STRICT AVALANCHE CRITERION OVER FINITE FIELDS

YUAN LI AND T.W.CUSICK

Abstract

Boolean functions on $G F(2)$ which satisfy the Strict Avalanche Criterion $(S A C)$ play an important role in the art of information security. In this paper, we extend the conception $S A C$ to finite fields $G F(p)$. A necessary and sufficient condition is given by using spectral analysis. Also, based on an interesting permutation polynomial theorem, we prove various facts about $(n-1)$-th order $S A C$ functions on $G F(p)$. We also construct many such functions.

1. Introduction

Resilient functions, bent functions and functions which satisfy $S A C$ have important cryptographic applications. $S A C$ was introduced by Webster and Tavares [16] in connection with a study of the design of S-boxes. A Boolean function in n variables is said to satisfy $S A C$ if complementing any one of the n input bits results in changing the output bit with probability exactly one half. Forré [5] extended this conception by defining the higher order $S A C$. A Boolean function of n variables satisfies the $S A C$ of order $k(S A C(k)), 0 \leq k \leq n-2$, if whenever k input bits are fixed arbitrarily, the resulting function of $n-k$ variables satisfies $S A C$. The properties of $S A C$ functions have been well studied (see [1], [2], [3], [8], [9], [17]). Recently, Cusick and Yuan [4] described a method to find k-th order symmetric $S A C$ functions for any $k, k \leq n-2$. On the other hand, it's natural to extend the various cryptographic conceptions from $G F(2)$ to $G F(p)$ or $G F(p)^{n}$. For example, [14] and [19] studied the resilient functions on $G F(p)$. Also, [7], [11], [12] investigated the generalized bent functions on $\operatorname{GF}(p)^{n}$. In this paper, we firstly introduce the definition of $S A C$ on $G F(p)$. Similar to [5], we give a spectral analysis, and a necessary and sufficient condition for $S A C$ is given. Based on an interesting result which was independently proved by three research groups between 1989 and 1990, we prove various facts about $(n-1)$-order $S A C$ on $G F(p)$. In contrust, on $G F(2)$ the highest order of $S A C$ is only $n-2$. Using some elementary number theory, we construct many $S A C(n-1)$ functions. Section 2 will list some well known results about Fourier transform. Section 3 will introduce the definition of $S A C$ and discuss its spectral analysis. In section 4, an explanation of $S A C$ is given from a different point of view. We give the definition of higher order $S A C$ in section 5 and a spectral analysis is provided for $S A C(1)$. In section 6 we construct many $S A C(n-1)$ functions. Some open questions are listed in section 7 .

[^0]2. Fourier Transform of n variables polynomial functions on $G F(p)$

In this paper, p is always an odd prime.
If $f: G F(p)^{n} \longrightarrow G F(p)$, then f can be uniquely expressed in the following form:

$$
\begin{equation*}
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{k_{1}=0}^{p-1} \sum_{k_{2}=0}^{p-1} \ldots \sum_{k_{n}=0}^{p-1} a_{k_{1} k_{2} \ldots k_{n}} x_{1}^{k_{1}} x_{2}^{k_{2}} \ldots x_{n}^{k_{n}} \tag{1}
\end{equation*}
$$

Each coefficient $a_{k_{1} k_{2} \ldots k_{n}} \in G F(p)$ is a constant. This form is called the algebraic normal form of f. The largest $k_{1}+k_{2}+\ldots+k_{n}$ with $a_{k_{1} k_{2} \ldots k_{n}} \neq 0$ is called the algebraic degree of f.

Let $A=\left\{f \mid G F(p)^{n} \longrightarrow G F(p)\right\}, B=\left\{\widehat{f} \mid G F(p)^{n} \longrightarrow C\right\}$, where C is the complex numbers. Then

$$
F_{\widehat{f}}(x)=\sum_{y \in G F(p)^{n}} \widehat{f}(y) w^{-x y}
$$

is called the Fourier transform of $\widehat{f}(x)$, where $w=e^{2 \pi i / p}, x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right), x y=\sum_{k=1}^{n} x_{k} y_{k}$.

Some of the following results about the Fourier transform may be "folk lore", but for completeness, we present the proofs.

Lemma 1. $F_{F_{\widehat{f}}}(x)=p^{n} \widehat{f}(-x)$
Proof.

$$
\begin{gathered}
F_{F_{\widehat{f}}}(x)=\sum_{y \in G F(p)^{n}} F_{\widehat{f}}(y) w^{-x y}=\sum_{y \in G F(p)^{n}}\left(\sum_{z \in G F(p)^{n}} \widehat{f}(z) w^{-y z}\right) w^{-x y} \\
=\sum_{z \in G F(p)^{n}}\left(\sum_{y \in G F(p)^{n}} w^{-(z+x) y}\right) \widehat{f}(z)
\end{gathered}
$$

The inner sum will vanish if $z \neq-x$, hence, $F_{F_{\widehat{f}}}(x)=p^{n} \widehat{f}(-x)$.
If $\widehat{f}=w^{f}$, we have

$$
p^{n} w^{f(-x)}=\sum_{y \in G F(p)^{n}} F_{w^{f}}(y) w^{-x y}, \quad w^{f(x)}=p^{-n} \sum_{y \in G F(p)^{n}} F_{w^{f}}(y) w^{x y}
$$

