
Burmester-Desmedt Tree-Based Key Transport
Revisited: Provable Security without Broadcast

Jens-Matthias Bohli1, Maŕıa Isabel González Vasco2 and
Rainer Steinwandt3

1 IAKS, Arbeitsgruppe Systemsicherheit Prof. Beth, Fakultät für Informatik,
Universität Karlsruhe, 76128 Karlsruhe, Germany;

{bohli,steinwan}@ira.uka.de
2 Área de Matemática Aplicada, Universidad Rey Juan Carlos, c/ Tulipán, s/n,

28933 Madrid, Spain;
migonzalez@escet.urjc.es

3 Dept. of Mathematical Sciences, Florida Atlantic University,
777 Glades Road Boca Raton, FL 33431 USA;

rsteinwa@fau.edu

Abstract. A tree-based key transport protocol is presented which can
be seen as a generalizing variant of the star- and tree-based protocols
proposed by Burmester and Desmedt at EUROCRYPT ’94. Our scheme
does not rely on the availability of globally verifiable signatures or arbi-
trary point-to-point connections, and its security against active adver-
saries is proven in the standard model under the Decision Diffie Hellman
assumption.

1 Introduction

Group key establishment protocols allow n ≥ 2 principals to agree upon a
common secret key (referred to as the session key) for private communi-
cation. Differing from group key agreement protocols, group key transport
protocols are key establishment protocols in which a single principal fixes
the session key, which is thereafter sent to all the rest. This distinguished
participant is usually referred to as the leader.

At EUROCRYPT ’94, Burmester and Desmedt [1] proposed two key
transport protocols based on a star and a tree configuration, respec-
tively. In the star-based scheme, the leader has direct communication
with all other principals, whereas the latter cannot communicate directly
amongst themselves. In the tree-based scheme, the principals’ communi-
cation channels are represented by a binary tree, rooted by the leader.
Thus, in both cases the protocol can be described through a graph, where
principals are viewed as nodes and edges represent direct communication
channels. Also, both protocols consist of two basic steps: initially, each



principal generates his ephemeral secret key-public key Diffie Hellman
pair, which he uses for carrying out a Diffie Hellman key exchange with
each of his adjacent principals. In a second step, the session key is gener-
ated by the leader and transported through the network to each principal.
In this transport, the session key is hidden at each edge via the agreed
ephemeral keys of the corresponding incident nodes.

Unlike many more recent proposals for key establishment [2, 3], the
mentioned two protocols do not rely on arbitrary point-to-point connec-
tions among the principals. Unfortunately, in [1] security proofs are not
included, and so far these proposals have not been put into a modern
framework for analyzing key establishment schemes, say along the lines
of [4, 5, 2]. As having available only limited network connections imposes
additional limitations and difficulties on a key establishment scheme, e. g.,
in defining session identifiers, a lack of such a formal treatment is rather
unfortunate.

In this contribution we introduce a generalization of the mentioned
two protocols and give a security proof in the standard model based on the
Decision Diffie Hellman (DDH) assumption. Here ‘generalization’ means
that we consider the situation in which the communication graph can ac-
tually be any tree, e. g. a spanning tree in an arbitrary connected network.
Also, we do not make use of a distinguished principal acting as leader. Our
protocol can not be seen as a centralized group key distribution scheme
(see [6] for an updated definition), as in our proposal any of the principals
can start a key transport among an authorized set of connected princi-
pals and generate the corresponding key. This somewhat more flexible
point of view allows, for instance, to handle hierarchically organized net-
works, where keys may either be established within a subnetwork (e. g.,
geographically or organizationally defined) or across several hierarchies.

The main motivation for our construction is that indeed group com-
munication applications often aim at transmitting data using minimum
resources. Given a set of n principals, at least n−1 direct connections are
required for constructing a communication network among all of them.
Such a minimal network is thus a tree (i. e., an acyclic connected graph),
and the star and tree configurations considered in [1] can be taken for
special cases.

We consider static groups only, that is, we do not deal with the issue
of updating agreed keys when principals leave or join. Also, we do not
explore the effect of corrupted insiders.4 However, we decided to explicitly

4 In fact, in our setting where neither global authentication nor a fully connected
network is assumed, corrupted insiders are quite powerful.

