Zero-Knowledge Blind Identification For Smart Cards Using
Bilinear Pairings

Amitabh Saxena and Ben Soh Serguey Priymak
Computer Science and Computer Engineering Applied Science Department
La Trobe University RMIT University
Bundoora, VIC, Australia 3086 Melbourne, VIC, Australia 3000

October 20, 2005

Abstract

Traditionally in an identification scheme, a passive adversary watching the communication gains
information intended only for the verifier. For instance, from watching the transcript in the Fiat-
Shamir zero knowledge identification scheme, an adversary also learns the outcome of the protocol
(i.e. whether the identification succeeds or not). We introduce the concept of blind identification
that eliminate this disadvantage while still ensuring zero knowledge. Informally in such a scheme,
only the verifier and the prover know the outcome of an identification protocol while a passive
adversary watching the entire communication does not gain any useful information. To achieve
this, our proposed protocol differs from traditional identification schemes in two contrasting features:
(1) We require the verifier to toss his coins before the prover. (2) The coin tosses of the verifier
are secret while the coin tosses of the prover are not. As a natural extension of the single user
identification, we present the concept of ‘all or none’ group identification protocol that can be used
to authenticate together an arbitrary number of users in a batch such that if the identification fails,
it is impossible for the users to know who cheated. Finally, we present some interesting applications
including hidden signatures, anonymous seller credit card transactions, two-round authenticated key
agreement, authenticated and deniable encryption and identity based cryptography.

Our protocol is secure assuming the hardness of a problem closely related to the Diffie-Hellman
Problem in bilinear groups. The cryptographic primitives can be efficiently encapsulated in smart
cards designed for Elliptic Curve Cryptography (ECC). The private key must be included in a tamper
proof device inside the smart card.

1 Introduction

The user of zero-knowledge proofs for identification has interesting implications. For instance, a verifier
cannot later impersonate the prover using the transcript of the proof. Zero-knowledge identification does
not solve all problems since it is still susceptible to a man-in-the-middle attack, where a passive adversary
simply relays the messages between the prover and the verifier. In a typical scenario, this adversary
has the same information as the verifier. We present a slightly stronger variation of zero-knowledge
identification where a passive adversary does not learn anything new from observing the transcript of the
protocol. This paper has two motivations; firstly, to provide a secure ‘pairing’ variant of identification
schemes based on the discrete logarithm problem and secondly, to provide an efficient smart card based
zero-knowledge identification scheme which does not leak any information to a passive adversary. In
other words, the scheme allows users to correctly identify a prover to a verifier such that: (a) If both
the prover and verifier are honest, the protocol leaks only the same one bit of information (that the
prover’s statement is indeed true) after arbitrarily many runs and (b) The protocol leaks this one bit of
information only to an honest verifier while a passive adversary watching the entire communication still
gains no knowledge about the correctness of prover’s statement after arbitrarily many runs. To do this,



we require the verifier to toss secret coins while requiring the prover to toss public coins. Additionally,
we require that the verifier toss his coins before the prover. We also give some extensions of the scheme
including two-way authentication, key agreement, single-key signcryption (which allows a user Alice, for
example to send a signed and encrypted message to another user Bob without involving Bob’s keys at
alll), hidden signatures (which allow Alice to send a message along with a hidden signature to Bob) and
on line credit card/cheque payments.

The cryptographic primitives can be implemented efficiently in smart cards; one-way identification
requires only two elliptic curve point multiplications while two-way identification requires three multipli-
cations and two pairing computations for each user. Unlike most pairing based schemes which involve
identity based cryptography, our model is based on a standard certificate based infrastructure. Due to
this we lose certain benefits offered only by identity based mechanisms (like implicit key authentication).
However, at the same time we are unaffected by the key escrow problem inherent in all identity based sys-
tems. Additionally, we present constructions for an identity based infrastructure supporting encryption
and signatures using the primitives of our scheme (section 9.8).

The rest of the paper is organized as follows. In section 2 we give some notations and concepts neces-
sary to describe our protocol. In section 3 we present the cryptographic primitives used in our protocol
along with the necessary hardness assumptions. We describe the underlying Public Key Infrastructure
required for our protocol in section 4. Finally, we present our scheme in section 5 and provide several
extensions in sections 7 and 9.

2 Background

In this section, we present a simple identification scheme using a public key cryptosystem. Assume that
Alice and Bob are two users and Alice wishes to identify herself to Bob. We only consider one-way
identification and ignore the case of Bob identifying himself to Alice.

First we give some notation. If A is a non-empty set, then x «+ A denotes that x has been uniformly
chosen in A. A round of a protocol involves the exchange of one message. A sequence of two synchronous
(ordered) message transmissions constitutes two separate rounds while any number of asynchronous
messages (i.e. messages that can be unordered) are part of the same round. A single message passing is
a one-round protocol.

2.1 Basic Two-Round Identification

Alice has public encryption function F, and a secret decryption function D,.

1. Alice begins by claiming to know D,.

2. Bob generates a random challenge message m and encrypts it using F, to get ciphertext ¢ = E,(m).
Bob sends ¢ to Alice over an insecure channel.

3. Alice computes m’ = D,(c) and sends back m’ to Bob over the same insecure channel.

4. Bob accepts if m = m/.

This protocol is correct and sound but has an inherent disadvantage. It may be a security requirement
of Alice that only the sender of ¢ (whether it is Bob or not) may know her identity. An adversary
watching the communication can also check that E,(m’) = ¢ and consequently obtain information about
the outcome of the identification that only Bob was supposed to have. The Fiat-Shamir identification
protocol [1] also suffers from this drawback. Additionally in this protocol, an adversary is able to obtain
decryption of an arbitrary ciphertext intended for Alice. A modified version of the protocol overcomes
this problem by using a hash function H : {0,1}* — {0,1}*. In step 3, instead of sending m, Alice sends
m' = H(m') to Bob who accepts if m"” = H(m). However, this protocol still does not satisfy our strong
notion of zero-knowledge because Alice’s reply is deterministic. If an adversary replays the same message
¢ to Alice later on and receives the same m/’, he can be reasonably confident that he is talking to Alice



without knowing m. To avoid this attack, Alice must insert some randomness into her reply each time.
In the second protocol described below, we incorporate this.

2.2 Modified Two-Round Identification

Alice has public encryption function F, and a secret decryption function D,. Let H : {0,1}* — {0,1}*
be a cryptographic hash function.

1. Alice begins by claiming to know D,.

2. Bob generates a random challenge message m and encrypts it using F, to get ciphertext ¢ = E,(m).
Bob sends ¢ to Alice over an insecure channel.

3. Alice generates a random r «— {0,1}* and computes s = H(Dg(c)||r). She sends back the tuple
(r, s) to Bob over the same insecure channel.

4. Bob accepts if s = H(m||r).

The protocol is unconditionally secure if H is a random oracle. Observe that Alice must toss coins
to insert randomness r into her reply to avoid the known ciphertext attack. The identification protocol
presented in this paper is based on a similar idea. However, instead of the difficulty of inverting the
public encryption function, we rely on the difficulty of computing discrete logarithms in certain groups.
Like the above protocol, our scheme is two-round and begins by the verifier tossing secret coins while the
prover then tosses public coins.

Identification schemes based on the discrete logarithm problem have been proposed earlier, for example
in [2, 3]. All these schemes, however, assume that the underlying DDH problem is computationally hard.
Due to this, some of their security properties are lost when used in a pairing based scenario where the
DDH is easy. Moreover, in most of the schemes, a passive adversary knows everything that the provers
and verifiers know. It may be a security requirement of Alice and Bob that a passive adversary must not
learn the outcome of the identification. The purpose of this paper is to present an identification protocol
for smart cards using bilinear pairings satisfying this requirement and not relying on hash functions or
random oracles. We coin the term blind identification to denote a protocol where a passive adversary
cannot learn the outcome of the protocol.

