Using the protocol of section 5, authenticated key agreement between any two parties is possible. User
IDa having public key xaPa and private key xa wants to establish a shared key with user IDb having
public key xbPb and private key xb. The protocol is essentially an extension of the two-round identification
protocol (it is possible that Pa = Pb). We provide two variants, the first for illustrative purposes.

9.4.1 Three-Round Key Agreement

This protocol requires three rounds (or three message exchanges) and is based on the traditional model
for two-way authentication.

1. To initiate the protocol, IDa generates ra ← Zq and computes Ra = raYb and Ua = r2
aPb. It sends

〈Ra, Ua〉 to IDb

2. IDb computes Vb = 1
xb

Ra and verifies that e(Vb, Vb) = e(Ua, Pb). If this test passes, IDb generates
Qb ← G1, rb ← Zq, computes Zb = Vb + xbQb and Rb = rbYa. It sends 〈Zb, Qb, Rb〉 to IDa.

3. IDa checks that e(Zb−raPb, Pb) = e(Qb, Yb). If this test passes, IDa accepts IDb’s authentication,
computes Za = ra

xa
Rb = rarbPa and sends Za to IDb.

4. IDb accepts IDa’s authentication if e(Ra, rbPa) = e(Za, Yb). (In other words, IDb checks that
〈Za, Yb, Ra, rbPa〉 is indeed a valid DDH tuple). After this step, both parties are authenticated to
each other. The shared key can be either raPb or xbQb.

In the first three steps, IDb identifies itself to IDa. In the fourth step IDa identifies itself to IDb

by proving the knowledge of ra, the discrete logarithm of Ra to base Yb that was sent in step 1 (since a
correct value Za simultaneously proves knowledge of xa and ra). An active adversary may still be able to
substitute Rb sent in the second step with a new value R′

b without detection in the third step where IDa

accepts IDb’s authentication. However, this attack is useless. Firstly, observe that the adversary is unable
to make IDa use a chosen shared key for communication with IDb. The fourth step ensures that such an
adversary cannot go undetected, since if this substitution attack was carried out, the adversary will not
be able to send a correct value of Z ′

a as its response to IDb which is needed for two-way authentication.
We note that the protocol is still zero-knowledge because a passive adversary is unable to decide if the
authentication was successful after watching the communication. We also observe that it is possible to
combine the first and last steps together as demonstrated in the next variant.

9.4.2 Two-Round Key Agreement

Using the protocol of section 5, a two-round authenticated key agreement is also possible. As before, user
IDa having public key xaPa and private key xa wants to establish a shared key with user IDb having
public key xbPb and private key xb. The protocol is essentially a proof of ‘knowledge of knowledge’ and
is unconditionally secure under the following scenario: IDb proves knowledge of IDa’s knowledge. That
is, IDa initiates by saying “I know xa and ra” and IDb replies by saying “I know xb if you know xa and
ra”. Let H : G1 7→ G1 be a cryptographic hash function.

1. IDa generates ra ← Zq and computes Ra = raYb, Ua = r2
aPb and Za = raPb +xaH(Ra). It initiates

the protocol by sending 〈Ra, Ua, Za〉 to IDb. Essentially, IDa simulates the identification protocol
with itself and sends part of the transcript to IDb.

2. On receiving 〈Ra, Ua, Za〉 from IDa, IDb computes Vb = 1
xb

Ra and Qa = H(Ra). It then verifies
that 〈Ra, Ua, Za, Vb, Qa〉 is indeed an accepting transcript of IDa’s identification. That is, it checks
that e(Za − Vb, Pa) = e(Qa, Ya) and e(Vb, Vb) = e(Ua, Pb). If both tests pass IDb accepts IDa’s
authentication. If IDb decides to continue with the process it generates Qb ← G1, computes
Zb = Vb + xbQb and sends 〈Zb, Qb〉 to IDa as its response. It also keeps Vb as the shared key.