Of course, we have

$$
F_{w^{f}}(x)=\sum_{y \in G F(p)^{n}} w^{f(x)-x y}
$$

Let $\widehat{f} * \widehat{g}: \quad x \longrightarrow \sum_{y \in G F(p)^{n}} \widehat{f}(x-y) \widehat{g}(y)$. Clearly, $(\widehat{f} * \widehat{g})(x)=(\widehat{g} * \widehat{f})(x)$ and $((\widehat{f} * \widehat{g}) * \widehat{h})(x)=(\widehat{f} *(\widehat{g} * \widehat{h}))(x)$.
Lemma 2. $F_{\widehat{f} * \widehat{g}}(x)=F_{\widehat{f}}(x) F_{\widehat{g}}(x)$
Proof.

$$
\begin{aligned}
& F_{\widehat{f} * \widehat{g}}(x)=\sum_{y \in G F(p)^{n}}(\widehat{f} * \widehat{g})(y) w^{-y x}=\sum_{y \in G F(p)^{n}}\left(\sum_{z \in G F(p)^{n}} \widehat{f}(y-z) \widehat{g}(z)\right) w^{-y x} \\
= & \sum_{z \in G F(p)^{n}}\left(\sum_{y \in G F(p)^{n}} \widehat{f}(y-z) w^{-y x}\right) \widehat{g}(z)=\sum_{z \in G F(p)^{n}}\left(\sum_{u \in G F(p)^{n}} \widehat{f}(u) w^{-x(u+z)}\right) \widehat{g}(z)
\end{aligned}
$$

$$
=\sum_{z \in G F(p)^{n}}\left(\sum_{u \in G F(p)^{n}} \widehat{f}(u) w^{-x u}\right) \widehat{g}(z) w^{-x z}=F_{\widehat{f}}(x) F_{\widehat{g}}(x)
$$

Lemma 3. $F_{\widehat{f}} * F_{\widehat{g}}=p^{n} F_{\widehat{f} \widehat{g}}$
Proof.

$$
\begin{aligned}
& \left(F_{\widehat{f}} * F_{\widehat{g}}\right)(x)=\sum_{y \in G F(p)^{n}} F_{\widehat{f}}(x-y) F_{\widehat{g}}(y) \\
= & \sum_{y \in G F(p)^{n}}\left(\sum_{s \in G F(p)^{n}} \widehat{f}(s) w^{-s(x-y)}\right)\left(\sum_{t \in G F(p)^{n}} \widehat{g}(t) w^{-t y}\right) \\
= & \sum_{s \in G F(p)^{n}} \sum_{t \in G F(p)^{n}} \widehat{f}(s) \widehat{g}(t) w^{-s x} \sum_{y \in G F(p)^{n}} w^{y(s-t)}
\end{aligned}
$$

The inner sum will vanish if $s \neq t$, hence,

$$
\left(F_{\widehat{f}} * F_{\widehat{g}}\right)(x)=p^{n} \sum_{s \in G F(p)^{n}} \widehat{f}(s) \widehat{g}(s) w^{-s x}=p^{n} F_{\widehat{f} \widehat{g}}(x)
$$

Lemma 4. $\widehat{h}=\widehat{f} * \widehat{g}$ if and only if $F_{\widehat{h}}=F_{\widehat{f}} F_{\widehat{g}}$
Proof. Necessity is Lemma 2.
From $F_{\widehat{h}}=F_{\widehat{f}} F_{\widehat{g}}$, we have $F_{F_{\widehat{h}}}=F_{F_{\widehat{f}} F_{\widehat{g}}}$. By Lemma 1 and Lemma 3,

$$
\begin{aligned}
& p^{n} \widehat{h}(-x)=p^{-n}\left(F_{F_{\widehat{f}}} * F_{F_{\widehat{g}}}\right)=p^{-n}\left(p^{n} \widehat{f}(-x) * p^{n} \widehat{g}(-x)\right) \Longleftrightarrow \\
& \widehat{h}(-x)=\widehat{f}(-x) * \hat{g}(-x)=(\widehat{f} * \widehat{g})(-x) \Longleftrightarrow \widehat{h}=\widehat{f} * \widehat{g}
\end{aligned}
$$

Lemma 5. $\widehat{h}=\widehat{f} \widehat{g} \Longleftrightarrow F_{\widehat{h}}=p^{-n} F_{\widehat{f}} * F_{\widehat{g}}$
Proof. Necessity is Lemma 3.
If $F_{\widehat{h}}=p^{-n} F_{\widehat{f}} * F_{\widehat{g}}$, then $F_{F_{\widehat{h}}}(x)=F_{p^{-n} F_{\widehat{f}} * F_{\widehat{g}}}(x)$. By Lemma 1 and Lemma 2,
$p^{n} \widehat{h}(-x)=p^{-n} F_{F_{\widehat{f}} * F_{\widehat{g}}}(x)=p^{-n} F_{F_{\widehat{f}}}(x) F_{F_{\widehat{g}}}(x)=p^{-n} p^{n} \widehat{f}(-x) p^{n} \widehat{g}(-x)$
$\Longrightarrow \widehat{h}(-x)=\widehat{f}(-x) \widehat{g}(-x) \Longrightarrow \widehat{h}(x)=\widehat{f}(x) \widehat{g}(x)$.

