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Abstract. Proofs are invaluable tools in assuring protocol implementers
about the security properties of protocols. However, several instances of
undetected flaws in the proofs of protocols (resulting in flawed protocols)
undermine the credibility of provably-secure protocols. In this work, we
examine several protocols with claimed proofs of security by Boyd &
González Nieto (2003), Jakobsson & Pointcheval (2001), and Wong &
Chan (2001), and an authenticator by Bellare, Canetti, & Krawczyk
(1998). Using these protocols as case studies, we reveal previously un-
published flaws in these protocols and their proofs. We hope our analysis
will enable similar mistakes to be avoided in the future.

1 Introduction

Despite cryptographic protocols being fundamental to many diverse se-
cure electronic commerce applications, and the enormous amount of re-
search effort expended in design and analysis of such protocols, the design
of secure cryptographic protocols is still notoriously hard. The difficulty
of obtaining a high level of assurance in the security of almost any new or
even existing protocols is well illustrated with examples of errors found in
many such protocols years after they were published. The many flaws dis-
covered in published protocols for key establishment and authentication
over many years, have promoted the use of formal models and rigorous
security proofs, namely the computational complexity approach and the
computer security approach.

Computer Security Approach. Emphasis in the computer security
approach is placed on automated machine specification and analysis. The
Dolev & Yao [13] adversarial model is the de-facto model used in formal
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specifications, where cryptographic operations are often used in a “black
box” fashion ignoring some of the cryptographic properties, resulting in
possible loss of partial information. The main obstacles in this automated
approach are undecidability and intractability, since the adversary can
have a large set of possible actions which results in a state explosion.
Protocols proven secure in such a manner could possibly be flawed –
giving a false positive result.

Computational Complexity Approach. On the other hand, the com-
putational complexity approach adopts a deductive reasoning process
whereby the emphasis is placed on a proven reduction from the prob-
lem of breaking the protocol to another problem believed to be hard. The
first treatment of computational complexity analysis for cryptography
began in the 1980s [14] but it was made popular for key establishment
protocols by Bellare & Rogaway. In fact, Bellare & Rogaway [4] provided
the first formal definition for a model of adversary capabilities with an
associated definition of security. These human-generated proofs provide
a strong assurance that the security properties of the protocols are satis-
fied. However, it is often difficult to obtain correct proofs of security and
the number of protocols that possess a rigorous proof of security remains
relatively small. Furthermore, such proofs usually entail lengthy and com-
plicated mathematical proofs, which are daunting to most readers [20].
The breaking of provably-secure protocols after they were published is
evidence of the difficulty of obtaining correct computational proofs of
protocol security. Despite these setbacks, proofs are invaluable for argu-
ing about security and certainly are one very important tool in getting
protocols right.

Importance of Specifications and Details. Rogaway [24] pointed
out the importance of robust and detailed definitions in concrete secu-
rity. In fact, specifications adopted in the computer security approach
are expected to be precise (without ambiguity) and detailed, as such
specifications are subjected to automated checking using formal tools.
Boyd & Mathuria [8] also pointed out that it is the responsibility of
the protocol designers and not the protocol implementers to define the
details of protocol specifications. Protocol implementers (usually non-
specialists and/or industrial practitioners) will usually plug-and-use ex-
isting provably-secure protocols without reading the formal proofs of the
protocols [20]. Bleichenbacher [6] also pointed out that important de-
tails are often overlooked in implementations of cryptographic protocols
until specific attacks have been demonstrated. Flaws in security proofs



or specifications themselves certainly will have a damaging effect on the
trustworthiness and the credibility of provably-secure protocols in the real
world.

In this work, we advocate the importance of proofs of protocol security,
and by identifying some situations where errors in proofs arise, we hope
that similar structural mistakes can be avoided in future proofs. We use
several protocols with claimed proofs in the Bellare–Rogaway model as
case studies, namely the conference key agreement protocol due to Boyd
& González Nieto [7], the mutual authentication and key establishment
protocols (JP-MAKEP) due to Jakobsson & Pointcheval [18] and WC-
MAKEP due to Wong & Chan [27]. We also examine an encryption-based
MT authenticator due to Bellare, Canetti, & Krawczyk [2].

In the setting of the reductionist proof approach for protocols, the secu-
rity model comprises protocol participants and a powerful probabilistic,
polynomial-time (PPT) adversary A, where the latter is in control of all
communication between all parties in the model. The original BR93 proof
model was defined only for two-party protocols. In subsequent work, the
model is extended to analyse three-party server-based protocols [5] and
multi-party protocols [9].

Boyd–González Nieto Protocol. An inappropriate proof model envi-
ronment is one of the likely areas where protocol proofs might go wrong.
In the existing proof of the Boyd–González Nieto conference key agree-
ment protocol [7], we observe that the proof model environment has the
same number of parties in the model as in the protocol. This effectively
rules out a multi-user setting in which to analyse the signature and en-
cryption schemes. This shortcoming fails to include the case where A is
able to corrupt a player who does not participate in the particular key
agreement protocol session, and obtains a fresh key of any initiator prin-
cipal by causing disagreement amongst parties about who is participating
in the key exchange.

The attack we reveal on Boyd–González Nieto conference key agreement
protocol is also known as an unknown key share attack, first described
by Diffie, van Oorschot, & Wiener in 1992 [12]. As discussed by Boyd &
Mathuria [8, Chapter 5.1.2], A need not obtain the session key to profit
from this attack. Consider the scenario whereby A will deliver some in-
formation of value (such as e-cash) to B. Since B believes the session key



is shared with A, A can claim this credit deposit as his. Also, a malicious
adversary, A, can exploit such an attack in a number of ways if the es-
tablished session key is subsequently used to provide encryption (e.g., in
AES) or integrity [19].