2



take into account the following issues which are often taken for granted
in proposals for key establishment schemes:

1. It is not assumed that principals know from some protocol-external
application already that they want to agree on a key. Instead, the
party initiating the key establishment has to inform the other involved
parties within the protocol.

2. Besides agreeing on a common key, also a common (session) identifier
for this key is to be constructed by the protocol so that applications
can later refer to the established session key.

As the security goals of [7] suggest, our protocol will include key confir-
mation. Indeed, for a group key establishment protocol key confirmation
seems to be more desirable than in the two participant case. While for two
principals a failure in the key establishment resembles a network failure
in the application protocol, in a group key establishment a situation can
arise where only a subset of the intended principals share a common key
what can be a threat at the application level.

Our protocol requires O(n) rounds of communication but for n � 2
needs significantly less messages than constant round protocols like [2].
Under the Decision Diffie Hellman assumption it achieves both provable
(semantic) security and perfect forward secrecy. Also in the case of active
adversaries we decided to do without signatures, as in some applications
public verification keys may not be globally available. Instead, we rely
on the availability of authenticated links between neighboring nodes in
the tree, which are implemented by shared secret keys between neighbors
exclusively. We base our proof on a model close to [5]. For more clarity
we introduce a different notion of correctness and can thereby simplify
the definition of partnering.

To avoid ambiguities, in the next section we recall some details of the
underlying security model. Thereafter, in Section 3 a basic version of our
group key establishment protocol is explained and proven secure against
passive adversaries. Finally, Section 4 discusses the active case.

2 Underlying Security Model

For exploring the security of the tree based key transport protocol dis-
cussed in the sequel, we essentially follow the approach of Bresson et al.
[5] and of Katz and Yung [2], both building on [8, 9, 4]. Although there are
clear limitations of this approach (e. g., no malicious insiders are consid-
ered), we think it allows a convenient formalization of important security

3



aspects. In [4] session identifiers are introduced for defining partnering,
though in many subsequent versions of the model (cf. [2, 5]) slight variants
of the definition of partnering are given. Obviously, restrictive definitions
of partnering allow for more attacks. On the other hand when using a
lenient definition one should make the point that several attacks are ex-
cluded, as all oracles that know the session key may be partnered. The
latter may severely limit the practical relevance of a security proof. We
decided to give a very simple definition of partnering, which together with
our definitions of correctness and freshness yields a convenient basis for
security proofs. The main ingredients of our security model are as follows.

Participants. We consider a fixed set of (potential) protocol partici-
pants, P = {U1, . . . , Un}, which are modeled as probabilistic polynomial
time (ppt) interactive Turing machines. Further on, we assume the par-
ticipants in P to be connected through a tree-shaped communication net-
work where all communication channels can be used in both directions.
In other words, P is the set of vertices of an undirected tree, whose edges
represent the available communication channels.

Each protocol participant U can execute polynomially many protocol
instances, usually referred to as oracles Π i

U (i = 1, 2, . . . ) in parallel, and
messages exchanged throughout the protocol must always be addressed to
a specific instance. Intuitively, the oracles Π i

U can be taken for processes
executed by U . Every oracle Π i

U has assigned the variables statei
U , sidi

U ,
pidi

U , ski
U , termi

U , usedi
U and acci

U :

usedi
U indicates whether this oracle is or has been used for a protocol

run;
statei

U keeps the state information during the protocol execution;
termi

U shows if the execution terminated;
sidi

U denotes the unique session identifier, and will act as a name for the
key;

pidi
U stores the set of identities of those principals that Π i

U aims at
establishing a key with—including U himself;

acci
U indicates if the protocol instance was successful, i. e. the principal
accepted the session key;

ski
U stores the session key once it is accepted by the oracle Π i

U . Before
acceptance, it stores a distinguished null value.

For more details on the usage of the variables see [4]. As no malicious
insiders are considered, we assume an oracle Π i

U must accept the session
key constructed at the end of the corresponding protocol instance if no

4



deviation from the protocol specification takes place. Thus, clearly each
sidi

U must uniquely determine a session key ski
U and only principals in pidi

U

may have accepted (at most) one key with the session identifier sidi
U .