3 Bilinear Pairings

Pairing based cryptography is based on the existence of efficiently computable non-degenerate bilinear
maps which can be abstractly described as follows: Let Gy be a cyclic additive group of prime order ¢
and G4 be a cyclic multiplicative group of the same order. Assume that computing the discrete logarithm
in both G; and Gy is hard. A bilinear pairing is a map e : G; X Gy — G5 that satisfies the following
properties [4, 5]:

1. Bilinearity: e(aP,bQ) = e(P,Q)* VP,Q € G; and a,b € Z,
2. Non-degeneracy: P # 0= e(P,P) # 1
3. Computability: e is efficiently computable
The above properties also imply:
e(P+Q,R)=¢(P,R) ¢(Q,R) VP,Q,R € Gy
e(P,Q+ R) =¢(P,Q)-e(P,R)VP,Q,R € G



Typically, the map e will be derived from either the Weil or Tate pairing on an elliptic curve over a finite
field. Despite the complex mathematics involved in constructing such maps, cryptographic protocols
based on pairings can be described entirely without ever referring to the actual implementation. We refer
the reader to [4, 5, 6] for more details. Pairings and other parameters should be selected in proactive for
efficiency and security. For appropriately selected parameters, we will assume the following assumptions
hold unconditionally.

3.1

1.

3.2

Assumptions

Discrete Logarithm Assumption: The Discrete Logarithm Problem (DLP) in G; (and consequently
Gg) is intractable. In other words, given any two elements P, Y € Gy, computing x € Z; such that
Y =z P is hard.

. Diffie-Hellman Assumption: Given P,Y,R € Gy such that Y = P and R = rY (for unknowns

x,r € Z;), computing U = 7P is infeasible. This is the Diffie-Hellman Problem (DHP).

. Decisional Diffie-Hellman Assumption: Given P,Y, R, U € G; such that Y = 2P and R = rY (for

unknowns z,r € ZZ) deciding if U = r P is easy. This is due to the observation that it only requires
two pairing computations to decide if e(P, R) = e(Y,U). All pairing based schemes make use of
this observation [4]).

Extended Diffie-Hellman Assumption: Given P;Y,R € G; such that Y = P and R = rY for

unknowns z,r € Zj, computing U = r2P is infeasible. We call this the Extended Diffie-Hellman

Problem (EDHP).

. Extended Decisional Diffie-Hellman Assumption: Given P,Y,R,U € G; such that Y = zP and

R = 7Y for unknowns z,r € Zj, deciding if U = 72 P with probability > 1/2 is infeasible. This is
the Extended Decisional Diffie-Hellman Problem (EDDHP).

. Linear Diffie-Hellman Assumption: Given P,Y,R € Gj such that ¥ = zP and R = rY for

unknowns z,r € Zj, computing any pair (Z,Q) such that Z = rP + xQ is infeasible. We call this
the Linear Diffie-Hellman Problem (LDHP).

Linear Decisional Diffie-Hellman Assumption: This relates to the decisional variant of the LDHP.
Given PY,R,Z,Q) € G; such that Y = 2P and R = rY for unknowns z,y € Zj, deciding if
@ = yP + xR with probability > 1/2 is infeasible. We call this the Linear Decisional Diffie-
Hellman Problem (LDDHP).

Problem Hierarchy

Before describing our identification protocol, we briefly discuss the observed relationship between the
different problems considered above. This is depicted in figure 1. For each of the relationships given
below, we consider P to be fixed.

EDHP <— EDDHP (Hard)

/

DLP <————DHP

|

DDHP (Easy) LDHP <—— LDDHP (Hard)

Figure 1: Problem Hierarchy



The symbol — represents a “solves” relationship while the symbol = represents an “implies” rela-
tionship. Formally, if A and B are two problems then A — B indicates that problem A solves problem
B. Alternatively A = B indicates that problem A implies problem B. It is easy to see that if A = B
then B — A and the converse is also true. This notation is useful in representing problems of different
hardness. Specifically, the following two statements are true but the converse of neither of them is true:

1. Let A= B. If “problem A is hard” then “problem B is hard”.
2. Let A — B. If “problem A is easy” then “problem B is easy”.

To see that EDHP = DHP, let DHP p(Y, R) be the output of an oracle that solves the DHP for some
fixed P and arbitrary Y, R. We can use this oracle to construct another oracle EDHPp (Y, R) that solves
the EDHP for the same tuple (P,Y, R) as follows: EDHPp (Y, R) = DHPp(DHPp(DHPp(Y, R),Y), R).

To see that DHP = EDHP, let EDHPp(Y, R) be the output of an oracle that solves the EDHP for
some fixed P and arbitrary Y, R. We can use this oracle to construct a DHP p(Y, R) oracle that solves the
DHP for the same tuple (P, Y, R) as follows: DHPp(Y, R) = £(EDHPp(Y,Y + R) — EDHPp(Y, R) — P).

It is also trivial to prove that LDHP = DHP by constructing an LDHPp(Y, R) oracle using a
DHPp(Y, R) oracle as follows: Generate o < Z, and compute Q = aP. Then LDHPp(Y, R) = (Z,Q)
where Z = DHPp(Y, R) + Y.

Finally, we note the DHP is considerably harder than the LDHP since there does not appear to be
any simple oracle-based reduction from the DHP to the LDHP. In fact the results of Boneh et al. [7]
indicate that making a DHP p(Y, R) oracle from an LDHPp (Y, R) oracle is as hard as solving the DHP
itself.! It is also interesting to note the discrepancy between the DDHP and the EDDHP. Even though
the original computational problems are equivalent, the corresponding decisional problems appear very
distinct. Specifically, the DDHP is easy while the EDDHP is intractable.

We exploit this apparent “gap” in the different problems (LDHP, EDHP, LDDHP, EDDHP, DDHP) to
construct perfect (interactive and non-interactive) zero-knowledge proofs of knowledge. In an interactive
proof, we require the verifier to first present a solution to the EDDHP. Then the prover presents a
solution to the LDHP. Since both the problems are intractable, the possibility of dishonest participants
succeeding is very low. Interestingly, however, the fact that the EDHP is definitely harder than the
LDHP ensures implicit dishonest verifier zero-knowledge property if we are able to show the honest
verifier zero-knowledge property.

4 Setup PKI

In the rest of the discussion, we will using a PKI which will be setup as follows: A Trusted Authority (TA)
is responsible for generating the security parameters and a Certification Authority (CA) is responsible
for certifying the public keys. To participate in the protocol each user must have a certified public key
(the process of certification is outside the scope of our protocol). The setup proceeds as follows:

1. The TA sets a security parameter k and uses a randomized algorithm Params(.) to set the para-
meters of the PKI as follows. First it generates {e,q, P,G1,G,} «+ Params(1¥) where G, G are
group descriptions for two groups each of prime order ¢ (here ¢ = k bits), e : G; X G; — Gy is a
bilinear mapping as defined in section 3. The TA then generates P < G1. The subscript k& denotes
that k is used in the coin tosses (from this point onwards, we will drop the subscript and assume
that all coin tosses implicitly require k as an input parameter). If P # 0 then P is a generator
of G;. The parameters (e, q, k,G1,Go, P) are made public by the TA in an authentic way. For
most of our scenarios, we will assume that P is shared between a group of users. However, it may
be possible to have different values for P for different users depending on the context and we will
indicate this if necessary.