In the attack on Boyd–González Nieto protocol, A is able to reveal the
key of a non-partner oracle whose key is the same as the initiator princi-
pal, thus violating the key establishment goal. The existence of this attack
means that the proof of Boyd–González Nieto’s protocol is invalid, since
the proof model allows Corrupt queries. Protocols proven secure in a proof
model that allows the “Corrupt” query (in the proof simulation) ought
to be secure against the unknown key share attack, since if a key is to
be shared between some parties, U1, U2, and U3, the corruption of some
other (non-related) player in the protocol, say U4, should not expose the
session key shared between U1, U2, and U3. In the proof simulations of the
protocols on which we perform an unknown key share attack, A does not
corrupt the owner or the perceived partners of the target Test session, but
instead corrupts some other (non-related) player in the protocol that is
not associated with the target Test session or a member of the “attacked”
protocol session.

JP-MAKEP. We also describe an unknown key share attack on the
JP-MAKEP which breaks the reduction of the proof from JP-MAKEP
to the discrete logarithm problem. Similarly to the Boyd–González Nieto
protocol, the proof model allows Corrupt queries for clients, and hence
secure protocols ought to be immune to unknown key share attacks.

WC-MAKEP. An attack against WC-MAKEP is described where an
adversary A is able to obtain a fresh key of an initiator oracle by revealing
a non-partner server oracle sharing the same session key. The proof was
sketchy and failed to provide any simulation.

Encryption-Based Authenticator. In the Bellare–Canetti–Krawczyk
encryption-based authenticator, we demonstrate that an adversary A is
able to use a Session-State Reveal query to find the one-time MAC key
and use it to authenticate a fraudulent message. We identify the problem
(in its proof) to be due to an incomplete proof specification (Session-State

Reveal queries not adequately considered), which results in the failure of
the proof simulation where the adversary has a non-negligible advantage,
but the MAC forger, F , does not have a non-negligible probability of forg-
ing a MAC digest (since it fails). This violates the underlying assumption



in the proof. We also demonstrate how the flaw in this MT authenticator
invalidates the proof of protocols that use the MT-authenticator using
protocol 2DHPE [16] as a case study.

Organization of Paper. Section 2 briefly explains the Bellare-Rogaway
and the Canetti–Krawczyk models. Section 3 revisits the Boyd–González
Nieto conference key agreement protocol, the JP-MAKEP, and the WC-
MAKEP. Previously unpublished attacks on these protocols are demon-
strated and flaws in the existing proofs are revealed. We conclude this sec-
tion by proposing fixes to the protocols. Fixed protocols are not proven
secure, and are presented mainly to provide a better insight into the
proof failures. Section 4 revisits the encryption-based MT-authenticator
proposed by Bellare, Canetti, & Krawczyk [2]. Finally, Section 5 presents
the conclusions.

2 Informal Overview of the Bellare-Rogaway and

Canetti–Krawczyk Models

Throughout this paper, the Bellare & Rogaway 1993 model, 1995 model [4,5],
the Bellare, Pointcheval, & Rogaway 2000 model [3], and the Canetti
& Krawczyk 2001 model [2,10] model will be referred to as the BR93,
BR95 BPR2000, and CK2001 models respectively. Collectively, the BR93,
BR95, and BPR2000 models are known as the Bellare-Rogaway model.

2.1 Bellare-Rogaway Models

In the Bellare-Rogaway model, the adversary, A, is defined to be a prob-
abilistic machine that is in control of all communications between parties
and is allowed to intercept, delete, delay, and/or fabricate any messages
at will. A interacts with a set of Π i

Uu,Uv
oracles (i.e., Π i

Uu,Uv
is defined to

be the ith instantiation of a principal Uu in a specific protocol run and
Uv is the principal with whom Uu wishes to establish a secret key). Let n

denote the number of players allowed in the model, where n is polynomial
in the security parameter k. The predefined oracle queries are shown in
Table 1.

The definition of security depends on the notions of partnership of oracles
and indistinguishability. The definition of partnership is used in the def-
inition of security to restrict the adversary’s Reveal and Corrupt queries
to oracles that are not partners of the oracle whose key the adversary



A Send(Uu, Uv , i, m) query to oracle Πi
Uu,Uv

computes a response according to the
protocol specification and decision on whether to accept or reject yet, and returns
them to the adversary A. If the client oracle, Π i

Uu,Uv
, has either accepted with some

session key or terminated, this will be made known to A.

The Reveal(Uu, Uv, i) query captures the notion of known key security. Any client
oracle, Πi

Uu,Uv
, upon receiving such a query and if it has accepted and holds some

session key, will send this session key back to A.

The Corrupt(Uu, KE) query captures unknown key share attacks and insider

attacks. This query allows A to corrupt the principal Uu at will, and thereby learn
the complete internal state of the corrupted principal. Notice that a Corrupt query
does not result in the release of the session keys since A already has the ability to
obtain session keys through Reveal queries. In the BR95 model, this query also gives
A the ability to overwrite the long-lived key of the corrupted principal with any value
of her choice (i.e. KE).

The Test(Uu, Uv, i) query is the only oracle query that does not correspond to any
of A’s abilities. If Πi

Uu,Uv
has accepted with some session key and is being asked a

Test(Uu, Uv , i) query, then depending on a randomly chosen bit b, A is given either the
actual session key or a session key drawn randomly from the session key distribution.

Table 1. Informal description of the oracle queries

is trying to guess. An important difference between the three Bellare–
Rogaway models is in the way partner oracles are defined (i.e. the def-
inition of partnership). The BR93 model defines partnership using the
notion of matching conversations, where a conversation is defined to be
the sequence of messages sent and received by an oracle. The sequence of
messages exchanged (i.e., only the Send oracle queries) are recorded in the
transcript, T . At the end of a protocol run, T will contain the record of the
Send queries and the responses. Definition 1 gives a simplified definition
of matching conversations.