10

3. IDa accepts IDb’s authentication if e(Zb− raPb, Pb) = e(Qb, Yb) and keeps raPb as the shared key.

We claim that in the second step, IDb will accept if and only if IDa knows ra and xa. To see this,
first note that 〈Za, Qa〉 is a zero knowledge identification proof of IDa. Due to this, there is no guarantee
that the proof was generated by IDa (since it could also have been efficiently simulated according to
section 5). However, observe that if this protocol is simulated, the resulting Qa will almost certainly
be random. A simulator cannot choose a predetermined value of Qa since there appears to be no way
to output an accepting configuration for a specific Qa without knowledge of xa. The use of the hash
function additionally ensures that the simulator did not have control even over the random coin tosses
ra. Hence, for this particular instance, we can safely assume that the simulation must have been carried
out by IDa. The second and third steps of the protocol involve the identification of IDb to IDa using
the protocol of section 5 keeping ra as the random coin tosses of verifier IDa. We feel that this brief
analysis is sufficient to understand the security of the protocol.

9.5 Deniable Signcryption

In section 9.1, we presented a scheme that allows a user IDa to send authenticated ciphertexts to another
user (say IDb). We note that it is also possible to send a encrypted messages to IDb such that it can
be later denied by IDa. In this scenario, however, the public key of IDb must be involved. As before
we assume that the private key of IDa is xa corresponding to the public key xaPa. Also, let xb be the
private key of IDb corresponding to the public key xbPb (possibly with Pa = Pb).

1. At some point IDb asks IDa to identify itself. To do this it generates rb ← Zq, computes Rb = rbYa,
Ub = r2

bPa and sends 〈Rb, Ub〉 to IDa.

2. IDa computes Va = 1
xa

Rb and accepts the challenge if e(Va, Va) = e(Ub, Pa). Using IDb’s challenge
Rb, IDa can then encrypt a message Ma ∈ G1 for IDb as follows: IDa generates ra ← Zq, sets
Qa = M + 2raPb and computes Za = Va + xaQa as always. It then computes Ta = Qa − raPb and
Ra = raYb and sends 〈Za, Ta, Ra〉 as its signcrypted message to IDb

3. On receiving 〈Za, Ta, Ra〉, IDb first computes Qa = Ta + 1
xb

Ra and verifies that (Za, Qa) is a valid
accepting transcript for IDa. That is, it checks that e(Za − rbPa, Pa) = e(Qa, Ya). If this check
passes IDb computes Ma = Ta − 1

xb
Ra. The zero knowledge identification property ensures that

IDb will only accept messages that were actually sent by IDa. Thus, an adversary cannot make it
accept any random message as valid.

We will show that the above scheme allows IDa to later deny sending the message Ma. Firstly note
that Ma = Qa − 2

xb
Ra and Ta = Qa − 1

xb
Ra. For any given pair (Ma, Qa), it is easy to see that IDb has

the ability to generate 〈Ra, Ta〉. Due to this, there is no evidence left for IDb to prove that these values
were actually computed by IDa.

Also note that Za−rbPa = xaMa +2xaraPb. Extracting xaMa (which would serve as IDa’s signature
on Ma) using this relation is equivalent to computing xaraPb from raPb and xaPa without knowing ra or
xa. This is a hard problem of the order of the DHP as shown in [8] (cf. aggregate extraction).

9.6 Online Credit Card Payments

In this section, we will present a simple online payment system with some interesting security features.
The protocol requires only one certified key. The seller of a product need not provide a certified key to the
buyer, effectively remaining anonymous. The seller must produce some identification to the credit card
processor or the bank to ensure that the payment is successful. If the buyer notices a disputed transaction
on his credit cart statement, he can ask the bank to reveal the identity of the party who received the
money. If the transaction is not disputed, the seller can remain completely anonymous. Moreover, we
provide the additional advantage of ‘single-use’ transactions, that is after having successfully processed
a payment, the seller cannot later reuse the same information to process another identical payment. We

11

will assume the identification scheme of section 5 where the buyer is ID and the seller is S. The protocol
also involves a third party B which could be a bank or a credit card processor. The certified public key
of ID is Y = xP . This key could itself serve as a credit card number. We also use a cryptographic hash
function H1 : {0, 1}∗ 7→ G1.