Partnering. Two oracles Π i
U and Πj

U ′ are partnered if they have both
accepted (acci

U = accj
U ′= 1) and hold the same session identifier sidi

U =
sidj

U ′ .

Communication network. We assume the communication network to
be publicly known and the communication to be organized in rounds. One
round consists of the messages that can be sent in parallel and within
each round the exact order of message delivery can be fixed arbitrarily.
To avoid technical problems like one Turing machine potentially being
able to measure the execution time of other parties, we assume that a
suitable scheduling mechanism ensures that only one Turing machine is
active at a time.

Initialization. In case of an active adversary, before the actual key trans-
port protocol is executed for the first time, an initialization phase takes
place. Here each neighboring pair of principals (U, V ) ∈ P2 (U 6= V ) is
equipped with a uniformly at random chosen common secret key SK{U,V }
allowing to implement authenticated communication between U and V .
An active adversary is not able to influence this initialization phase.

A key motivation to use symmetric keys for implementing authenti-
cation are use cases where the available infrastructure is limited and no
PKI is available. Even if we cannot assume that principals have access
to signature verification keys of all other principals, it may be feasible to
implement ‘local authentication’ with symmetric keys.

Adversarial model. When dealing with an active adversary, we may
assume she has full control over the communication network, i. e., she can
eavesdrop, delay, suppress, and send messages at will. A passive adversary
does not interfere with the communication among the parties and thus in
her presence all sent messages are delivered as specified in the protocol.

To make the adversary’s capabilities explicit, we assume she can access
the following oracles with the Send and Corrupt oracles being special in
the sense that they are available to an active adversary only:

Execute(Uu1 , (Uu2 , . . . , Uur)) This executes the protocol among unused
instances Π

ij
Uuj

of the specified parties and returns a transcript of the

5



protocol run (listing all messages sent during the protocol execution
among the oracles Π

ij
Uuj

). At this, the principal Uu1 initiates the pro-
tocol.

Send(U, i,M) This sends the message M to the instance Π i
U and outputs

the reply generated by this instance. If the adversary calls this oracle
with an unused instance Π i

U and M = {Uu2 , . . . , Uur}, then Π i
U ini-

tiates a protocol instance with the partners listed in M. Thereafter,
Send returns the ‘init message’ Π i

U sends for this purpose.
Reveal(U, i) yields the session key ski

U and the session identifier sidi
U .

Corrupt(U) reveals all long term term secret keys SK{U,∗} of U to the
adversary.

Test(U, i) Only one query of this form is allowed for an active adversary
A. Provided that ski

U is defined, (i. e. ski
U 6= null), A can execute this

oracle query at any time when being activated. Then with probability
1/2 the session key ski

U and with probability 1/2 a uniformly chosen
random session key is returned.

Correctness. To exclude ‘useless’ protocols, we require that a single exe-
cution of the protocol for establishing a key among Uu1 , . . . , Uur involving
the oracles Π

iu1
Uu1

, . . . ,Π
iur
Uur

ensures that for the participating oracles that
have accepted, i. e.,

{Π ia1
Ua1

, . . . ,Π
ias
Uas
} = {Π

iuj

Uuj
∈ {Π iu1

Uu1
, . . . ,Π

iur
Uur
}|acc

iuj

Uuj
= true},

the following holds. With overwhelming probability they

– obtain a common session identifier (i.e. sid
ia1
Ua1

= · · · = sid
iar
Uar

) which
is globally unique.

– have accepted the same session key sk
ia1
Ua1

= · · · = sk
iar
Uar
6=null asso-

ciated with the common session identifier sid
ia1
Ua1

.

– know their partners pid
ia1
Ua1

= · · · = pid
iar
Uar
6=null associated with the

common session identifier sid
ia1
Ua1

and it is Ua1 , . . . , Uar ∈ pid
ia1
Ua1

.