Definition 1 (BR93 Matching Conversations) Let nS be the max-
imum number of sessions between any two parties in the protocol run.
Πi

A,B and Π
j
B,A are said to be partners if they both have matching con-

versations, where

CA = (τ0,
′ start′, α1), (τ2, β1, α2)

CB = (τ1, α1, β1), (τ3, α2, ∗), for τ0 < τ1 < . . .

Partnership in the BR95 model is defined using the notion of a part-
ner function, which uses the transcript (the record of all SendClient and
SendServer oracle queries) to determine the partner of an oracle. How-
ever, no explicit definition of partnership was provided in the original
paper since there is no single partner function fixed for any protocol. In-
stead, security is defined predicated on the existence of a suitable partner



function. Two oracles are BR95 partners if, and only if, the specific part-
ner function in use says they are.

BPR2000 partnership is defined based on the notion of session identifiers
(SIDs) where SIDs are suggested to be the concatenation of messages
exchanged during the protocol run. In this model, an oracle who has ac-
cepted will hold the associated session key, a SID and a partner identifier
(PID). Note that any oracle that has accepted will have at most one part-
ner, if any at all. Definition 2 describes the definition of partnership in
the BPR2000 model.

Definition 2 (BPR2000 Partnership) Two oracles, Π i
A,B and Π

j
B,A,

are partners if, and only if, both oracles have accepted the same session
key with the same SID, have agreed on the same set of principals (i.e. the
initiator and the responder of the protocol), and no other oracles besides
Πi

A,B and Π
j
B,A have accepted with the same SID.

2.2 Canetti-Krawczyk Model

In the CK2001 model, there are two adversarial models, namely the
unathenticated-links adversarial model (UM) and the authenticated-links
adversarial model (AM). Let AUM denote the adversary in the UM, and
AAM denote the adversary in the AM . The difference between AAM and
AUM lies in their powers. Table 2 provides an informal description of the
oracle queries allowed for both AAM and AUM. Let n denote the number
of players allowed in the model, where n is polynomial in the security
parameter k.

Oracle Πi
Uu,Uv

, upon receiving a Session-State Reveal(Uu, Uv , i) query and if it has
neither accepted nor held some session key, will return all its internal state (including
any ephemeral parameters but not long-term secret parameters) to the adversary.

Session − Key Reveal, Corrupt, and Test are equivalent to the Reveal, Corrupt, and Test

queries in Table 1 respectively.

Send(Uu, Uv , i, m) is equivalent to the Send query in Table 1. However, AAM is re-
stricted to only delay, delete, and relay messages but not to fabricate any messages
or send a message more than once.

Table 2. Informal description of the oracle queries allowed for AAM and
AUM



A protocol that is proven to be secure in the AM can be translated to
a provably secure protocol in the UM with the use of an authenticator.
Definition 3 provides the definition of an autheticator.

Definition 3 (Definition of an Authenticator) An authenticator is
defined to be a mapping transforming a protocol πAM in the AM to a
protocol πUM in the UM such that πUM emulates πAM.

In other words, the security proof of a UM protocol depends on the secu-
rity proofs of the MT-authenticators used and that of the associated AM
protocol. If any of these proofs break down, then the proof of the UM
protocol is invalid. CK2001 partnership can be defined using the notion
of matching sessions, as described in Definition 4.

Definition 4 (Matching Sessions) Two sessions are said to be match-
ing if they have the same session identifier (SIDs) and corresponding
partner identifier (PIDs).

2.3 Definition of Freshness

Freshness is used to identify the session keys about which A ought not
to know anything because A has not revealed any oracles that have ac-
cepted the key and has not corrupted any principals knowing the key.
Definition 5 describes freshness, which depends on the respective notion
of partnership. The following definition of freshness does not incorporate
the notion of forward secrecy, or the notions of session expiry and expo-
sure in the Canetti–Krawczyk model since these notions are not necessary
to explain our attacks.

Definition 5 (Definition of Freshness) Oracle Π i
A,B is fresh (or holds

a fresh session key) at the end of execution, if, and only if, (1) Π i
A,B has

accepted with or without a partner oracle Π
j
B,A, (2) both Π i

A,B and Π
j
B,A

oracles have not been sent a Reveal query (or Session-State Reveal in the
CK2001 model), and (3) A and B have not been sent a Corrupt query.

2.4 Definition of Security

Security in the models is defined using the game G, played between
a malicious adversary A and a collection of Π i

Ux,Uy
oracles for players

Ux, Uy ∈ {U1, . . . , UNp} and instances i ∈ {1, . . . , Ns}. The adversary A
runs the game G, whose setting is explained below:



Stage 1: A is able to send any oracle queries at will.

Stage 2: At some point during G, A will choose a fresh session on which
to be tested and send a Test query to the fresh oracle associated with
the test session. Depending on the randomly chosen bit b, A is given
either the actual session key or a session key drawn randomly from
the session key distribution.

Stage 3: A continues making any oracle queries at will but cannot make
Corrupt or Session-State/Key Reveal queries that trivially expose the
test session key.

Stage 4: Eventually, A terminates the game simulation and outputs a
bit b′, which is its guess of the value of b.

Success of A in G is measured in terms of A’s advantage in distinguishing
whether A receives the real key or a random value. A wins if, after asking
a Test(U1, U2, i) query, where Π i

U1,U2
is fresh and has accepted, A’s guess

bit b′ equals the bit b selected during the Test(U1, U2, i) query. Let the
advantage function of A be denoted by AdvA(k), where

AdvA(k) = 2 × Pr[b = b′] − 1.