1The task of a DHPp(Y, R) oracle is to compute 7P while the task of an LDHPp(Y, R) oracle is to compute many
(say n) pairs (Z;,Q;) such that Z; = rP + zQ; (1 < i < n). Thus to solve the DHP using the LDHP oracle would be
equivalent to extracting P from rP + zQ; given Q; (1 < i < n). The aggregate signature scheme of [7] assumes that such
an extraction is impossible if the value of n is polynomially bounded.



2.

5

Fach participant ZD; generates z; < Z, as the private key. The corresponding public key is
Y; = ;P € Gy. Each user also obtains a certificate from the CA linking the identity ZD; and
the public key Y;. In other words, the CA fixes the pairs (Y;,ZD;). As we shall see, certification
becomes very easy if the CA also uses this same setup. Firstly, note that before certifying a key Y;,
the CA must be assured that the ZD; actually knows x;, the discrete logarithm of Y; (to base P)
which is easily done using the identification scheme described next. Secondly, note that the public
keys are elements of the group G;. Thus, the CA has to certify (i.e. sign) elements of the group
G4 which can easily be done using a modified version of the hidden signature scheme of section 9.2
which offers the additional advantage that only the particular user having the private key has the
ability to extract the certificate.?

Blind Identification

Assume that user ZD having secret key = € Z, and public key ¥ = P € G; wants to prove to server S,
the knowledge of x. Additionally, ZD wants to ensure that no one except the verifier S gets convinced of
this fact from watching the communication (in other words, the proof needs to be verifier dependent and
a dishonest verifier does not get convinced about the statement). We will assume the infrastructure of
section 4. Since we are describing zero-knowledge proofs, (ZD, S) can be considered as a pair of (prover,
verifier) algorithms.

1.

2.

6

ID starts by claiming to know = € Z,, the discrete logarithm of Y € G; to base P.

The verifier S generates r « Z, and computes R = rY and U = r?P. It sends (R,U) as its
challenge to ZD. Typically the challenge should have a very short lifetime.

. ID computes V = %R and verifies e(V, V) = e(U, P). If this test passes, ZD is ensured that R was

indeed randomly generated. ZD generates ) «— G and computes Z =V + Q. It sends (Z, Q) as
its proof to S.

. Saccepts if e(Z —rP,P) =¢e(Q,Y).

Security Proof (Sketch)

We claim that this test will pass with a high probability if and only if ZD knows = and S knows r. If
the former is false, the verification fails with a high probability while if the latter is false, no knowledge
about z is given out in the process and the outcome of the proof is undecidable. Our sketch of security
is as follows:

1.

Correctness: The properties of bilinear maps ensure that the verification is always successful if no
one cheats.

. Soundness: We will analyze the soundness assuming that one of the parties is dishonest. The trivial

case when both parties are dishonest is ignored. The soundness property holds because:

(a) Dishonest Verifier: A dishonest verifier will generate R non-randomly. In other words, a
dishonest verifier will not know r corresponding to R. Due to this it will be hard to generate
U such that e(1R,LR) = e(U,P). Thus a dishonest verifier will not be able to make ZD
accept the challenge as valid (see appendix A.2 for an informal proof).

2We jump a bit ahead and mention how this can be done. Assume that the user ZD has successfully identified itself
to the CA using the CA’s challenge R = rY. The CA then generates the certificate C € G and computes W = rP + C.
It sends back W to the user who can then extract C' and verify that the certificate is indeed correct. We note that an
adversary cannot extract C' from W.



(b) Dishonest Prover: Given P,xP,rzP, Computing a pair Z’,Q’ such that Z' = rP + 2Q’ is
infeasible without knowledge of r or « due to the hardness of the LDHP as shown in theorem
4.4 of [8] (cf. aggregate extraction). Additionally, an honest verifier keeps 7 secret. Thus, the
proof is sound from a verifier’s view (see appendix A.1l for an informal proof).

3. Zero Knowledge: We will analyze the zero knowledge property of the protocol from the following
perspectives. The case of dishonest verifier is ignored due to the reasoning above (item 2a).

(a) Honest Verifier Zero-Knowledge: An honest verifier can generate an accepting transcript
{Z',r,Q',R,U,Y, P} without interaction with a prover as follows: Let r,a¢ «— Zy, R = 1Y,
U=7r2P, Q' =aP and Z/ = rP +aY. It is easy to see that the simulated and real distrib-
utions are indistinguishable. Also observe that an unlimited number of accepting transcripts
can be generated using the same coin tosses 7.

(b) Honest Verifier Secrecy: As shown in appendix B, it is impossible for a passive adversary to
decide the honesty of the verifier. That is, given P,z P, R, U, deciding if e(%R, %R) =e(U, P)
is infeasible without knowledge of r or x due to the hardness of the DHP in G.

(¢) Honest Prover Secrecy: It is not possible for a passive adversary to decide the honesty of the
prover: Given P,xzP,rzP,r2P,Q, Z, deciding if Z = rP + zQ is infeasible without knowledge
of r or = due to the hardness of the LDDHP in G; as shown in appendix B.

4. Knowledge Extractor: A prover essentially proves knowledge of the witness (rP,zQ) such that
(Q, Z) € L using the common reference string (R, P,Y’) where:

L={(Q,Z) e L|3x,r € Z, such that Z = rP + 2Q,Y = 2P and R = rzP}.

Clearly L € NP. Assume that a dishonest prover (ZD*) is able to make the honest verifier S accept.
That is, it outputs a pair (Z’, Q') such that e(Z' — rP, P) = e(Q’,Y"). It easy to see that ZD* has
learned that Z’ = rP + xQ’; it has obtained a solution to the EDDHP and LDDHP. Additionally,
by simulating the honest verifier itself, ZD* can obtain (rP,zQ’), the witness that (Q’, Z’) € L.

7 Blind Group Identification

This scheme enables a group of users to identify themselves to a server such that: (a) The identification
test passes if none of the users cheat, (b) if any users cheat, the test will fail with a high probability, (c)
it is not possible for the server or the users to know which person cheated. An important application for
this type of scheme is in the following type of group systems: Assume that two users Alice and Bob want
to identity themselves jointly to a server (for example, because they don’t trust each other to individually
login to the server without the other’s approval). Alice wants to ensure that the identification succeeds
if and only if the other user is really Bob. Bob has a similar requirement.

Assume that {ZD;1,ZDs,...ID,} are the set of users who want to jointly identify themselves. It is
necessary that each user ZD; must have a certified public key Y; as described earlier. The goal of the
protocol is that all users will simultaneously identify themselves to a server S.

In other words, each user ZD; will prove possession of the discrete logarithm z; of Y; (to base P) such
that S cannot be convinced about any of the individual statements separately. That is, the proof is valid
only on all the statements together: “ZD; knows z;” Vi : 1 < ¢ < n but not on any of the individual
statements like “ZD; knows x1” or “ZDy knows z5” independently of the others (we intuitively coin
the term additive zero knowledge for this [9]). We will assume the infrastructure of section 4. The
identification is done as follows:

1. The n provers ZD1,2ZDs...ID,, start by claiming to S that they know the discrete logarithms
Z1,T2,... Ty € Ly of Y1,Y5,...Y,, € Gy (to base P) respectively.

2. The verifier S generates r1,r2,...7, «— Z, and computes R; = r;Y; and U; = rfP. It makes the
list of challenges (ZD;, R;, U;) public.