Remark 1. In case of a passive adversary all of Π
iu1
Uu1

, . . . ,Π
iur
Uur

accept. For
an active adversary this cannot be guaranteed, as in this case messages
need not to be delivered.

Freshness. An instance Π i
U participating in a key establishment among

principals pidi
U = {Uu1 , . . . , Uur} 3 U is referred to as fresh if none of the

following is true:

6



– For some U ′ ∈ {Uu1 , . . . , Uur} a Corrupt(U ′) query was executed be-
fore a query of the form Send(U ′′, i, ∗) has taken place, where U ′′ ∈
{Uu1 , . . . , Uur}.

– The adversary somewhen queried Reveal(U, i) or Reveal(U ′, j) with
Π i

U and Πj
U ′ being partnered.

Remark 2. The first condition in our freshness definition may look overnec-
essarily restrictive. Note however, that with the more lenient approach
proposed in [2], an attack of the following type is not excluded: Once
the first principal U has computed the session key, U is corrupted and
outgoing messages of this party are modified such that the other protocol
participants end up with a different session identifier but identical session
key. Having provoked the latter situation, breaking the security of the
protocol is straightforward.

Security. Let us start by fixing some notation: In the sequel, a ← A
denotes either that element a is chosen uniformly at random from A (if
A is a set), or random choice of a according to A (if A is a probabil-
ity distribution). Now, we define the advantage AdvA(t) of an adversary
A, running in time t, in attacking a key establishment protocol P (see,
again, [2]) as

AdvA(t) := |2Succ− 1|
where

Succ := Pr[(T, sk0)← P; sk1 ← G; b← {0, 1} : A(T, skb) = b)].

At this, G = G(t) is the key space and T is the transcript of the protocol
run (that is, all the information flowing through the network, which A
can access). Thus, Succ is actually the probability of success A has on
guessing the output of the Test oracle queried on (U, i) such that Π i

U is
fresh.

We say that a protocol P is secure provided that, for any ppt adver-
sary A running in time t, AdvA(t) is negligible. The intuition behind this
definition of security is that P is secure against A if A cannot distinguish
a session key established through P from an element chosen uniformly at
random among all possible keys.

Authentication. We say that a protocol P achieves implicit authenti-
cation if once an oracle Π i

U has accepted a session key, Ui can be sure
that no principal outside the intended group has knowledge of this key.
Explicit authentication is achieved if, in addition, Ui knows that the in-
tended group does have the agreed shared key (i.e., explicit authentication
is achieved through implicit authentication and key confirmation).

7



(Perfect) Forward Secrecy. A protocol P is said to achieve (perfect)
forward secrecy if compromising the long term keys created in the initial-
ization phase does not endanger previously established session keys.

3 A Basic Tree Based Key Transport Protocol

We describe here our tree based group key transport protocol, which is
inspired in the star and tree protocols of Burmester and Desmedt [1].

3.1 Description of the Basic Protocol

Let P be a fixed finite set of principals, engaged in a connected communi-
cation network. The protocol described below can be applied to arbitrary
connected subgraphs of P; let P ′ be the set of principals (vertices) in
such a subgraph and denote the cardinality of P ′ by n. We assume that
some spanning tree among P ′ is globally known. This tree is used by our
protocol for exchanging messages among principals in P ′. Finally, let us
also assume that a cyclic group G of prime order q and a generator g
of G have been fixed, so that the corresponding Decision Diffie Hellman
problem is hard. Now consider the following protocol P:

Basic Protocol P:
Let us suppose principal U wants to establish a key among a set of
principals P ′ 3 U forming the vertices of a subtree of the communi-
cation network, and take U for the root of this tree. Then U selects
uniformly at random a session key sk ∈ G and generates at random a
session identifier sid (say a bitstring of length linear in the security pa-
rameter, whose first bits are an encoding of U ′s identity and the rest
is chosen uniformly at random). Also, he chooses uniformly at random
an exponent a1 ∈ Zq, computes g1 = ga1 and sends (DHKEY0, g1, pid)
to all his direct descendants.
Each principal Ui, upon receiving this message, chooses ai ∈ Zq uni-
formly at random and
– sends (DHKEY1, gai) to his parent, thereby establishing a common

key between Ui and his parent;
– sends (DHKEY0, gai , pid) to all his direct descendants, thereby ini-

tiating a Diffie Hellman key exchange.
Proceeding in this way ‘down the tree’, after no more than n rounds
each principal in P ′ has established a common Diffie Hellman key with
his parent as well as a common Diffie Hellman key with each of his
direct descendants.