3. Strict Avalanche Criterion and Spectral Analysis

Let $w t(\alpha)$ be the Hamming weight of α, i.e., the number of nonzero components of $\alpha, \alpha \in G F(p)^{n}$.

Definition 1. $f(x): G F(p)^{n} \longrightarrow G F(p)$ fulfills Strict Avalanche Criterion $(S A C)$ if and only if $\operatorname{prob}(f(x+\alpha)=f(x)+a)=\frac{1}{p}$ for any $a \in G F(p)$ and any $\alpha \in G F(p)^{n}$ with $w t(\alpha)=1$.

In fact, $f(x)$ fulfills $S A C$ means $f(x+\alpha)-f(x)$ is a balanced function if $w t(\alpha)=$ 1. Note that f is a permutation on $G F(p)$ if $n=1$.

Lemma 6. $f(x)$ fulfills $S A C \Longleftrightarrow \sum_{x \in G F(p)^{n}} w^{f(x+\alpha)-f(x)}=0$, for any α with $w t(\alpha)=1$.

Proof. Let $n_{j}=\#\{x \mid f(x+\alpha)-f(x)=j\}, j=0,1, \ldots, p-1$. Because of the identity $w^{0}+w^{1}+\ldots+w^{p-1}=0$, we have

$$
\sum_{x \in G F(p)^{n}} w^{f(x+\alpha)-f(x)}=n_{0} w^{0}+n_{1} w^{1}+\ldots+n_{p-1} w^{p-1}=0 \Longleftrightarrow
$$

$$
\left(n_{0}-n_{p-1}\right) w^{0}+\left(n_{1}-n_{p-1}\right) w^{1}+\ldots+\left(n_{p-2}-n_{p-1}\right) w^{p-2}=0 \Longleftrightarrow
$$

$n_{0}-n_{p-1}=n_{1}-n_{p-1}=\ldots=n_{p-2}-n_{p-1}=0$ since the minimal polynomial of w is $x^{p-1}+\ldots+x+1 \Longleftrightarrow n_{0}=n_{1}=\ldots=n_{p-1} \Longleftrightarrow$
$f(x+\alpha)-f(x)$ is a balanced function.

Lemma 7.

$$
h(x)=\sum_{y \in G F(p)^{n}} w^{f(y+x)-f(y)} \Longleftrightarrow F_{h}(x)=F_{w^{f}}(x) F_{w^{-f}}(-x)
$$

Proof. " \Longrightarrow "

$$
\begin{gathered}
F_{h}(x)=\sum_{y \in G F(p)^{n}} h(y) w^{-x y}=\sum_{y \in G F(p)^{n}}\left(\sum_{z \in G F(p)^{n}} w^{f(z+y)-f(z)}\right) w^{-x y} \\
=\sum_{z \in G F(p)^{n}}\left(\sum_{y \in G F(p)^{n}} w^{f(z+y)-x y}\right) w^{-f(z)}=\sum_{z \in G F(p)^{n}}\left(\sum_{s \in G F(p)^{n}} w^{f(s)-x(s-z)}\right) w^{-f(z)} \\
=\sum_{z \in G F(p)^{n}} F_{w^{f}}(x) w^{-f(z)+x z}=F_{w^{f}}(x) F_{w^{-f}}(-x) .
\end{gathered}
$$

\qquad

$$
F_{F_{h}}(x)=F_{F_{w f}(x) F_{w-f}(-x)}
$$

By Lemma 1 and Lemma 5, we have

$$
p^{n} h(-x)=p^{-n} F_{F_{w} f(x)} * F_{F_{w}-f(-x)}=p^{-n}\left(p^{n} w^{f(-x)} * p^{n} w^{-f(x)}\right)
$$

Hence,
$h(-x)=w^{f(-x)} * w^{-f(x)}=\sum_{y \in G F(p)^{n}} w^{f(-(x-y))} w^{-f(y)}=\sum_{y \in G F(p)^{n}} w^{f(y-x)} w^{-f(y)}$,
So,