3. Each ID; computes V; = %Ri and checks that e(V;,V;) = e(U;, P). If this test passes, it generates
Q; — Gy and computes Z; = V; + z;Q;

4. All users then collaborate to jointly compute the value Z = ;ZL Z;. This computation is hidden
from & so that individual values Z; are effectively hidden the it’s view. The combined proof

{Z,Q1,Q2...Qn} is sent to S.
5. S accepts if e(Z — szf r;i P, P) =TI'=" e(Qy,Y;).

Jj=

8 Security Proof (Sketch)

We claim that this test will pass if and only if each ZD; knows z;. To summarize the goals of the protocol,
the individual users can jointly authenticate themselves to the server such that:

(a) If all users are honest, the server always accepts.
(b) If any of the users are dishonest, the server rejects with a high probability.

(c¢) The protocol is zero knowledge. It is not possible for anyone (including the server) to know which
user cheated.

(d) Collusions are possible between users but not with the server (the server is trusted).
The protocol is secure based on the following observations:

1. Correctness: The properties of bilinear maps ensure that the verification is always successful if none
of ID; cheat.

2. Soundness: We discuss the soundness using a similar reasoning as above. The soundness property
holds because:

(a) Dishonest Prover: Computing individual proofs (Z;, Q;) without x; or r; is infeasible using
similar reasoning for the single user scenario (section 5). Using the idea of aggregate signatures
of [8], the same applies to the multiuser case. Consequently the verifier will reject.

(b) Dishonest Verifier: A dishonest verifier will generate R non-randomly and will therefore not
know 7; corresponding to R;. Due to this it will be hard for this verifier to generate U; such
that e(x%R,;, x%Rl) = ¢(U;, P) due to the hardness of the EDHP. Thus a dishonest verifier will
not be able to make anyone accept his/her challenge as valid. The above reasoning for single
user identification can be extended here.

3. Zero Knowledge: As before, we will analyze the zero knowledge property from the following per-
spectives:

(a) Homest Verifier Zero Knowledge: S can generate a valid accepting transcript on its own cor-
responding to {r;, R;,U;} Vi : 1 < i < n as follows: S generates «; < Zq Vi and computes
Qi = Oél'P, Rl = 7"1}/; Then Z = Z;z? 7”1P+ OZZY;

(b) Honest Verifier Secrecy: We require that it is impossible for a passive adversary to decide the
honesty of the verifier. The reasoning for the single user case can be extended here. That is,

given P, x; P, R;,U;, deciding if e(x%Ri, %Rl) = ¢(U;, P) is infeasible without knowledge of r;
or x; due to the hardness of the EDDHP in Gj.

(c) Honest Prover Secrecy: Assume that all the provers are honest and thus, S will eventually
accept. We require that it is impossible for a passive adversary (including the provers) to
decide the honesty some prover. We note that given P,z;P,r;z;P,r?P,Q;, Z;, deciding if
Z; = r; P+ x;Q; is infeasible without knowledge of r or = due to the hardness of the LDDHP
in G1 as shown in appendix B. Thus a passive adversary cannot decide the outcome of the
identification.



(d) Dishonest Prover Secrecy: Assume that some of the provers are dishonest. In this case,
deciding if any given Z; = I%R,» + x;Q; is infeasible without knowledge of z; or r; due to the
decisional linear Diffie-Hellman assumption. That is, given P, z; P, r;xz; P,Q, Z; € Gy, deciding
if Z; = r;P + x;Q is infeasible without knowing at least one of {z;,r;}. Therefore if S rejects,
none of the provers know which pairs (Z;, Q;) correspond to invalid proofs (if the individual
coin tosses r; of S are kept secret and S is honest, no information is leaked to the provers).
Similarly if the individual values Z; are kept secret (from §), the identity of the dishonest
provers is still concealed since computing individual proofs Z; just from Z,Q1,Q> ... Q, such
that Z; = r; P 4+ x;Q; Vi is infeasible without knowledge of each x; due to the hardness of the
DHP in G; as shown in theorem 4.4 of [8] (cf. aggregate extraction). Consequently, even the
verifier S does not have the ability to decide which of the provers are dishonest.

Finally, if the joint computation of Z is carried out in a way that any one individual prover
or a small coalition of provers can know Z;’s for only a small fraction of users, the identities
of dishonest provers can still be effectively hidden, even if S can be coerced to reveal all the
coin tosses r;.

9 Other Extensions

In this section we will provide several extensions of our scheme. We refer to the definitions of sections 4
and 5. The private keys x; can either be generated by the users or by a trusted authority. The public key
Y, are assumed to be certified in the former case. Note that the identification is a two-round protocol,
with the verifier sending the challenge R in the first step and the prover sending the response Z, @ in the
second step. The private key for each smart card is encapsulated in a tamper proof chip. Signing access
to this key is given via some access control mechanism like a PIN number. The corresponding public key
is also present in the smart card along with a certificate. Smart cards may be purchased from a (reputed)
third party and must be registered with the relevant authority (like a bank) before they can be used. To
register a smart card, the authority simply provides a certificate.

9.1 Signatures

The infrastructure of section 4 is identical to that of the BLS signature scheme [4]. Essentially, their
scheme is the non-interactive version of the protocol of section 5, removing the verifier from the protocol
and setting its challenge R = 0 € Gy. The prover’s response is extracted from the message using a hash
function H : Gy — Gy. That is, Q = H(M) where M € G; is a message. The signature of user ZD
is S = Q. To verify that (M, S) is a valid message-signature pair, first compute @ = H(M) and then
check that e(S, P) = e(Q,Y). As shown in [4] this scheme is secure against existential forgery under the
random oracle model.

9.2 Hidden Signatures

In the protocol of section 5, where user ZD identifies to the server S, ZD can also send plaintext messages
along with hidden signatures such that only S can extract the signature. Of course, once extracted,
the signatures provide the same non-repudiation as ordinary signatures. Like the previous scheme, the
message to be signed is M € G; and @ = H(M). However, in this case, the verifier’s challenge is not
ignored. As always, the prover first computes V' = 1R and checks that e(V,V) = e(U, P). The hidden
signature of ZD on M is then Z =V 4+ 2Q. The tuple (M, Z) is sent to S who can extract the original
signature S = Z — rP. The verification condition is e(S, P) = e(H(M),Y") like before.

9.3 Plaintext-Aware Encryption And Signcryption

The above idea of hidden signatures suggests that we can also easily convert the interactive identification
protocol to a non-interactive public key encryption scheme. We present such a encryption scheme here



based on El Gamal encryption. However, in its original form, the El Gamal cryptosystem cannot be
directly adapted to a pairing based scenario because its semantic security depends on the hardness of the
DDHP. Our variant of El Gamal provides semantic security and additionally exploits this property to
achieve plaintext aware encryption (which informally requires that an adversary cannot generate cipher-
texts without “knowing” the actual plaintext [10, 11]). The idea is to simulate the identification protocol
for an arbitrary user and give the message as input to the simulator. Then construct the challenge for
a specific user ZD using the same coin tosses of the verifier from the simulation. As usual, we assume
user ZD has a private key = € Z, and the corresponding certified public key Y = zP € G; for a known
generator P of Gi. Let the plaintext be M € G;. We also require a hash function ‘H : G; — Gy. The
use of the hash function is necessary only to achieve semantic security.

1. Encryption: Generate r,z’ <« Z,, P’ < G;. Compute @ = %(H(TP) + M), Z=rP+H(rP)+ M,
Y' = 2'P', R = 7Y and U = r?P. The ciphertext is the tuple (P',Y’, R, U, Z,Q). The values
{P’,Y'} can be reused in multiple encryptions to save bandwidth (without any compromise in
security). It is also possible to have P = P’ which saves further bandwidth. We allow the case of
P # P’ to enable signcryption (described later).