1. The buyer ID begins by visiting the website of S and initiating a purchase transaction. The details
of the transaction are encapsulated in a request REQ. The tuple 〈ID,REQ, Y 〉 is sent to S

2. S generates random r ← Zq and computes R = rY = rxP and U = r2P . It also creates a contract
CON containing the payment amount, transaction date, time and other details (though it will
possibly not mention the identity of the seller or the commodity for sale to protect privacy). It
sends 〈CON , R, U〉 to ID. It is understood that transactions are accepted as valid by the bank
only for a short specified deadline (say five minutes) from the time mentioned in the contract.

3. On receiving 〈CON , R, U〉, ID checks that the contract is correct. It then computes V = 1
xU and

checks that e(V, V) = e(U,P). It this check passes, it computes Q = H1(CON), Z1 = V + xQ and
Z2 = xH(Z1). It sends 〈Z1, Z2〉 back to S and saves 〈CON , R〉 in its database until it receives its
next credit card statement from the bank. It also keeps a record of S’s reply to the transaction in
case a dispute arises.

4. S computes Q = H1(CON) and verifies that e(Z1 − rP, P) = e(Q,Y) and e(Z2, P) = e(H(Z1), Y).
If both checks pass, S forwards the tuple 〈Z1, Z2, r, Y, ID,S, CON〉 as a payment request to the
bank B.

5. On receiving a payment request, B does the same verification as S; that is, it computes Q =
H1(CON) and verifies e(Z1−rP, P) = e(Q, Y) and e(Z2, P) = e(H(Z1), Y). It also ensures that the
〈r, ID〉 pair has not been previously used by checking its database. Finally, the bank checks the date
and time specified in CON and ensures that it is within the specified expiry period (five minutes)
of the current time. If all checks pass, B accepts this transaction, deducts the amount specified
from ID’s account, credits that amounts to S’s account, saves the tuple 〈Z1, Z2, ID,S, CON , r〉 in
its database and returns success to S.

6. The bank’s reply is forwarded to the buyer along with a receipt of a successful transaction.

7. If the bank receives another transaction with the same 〈r, ID〉 pair in the future, it outputs failure.
For security reasons, it also saves the corresponding 〈S,S ′, r, ID〉 in a blacklist where S ′ is the
identity of the other seller corresponding to the same pair. This blacklist can be used for further
investigation if necessary.

8. Sometime in the future, the bank sends CON in a credit card statement to ID. If some transaction
is disputed, ID reports the corresponding 〈CON , R〉 back to the bank, along with some evidence
(eg. a transaction receipt with a failure response). The bank can easily trace the disputed seller
S using its database after validating that R = rY .

9.7 Identity Based Cryptography

Using the primitives for identification of section 5, any smart card user S can setup an Identity Based
Encryption (IBE) scheme with a group of smart cards dynamically. The interesting feature of our scheme
is that the private keys can be distributed over an insecure channel. The infrastructure is roughly as
follows: messages for a user ID can be encrypted using the public key ID. The private key for decryption
is given out by S over an insecure public channel but masked using the signcryption procedure of 9.1.
Only the real user is able to extract the secret key. Before this is done, however, user ID must first
produce some personal authenticating information (like a passport photocopy) that can truly establish
the identity and is a one-time requirement. This request for a private key can be sent over an unencrypted
channel as long as it can be authenticated; that is, it must be ensured that the person requesting the key
for ID is indeed ID. For our purpose, we assume that a signature is used. The private key of the user

12

S who acts as the KGC for this setup is x ∈ Zq and the corresponding public key is Y = xP ∈ G1. Let
H1 : {0, 1}∗ 7→ G1 be a cryptographic hash function. The public key of IDi is implicitly understood to
be Qi = H1(IDi)

1. All users must have a prior certified public key to authenticate its requests to S. Each user IDi

generates ri ← Zq and computes Ri = riY = rixP and Ui = r2
i P . IDi then signs Ri using its

certified private key and sends 〈Ri, Ui〉 to S over an insecure channel.