$$
h(x)=\sum_{y \in G F(p)^{n}} w^{f(y+x)-f(y)}
$$

Now, we can prove the following spectral characterization of $S A C$.
Theorem 1. $f(x)$ fulfills $S A C \Longleftrightarrow F_{F_{w f}(x) F_{w-f}(-x)}(s)=0$, when $w t(s)=1$.
$\Longleftrightarrow \sum_{x \in G F(p)^{n}} F_{w^{f}}(x) F_{w^{-f}}(-x) w^{-\delta x_{i}}=0$, for all $i \in\{1,2, \ldots, n\}$ and any
$\delta \in G F(p)^{*} . \Longleftrightarrow \sum_{x: x_{i}=0} F_{w^{f}}(x) F_{w^{-f}}(-x)=\sum_{x: x_{i}=1} F_{w^{f}}(x) F_{w^{-f}}(-x)=\ldots \ldots$
$=\sum_{x: x_{i}=p-1} F_{w^{f}}(x) F_{w^{-f}}(-x)$.
Proof. By Lemma 7, $h(x)=\sum_{y \in G F(p)^{n}} w^{f(y+x)-f(y)} \Longleftrightarrow F_{h}(x)=F_{w^{f}}(x) F_{w^{-f}}(-x)$
$\Longrightarrow F_{F_{h}}(s)=F_{F_{w f}(x) F_{w-f}(-x)}(s) \Longrightarrow p^{n} h(-s)=F_{F_{w f}(x) F_{w^{-f}}(-x)}(s)$
$\Longrightarrow h(s)=p^{-n} F_{F_{w f}(x) F_{w-f}(-x)}(-s)$.
By Lemma $6, f(x)$ fulfills $S A C \Longleftrightarrow h(s)=0$ when $w t(s)=1 \Longleftrightarrow$
$F_{F_{w f}(x) F_{w-f}(-x)}(-s)=0$ for any s with $w t(s)=1 \Longleftrightarrow F_{F_{w f}(x) F_{w}-f(-x)}(s)=0$ for any s with $w t(s)=1 \Longleftrightarrow \sum_{x \in G F(p)^{n}} F_{w^{f}}(x) F_{w^{-f}}(-x) w^{-s x}=0$ for any s with
$w t(s)=1 \Longleftrightarrow \sum_{x \in G F(p)^{n}} F_{w^{f}}(x) F_{w^{-f}}(-x) w^{-\delta x_{i}}=0$ for any $i \in\{1,2,, \ldots, n\}$
and for any $\delta \in G F(p)^{*}$, where x_{i} is the i th component of vector $x \Longleftrightarrow$

$$
\sum_{x: x_{i}=0} F_{w^{f}}(x) F_{w^{-f}}(-x) w^{-\delta(0)}+\sum_{x: x_{i}=1} F_{w^{f}}(x) F_{w^{-f}}(-x) w^{-\delta(1)}+\ldots \ldots
$$

$+\sum_{x: x_{i}=p-1} F_{w^{f}}(x) F_{w^{-f}}(-x) w^{-\delta(p-1)}=0 \Longleftrightarrow \sum_{x: x_{i}=0} F_{w^{f}}(x) F_{w^{-f}}(-x)=$
$\sum_{x: x_{i}=1} F_{w^{f}}(x) F_{w^{-f}}(-x)=\ldots \ldots . \quad \sum_{x: x_{i}=p-1} F_{w^{f}}(x) F_{w^{-f}}(-x)$ (the last step is
same as the proof of lemma 6 since
$\{-\delta(0),-\delta(1), \ldots,-\delta(p-1)\}=\{0,1, \ldots, p-1\}$ when $\delta \neq 0)$.
Let $\widehat{f}=w^{f}, \widehat{g}=w^{-f}$ in Lemma 3, we have
Theorem 2.

$$
F_{w^{f}} * F_{w^{-f}}(\alpha)= \begin{cases}p^{2 n} & \alpha=0 \\ 0 & \alpha \neq 0\end{cases}
$$

i.e.

$$
\sum_{x \in G F(p)^{n}} F_{w^{f}}(x) F_{w^{-f}}(\alpha-x)= \begin{cases}p^{2 n} & \alpha=0 \\ 0 & \alpha \neq 0\end{cases}
$$

Similar to the situation on $G F(2)$, we have the following simple results.
Theorem 3. $f(x)$ fulfills $S A C$ if and only if $g(x)=f(\sigma x+c)$ fulfills $S A C$, where σ is a permutation on $G F(p)^{n}, c \in G F(p)^{n}$.
Theorem 4. $f(x)$ fulfills $S A C$ if and only if $a f(x)+b$ fulfills $S A C$, where $a \neq 0$, $b \in G F(p)$.
Theorem 5. If $f(x)$ and $g(y)$ are $S A C$ over $G F(p)^{n_{1}}$ and $G F(p)^{n_{2}}$ respectively, then $h(z)=f(x)+g(y)$ is SAC over $G F(p)^{n_{1}+n_{2}}$, where $z=(x, y)$.

4. Spectral Symmetries of $S A C$-Fulfilling Functions

Definition 2. A function $f: G F(p)^{n} \longrightarrow G F(p)$ is said to be $\frac{1}{p}$-dependent in its i-th input component x_{i} if and only if $\operatorname{prob}\left(f\left(x+\alpha_{i}\right)=f(x)+a\right)=\frac{1}{p}$ for any $a \in G F(p), b \in G F(p)^{*}$ such that $\alpha_{i}=(0, \ldots 0, b, 0, \ldots 0)$, where b is the i-th component.

It is clear that f fulfills $S A C$ if and only if it is $\frac{1}{p}$-dependent in each of its input components. Similar to Lemma 6, we have $f(x)$ is $\frac{1}{p}$ - dependent in its i-th input if and only if $\sum_{x \in G F(p)^{n}} w^{f\left(x+\alpha_{i}\right)-f(x)}=0$ for any $b \in G F(p)^{*}$ such that $\alpha_{i}=(0, \ldots, 0, b, 0, \ldots, 0)$, where b is the i-th component.