2. Decryption: Compute V = 2 R. Check that e(V,V) = e(U, P) and e(Z — V, P') = ¢(Q,Y”). If both
checks pass, accept the ciphertext as valid and compute M = Z —V — H(V).3

Plaintext Awareness: An adversary cannot make ZD accept the ciphertext (P, Y' R, U, Z, Q)
without knowing the corresponding message M = 2'Q — H(rP) such that Y’ = 2’ P’. This follows from
the various Diffie-Hellman assumptions given earlier.

Semantic Security: The above scheme is semantically secure assuming that the DHP is hard and H
is a random oracle. A proof of adaptive security will be given in the full version of this paper. Informally,
given plaintexts { My, M1} and one of the ciphertexts (P, Y, Ry, Uy, Zp, Qp) where b € {0,1}, computing
b is equivalent to one of the following:

1. Decide if M Z Zy — %Rb - H(%Rb) with probability greater than 1/2

2. Decide if (Qy, P, Mo+ H(2R;),Y’) forms a valid DDH tuple with probability greater than 1/2.
We say that (A, B, C, D) forms a valid DDH tuple if e(A, B) = e(C, D).

Signeryption: In the above protocol (P, Y’) acts as the public key of the user in the simulated
identification. If it is a real certified public key then this scheme also serves as a signcryption scheme.
The tuple (V,Q, M) provides non-repudiation; a verifier can check that e(M + H(V), P’) = e(Q,Y").

9.4 Designated Verifier Signcryption

Assume that user ZD is identifying itself to the server S using the blind identification scheme of section 5.
ID can encrypt a random message M € G; intended for S using the challenge R as follows: Let M = z@Q.
Using this relation, ZD computes @Q = %M . It then checks that (R,U) is indeed a valid challenge by
computing V = %R and checking that e(V, V) = e(U, P). If this check passes, it computes Z =V + xQ
as before. The authenticated ciphertext is (Z, Q). An honest verifier S can compute the message M
as follows: First it checks that the identification condition is true (i.e. it checks that (Z, Q) is indeed
an accepting configuration). Then it computes M = Z — rP. Authentication is provided due to the
zero-knowledge property; the verifier is assured that the sender is indeed ZD. It may appear that non-
repudiation as such is not provided because S cannot later prove in a court that the message was sent by
ID since S could very well have generated an accepting transcript without interaction with the prover
by simulating the entire protocol.

3In this case (P’,Y’) acts as the public key of the simulated user. Observe that we have “mixed” the public keys of
different users in the identification. This mixing is justified assuming that the order of G; is prime. Due to this, all elements
of G1 except 0 will have order gq. Alternatively, if P’, Y’ # 0 then it is ensured that the hardness assumptions on (P,Y)
based purely on the order of the cyclic group generated hold equally well for any other pair with the same properties

10



However, note that in most cases when the transcript is simulated, the resulting message M will be
meaningless. If S presents the tuple (M, @) in a court, a judge can verify that that e(M, P) = ¢(Q,Y). If
the message is meaningful and the equality is valid, the judge is convinced that @) was indeed computed
by ZD and not by S. Hence @ also serves as a signature on M.

Remark Even though the message M is encrypted, the signature %M = (@ is not. Suppose the
security requirement is that even the signature must be encrypted. This is easily done by redefining
@ = M +rP. Then we have Z = rP +xQ = rP + M + rzP. In this case the recipient extracts the
message M = @ — rP and the signature S = M = Z — rP — R. To verify a signature we check if
e(S,P)=e(M,Y).

9.5 Deniable Signcryption

In sections 9.3 and 9.4, we presented schemes that allow a user ZD, to send authenticated ciphertexts
to another user, say ZD;, in a way that provides non-repudiation. We note that it is also possible to
send a authenticated and encrypted messages to ZD;, such that it can be later denied by ZD,. As before
we assume that the private key of 7D, is x, corresponding to the public key z,P,. Also, let x; be the
private key of ZDy, corresponding to the public key x P, (possibly with P, = P,).

1. At some point D, asks ID, to identify itself. To do this it generates ry, « Z,4, computes Ry = 1Y,
Uy = rgPa and sends (Ry, Up) to ID,.

2. ID, computes V,, = %Rb and accepts the challenge if e(V,, V) = e(Uy, P,). Using ZD;’s challenge
Ry, ID, can then engrypt a message M, € G; for IDy as follows: ID, generates v, < Zg, sets
Q. = M + 2r, P, and computes Z, =V, + x,Q, as always. It then computes T, = Q, — r, P, and
R, =r,Y, and sends (Z,,T,, R,) as its signcrypted message to ZD,,

3. On receiving (Z,, Ty, Ra), IDy first computes Q, = T, + T%Ra and verifies that (Z,,Q,) is a valid
accepting transcript for ZD,. That is, it checks that e(Z, — rp Py, Pa) = €(Qa,Ys). If this check
passes ZD; computes M, = T, — ﬁRa. The zero knowledge identification property ensures that
IDy will only accept messages that were actually sent by ZD,. Thus, an adversary cannot make it
accept any random message as valid.

We will show that the above scheme allows 7D, to later deny sending the message M,. Firstly note
that M, = Q. — %Ra and Ty, = Q, — x%,Ra' For any given pair (M,, Q.), it is easy to see that ZD; has
the ability to generate (R4, T,). Due to this, there is no evidence left for ZDj, to prove that these values
were actually computed by ZD,,.

Also note that Z, —ry Py = M, + 22,7, Py. Extracting x, M, (which would serve as ZD,’s signature
on M,) using this relation is equivalent to computing z,r, P, from r, P, and x, P, without knowing r, or
Zq. This is a hard problem of the order of the DHP as shown in [8] (cf. aggregate extraction).

9.6 Authenticated Key Agreement

Using the protocol of section 5, authenticated key agreement between any two parties is possible. User
ID, having public key z,P, and private key z, wants to establish a shared key with user ZD; having
public key xp P, and private key x,. The protocol is essentially an extension of the two-round identification
protocol (it is possible that P, = P,). We provide two variants, the first for illustrative purposes.

9.6.1 Three-Round Key Agreement

This protocol requires three rounds (or three message exchanges) and is based on the traditional model
for two-way authentication.

1. To initiate the protocol, ZD, generates r, «+ Z, and computes R, = ,Y}; and U, = 72 Py. Tt sends
<Ra, Ua> to IDb

11



2. IDy computes Vj, = zibRa and verifies that e(Vy, V3,) = e(Uy,, Py). If this test passes, ZD), generates
Qp — G, 1y — Zg, computes Z, = Vi, + 2,Qp and Ry, = rpY,. It sends (Zy, Qp, Rp) to ID,.

3. ID, checks that e(Z, —r, Py, Py) = e(Qp, Yy). If this test passes, ZD, accepts ZD;’s authentication,
computes Z, = ;—‘:Rb =rq.ry P, and sends Z, to ZDy.

4. IDy accepts ID,’s authentication if e(Z,,Ys) = e(Rq,75P,). (In other words, ZD; checks that
(Z4,Yy, Ry, P,) is indeed a valid DDH tuple). After this step, both parties are authenticated to
each other. The shared key can be either r, P, or z,Qp.

In the first three steps, ZD, identifies itself to ZD,. In the fourth step ZD, identifies itself to ZD;
by proving the knowledge of r,, the discrete logarithm of R, to base Y} that was sent in step 1 (since a
correct value Z, simultaneously proves knowledge of z, and r,). An active adversary may still be able to
substitute Rj sent in the second step with a new value R; without detection in the third step where ZD,
accepts ZD;’s authentication. However, this attack is useless. Firstly, observe that the adversary is unable
to make 7D, use a chosen shared key for communication with ZD;. The fourth step ensures that such an
adversary cannot go undetected, since if this substitution attack was carried out, the adversary will not
be able to send a correct value of Z/ as its response to ZD;, which is needed for two-way authentication.
We note that the protocol is still zero-knowledge because a passive adversary is unable to decide if the
authentication was successful after watching the communication. We also observe that it is possible to
combine the first and last steps together as demonstrated in the next variant.