The notions of security for entity authentication are client-to-server au-
thentication, server-to-client authentication, and mutual authentication.
An adversary is said to violate client-to-server authentication if some
fresh server oracle terminates with no partner. Similarly, an adversary is
said to violate server-to-client authentication if some fresh client oracle
terminates with no partner. An adversary is said to violate mutual au-
thentication if some fresh oracle terminates with no partner.

Definitions 6, 7, and 8 describes the definition of security for the BR95
model, the BPR2000 model, and both the BR93 and CK2001 models
respectively.

Definition 6 (BR95 Definition of Security) A protocol is secure in
the BR95 model if both the following requirements are satisfied: (1) When
the protocol is run between two oracles Π i

A,B and Π
j
B,A in the absence

of a malicious adversary, both Π i
A,B and Π

j
B,A accept and hold the same

session key. (2) For all probabilistic, polynomial-time (PPT) adversaries
A, AdvA(k) is negligible.

Definition 7 (BPR2000 Definition of Security) A protocol is secure
in the BPR2000 model if both the following requirements are satisfied: (1)



When the protocol is run between two oracles Π i
A,B and Π

j
B,A in the ab-

sence of a malicious adversary, both Π i
A,B and Π

j
B,A accept and hold the

same session key. (2) For all probabilistic, polynomial-time (PPT) adver-
saries A, the advantage that A has in violating entity authentication is
negligible, and AdvA(k) is negligible.

Definition 8 (BR93 and CK2001 Definitions of Security) A pro-
tocol is secure in the BR93 and CK2001 models if both the following re-
quirements are satisfied: (1) When the protocol is run between two oracles
Πi

A,B and Π
j
B,A in the absence of a malicious adversary, both Π i

A,B and

Π
j
B,A accept and hold the same session key, and (2) For all PPT adver-

saries A, (a) If uncorrupted oracles Π i
A,B and Π

j
B,A complete matching

sessions, then both Π i
A,B and Π

j
B,A must hold the same session key, and

(b) AdvA(k) is negligible.

3 Flawed Proofs in the Bellare–Rogaway Model

3.1 Boyd–González Nieto Conference Key Agreement
Protocol

The conference key agreement protocol [7] shown in Figure 1 carries a
claimed proof of security in the BR93 model, but uses a different defi-
nition of partnership than that given in the original model description.
Although this protocol was proposed fairly recently, it has been widely
cited and used as a benchmark. In the protocol, the notation (eU , dU ) de-
notes the encryption and signature keys of principal U respectively, {·}eU

denotes the encryption of some message under key eU , σdU
(·) denotes the

signature of some message under the signature key dU , NU denotes the
random nonce chosen by principal U , H denotes some secure one-way
collision-resistant hash function, and SKU denotes the session key ac-
cepted by U . The protocol involves a set of p users, U = {U1, U2, . . . , Up}.

The initiator, U1, randomly selects a k-bit challenge N1, encrypts N1

under the public keys of the other participants in the protocol, signs the
encrypted nonces {N1}eU2

, . . . , {N1}eUp
and broadcasts these messages

in protocol flows 1 and 2 as shown in Figure 1. The other principals,
upon receiving the broadcast messages, will respond with their identity
and a random nonce. All principals are then able to compute the shared
session key SKUi

= H(N1||N2|| . . . ||Np). The session identifier (SID) in
the protocol is defined to be the concatenation of messages received and



sent. Note that the adversary, A, is allowed to capture and suppress any
broadcasted messages in the network.

1. U1 → ∗ : U = {U1, U2, . . . , Up}, σdU1
(U , {N1}eU2

, . . . , {N1}eUp
)

2. U1 → ∗ : {N1}eUi
for 1 < i ≤ p

3. Ui → ∗ : Ui, Ni

The session key is SKUi
= H(N1||N2|| . . . ||Np).

Fig. 1. Boyd–González Nieto conference key agreement protocol

3.1.1 Unknown Key Share Attack Figure 2 shows the execution
of the Boyd–González Nieto conference key agreement protocol in the
presence of a malicious adversary, A. For simplicity, let U = {U1, U2, U3}
and UA = {A, U2, U3}, which denote two different sessions.

U1 U2 A U3

� �

� �

� � �

� � 	


 � �

 � �

U , σdU1
(U , {N1}eU2

, {N1}eU3
)

{N1}eU2
, {N1}eU3

UA, σdA
(UA, {N1}eU2

, {N1}eU3
) UA, σdA

(UA, {N1}eU2
, {N1}eU3

)

{N1}eU2
, {N1}eU3

{N1}eU2
, {N1}eU3

U2, N2 U3, N3

U2, N2, U3, N3 U2, N2

Fig. 2. Unknown key share attack

In Figure 2, the actions of the entities are as follows:

1. The initiator, U1, encrypts N1 under the public keys of the other
participants in the protocol (i.e., U \ U1), signs the encrypted nonces
{N1}eU2

, {N1}eU3
together with U , and broadcasts these messages in

protocol flows 1 and 2.

2. A malicious adversary, A, intercepts the broadcasted messages sent
by U1; that is, the broadcast messages sent by U1 never reach the
intended recipients, U2 and U3.

– A then signs the intercepted encrypted nonces {N1}eU2
, {N1}eU3

together with UA (instead of U) under A’s signing key



– A now acts as the initiator in a different session and broadcasts
these messages in protocol flows 1 and 2.

3. U2 and U3 upon receiving the broadcasted messages, will reply to A
with their identity and a random nonce.

4. A impersonates U2 and U3 and forwards the messages from U2 and
U3 to U1.

5. U1, U2, and U3 are then able to compute the shared session key
SKUi

= H(N1||N2|, | . . . ||Nn).