Now, we can give a spectral characterization.
Theorem 6. If

$$
\begin{equation*}
F_{w^{f}}(x) F_{w^{-f}}(-x)=F_{w^{f}}(x+c) F_{w^{-f}}(-x-c) \tag{2}
\end{equation*}
$$

for any $c \in I_{i_{1} i_{2} \ldots i_{m}}=\left\{\left(c_{1}, \ldots, c_{n}\right) \mid c_{i} \neq 0 \Longrightarrow i \in\left\{i_{1}, \ldots, i_{m}\right\}\right\}$, then $f(x)$ is $\frac{1}{p}$ dependent in the input components $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{m}}$.
Proof. Let $x^{\prime} \in G F(p)^{m}, x^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right)$,
$S_{x^{\prime}}=\left\{x \in G F(p)^{n} \mid x_{i_{1}}=x_{1}^{\prime}, \ldots, x_{i_{m}}=x_{m}^{\prime}\right\}$, then

$$
G F(p)^{n}=\bigcup_{x^{\prime} \in G F(p)^{m}} S_{x^{\prime}}, S_{x_{1}^{\prime}} \bigcap S_{x_{2}^{\prime}}=\phi \Longleftrightarrow x_{1}^{\prime} \neq x_{2}^{\prime}
$$

Because of (2), we can write

$$
\sum_{x \in S_{x^{\prime}}} F_{w^{f}}(x) F_{w^{-f}}(-x)=\sum_{x \in S_{x^{\prime}+c^{\prime}}} F_{w^{f}}(x) F_{w^{-f}}(-x)
$$

for any $x^{\prime} \in G F(p)^{m}$ and any $c^{\prime} \in G F(p)^{m}$. Let $x^{\prime}=\left(0, x^{\prime \prime}\right), x^{\prime \prime} \in G F(p)^{m-1}$, $c^{\prime}=\left(j, c^{\prime \prime}\right), c^{\prime \prime} \in I_{i_{2} \ldots i_{m}}, 1 \leq j \leq p-1$, we have

$$
\sum_{x \in S_{\left(0, x^{\prime \prime}\right)}} F_{w^{f}}(x) F_{w^{-f}}(-x)=\sum_{x \in S_{\left(j, x^{\prime \prime}+c^{\prime \prime}\right)}} F_{w^{f}}(x) F_{w^{-f}}(-x)
$$

for any $x^{\prime \prime} \in G F(p)^{m-1}, c^{\prime \prime} \in G F(p)^{m-1}$. Hence,
$\sum_{x^{\prime \prime} \in G F(p)^{m-1}} \sum_{x \in S_{\left(0, x^{\prime \prime}\right)}} F_{w^{f}}(x) F_{w^{-f}}(-x)=\sum_{x^{\prime \prime} \in G F(p)^{m-1}} \sum_{x \in S_{\left(j, x^{\prime \prime}+c^{\prime \prime}\right)}} F_{w^{f}}(x) F_{w^{-f}}(-x)$
which means

$$
\sum_{x: x_{i_{1}}=0} F_{w^{f}}(x) F_{w^{-f}}(-x)=\sum_{x: x_{i_{1}}=j} F_{w^{f}}(x) F_{w^{-f}}(-x), j \in\{1,2, \ldots, p-1\}
$$

By the proof of Theorem 1 , we know $f(x)$ is $\frac{1}{p}$-dependent in the i_{1} th input component. By symmetric reason, we get the same result for $x_{i_{2}}, \ldots, x_{i_{m}}$.

5. $S A C$ of High Order

Definition 3. $f: G F(p)^{n} \longrightarrow G F(p)$ is said to fulfill $S A C$ of order $m(S A C(m))$ if any function obtained from $f(x)$ by keeping m of its input components constant fulfills the $S A C$ as well (this must be true for any choice of the position, and any values of the m constant components).

When $p \geq 3$, we have $S A C(n-1)$ functions, which is impossible for $p=2$. For example, $f\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}^{2}+\ldots+a_{n} x_{n}^{2}$, where $a_{i} \in G F(p)^{*}$.

Theorem 7. $f(x)$ fulfills $S A C(m)$ implies $f(x)$ fulfills $S A C(m-1), 1 \leq m \leq n-1$.
Proof. Let $f_{i_{1} \ldots i_{k}}^{c_{1} c_{k}}$ be the function resulted from f by fixing $x_{i_{j}}$ to constant c_{j}, $c_{j} \in G F(p), j=1,2, \ldots k$. Let $\alpha \in G F(p)^{n-m+1}$ and $w t(\alpha)=1$, consider
$V=\sum_{x \in G F(p)^{n-m+1}} w^{f_{i_{1} \ldots i_{m-1}}^{c_{1} \ldots c_{m-1}}(x+\alpha)-f_{i_{1} \ldots i_{m-1}}^{c_{1} \ldots c_{m-1}}(x)}$, without lost of generality, let $\alpha=(a, 0, \ldots, 0)=\left(\alpha^{\prime}, 0\right), a \in G F(p)^{*}, \alpha^{\prime} \in G F(p)^{n-m}, x=\left(x^{\prime}, \delta\right), x^{\prime} \in G F(p)^{n-m}$, $w t\left(\alpha^{\prime}\right)=1$. Then,

$$
V=\sum_{\delta=0}^{p-1} \sum_{x^{\prime} \in G F(p)^{n-m}} w^{\frac{f_{i_{1} \ldots i_{m-1} j_{n-m+1}}^{c_{1} \ldots c_{m-1} \delta}}{}\left(x^{\prime}+\alpha^{\prime}\right)-f_{i_{1} \ldots i_{m-1} j_{n-m+1}}^{c_{1} \ldots c_{m-1} \delta}}\left(x^{\prime}\right)
$$