9.6.2 Two-Round Key Agreement

Using the protocol of section 5, a two-round authenticated key agreement is also possible. As before, user
ID, having public key z,P, and private key x, wants to establish a shared key with user ZD; having
public key z, P, and private key x,. The protocol is essentially a proof of ‘knowledge of knowledge’ and
is unconditionally secure under the following scenario: ZD}, proves knowledge of ZD,’s knowledge. That
is, ZD,, initiates by saying “I know z, and r,” and ZD;, replies by saying “I know x;, AND r} if you know
zq and r,”. Let ‘H : G; — Gy be a cryptographic hash function.

1. ID, generates r, < Zq and computes R, = 7Yy, Uy = 2Py and Z, = ro P+ 2, H(R,). It initiates
the protocol by sending (R, U,, Z,) to ID,. Essentially, ZD, simulates the identification protocol
with itself and sends part of the transcript to ZDj.

2. On receiving (R,,U,, Z,) from ID,, ID, computes V}, = x%Ra and Q, = H(R,). It then verifies
that (Ry, U, Za, Vi, Q4) is indeed an accepting transcript of ZD,’s identification. That is, it checks
that e(Z, — Vb, Pa) = €(Qq,Ys) and e(Vy, Vi) = e(U,, Py). If both tests pass ZD; accepts ZD,’s
authentication. If ZD; decides to continue with the process it generates Q, < G; and r, «— Z,. It
then computes Ry, = 1,Y,, Uy = r2P, and Z), = Vi, + rp Py + 2y H(Rp). 1t sends (R, Uy, Zp) to D,
as its response. It also keeps Ky, = rp Py + Vi = 1y Py + 74 Py as the shared key.

3. On receiving (Ry, Uy, Zy), ID,, computes V,, = in and @ = H(Rp) and performs the following
two checks: e(Vg, V) = e(Up, P,) and e(Zy — 1o Py — Vo, Py) = e(Qp,Ys). If both checks pass, it
accepts ZDy’s authentication and keeps Ky = 1o Py + V, = 1y Py + 1o Py as the shared key.

We claim that in the second step, ZD; will accept if and only if ZD, knows r, and z,. To see this,
first note that (Z,, Q,) is a zero knowledge identification proof of ZD,. Due to this, there is no guarantee
that the proof was generated by ZD, (since it could also have been efficiently simulated according to
section 5). However, observe that if this protocol is simulated, the resulting @, will almost certainly
be random. A simulator cannot choose a predetermined value of @, since there appears to be no way
to output an accepting configuration for a specific @, without knowledge of x,. The use of the hash
function additionally ensures that the simulator did not have control even over the random coin tosses
rq. Hence, for this particular instance, we can safely assume that the simulation must have been carried
out by ZD,. The second and third steps of the protocol involve the identification of ZD, to ZD, keeping

12



r, as the random coin tosses of verifier. The need to include R, becomes evident when we observe that
the first message from ZD, does not include any session specific information. Thus, authenticating the
first message alone cannot guarantee key freshness. We use the technique mentioned in [12], section 3.1
and provide freshness via the computation of the session (or ephemeral) key which includes the ‘fresh’
value 7 P, along with the possibly ‘stale’ value r,P,. Due to this, a replay attack is detectable when no
message or a garbled message is received by either parties. A security analysis of this protocol is given
in [13], section VIII. Several other variants of this key agreement protocol are studied in [14]

9.7 On line Credit Card Payments

In this section, we will present a simple on line payment system with some interesting security features.
The protocol requires only one certified key. The seller of a product need not provide a certified key to the
buyer, effectively remaining anonymous. The seller must produce some identification to the credit card
processor or the bank to ensure that the payment is successful. If the buyer notices a disputed transaction
on his credit cart statement, he can ask the bank to reveal the identity of the party who received the
money. If the transaction is not disputed, the seller can remain completely anonymous. Moreover, we
provide the additional advantage of ‘single-use’ transactions, that is after having successfully processed
a payment, the seller cannot later reuse the same information to process another identical payment. We
will assume the identification scheme of section 5 where the buyer is ZD and the seller is S. The protocol
also involves a third party B which could be a bank or a credit card processor. The certified public key
of ID is Y = zP. This key could itself serve as a credit card number. We also use a cryptographic hash
function H; : {0,1}* — G;.

1. The buyer ZD begins by visiting the website of S and initiating a purchase transaction. The details
of the transaction are encapsulated in a request REQ. The tuple (ZD,REQ,Y) is sent to S

2. S generates random r « Z, and computes R = rY = rzP and U = r?P. It also creates a contract
CON containing the payment amount, transaction date, time and other details (though it will
possibly not mention the identity of the seller or the commodity for sale to protect privacy). It
sends (CON, R,U) to ID. It is understood that transactions are accepted as valid by the bank
only for a short specified deadline (say five minutes) from the time mentioned in the contract.

3. On receiving (CON, R,U), ID checks that the contract is correct. It then computes V = %U and
checks that e(V, V) = e(U, P). It this check passes, it computes Q = H1(CON), Z1 =V + zQ and
Zy = xH(Zy1). It sends (Z1, Z3) back to S and saves (CON, R) in its database until it receives its
next credit card statement from the bank. It also keeps a record of S’s reply to the transaction in
case a dispute arises.

4. S computes Q = H1(CON) and verifies that e(Z; —rP, P) = e(Q,Y) and e(Zs, P) = e(H(Z1),Y).
If both checks pass, S forwards the tuple (71, Z2,7,Y,ID,S,CON) as a payment request to the
bank B.

5. On receiving a payment request, B does the same verification as S; that is, it computes @ =
H1(CON) and verifies e(Z1 —rP, P) = e(Q,Y) and e(Z,, P) = e(H(Z;),Y). It also ensures that the
(r,ID) pair has not been previously used by checking its database. Finally, the bank checks the date
and time specified in CON and ensures that it is within the specified expiry period (five minutes)
of the current time. If all checks pass, B accepts this transaction, deducts the amount specified
from ZD’s account, credits that amounts to S’s account, saves the tuple (71, Z5,ZD,S,CON,r) in
its database and returns success to S.

6. The bank’s reply is forwarded to the buyer along with a receipt of a successful transaction.

7. If the bank receives another transaction with the same (r, ZD) pair in the future, it outputs failure.
For security reasons, it also saves the corresponding (S,S8’,r,ZD) in a blacklist where S’ is the
identity of the other seller corresponding to the same pair. This blacklist can be used for further
investigation if necessary.

13



8. Sometime in the future, the bank sends CON in a credit card statement to ZD. If some transaction
is disputed, ZD reports the corresponding (CON, R) back to the bank, along with some evidence
(eg. a transaction receipt with a failure response). The bank can easily trace the disputed seller
S using its database after validating that R = rY".