2. The KGC S verifies the signatures and thus authenticates the request of users. For each valid
request Ri of IDi, the KGC computes Vi = 1

xRi and verifies that e(Vi, Vi) = e(Ui, P). If this check
passes, it computes Qi = H1(IDi) and Zi = Vi + xQi and makes each 〈Zi, IDi〉 tuple public via
an insecure channel.

3. If IDi knows corresponding ri, he/she can compute the private key xQi after authenticating it using
the method described in section 9.1. The encryption/decryption can be done exactly as described
in [5] after this step. The zero-knowledge property ensures that only the right user can compute
the private key from Zi.

We briefly describe the identity based encryption scheme here (further details can be obtained
from [5]). Let H2 : G2 7→ {0, 1}k be a cryptographic hash function. A random k bit message M for
IDi is encrypted as follows: generate α ← Zq, compute Qi = H1(IDi), C1 = M ⊕ H2(e(αQi, Y)) and
C2 = αP . The ciphertext (C1, C2) is sent to IDi who decrypts M = C1 ⊕H2(e(C2, xQi)).

10 Summary

In this paper, we proposed the notion of zero knowledge blind identification. Informally, in such a protocol,
an honest prover reveals only one (intended) bit of information to an honest verifier and reveals less than
that information to a dishonest verifier. In effect, using our scheme, any user can correctly identify to
a random server and a passive adversary cannot learn anything about the outcome of the identification.
Hence we coin the term blind identification. This is an additional feature provided by our scheme in
contrast to previously proposed schemes. In an intuitive sense, ours is a model of a non-interactive
zero knowledge proof since the security of the protocol is independent of the honesty of the verifier.
The constructions presented in this paper arise from the work on identity based encryption [5], group
signatures [7], aggregate signatures [8], chained signatures [10, 11] and additive zero knowledge proofs [9].
Referring to the definitions of sections 3 and 5, essentially, the security of our protocol relies on the
hardness of deciding if Z = 1

xR + xQ for given P , xP , Q, Z and R. Although, this is not a well
studied hard problem like the DHP, we feel reasonably confident that it is computationally intractable.
Additionally, as mentioned in appendix B, if we are willing to sacrifice the zero-knowledge property for a
dishonest verifier, it is possible to completely exclude all references to U in the protocol (specifically, for
the protocol of section 5, figure 1, the verifier will send only R and the prover will respond with 〈Z,Q〉
irrespective of whether R was randomly generated or not. The verification condition e(V, V) = e(U,P)
in the third step is also excluded and all extensions are modified accordingly)

In section 9, we show how these simple identification primitives can be used for constructing complex
mechanisms like key agreement, digital signatures, encryption and signcryption. As a simple application
of our smart card scheme, we propose a model for online credit card and cheque transactions. The protocol
can be used in conjunction with the Secure Electronic Transaction (SET) specification or in a completely
different infrastructure. As some other applications, we mention subliminal identification, designated
verifier proofs and multiuser authentication. For optimal security, the primitives for signing are best
implemented in a tamperproof chip supporting elliptic curve point addition and doubling operations. As
observed, all the verification primitives require one or two pairing computations and deal with public
keys only. Consequently, they are not restricted to a secure tamperproof device and can be implemented
on faster processors. We refer the reader to [4] for details on constructing the hash functions used here.

13

References

[1] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and signature
problems. In Proceedings on Advances in cryptology—CRYPTO ’86, pages 186–194, London, UK,
1987. Springer-Verlag.

[2] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard,
editor, CRYPTO, volume 435 of Lecture Notes in Computer Science, pages 239–252. Springer, 1989.

[3] Constantin Popescu. An identification scheme based on the elliptic curve discrete logarithm problem.
2(2):624, 2000.

[4] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In ASIACRYPT
’01: Proceedings of the 7th International Conference on the Theory and Application of Cryptology
and Information Security, pages 514–532, London, UK, 2001. Springer-Verlag.