By Lemma 6, each of the p inner sums is zero since f fulfills $S A C(m)$. Hence, $V=0$, and f fulfills $S A C(m-1)$ since each $f_{i_{1} \ldots i_{m-1}}^{c_{1} \ldots c_{m-1}}$ fulfills $S A C$ by Lemma 6.

In the following, we will give a spectral characterization for $S A C(1)$.
Let $l_{j}: G F(p) \longrightarrow C, 0 \leq j \leq p-1$ be defined by

$$
l_{j}(x)= \begin{cases}1 & x=j \\ 0 & x \neq j\end{cases}
$$

Then we have
$w^{f(x)}=\sum_{j=0}^{p-1} l_{j}\left(x_{i}\right) w^{f_{i}^{j}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)}$ for any i, where f_{i}^{j} is obtained from $f(x)$ by keeping the i-th component of x constant and equal to j. Hence,

$$
\begin{gathered}
F_{w^{f}}(u)=\sum_{j=0}^{p-1} \sum_{x \in G F(p)^{n}} l_{j}\left(x_{i}\right) w^{f_{i}^{j}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)} w^{-u x} \\
=\sum_{j=0}^{p-1} \sum_{x: x_{i}=j} w^{f_{i}^{j}} w^{-u^{\prime} x^{\prime}} w^{-j u_{i}}
\end{gathered}
$$

for any i, where $u=\left(u_{1}, \ldots, u_{n}\right), u^{\prime}=\left(u_{1}, \ldots, u_{i-1}, u_{i+1}, \ldots, u_{n}\right), x^{\prime}=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$. So,

$$
\begin{aligned}
& F_{w^{f}}(u)=\sum_{j=0}^{p-1} w^{-j u_{i}} \sum_{x: x_{i}=j} w^{f_{i}^{j}-u^{\prime} x^{\prime}}=\sum_{j=0}^{p-1} w^{-j u_{i}} F_{w^{f_{i}^{j}}}\left(u^{\prime}\right) \\
& =F_{w^{f_{i}^{0}}}\left(u^{\prime}\right)+w^{-u_{i}} F_{w_{i}^{f_{i}^{1}}}\left(u^{\prime}\right)+\ldots+w^{-(p-1) u_{i}} F_{w_{i}^{f_{i}^{p-1}}}\left(u^{\prime}\right)
\end{aligned}
$$

$u_{i} \in G F(p), u_{i}=0,1, \ldots, p-1$. In matrix form, we get

$$
\left(\begin{array}{c}
\left.F_{w^{f}}(u)\right|_{u_{i}=0} \\
\left.F_{w^{f}}(u)\right|_{u_{i}=1} \\
\cdot \\
\cdot \\
\cdot \\
\left.F_{w^{f}}(u)\right|_{u_{i}=p-1}
\end{array}\right)=M\left(\begin{array}{c}
F_{w^{f_{i}^{0}}}\left(u^{\prime}\right) \\
F_{w^{f_{i}^{1}}}\left(u^{\prime}\right) \\
\cdot \\
\cdot \\
\cdot \\
F_{w^{f_{i}^{p-1}}}\left(u^{\prime}\right)
\end{array}\right)
$$

where

$$
M=M^{T}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & w^{-1} & \ldots & w^{-(p-1)} \\
\ldots & \ldots & \ldots & \ldots \\
1 & w^{-(p-1)} & \ldots & w^{-(p-1)(p-1)}
\end{array}\right)
$$

Let

$$
N=N^{T}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & w & \ldots & w^{(p-1)} \\
\ldots & \ldots & \ldots & \ldots \\
1 & w^{p-1} & \ldots & w^{(p-1)(p-1)}
\end{array}\right)
$$

We have $M N=\operatorname{Diag}\{p, p, \ldots, p\}, M^{-1}=p^{-1} N$. So,

$$
\left(\begin{array}{c}
F_{w^{f_{i}^{0}}}\left(u^{\prime}\right) \tag{3}\\
F_{w^{f_{i}^{1}}}\left(u^{\prime}\right) \\
\cdot \\
\cdot \\
\cdot \\
F_{w_{i}^{f_{i}^{p-1}}}\left(u^{\prime}\right)
\end{array}\right)=M^{-1}\left(\begin{array}{c}
\left.F_{w^{f}}(u)\right|_{u_{i}=0} \\
\left.F_{w^{f}}(u)\right|_{u_{i}=1} \\
\cdot \\
\cdot \\
\cdot \\
\left.F_{w^{f}}(u)\right|_{u_{i}=p-1}
\end{array}\right)
$$