8



Once U receives an answer (DHKEY1, gai) from a direct child Ui,
in the next round he sends (KEY, sid, ga1ai · sk) to Ui, from which
Ui can extract the session key sk and accept it. The transmission of
(KEY, sid, ga1ai ·sk) to Ui takes place in the same round in which Ui re-
ceives the answers (DHKEY1, gaij ) from his direct descendants. Thus,
using the Diffie Hellman keys established with his direct descendants,
in the next round each Ui can communicate sid and sk to his direct
descendants Uij . In summary the (sid, sk)-transmissions are always
‘one level behind’ the Diffie Hellman key establishments in the tree,
and after at most n + 1 rounds of communication every principal has
learned (sid, sk).

A sample protocol run is sketched in Figure 1.

(a)
Round
1
and
2

(b)
Round
3
and
4

Fig. 1. The basic protocol, started by the hatched node.

3.2 Analysis in the Passive Case

Correctness. In the passive case the correctness is straightforward to
check, as the adversary cannot interfere with the protocol execution and
the protocol clearly distributes sk, sid and pid among the participants.

Security. As depicted in Section 2, we essentially follow the standard
adversarial model of Bresson et al. [5]. For a fixed probability distribution
χ on the set of transcript-session key pairs, we denote by Pr[(T, sk)← χ :
A(T, sk) = 1] the probability of success an adversary A has, in sight of
a pair (T, sk) in distinguishing whether sk ∈ G is a uniformly at random
chosen key or a properly constructed key on a protocol run with transcript
T (for instance, if χ is the distribution induced by P, the above probability
denotes Succ).

9



Proposition 1. Assume that the DDH assumption holds. Then the tree
based protocol P described above is a secure group key establishment pro-
tocol; namely, for any ppt passive adversary A, AdvA(t) is negligible.

Proof. Let us start by noting that for the case of passive adversaries it
is sufficient to consider only Execute oracle calls of the adversary. Also,
it is sufficient to consider only a single call to the Execute oracle—as in
protocol P no shared information/state among different protocol execu-
tions exists, information collected from additional protocol instances can
be simulated by the adversary herself. Analogously, we do not have to be
concerned for Reveal calls either, because of session keys being chosen uni-
formly at random in each protocol instance (therewith being statistically
independent).

Let A be a ppt passive adversary achieving an advantage in attacking
the protocol (i. e., distinguishing random group elements from the ses-
sion key). We can transmogrify A into a DDH adversary D as follows. D
uses A as black box and simulates the Execute oracle as required. Pre-
sented a DDH instance (gA, gB, gC), where dependent on a random coin,
C is either AB or a random value, D proceeds as follows. As soon as
A calls the Execute oracle, D generates a protocol transcript, where in
the transport phase the Diffie Hellman messages gai of Ui are replaced
by (gA)ai if Ui is located at even distance to the principal that initiated
the protocol session. For those Ui located at odd distance, D replaces
gai with (gB)ai . Further on, instead of sending the encrypted session key
(KEY, sid, gAaiBaj · sk) to Uj , D sends (KEY, sid, (gC)aiaj · sk) to Uj . Note
that the session transcript obtained in this way is valid, because sk is a
uniformly at random chosen group element.

Once A queries the Test oracle, D forwards sk to A. If C = AB, then
A received the correct session key. In case of C having been chosen uni-
formly at random, the sk-value appears to A as a uniformly at random
chosen group element. Thus, by adopting the answer of A, the DDH ad-
versary D’s advantage in solving the DDH problem equals A’s advantage
in attacking the protocol. Thus, under the DDH assumption a ppt passive
adversary A achieving a non-negligible advantage in attacking P cannot
exist.