[5] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In CRYPTO
’01: Proceedings of the 21st Annual International Cryptology Conference on Advances in Cryptology,
pages 213–229. Springer-Verlag, 2001.

[6] Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott. Efficient algorithms for pairing-
based cryptosystems. In CRYPTO ’02: Proceedings of the 22nd Annual International Cryptology
Conference on Advances in Cryptology, pages 354–368, London, UK, 2002. Springer-Verlag.

[7] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Advances in Cryptology—
CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 41–55. Berlin: Springer-
Verlag, 2004.

[8] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In Eli Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes
in Computer Science, pages 416–432. Springer, 2003.

[9] Amitabh Saxena and Ben Soh. Authenticating mobile agent platforms using signature chaining
without trusted third parties. In Proceedings of The 2005 IEEE International Conference on e-
Technology, e-Commerce and e-Service (EEE-05), pages 282–285, Hong kong, 2005. IEEE computer
press.

[10] Amitabh Saxena and Ben Soh. One-way signature chaining: A new paradigm for group cryptosystems
and e-commerce. Cryptology ePrint Archive, Report 2005/335, 2005.

[11] Amitabh Saxena and Ben Soh. A mobile agent authentication protocol using signature chaining with
bilinear pairings. Cryptology ePrint Archive, Report 2005/272, 2005.

[12] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof systems. SIAM
J. Comput., 25(1):169–192, 1996.

APPENDIX

In this section, we will briefly analyze the security of the single user identification scenario (section 5,
figure 1). The security of all other extensions (section 9) follows directly from the security of this single
user case. For convenience, we give the protocol once again.

In this protocol, a smart card ID having secret key x ∈ Zq and public key Y = xP ∈ G1 identifies
itself to a server S as follows:

1. ID starts by claiming to know x ∈ Zq, the discrete logarithm of Y ∈ G1 to base P .

2. The verifier S generates r ← Zq and computes challenges R = rY and U = r2P . It makes 〈R,U〉
public. Typically the challenges should have a very short lifetime.

14

3. ID computes V = 1
xR and verifies e(V, V) = e(U,P). If this test passes, ID is ensured that R was

indeed randomly generated. ID generates Q← G1 and computes Z = V + xQ. It sends 〈Z,Q〉 as
its proof to S.

4. S accepts if e(Z − rP, P) = e(Q,Y).

A Soundness

The soundness property requires that the protocol should be robust in the event of any one participant
being dishonest. The trivial case of both participants being dishonest is ignored.

A.1 Dishonest Verifier

In this scenario, we assume that S is a dishonest verifier if either (1) R = rY for some r but S does not
know r or (2) There is no r such that R = rY . In the second case, it is easy to see that R /∈ G1. We will
consider each case separately.

(a) Case 2 (R /∈ G1): We know that |G1| = |G2| = q such that q is a (large) prime. Consequently,
qP = 0 ∀P ∈ G1 and no element of G1 has an order < q. It is obvious that if R is a valid challenge
then R ∈ G1. It may seem necessary to verify that this by checking that qR = 0. However, observe
that the validation condition e(1

xR, 1
xR) = e(U,P) of the third step will hold if and only if R ∈ G1

and U = r2P . Hence, this possibility is ruled out.

(b) Case 1 (R = rY): In this case S does not know r and its goal is to output U corresponding to the
tuple 〈P, Y, R〉 such that U = r2P . This is infeasible due to the extended Diffie-Hellman assumption
(see section 3, number 3) keeping k = 2.

Remark : The inclusion of U is necessary only to obtain the zero knowledge property; that is, to ensure
that S actually knows r since otherwise, it may be possible to obtain information about x not obtainable
by an honest verifier (for instance, an adversary could obtain 〈Z,Q〉 such that Z − 1

xR = xQ for an R of
choice). The use of U ensures that R was indeed randomly generated if the DHP is really hard. Due to
this, a dishonest verifier cannot successfully get ID to accept a challenge as valid. We note that it may
be possible to completely exclude U from the above protocol without compromising the security (as long
as the prover always ensures that R ∈ G1).