On the other hand, $w^{-f(x)}=\sum_{j=0}^{p-1} l_{j}\left(x_{i}\right) w^{-f_{i}^{j}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)}$ for any i.

$$
\begin{gathered}
F_{w^{-f}}(-u)=\sum_{j=0}^{p-1} \sum_{x: x_{i}=j} w^{-f_{i}^{j}} w^{u^{\prime} x^{\prime}} w^{j u_{i}} \\
=\sum_{j=0}^{p-1} w^{j u_{i}} \sum_{x: x_{i}=j} w^{-f_{i}^{j}+u^{\prime} x^{\prime}}=\sum_{j=0}^{p-1} w^{j u_{i}} F_{w^{-f_{i}^{j}}}\left(-u^{\prime}\right)
\end{gathered}
$$

$$
=F_{w^{-f_{i}^{0}}}\left(-u^{\prime}\right)+w^{u_{i}} F_{w^{-f_{i}^{1}}}\left(-u^{\prime}\right)+\ldots+w^{(p-1) u_{i}} F_{w^{-f_{i}^{p-1}}}\left(-u^{\prime}\right)
$$

In matrix form, we have

$$
\left(\begin{array}{c}
\left.F_{w^{-f}}(-u)\right|_{u_{i}=0} \\
\left.F_{w^{-f}}(-u)\right|_{u_{i}=1} \\
\cdot \\
\cdot \\
\cdot \\
\left.F_{w^{-f}}(-u)\right|_{u_{i}=p-1}
\end{array}\right)=N\left(\begin{array}{c}
F_{w^{-f_{i}^{0}}}\left(-u^{\prime}\right) \\
F_{w^{-f_{i}^{1}}}\left(-u^{\prime}\right) \\
\cdot \\
\cdot \\
F_{w^{-f_{i}^{p-1}}}\left(-u^{\prime}\right)
\end{array}\right)
$$

or

$$
\left(\begin{array}{c}
F_{w^{-f_{i}^{0}}}\left(-u^{\prime}\right) \tag{4}\\
F_{w^{-f_{i}^{\prime}}}^{\left(-u^{\prime}\right)} \\
\cdot \\
\cdot \\
F_{w^{-f_{i}^{p-1}}}\left(-u^{\prime}\right)
\end{array}\right)=N^{-1}\left(\begin{array}{c}
\left.F_{w^{-f}}(-u)\right|_{u_{i}=0} \\
\left.F_{w^{-f}}(-u)\right|_{u_{i}=1} \\
\cdot \\
\cdot \\
\cdot \\
\left.F_{w^{-f}}(-u)\right|_{u_{i}=p-1}
\end{array}\right)
$$

From (3) and (4), we get $F_{w_{i}^{f_{i}^{j}}}\left(u^{\prime}\right) F_{w^{-f_{i}^{j}}}\left(-u^{\prime}\right)=$

$$
\begin{aligned}
& p^{-1}\left(\left.\sum_{r=0}^{p-1} w^{r j} F_{w f}(u)\right|_{u_{i}=r}\right) p^{-1}\left(\left.\sum_{s=0}^{p-1} w^{-s j} F_{w^{-f}}(-u)\right|_{u_{i}=s}\right) \\
& =\left.\left.p^{-2} \sum_{r=0}^{p-1} \sum_{s=0}^{p-1} w^{(r-s) j} F_{w^{f}}(u)\right|_{u_{i}=r} F_{w^{-f}}(-u)\right|_{u_{i}=s}, \\
& \text { where } u^{\prime}=\left(u_{1}, \ldots, u_{i-1}, u_{i+1}, \ldots, u_{n}\right) \text {. From Theorem 1, we get }
\end{aligned}
$$

Theorem 8. $f(x): G F(p)^{n} \longrightarrow G F(p)$ fulfills $S A C(1)$ if and only if

$$
\begin{gathered}
\left.\left.\sum_{\substack{u^{\prime}: u_{t}==0 \\
t \neq i}} \sum_{r=0}^{p-1} \sum_{s=0}^{p-1} w^{(r-s) j} F_{w^{f}}(u)\right|_{u_{i}=r} F_{w^{-f}}(-u)\right|_{u_{i}=s}= \\
\left.\left.\sum_{\substack{u^{\prime}: u_{t}==1 \\
t \neq i}} \sum_{r=0}^{p-1} \sum_{s=0}^{p-1} w^{(r-s) j} F_{w^{f}}(u)\right|_{u_{i}=r} F_{w^{-f}}(-u)\right|_{u_{i}=s}= \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
\left.\left.\sum_{\substack{u^{\prime}: u_{t}=p-1 \\
t \neq i}} \sum_{r=0}^{p-1} \sum_{s=0}^{p-1} w^{(r-s) j} F_{w^{f}}(u)\right|_{u_{i}=r} F_{w^{-f}}(-u)\right|_{u_{i}=s}=
\end{gathered}
$$

for any i, any $t \in I-\{i\}$ and any $j \in G F(p)$.
By (3) and (4), we get the following
Theorem 9. For any $f(x): G F(p)^{n} \longrightarrow G F(p)$, we have

$$
\sum_{j=0}^{p-1} F_{w^{f_{i}^{j}}}\left(u^{\prime}\right) F_{w^{-f_{i}^{j}}}\left(-u^{\prime}\right)=\left.p^{-1} \sum_{j=0}^{p-1}\left(F_{w^{f}}(u) F_{w^{-f}}(-u)\right)\right|_{u_{i}=j}
$$

for any $i \in\{1,2, \ldots, n\}$.