Authentication. We may assume implicit authentication is obtained, as
all principals are supposed to behave honestly and the adversary can
not impersonate anyone (for she cannot send any message). Explicit au-
thentication is achieved in the sense that we know that indeed all group

10



members will finally get the key, as the adversary is passive and therewith
delivery of all messages is guaranteed.

Communication complexity. As we are doing without a broadcast chan-
nel, in addition to the round complexity O(n) also the total number of
messages needed by the above protocol is of interest. By construction
this depends on the number of protocol participants only. Namely, for
establishing the Diffie Hellman keys we need 2 · (n − 1) messages, and
for transporting the actual session key, another n− 1 messages are sent.
Thus, in total the passive protocol needs 3n− 3 messages.

4 Allowing Active Adversaries

4.1 A Modified Protocol

For dealing with active adversaries we have to augment the above pro-
tocol with the initialization phase described in Section 2. Thus, upon a
Corrupt(Ui) query of the adversary A, all long-lived keys authenticating
messages between Ui and its neighboring principals are revealed to A.

Based on this ‘infrastructure’ we extend the protocol from Section 3
as follows:

Starting – key transport phase:
Let us suppose principal U wants to establish a key among a set of
principals P ′ 3 U forming the vertices of a subtree of the communi-
cation network, and take U for the root of this tree. Then U selects
uniformly at random a session key sk ∈ G and generates at random
a session identifier sid (say a uniformly at random chosen bitstring
of length equal to the security parameter k, prepended by an encod-
ing of U ’s identity). Also, he chooses uniformly at random an expo-
nent a1 ∈ Zq, computes g1 = ga1 and sends an authenticated packet
(DHKEY0, sid, pid, g1, U) to all his direct descendants.
Each principal Ui, upon receiving this message first checks the validity
of the authentication of U and ignores the packet if this check fails. If
the packet is properly authenticated, Ui chooses ai ∈ Zq uniformly at
random and
– sends an authenticated packet (DHKEY1, sid, gai , Ui) to his parent,

thereby establishing a common key between Ui and his parent;
– sends an authenticated packet (DHKEY0, sid, pid, gai , Ui) to all his

direct descendants, thereby initiating a Diffie Hellman key ex-
change.

11



Proceeding in this way ‘down the tree,’ after no more than n rounds
each principal in P ′ has established a common Diffie Hellman key with
his parent as well as a common Diffie Hellman key with each of his
direct descendants.
Once U receives an answer gai from a direct descendant Ui, in the
next round he sends an authenticated packet (KEY, sid, ga1ai · sk, U)
to Ui, from which Ui can—after having checked the validity of the
authentication—extract the session key sk. The transmission of the
tuple (KEY, sid, ga1a1i · sk, U) to Ui takes place in the same round in
which Ui receives the answers (DHKEY1, sid, ga1ij , Uij ) from his direct
descendants. Thus, using the Diffie Hellman keys established with his
direct descendants, in the next round Ui can communicate sid and sk
to his direct descendants Uij . In summary the (sid, sk)-transmissions
are always ‘one level behind’ the Diffie Hellman key establishments
in the tree, and after at most n + 1 rounds of communication every
principal has learned sid and sk.

Key confirmation phase: For this part of the protocol, we again imag-
ine the subtree formed by P ′ as being rooted in the principal U that
initiated the protocol run.
1. Once a protocol participant U ′ has learned both sid and sk, we

distinguish three cases:
– If U ′ is a leaf, he sends an authenticated acknowledgment

packet (ACK, sid, U ′) to his parent.
– If U ′ is an inner node, he waits until having received correctly

authenticated acknowledgment packets (ACK, sid, U ′
i) from all

his direct descendants. Then he sends an authenticated ac-
knowledgment packet (ACK, sid, U ′) to his parent.

– If U ′ is the root, he he waits until having received correctly
authenticated acknowledgment packets (ACK, sid, U ′

i) from all
his direct descendants. Then he accepts the session key sk and
sends a correctly authenticated confirmation packet (CNF, sid, U ′)
to all his direct descendants.

2. Once a principal Uij receives a correctly authenticated confirma-
tion packet (CNF, sid, Ui) from his parent he accepts the session
key sk and sends a correctly authenticated confirmation packet
(CNF, sid, Ui) to all his direct descendants.