Table 3 describes the internal states of players U1, U2, and U3 at the
end of the protocol execution shown in Figure 2. We observe that U1 is
not partnered with either U2 or U3 according to Definition 2, since U1

does not have matching SIDs or agreeing PIDs (Krawczyk termed such
an attack a key-replication attack [22] whereby A succeeds in forcing the
establishment of a session, S1, other than the Test session or its matching
session that has the same key as the Test session. In this case, A can
distinguish whether the Test-session key is real or a random value by
asking a Reveal query to the oracle associated with S1).

U sidU pidU

U1 U , σdU1
(U , {N1}eU2

, {N1}KU3
), {N1}eU2

, {N1}eU3
, U2, N2, U3, N3 {U2, U3}

U2 UA, σdA
(UA, {N1}eU2

, {N1}eU3
), {N1}eU2

, {N1}eU3
, U2, N2, U3, N3 {A, U3}

U3 UA, σdA
(UA, {N1}eU2

, {N1}eU3
), {N1}eU2

, {N1}eU3
, U2, N2, U3, N3 {A, U2}

Table 3. Internal states of players U1, U2, and U3

U1 believes that the session key SKU1 is being shared with U2 and U3,
but U2 (and U3 respectively) believes the key SKU2 = H(N1||N2||N3) =
SKU3 = SKU1 is being shared with A and U3 (and U2 respectively),
when in fact, the key is being shared among U1, U2, and U3. However,
SKU1 = SKU2 = SKU3 = H(N1||N2||N3). Although the adversary A
does not know the value of the session key (since A does not know the
value of N1), A is able to send a Reveal query to the session associated
with either U2 or U3 and obtain SKU2 = H(N1||N2||N3) = SKU3 , which
has the same value as SKU1 . Hence, the Boyd–González Nieto conference
key agreement protocol shown in Figure 1 is not secure in the BR93 model
since the adversary A is able to obtain the fresh session key of the initiator
U1 by revealing non-partner oracles of U1 (i.e., U2 or U3), in violation of
the security definition given in Definition 8.



3.1.2 An Improved Conference Key Agreement Protocol It
would appear that by changing the order of the application of the sig-
nature and encryption schemes, the attack shown in Figure 2 can be
avoided. At a first glance, however, this may appear to contradict the
result of An, Dodis, & Rabin [1] that no matter what order signature and
encryption schemes are applied, the result can still be secure. A closer
inspection reveals that our observation actually supports the findings of
An et al., since the protocol operates in a multi-user setting. Although
An et al. found that signature and encryption schemes can be applied in
either order in the two user setting, they found some further restrictions
in the multi-user setting. These restrictions are that the sender’s identity
must be included in every encryption and the recipient’s identity must
be included in every signature. In this case, swapping the order of the
encryption and signature schemes happens to cause the protocol to fulfil
these requirements.

An alternative way to prevent the attack is to include the sender’s identity
in each encryption and also the session identifier, sid, in the key deriva-
tion function. We use the same construct for sid (i.e., the concatentation
of all messages received) as used by Boyd & González Nieto. In the im-
proved protocol, the adversary A will not be able to “claim” ownership
of the encrypted message {N1, U1}eUi

since the identity of the initiator is
included in the encryption. Since the construct of the session key in the
improved protocol comprises the associated sid, a different sid will imply
a different session key. Hence, the attack shown in Figure 2 will no longer
be valid against this improved protocol. Figure 3 describes the improved
protocol.

1. U1 → ∗ : U = {U1, U2, . . . , n}, σdU1
(U , {N1, U1}KU2

, . . . , {N1, U1}KUn
)

2. U1 → ∗ : {N1, U1}eUi
for 1 < i ≤ n

3. Ui → ∗ : Ui, Ni

sid = U||σdU1
(U , {N1, U1}KU2

, . . . , {N1, U1}KUn
)||{N1, U1}eUi

||Ui||Ni

The session key is SKUi
= H(N1||sid).

Fig. 3. Improved Boyd–González Nieto conference key agreement proto-
col

3.1.3 Limitations of Existing Proof In the existing proof, the se-
curity of the protocol is proved by finding a reduction to the security of



the encryption and signature schemes used. The number of protocol par-
ticipants in the proof simulation, p, is assumed to be equal to the number
of players allowed in the model, n, where n is polynomial in the security
parameter k. In its reductionist approach, the proof assumes that there
exists an adversary A who can gain a non-negligible advantage, AdvA(k),
in distinguishing the test key from a random one. An attacker is then con-
structed that uses A to break either the underlying encryption scheme or
the signature scheme.

In the context of the attack shown in Figure 2, assume that the num-
ber of protocol participants in the proof simulation is three. The proof
then assumes that the number of parties in the model is also three. How-
ever, in order to carry out the attack, we have to corrupt a 4th player
(i.e., U4, an outsider as shown in Figure 4) to obtain the signature key of
U4.

PSfrag replacements

U1 U2, U3 AU4

Insiders

Outsider

Fig. 4. Insiders vs outsider

In the proof simulation of the protocol execution shown in Figure 2, A
corrupts U4, an outsider in the target session, and assumes U4’s iden-
tity. Since U4 does not exist in the model assumed by the proof, the at-
tacker against the encryption and signature schemes cannot simulate the
Corrupt(U4) query for A and the proof fails (since although A succeeds,
it cannot be used to break either the encryption or signature schemes).
Our observation is consistent with the above results of An et al., which
highlight the underlying cause of the proof breakdown – the proof envi-



ronment effectively did not allow a multi-user setting in which to analyse
the signature and encryption schemes.