9.8 Identity Based Cryptography (IBC)

Using the primitives for identification of section 5, any smart card user S can setup Identity Based
Encryption (IBE) and Identity Based Signature (IBS) schemes with a group of smart cards dynamically.
The interesting feature of our scheme is that the private keys can be distributed over an insecure channel.
The infrastructure is roughly as follows: messages for a user ZD can be encrypted using the public key
ID. The private key for decryption is given out by S over an insecure public channel but masked using
the signcryption procedure of 9.3. Only the real user is able to extract the secret key. Before this is
done, however, user ZD must first produce some personal authenticating information (like a passport
photocopy) that can truly establish the identity and is a one-time requirement. This request for a private
key can be sent over an unencrypted channel as long as it can be authenticated; that is, it must be
ensured that the person requesting the key for ZD is indeed ZD. For our purpose, we assume that a
signature is used. The private key of the user & who acts as the KGC for this setup is € Z, and the
corresponding public key is Y = 2P € G;. Let Hy : {0,1}* — Gy be a cryptographic hash function. The
public key of ZD; is implicitly understood to be Q; = H1(ZD;)

1. All users must have a prior certified public key to authenticate its requests to S. Each user ZD;
generates r; < Z, and computes R; = ;Y = r;zP and U; = r?P. ID; then signs R; using its
certified private key and sends (R;,U;) to S over an insecure channel.

2. The KGC S verifies the signatures and thus authenticates the request of users. For each valid
request R; of ZD;, the KGC computes V; = %Ri and verifies that e(V;,V;) = e(U;, P). If this check
passes, it computes Q; = H1(ZD;) and Z; = V; + 2Q; and makes each (Z;,ZD;) tuple public via
an insecure channel.

3. If ID; knows corresponding 7;, he/she can compute the private key xQ; after authenticating it using
the method described in section 9.3. The encryption/decryption can be done exactly as described
in [5] after this step (described next). The zero-knowledge property ensures that only the right user
can compute the private key from Z;.

9.8.1 Identity Based Encryption (IBE)

We briefly describe the identity based encryption scheme here (further details can be obtained from [5]).
Let Hso : G — {0, 1}* be a cryptographic hash function. A random k bit message M for ZD; is encrypted
as follows: generate o «— Z,, compute Q; = H1(ZD;), C1 = M & Ha(e(a®;,Y)) and Cy = aP. The
ciphertext (C7, Cy) is sent to ZD; who decrypts M = Cy @ Ha(e(Ca, 2Q;)).

9.8.2 Identity Based Signatures (IBS)

IN this section, we propose a novel IBS scheme using bilinear pairings. To the best of our knowledge, this
IBS variant has not been proposed before. The setup of the scheme is exactly as the one for the above
IBE scheme. We will use the same hash function H; : {0,1}* +— Gy in this scheme. As before the public
key of ID; is (Q;,Y, P) and the private key is 2Q; where Q; = H1(ZD;). To sign a message M € {0,1}*,
a user ID; generates r «— Z,, computes S = £Q; +7H1(M) and T = rP. The tuple (M, (S,T)) is a valid
message-signature pair. To verify a signature, we check that e(S, P) = e(Q;,Y) - e(H1(M), T).

The security of this scheme is briefly described here and will be further detailed in the full version of
this paper. We use the framework of [15] in our analysis.

1. Euxistential Unforgeability: An adversary’s task is to generate a message-signature pair (M’, (S’,T"))
after querying the signing oracle on n chosen messages M, (1 < j < n), where on each query j, the

14



oracle returns (S;,T}) such that S = 2Q; + r;H1(M;) and T; = r;P. Note that the term zQ); is
fixed for each response and r; is randomly generated. A valid message-signature pair (M’, (S',T"))
implies that e(S’, P) = e(Q;,Y) - e(H1(M'),T") and M’ ¢ {M1, M, ... M,}.

2. Strong Existential Unforgeability: This is a stronger version of the above property. The condition
M’ ¢ {My,M,...M,} is replaced by the condition (M',T") ¢ {(My,T1), (M, To)...(M,,T,)}.

We note that due to the result of [8], extraction of z@Q; from the known information is infeasible if
n is polynomially bounded by the bit-length of g. This implies that if the adversary has the ability to
compute a valid tuple (M’, (S, T")) (according to either of the above definitions), then the adversary also
has the ability to invert the bilinear mapping with respect to a fixed P € ;. This is infeasible according
to [16]

10 Summary

In this paper, we proposed the notion of zero knowledge blind identification. Informally, in such a protocol,
an honest prover reveals only one (intended) bit of information to an honest verifier and reveals less than
that information to a dishonest verifier. In effect, using our scheme, any user can correctly identify to
a random server and a passive adversary cannot learn anything about the outcome of the identification.
Hence we coin the term blind identification. To the best of our knowledge, this blinding property is
unique to our scheme.

The constructions presented in this paper arise from the work on identity based encryption [5], group
signatures [7], aggregate signatures [8], chained signatures [17, 18] and additive zero knowledge proofs [9].
Referring to the definitions of sections 3 and 5, essentially, the security of our protocol relies on the
hardness of deciding if Z = %R + z@ for given P, zP, ), Z and R. Although, this is not a well
studied hard problem like the DHP, we feel reasonably confident that it is computationally intractable.
Additionally, as mentioned in appendix B, if we are willing to sacrifice the zero-knowledge property for a
dishonest verifier, it is possible to completely exclude all references to U in the protocol (specifically, for
the protocol of section 5, the verifier will send only R and the prover will respond with (Z, Q) irrespective
of whether R was randomly generated or not. The verification condition e(V, V) = e(U, P) in the third
step is also excluded and all extensions are modified accordingly)

In section 9, we show how these simple identification primitives can be used for constructing complex
mechanisms like key agreement, digital signatures, encryption and signcryption. As a simple application
of our smart card scheme, we propose a model for on line credit card and cheque transactions. The
protocol can be used in conjunction with the Secure Electronic Transaction (SET) specification or in
a completely different infrastructure. As some other applications, we mention subliminal identification,
designated verifier proofs and multiuser authentication. For optimal security, the primitives for signing are
best implemented in a tamper proof chip supporting elliptic curve point addition and doubling operations.
As observed, all the verification primitives require one or two pairing computations and deal with public
keys only. Consequently, they are not restricted to a secure tamper proof device and can be implemented
on faster processors. We refer the reader to [4] for details on constructing the hash functions used here.

References

[1] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and signature
problems. In Proceedings on Advances in cryptology—CRYPTO 86, pages 186-194, London, UK,
1987. Springer-Verlag.

[2] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard,
editor, CRYPTO, volume 435 of Lecture Notes in Computer Science, pages 239-252. Springer, 1989.

[3] Constantin Popescu. An identification scheme based on the elliptic curve discrete logarithm problem.
2(2):624, 2000.

15



[4]

[13]

[14]
[15]

Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In ASTACRYPT
’01: Proceedings of the Tth International Conference on the Theory and Application of Cryptology
and Information Security, pages 514-532, London, UK, 2001. Springer-Verlag.

Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In CRYPTO
’01: Proceedings of the 21st Annual International Cryptology Conference on Advances in Cryptology,
pages 213—-229. Springer-Verlag, 2001.

Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott. Efficient algorithms for pairing-
based cryptosystems. In CRYPTO ’02: Proceedings of the 22nd Annual International Cryptology
Conference on Advances in Cryptology, pages 354-368, London, UK, 2002. Springer-Verlag.

Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Advances in Cryptology—
CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 41-55. Berlin: Springer-
Verlag, 2004.

Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In Eli Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes
in Computer Science, pages 416-432. Springer, 2003.

Amitabh Saxena and Ben Soh. Authenticating mobile agent platforms using signature chaining
without trusted third parties. In Proceedings of The 2005 IEEE International Conference on e-
Technology, e-Commerce and e-Service (EEE-05), pages 282-285, Hong kong, 2005. IEEE computer
press.

Moses Liskov, Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Adam Smith. Mutually inde-
pendent commitments. Lecture Notes in Computer Science, 2248:385+, 2001.