In the worst case (a tree consisting of a single branch of length n)
after 2 · (n− 1) rounds the confirmation messages have been delivered
throughout the network.

12



4.2 Analysis in the Active Case

Correctness. Proving the above protocol to be correct is not hard:

Proposition 2. The modified protocol for authenticated group key estab-
lishment is correct in the presence of active adversaries under the exis-
tential unforgeability of the authentication scheme under chosen message
attacks and achieves forward secrecy.

Proof. The session identifier is generated uniformly at random by the ini-
tiator so it is globally unique with overwhelming probability. The session
identifier and the partner identifier resp. the session identifier and the
session key are sent in the same message that cannot be forged by the
adversary. So, since all participants are supposed to be honest, they will
accept the same session identifier, partner identifier and session key. Fi-
nally the session key is only sent to participants that are included in the
partner identifier and all participants will know their partners. Clearly,
the modified protocol achieves forward secrecy, as the long-term secret
keys are used for message authentication only.

Security. The security of the above protocol is summarized in

Proposition 3. The modified protocol for authenticated group key estab-
lishment is secure against active adversaries under the DDH assumption
and the existential unforgeability of the authentication scheme under cho-
sen message attacks.

Proof. The proof comprises a series of games similar to [3]. Let Advcma
S be

the maximum advantage that a ppt adversary achieves in forging a mes-
sage/MAC pair under chosen message attack and let Forge be the event
that A outputs a new authenticated message (m,MACSK{Ui,Uj}

(m)) with
respect to the key SK{Ui,Uj} shared between Ui and Uj without having
queried Corrupt(Ui) or Corrupt(Uj) before. Let Repeat be the event that
the principal U starting the protocol chooses a session identifier sid that
was previously or is currently used for another protocol run. Since sid is
chosen (uniformly) at random by U who is supposed to be uncorrupted
we have P (Repeat) ≤ (qs+qex)2

2k+1 with qs resp. qex denoting the number of
calls to the Send resp. Execute oracle.

Now assume the existence of an adversary A that achieves an ad-
vantage AdvA in attacking the modified protocol. Without restriction we
assume Succ > 0.5, thus AdvA = 2 · Succ− 1.

13



Game 0 This game is identical to the real attack with the oracles faith-
fully simulated for the adversary A. The probability of a successful
attack is denoted by Succ0 and is identical to the success probability
of the adversary attacking the real protocol:

Succ0 = Succ.

Game 1 This game differs from Game 0 if the event Forge occurs. In
this case Game 1 will be aborted. An adversary A that succeeds in
Game 0 but not in Game 1 has provoked the event Forge. Thus

Succ0 − Succ1 ≤ P (Forge).

To use adversary A for forging a message authentication for a given
authentication key, this key has to be assigned to one of the n princi-
pals. If A produces a forgery the probability that it is for the selected
principal is 1

n . Thus:

Advcma
S ≥ 1

n
· P (Forge).

Game 2 Game 2 is, compared to Game 1, aborted if the event Repeat
occurs. Hence an adversary A successful in Game 1 but failing in
Game 2 has provoked the event Repeat.

Succ1 − Succ2 ≤ P (Repeat) ≤ (qs + qex)2

2k+1
.

Due to the definition of freshness, the adversary cannot forge a message
without violating freshness of the oracles participating in the protocol
instance. Moreover, as each protocol instance among fresh oracles has a
unique session identifier and the messages within a protocol instance are
distinguished the adversary cannot reuse old messages. All fresh oracles
that accept the same session key sk hold the same sid because they are
sent in the same message. Therewith all of these oracles are partnered
and the sk of the test session cannot be revealed to the adversary.

The adversary A that successfully attacks Game 2 can be used to solve
the DDH problem, just as shown in the proof of Proposition 3.1 (note that
the situation she faces is exactly the case of a passive adversary attacking
the basic protocol presented in the previous section, except that in this
case she can refuse delivery of messages and halt the protocol if it was
initiated by a Send call):

SuccDDH ≥ Succ2.