3.2 Jakobsson–Pointcheval MAKEP

Figure 5 describes the published version of JP-MAKEP [18], which was
designed for low power computing devices1. JP-MAKEP carries a claimed
proof of security in the BR93 model but uses the notion of SIDs in
the definition of partnership. There are two communicating principals
in MAKEP, namely the server B and the client of limited computing re-
sources, A. The security goals of the protocol are mutual authentication
and key establishment between the two communicating principals. A and
B are each assumed to know the public key of the other party (i.e., gxB

and gxA respectively).

Client A (xA, gxA) Server B (xB, gxB )

a, t ∈R Zq, c = ga, T = gt, K = (gxB )a

r = H1(T, gxB , c, K), A′ = H2(g
xB , c, K)

IDB , c, r
−−−−−−−→ K = cxB , A = H2(g

xB , c, K)

A′ ?
= A

A, e
←−−−−−−− 0 ≤ e < 2k

d = t− exA mod q
IDA, d
−−−−−−−→ r

?
= H1(g

d(gxA)e, gxB , c, K)

sid = (IDB, c, r, A, e, IDA, d) sid = (IDB, c, r, A, e, IDA, d)

sk = H0(g
xB , c, K) sk = H0(g

xB , c, K)

Fig. 5. Jakobsson–Pointcheval MAKEP

3.2.1 Unknown Key Share Attack Figure 6 depicts an example
execution of JP-MAKEP in the presence of a malicious adversary A.
At the end of the attack, B believes he shares a session key, skBA =
H0(g

xB , c,K), with the adversary A, when in fact the key is being shared
with A (i.e., unknown key share attack). A and B are not partners since
they have different SIDs, sidBA = (IDB , c, r, A, e, IDA , d−exA mod q) 6=
sidAB , and different perceived partners (i.e., PIDA = A and PIDB = A).

1 The original version appeared in the unpublished pre-proceedings of Financial
Crypto 2001 with a claimed proof of security in the BR93 model. Nevertheless, a
flaw in the protocol was discovered by Wong & Chan [27]. In this published version,
the flaw found by Wong & Chan in the original version has been fixed.



A (xA, gxA) A (xA, gxA) B (xB, gxB )
IDB, c, r
−−−−−−−→

IDB, c, r
−−−−−−−→

A, e′ = 0
←−−−−−−− Fabricate

A, e
←−−−−−−−

IDA, d = t
−−−−−−−→ Fabricate

IDA, d− exA mod q
−−−−−−−→

r
?
= H1(g

d−exA(gxA)e, gxB , c, K)

sidBA = (IDB, c, r,A, e, IDA, d− exA mod q)

sidAB = (IDB , c, r, A, e′, IDA, d) 6= sidBA

skAB = H0(g
xB , c, K) skBA = H0(g

xB , c, K)

Fig. 6. Unknown key attack on Jakobsson–Pointcheval MAKEP

From Figure 6, we observe that A has terminated the protocol without
any partners, in violation of the server-to-client authentication goal. On
the other hand, the server, B, has terminated the protocol with the ad-
versary, A, as its partner. Hence, the client-to-server authentication is not
violated. Consequently, JP-MAKEP is not secure since the adversary is
able to obtain a fresh session key of A by revealing a non-partner oracle
of A (i.e., an oracle of B), in violation of the security definition given in
Definition 8. A fix for JP-MAKEP is to change 0 ≤ e < 2k in the protocol
specification to 0 < e < 2k.

3.2.2 Flaws in Existing Proof In the proof simulation of the proto-
col, let P be another client where P 6= A,B. P is clearly the “outsider”
in the target session of Figure 6 that A is attacking. A then corrupts
P , the outsider, and assumes P ’s identity. This is allowed in the exist-
ing proof [18, Lemma 3] for the server-to-client authentication, since it is
claimed that the JP-MAKEP provides partial forward-secrecy whereby
corruption of the client may not help to recover the session keys.

The proof assumes that the probability of A violating the server-to-client
authentication is negligible. In the context of the attack shown in Figure 6,
A managed to violate the server-to-client authentication by corrupting a
non-partner player, P . By violating the server-to-client authentication, A
is then able to distinguish a real key or a random key by asking a Reveal

query to a non-partner server oracle of A. This violates the server-to-
client authentication with non-negligible probability. The discrete loga-
rithm breaker ADL (which is constructed using A) is unable to obtain
a non-negligible probability of breaking the discrete logarithm problem,



contradicting the underlying assumption in the proof. Consequently, the
proof simulation fails (the result of Reveal and Corrupt queries were not
adequately considered in the simulation).

3.3 Wong–Chan MAKEP

Figure 7 describes WC-MAKEP [27], which was proposed as an improve-
ment to the original unpublished version of JP-MAKEP. Note that Fig-
ure 7 describes the corrected version of WC-MAKEP, where the compu-
tation of σ = (rA ⊕ rB) by A is replaced by σ = (rA ⊕ rB)||IDB .

A (a, ga) B (SKB, PKB)

rA ∈R {0, 1}k, x = {rA}PKB

b ∈R Zq \ {0}, β = gb CertA, β, x
−−−−−−−→ Decrypt x

σ = (rA ⊕ rB)||IDB

y = aH(σ) + b mod q
{rB, IDB}rA←−−−−−−− rB ∈ {0, 1}k

SKAB = H(σ)
y

−−−−−−−→ gy ?
= (ga)H(σ)β, SKBA = H(σ)

Fig. 7. Wong–Chan MAKEP

3.3.1 A New Attack Figure 8 depicts an example execution of WC-
MAKEP, where at the end of the protocol execution, A and B accept
with the same session key, SKAB = H(σ) = SKBA.

A A B

CertA, β, x
−−−−−−−→ Fabricate message

CertA, β · ge, x
−−−−−−−→

{rB , IDB}rA←−−−−−−−
{rB , IDB}rA←−−−−−−−

y
−−−−−−−→ y′ = y + e mod q gy′ ?