Jonathan Herzog, Moses Liskov, and Silvio Micali. Plaintext awareness via key registration. Technical
report, MIT Laboratory for Computer Science, February 2003.

Hugo Krawczyk. Hmqv: A high-performance secure diffie-hellman protocol. Cryptology ePrint
Archive, Report 2005/176, 2005.

Amitabh Saxena and Ben Soh. Non-interactive zero-knowledge and applications: Two-round key
agreement. Unpublished Manuscript, 2005.

Amitabh Saxena and Ben Soh. One, two and three pass key agreement protocols using pairings.

Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin and
Jan Camenisch, editors, EUROCRYPT, volume 3027 of Lecture Notes in Computer Science, pages
56-73. Springer, 2004.

Jung Hee Cheon and Dong Hoon Lee. Diffie-hellman problems and bilinear maps. Cryptology ePrint
Archive, Report 2002/117, 2002.

Amitabh Saxena and Ben Soh. One-way signature chaining: A new paradigm for group cryptosystems
and e-commerce. Cryptology ePrint Archive, Report 2005/335, 2005.

Amitabh Saxena and Ben Soh. A mobile agent authentication protocol using signature chaining with
bilinear pairings. Cryptology ePrint Archive, Report 2005/272, 2005.

Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof systems. STAM
J. Comput., 25(1):169-192, 1996.

16



APPENDIX

In this section, we will briefly analyze the security of the single user identification scenario (section 5).
The security of all other extensions (section 9) follows directly from the security of this single user case.
For convenience, we give the protocol once again.

In this protocol, a smart card ZD having secret key x € Z, and public key Y = zP € G; identifies
itself to a server S as follows:

1. ID starts by claiming to know x € Zg, the discrete logarithm of Y € G; to base P.

2. The verifier & generates r < Z,; and computes challenges R = rY and U = r?P. Tt makes (R,U)
public. Typically the challenges should have a very short lifetime.

3. ID computes V = 1R and verifies e(V, V) = e(U, P). If this test passes, ID is ensured that R was
indeed randomly generated. ZD generates ) — Gy and computes Z =V + Q. It sends (Z, Q) as
its proof to S.

4. S accepts if e(Z — rP, P) = ¢(Q,Y).

A Soundness

The soundness property requires that the protocol should be robust in the event of any one participant
being dishonest. The trivial case of both participants being dishonest is ignored.

A.1 Dishonest Prover

Assume that the verifier is honest; that is, R = rzP and U = r2P. Then the task of a dishonest prover
is to output a pair (Z’, Q") without knowledge of = such that e(Z’ — rP) = e(Q’,xP) or in other words
Z' =rP + zQ'. The linear Diffie-Hellman assumption (section 3, number 6) states that this is infeasible
without knowledge of = or r.

A.2 Dishonest Verifier

In this scenario, we assume that S is a dishonest verifier if either (1) R = rY for some r but S does not
know r or (2) There is no r such that R = rY. In the second case, it is easy to see that R ¢ G;. We will
consider each case separately.

(a) Case 2 (R ¢ G1): We know that |G1| = |Gz| = ¢ such that ¢ is a (large) prime. Consequently,
gP = 0 VP € Gy and no element of Gy (other than 0) has an order < ¢. It is obvious that if R is
a valid challenge then R € G;. It may seem necessary to verify that this by checking that ¢R = 0.
However, observe that the validation condition e(2R,1R) = e(U, P) of the third step will hold if
and only if R € G, and U = r?P. Hence, this possibility is ruled out.

(b) Case 1 (R =rY): In this case S does not know r and its goal is to output U corresponding to the
tuple (P, Y, R) such that U = r2P. This is infeasible due to the extended Diffie-Hellman assumption
(see section 3, number 4).

Also note that EDHP < LDHP. This implies that a dishonest verifier has to solve a harder problem
than a dishonest prover. Alternatively, if a dishonest prover cannot cheat then it is ensured that a dis-
honest verifier cannot cheat either. This ensures the dishonest verifier zero-knowledge property.

Remark: The inclusion of U is only necessary for the dishonest verifier zero knowledge property; that is,
to ensure that S actually knows r since otherwise, it may be possible to obtain information about x not
obtainable by an honest verifier (for instance, an adversary could obtain (Z, @) such that Z — %R =zQ
for an R of choice). The use of U ensures that R was indeed randomly generated if the DHP is really

17



hard. Due to this, a dishonest verifier cannot successfully get ZD to accept a challenge as valid. We
note that it may be possible to completely exclude U from the above protocol without compromising the
security (as long as the prover always ensures that R € Gq).

B Honest Verifier and Prover Secrecy

We will model the security against a passive adversary A using the following game. Assume that both
ID and S are honest and participate in n runs of the identification protocol using the same public key
Y = P (here n is a parameter decided by .A). For each protocol run ¢, the participants behave as follows:

1. S acts like a probabilistic honest verifier. It generates r; « Z;, Uy « G1 and b « {0,1}. It
computes R; = r;Y, U{ = r?P and sets U; = Uj. Finally, it sends (R;,U;) to ZD.

2. ID acts like a probabilistic honest prover. It generates @, Z) «— G; and ¢ «— {0,1}. It then
computes 7] = %Ri +xQ; and b = [e(%Ri, %Ri) 2 e(U;, P)]. Finally, it sets Z; = Zéb AND ©) and
responds with (Z;, Q;).

The zero-knowledge property requires that .4 must not gain any useful information about the outcome
of the protocol for any polynomially bounded n. Firstly, A should not be able to decide the outcome of the
verification condition e(iR7 %R) = e(U, P) of the third step of the protocol. Secondly, A should be unable
to decide the outcome of the verification condition e(Z —rP) = e(Q,Y) of the fourth step of the protocol.
In other words, A’s task is to solve one or both of the following problems given (P, zP,r;xP,U;, Q;, Z;)

such that 1 <7 <n:
1. Decide if U; £ r2P for at least one i with probability > 1/2.

2. Decide if Z; Z xQ; + r; P for at least one i with probability > 1/4.

First we will consider the case for one protocol run; that is, n = 1. We see that the first problem is an
instance of the Extended Decisional Diffie-Hellman Problem (EDDHP) (see section 3, number 5) while the
second problem is an instance of the Linear Decisional Diffie-Hellman Problem (LDDHP) (see section 3,
number 7). The extended decisional Diffie-Hellman and the linear decisional Diffie-Hellman assumptions
state that these two instances are independently intractable. However, the two assumptions may not apply
when used together (this is analogous to the claim that zero-knowledge is not preserved under parallel
composition [19]). This scenario does not affect us because of the following two observations: Firstly,
the problem domain (or the information available to the adversary) for both the instances is exactly the
same. Due to this no extra information is given out when the two problems are used in conjunction with
each other. Secondly, note that while LDHP = EDHP, it is almost certain that EDHP # LDHP. It is
therefore very unlikely that EDDHP = LDDHP. If we assume this, we can conclude that the protocol
is secure in a single run as long as both assumptions hold independently of each other. We can then
consider the two separate instances as a single instance of a composition of the two problems (note that
this is only a heuristic proof).

Now consider the case when n > 1. In this case, it is easy to see that one instance of an intractable
decisional problem (i.e. m = 1) implies the intractability of all instances of the same problem (n > 1)
due to the (honest verifier) zero knowledge property assuming that the coin tosses of the prover are truly
random in each protocol run [19]. In other words, all instances of the problem are equivalent as long
as we ensure that no two instances take place simultaneously. This is analogous the the fact that zero-
knowledge is preserved in sequential composition (the same analogy cannot be used to prove intractability
of composite decisional problem for protocols that are not zero knowledge).

18