14



Putting it all together we obtain:2× : <−→≤

Succ0 ≤ n · Advcma
S +

(qs + qex)2

2k+1
+ SuccDDH,

thus,

AdvA ≤ 2n · Advcma
S +

(qs + qex)2

2k
+ AdvDDH,

that is, the advantage ofA in attacking the modified protocol is negligible.

Authentication. Implicit authentication is obtained: no principal outside
the intended group can learn the key. Moreover, by key confirmation the
protocol achieves explicit authentication.

Communication complexity. The message flow in the key transport phase
is basically identical to the message flow in the passive protocol and takes
3 · (n− 1) messages. In the key confirmation phase each principal has to
send one confirmation message to each of his neighbors. Thus, the key
confirmation phase takes another 2 · (n− 1) messages, yielding a total of
5n− 5 messages for the modified protocol.

5 Conclusion

The above discussion shows that the original tree based protocols of
Burmester and Desmedt can be generalized to a group key establish-
ment protocol that is provably secure in the standard model and that
works in a rather general setting: neither a completely connected network
nor global authentication are necessary. Moreover, the (linear) message
complexity of the protocol is rather moderate, thereby facilitating its use
in applications with a restricted communication infrastructure.

Acknowledgments. This work has been partially supported by the
German Academic Exchange Service DAAD and the Spanish M.E.C. as
part of the BaSe CoAT project within the Acciones Integradas Hispano-
Alemanas.

References

1. M. Burmester and Y. Desmedt, “A Secure and Efficient Conference Key Distribu-
tion System,” in Advances in Cryptology — EUROCRYPT’94, ser. Lecture Notes
in Computer Science, A. D. Santis, Ed., vol. 950. Springer, 1995, pp. 275–286.

15



2. J. Katz and M. Yung, “Scalable Protocols for Authenticated Group Key Ex-
change,” in Advances in Cryptology — CRYPTO’03, ser. Lecture Notes in Com-
puter Science, D. Boneh, Ed., vol. 2729. Springer, 2003, pp. 110–125.

3. H. J. Kim, S. M. Lee, and D. H. Lee, “Constant-Round Authenticated Group Key
Exchange for Dynamic Groups,” in Advances in Cryptology — ASIACRYPT’04,
ser. Lecture Notes in Computer Science, P. Lee, Ed., vol. 3329. Springer, 2004,
pp. 245–259.

4. M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated Key Exchange Secure
Against Dictionary Attacks,” in Advances in Cryptology — EUROCRYPT’00, ser.
Lecture Notes in Computer Science, B. Preneel, Ed., vol. 1807. Springer, 2000,
pp. 139–155.

5. E. Bresson, O. Chevassut, D. Pointcheval, and J. J. Quisquartier, “Provably Au-
thenticated Group Diffie-Hellman Key Exchange,” in Proceedings of the 8th ACM
Conference on Computer and Communications Security (CCS-8), P. Samarati, Ed.
ACM, 2001, pp. 255–264.

6. Y. Kim, A. Perrig, and G. Tsudik, “Tree-based group key agreement,” ACM Trans.
Inf. Syst. Security, vol. 7, no. 1, pp. 60–96, 2004.

7. S. Saeednia and R. Safavi-Naini, “Efficient identity-based conference key distribu-
tion protocols,” in Information Security and Privacy: Third Australasian Confer-
ence — ACISP’98, ser. Lecture Notes in Computer Science, C. Boyd and E. Daw-
son, Eds., vol. 1439. Springer, 1998, pp. 320–331.

8. M. Bellare and P. Rogaway, “Entity authentication and key distribution,” in Ad-
vances in Cryptology—CRYPTO ’93, ser. Lecture Notes in Computer Science,
D. R. Stinson, Ed., vol. 773. Springer, 1993, pp. 232–249.

9. ——, “Provably secure session key distribution— the three party case,” in Pro-
ceedings of the 27th Annual ACM Symposium on Theory of Computing, STOC’95.
ACM Press, 1995, pp. 57–66.

10. C. Boyd and A. Mathuria, Protocols for Authentication and Key Establishment.
Springer, 2004.

16