= (ga)H(σ)(β · ge)

SKAB = H(σ)
y′

−−−−−−−→ SKBA = H(σ)

Fig. 8. Attack on Wong–Chan MAKEP

However, according to Definition 1, both A and B are not partners as B’s
replies are not in response to genuine messages sent by A (i.e., both A and



B will not have matching conversations given in Definition 1). Since two
non-partner oracles, ΠA,B and ΠB,A, accept session keys with the same
value, the adversary A can reveal a fresh non-partner oracle, ΠB,A, and
find the session key accepted by ΠA,B. This violates Definition 8. Both
oracles of A and B have terminated the protocol without any partners,
in violation of the mutual authentication goal. WC-MAKEP, therefore, is
insecure in the BR93 model since the attack outlined in Figure 8 shows
that both the key establishment and mutual authentication goals are
violated.

3.3.2 Preventing the Attack A possible fix to WC-MAKEP is to
change the construction of the session key to SK = H(A,B, β, x, y, σ).
The inclusion of the sender’s and responder’s identities and messages
(β, x, y) in the key derivation function effectively binds the session key
to all messages sent and received by both A and B [11]. If the adversary
changes any of the messages in the transmission, the session key will also
be different. Intuitively, the attack shown in Figure 8 will no longer be
valid against WC-MAKEP.

3.3.3 Flaws in Existing Proof The existing (sketchy) proof fails to
provide a proof simulation. In the absence of a game simulation in the
existing proof, we may only speculate that the proof fails to adequately
consider the simulation of Send and Reveal queries (in the same sense as
outlined in Section 3.2.2).

In the flaws in the AMP protocol [23] and EPA protocol [17] revealed
by Wan & Wang [26], both proofs fail to provide any proof simulations.
These examples highlight the importance of detailed proof simulations,
as the omission of such simulations could potentially result in protocols
claimed to be secure being, in fact, insecure.

4 Flaw in the Proof of an Encryption-Based

MT-Authenticator

In this section, we reveal an inadequacy in the specification of the encryp-
tion based MT-authenticator proposed by Bellare, Canetti, & Krawczyk [2]
and identify a flaw in its proof simulation. We then demonstrate with an
example protocol (the protocol 2DHPE [16]) how the flaw in the proof of
the encryption-based MT-authenticator results in the violation of the key
establishment goal in the protocol 2DHPE where a malicious adversary



is able to learn a fresh session key. The attack we reveal on the protocol
2DHPE also applies to protocol 14 that appears in the full version of [15].
Surprisingly, the inadequacy in the specification was not spotted in the
proof simulation of the MT-authenticator, and has not previously been
spotted in other protocols [15,16] using this MT-authenticator.

We may speculate that if protocol designers fail to spot this inadequacy
in the specification of their protocols, the protocol implementers are also
highly unlikely to spot this inadequacy until specific attacks have been
demonstrated, as suggested by Bleichenbacher [6].

Having identified the flaw in the proof of the MT-authenticator, we pro-
vide a fix to the MT-authenticator specification. As a result of this fix,
protocols using the revised encryption based MT-authenticator will no
longer be flawed due to their use of this MT-authenticator. The notation
used throughout this section is as follows: the notation {·}KU

denotes an
encryption of some message m under U ’s public key, KU , and MACK(m)
denotes the computation of MAC digest of some message m under key
K.

4.1 Bellare–Canetti–Krawczyk Encryption-Based
MT-Authenticator

Figure 9 describes the encryption based MT-authenticator, which is based
on a public-key encryption scheme indistinguishable under chosen-ciphertext
attack and the authentication technique used by Krawczyk [21]. Note
that the specification of the encryption-based MT-authenticator does not
specify the deletion of the received nonce vA (incidentally, vA is also the
one-time MAC key) from B’s internal state before sending out the last
message.

A B

Choose nonce vA

sid, m
←−−−−−−− Choose message m

sid,m, {vA}KB−−−−−−−→ Decrypt {vA}KB

Verify MAC vA
(m, A)

sid, m,MAC vA
(m, A)

←−−−−−−− Compute MAC vA
(m, A)

Fig. 9. Bellare–Canetti–Krawczyk encryption-based MT-authenticator



4.2 Flaw in Existing Proof of MT-Authenticator

In the usual tradition of reductionist proofs, the existing MT-authenticator
proof [2] assumes that there exists an adversary A who can break the MT-
authenticator, and an encryption-aided MAC forger, F is constructed us-
ing such an adversary A against the unforgability of the underlying MAC
scheme. Subsequently, the encryption-aided MAC forger, F , can be used
to break the encryption scheme. F who has access to a MAC oracle, is
easily constructed as follows:

– guess at random an index i,

– for all but the i-th session, generate a key vk and answer queries as
expected,

– if A calls a Session-State Reveal2 on any session other than the i-th
session, the response can easily be simulated,

– if A calls a Session-State Reveal on the i-th session, F aborts.

The assumption is that if A has a non-negligible advantage against the
underlying protocol, then F has a non-negligible probability of forging a
MAC digest.

Consider the scenario shown in Figure 10. When A asks for the one-
time MAC key (i.e., vk) with a Session-State Reveal query, it is perfectly
legitimate since this session with SID of sidj is not the i-th session with
SID of sidi. Recall that sessions with non-matching SIDs (i.e., sidi 6= sidj)
are non-partners.

Clearly, F is unable to answer such a query since vA is a secret key (note
that the MAC oracle to which F has access is associated with vA, but F
does not know vA). Hence, the proof simulation is aborted and F fails.
Consequently, F does not have a non-negligible probability of forging a
MAC digest (since it fails) although A has a non-negligible advantage
against the security of the underlying protocol, in violation of the under-
lying assumption in the proof.