A.2 Dishonest Prover

Assume that the verifier is honest; that is, R = rxP and U = r2P . Then the task of a dishonest prover
is to output a pair 〈Z ′, Q′〉 without knowledge of x such that e(Z ′ − rP) = e(Q′, xP) or in other words
Z ′ = rP + xQ′. The linear Diffie-Hellman assumption (section 3, number 5) states that this is infeasible
without knowledge of x or r. Also note that EDHP⇒ LDHP. This implies that a dishonest verifier has
to solve a harder problem than a dishonest prover. Alternatively, if a dishonest verifier cannot cheat then
it is ensured that a dishonest prover cannot cheat either.

B Honest Verifier and Prover Secrecy

We will model the security against a passive adversary A using the following game. Assume that both
ID and S are honest and participate in n runs of the identification protocol using the same public key
Y = xP (here n is a parameter decided by A). For each protocol run i, the participant behave as follows:

1. S acts like a probabilistic honest verifier. It generates ri ← Z∗
q , U ′

0 ← G1 b ← {0, 1}. It computes
Ri = riY , U ′

1 = r2
i P and sets Ui = U ′

b. Finally, it sends 〈Ri, Ui〉 to ID.

15

2. ID acts like a probabilistic honest prover. It generates Q,Z ′
0 ← G1 and c ← {0, 1}. It then

computes Z ′
1 = 1

xRi + xQi and b = [e(1
xRi,

1
xRi)

?= e(Ui, P)]. Finally, it sets Zi = Z ′
(b AND c) and

responds with 〈Zi, Qi〉.

The zero-knowledge property requires that A must not gain any useful information about the outcome
of the protocol for any polynomially bounded n. Firstly, A should not be able to decide the outcome of the
verification condition e(1

xR, 1
xR) = e(U,P) of the third step of the protocol. Secondly, A should be unable

to decide the outcome of the verification condition e(Z−rP) = e(Q,Y) of the fourth step of the protocol.
In other words, A’s task is to solve one or both of the following problems given 〈P, xP, rixP, Ui, Qi, Zi〉
such that 1 ≤ i ≤ n:

1. Decide if Ui
?= r2

i P for at least one i with probability > 1/2.

2. Decide if Zi
?= xQi + riP for at least one i with probability > 1/4.

First we will consider the case for one protocol run; that is, n = 1. We see that the first problem is an
instance of the Extended Decisional Diffie-Hellman Problem (EDDHP) (see section 3, number 4) while the
second problem is an instance of the Linear Decisional Diffie-Hellman Problem (LDDHP) (see section 3,
number 6). The extended decisional Diffie-Hellman and the linear decisional Diffie-Hellman assumptions
state that these two instances are independently intractable. However, the two assumptions may not apply
when used together (this is analogous to the claim that zero-knowledge is not preserved under parallel
composition [12]). This scenario does not affect us because of the following two observations: Firstly,
the problem domain (or the information available to the adversary) for both the instances is exactly the
same. Due to this no extra information is given out when the two problems are used in conjunction with
each other. Secondly, note that while EDHP ⇒ LDHP, it is almost certain that LDHP 6⇒ EDHP. It
is therefore very likely that LDDHP 6⇒ EDDHP. If we assume this, we can conclude that the protocol
is secure in a single run as long as both assumptions hold independently of each other. We can then
consider the two separate instances as a single instance of a composition of the two problems (note that
this is only a heuristic proof).

Now consider the case when n > 1. In this case, it is easy to see that one instance of an intractable
decisional problem (i.e. n = 1) implies the intractability of all instances of the same problem (n > 1)
due to the (honest verifier) zero knowledge property assuming that the coin tosses of the prover are
truly random in each protocol run [12]. In other words, all instances of the problem are equivalent
as long as we ensure that no two instances take place simultaneously. This is analogous the the fact
that zero-knowledge is preserved in sequential composition. (The same analogy cannot be used to prove
intractability of composite decisional problem for protocols that are not zero knowledge.)

16