We note that in a later independent yet related work by Tian & Wong [25],the
same flaw in the proof of the encryption-based MT-authenticator de-
scribed in Figures 9 and 10 is discovered.

2 Note that in the original paper of Bellare, Canetti, & Krawczyk [2], a Session-State

Reveal is known as a Session-Corruption query.



A A B

Intercept
sidj , m
←−−−−−−−

sidi, m
′

←−−−−−−− Fabricate

sidi, m
′, {vA}KB−−−−−−−→ Intercept

Fabricate
sidj , m, {vA}KB−−−−−−−→

sidj , m,MAC vA
(m, A)

←−−−−−−−

Session−State Reveal(sidj)
−−−−−−−→

sidi, m
′,MAC vA

(m′, A)
←−−−−−−− Fabricate

vA←−−−−−−−

Fig. 10. Execution of encryption-based MT-authenticator in the presence
of a malicious adversary, A

4.3 Proposed Fix to the Encryption-Based MT-Authenticator

In this section, we provide a fix to the encryption-based MT-authenticator
by requiring that the party concerned delete the received nonce from its
internal state before sending out the MAC digest computed using the
received nonce. With the fix, the adversary will not be able to obtain the
value of vA using a Session-State Reveal query. Hence, in the proof of the
security of the MT-authenticator, F will be able to answer such a query
because F is no longer required to return the value of vA. Therefore, the
attack shown in Figure 10 will no longer be valid, since A will no longer
be able to obtain the value of vA and fabricate a MAC digest.

4.4 An Example Protocol as A Case Study

Figure 11 describes a password-based protocol 2DHPE due to Hitchcock,
Tin, Boyd, Gonzalez-Nieto, & Montague [16]. Using the protocol 2DHPE
as an example, we demonstrate that as a result of the flaw in the proof of
the encryption-based MT-authenticator, the proof of protocol 2DHPE is
also invalid. In the example protocol, both A and B are assumed to share
a secret password, πA,B, and the public keys of both A and B (i.e., KA

and KB respectively) are known to all participants in the protocol. The
protocol uses the encryption-based MT-authenticator to authenticate the
message B, sid, gy from B.

Figure 12 describes an example execution of protocol 2DHPE in the pres-
ence of a malicious adversary A (in the UM). We assume that A has a



A (πA,B) B (πA,B)

x ∈R Zq, vA ∈R {0, 1}k
A, sid, gx, {vA}KB−−−−−−−→ y ∈R Zq

v′
A = DdB

({vA}KB
), NB ∈R {0, 1}k

SKA,B = (gy)x
B, sid, gy, NB ,MAC v′

A
(B, sid, gy, A)

←−−−−−−−

sid, {A, sid, gx, NB , πA,B}KB−−−−−−−−−−−−−−−−→ SKB,A = (gx)y

Fig. 11. Hitchcock, Tin, Boyd, González Nieto, & Montague (2003) pro-
tocol 2DHPE

shared password with B, πA,B. At the end of the protocol execution shown
in Figure 12, oracle Πsid

A,B has accepted a shared session key SKA,B = gxz

with Πsid
B,A. However, such an oracle (i.e., Πsid

B,A) does not exist. By send-

ing a Session-State Reveal query to oracle Π
sidA
B,A , A learns the internal

state of Π
sidA
B,A , which includes v′A. With v′A, A can fabricate and send a

MAC digest to A. Hence, the adversary is able to obtain a fresh session
key of Πsid

A,B (i.e., SKA,B = gxz) since A knows z (in fact, z is chosen by
A).

A A B

A, sid, gx, {vA}KB−−−−−−−→
A, sidA, gx, {vA}KB−−−−−−−→ v′

A = DdB
({vA}KB

)

B, sidA, gy, NB ,MAC v′
A

(B, sid, gy, A)
←−−−−−−−

Session − State Reveal(B, sidA)
−−−−−−−→

B, sid, gz, NB ,MAC v′
A
(B, sid, gz, A)

←−−−−−−−
v′

A←−−−−−−−

sid, {A, sid, gx, NB , πA,B}KB−−−−−−−→

SKA,B = gxz

Fig. 12. Execution of protocol 2DHPE in the presence of a malicious
adversary

If the encryption-based MT-authenticator requires B to delete the re-
ceived nonce v′A from B’s internal state before sending out message 3,
then A will not be able to obtain the value of v ′

A with a Session-State

Reveal query and fabricate MAC v′
A
(B, sid, gy , A). Protocol 2DHPE will,

therefore, be secure.



5 Conclusion

Through a detailed study of several protocols and an authenticator with
claimed proofs of security, we have concluded that specifying correct com-
putational complexity proofs for protocols remains a hard problem. We
have identified three areas where protocol proofs are likely to fail; namely

– an inappropriate proof model environment,

– Send, Reveal and Corrupt queries not adequately considered in the
proof simulations, and

– omission of proof simulations.

We also observe that certain constructions of session keys may contribute
to the security of the key establishment protocol. This observation sup-
ports the findings of recent work of Choo, Boyd, & Hitchcock [11], who
describe a way of constructing session keys, as described below:

– The identities and roles of the participants to provide resilience against
unknown key share attacks and reflection attacks since the inclusion of
the identities of both the participants and role asymmetry effectively
ensures some sense of direction. If the role of the participants or the
identities of the (perceived) partner participants change, the session
keys will also be different.

– The unique SIDs ensure that session keys will be fresh. If SIDs are
defined as the concatenation of messages exchanged during the pro-
tocol execution, messages altered during the transmission will result
in different session keys. This prevents the key replicating attack [22]
in the Bellare–Rogaway and Canetti–Krawczyk models.
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