6. Construction and Characterization of $S A C(n-1)$ over $G F(p)$

In 1989 and 1990, three groups ([6], [10], [15]) independently proved the following interesting result about permutation polynomials.

Theorem 10. Suppose $f(x)$ is a polynomial on $G F(p)$. If $f(x+\alpha)-f(x)$ is a permutation for any $\alpha \neq 0$, then f must be quadratic.

From this theorem, we immediately have
Theorem 11. $f\left(x_{1}, \ldots, x_{n}\right): G F(p)^{n} \longrightarrow G F(p)$, if f is $S A C(n-1)$, then the degree of each x_{i} must be 2. Actually, we have the following:
$f\left(x_{1}, \ldots, x_{n}\right)=f_{i 1}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) x_{i}^{2}+f_{i 2}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) x_{i}+$
$f_{i 3}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$, where $f_{i 1}$ is never zero, $f_{i 3}$ is $S A C(n-2)$ for $i=$ $1,2, \ldots, n$.

Proof. By Definition 3, $f\left(c_{1}, \ldots c_{i-1}, x_{i}, c_{i+1}, \ldots, c_{n}\right)$ is $S A C$ for any
$c_{1}, \ldots, c_{i-1}, c_{i+1}, \ldots, c_{n}$ and hence must be quadratic because of Theorem 10. So, the coefficient $f_{i 1}$ is never zero. Also, $f_{i 3}$ must be $S A C(n-2)$ since

$$
f_{i 3}=f\left(x_{1}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n}\right)
$$

We introduce a "big oh" notation for $f(x)$:
If the degree of each x_{i} is at most one, i.e. $f\left(x_{1}, \ldots x_{n}\right)=\sum_{S \subset I} d_{S} \prod_{i \in S} x_{i}$, where $I=\{1,2, \ldots, n\}$, then we write f as "big oh" of x_{1}, \ldots, x_{n}, i.e. $f=O\left(x_{1}, \ldots x_{n}\right)$. Obviously, $O\left(x_{1}, \ldots, x_{n}\right)+O\left(x_{1}, \ldots, x_{n}\right)=O\left(x_{1}, \ldots, x_{n}\right), O\left(x_{1}, \ldots, x_{k}\right)+O\left(x_{k+1}, \ldots, x_{t}\right)=$ $O\left(x_{1}, \ldots, x_{t}\right)$.
Theorem 12. If $f\left(x_{1}, x_{2}\right)$ is $S A C(1)$, then $f\left(x_{1}, x_{2}\right)$ must be

1) $a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+O\left(x_{1}, x_{2}\right), a_{1}, a_{2} \in G F(p)^{*}$, or
2) $a\left(x_{1}^{2}+b x_{1}+c\right)\left(x_{2}^{2}+d x_{2}+e\right)+O\left(x_{1}, x_{2}\right)$, where $a \neq 0, x_{1}^{2}+b x_{1}+c$ and $x_{2}^{2}+d x_{2}+e$ are never zero, i.e. $x_{1}^{2}+b x_{1}+c=\left(x+b_{1}\right)^{2}-r_{1}, x_{2}^{2}+d x_{2}+e=\left(x_{2}+d_{2}\right)^{2}-r_{2}$, with Legendre symbol $\left(\frac{r_{i}}{p}\right)=-1, i=1,2$.

Proof. $f\left(x_{1}, x_{2}\right)=x_{1}^{2} f_{1}\left(x_{2}\right)+x_{1} f_{2}\left(x_{2}\right)+f_{3}\left(x_{2}\right), f_{1}\left(x_{2}\right)=a_{1} x_{2}^{2}+b_{1} x_{2}+c_{1}, f_{2}\left(x_{2}\right)=$ $a_{2} x_{2}^{2}+b_{2} x_{2}+c_{2}, f_{3}\left(x_{2}\right)=a_{3} x_{2}^{2}+b_{3} x_{2}+c_{3}$. Since $f\left(0, x_{2}\right)=f_{3}\left(x_{2}\right)$ is $S A C, f_{3}\left(x_{2}\right)$ must be quadratic, i.e. $a_{3} \neq 0 . f_{1}\left(x_{2}\right)$ is never zero by Theorem 11 .

Case $1 \quad f_{1}\left(x_{2}\right)=c_{1} \neq 0\left(a_{1}=0\right)$:
$f\left(x_{1}, x_{2}\right)=c_{1} x_{1}^{2}+x_{1}\left(a_{2} x_{2}^{2}\right)+a_{3} x_{2}^{2}+O\left(x_{1}, x_{2}\right)$. If $a_{2} \neq 0, f\left(-a_{2}^{-1} a_{3}, x_{2}\right)$ is not quadratic for x_{2}, hence, not $S A C$, a contradiction. So, $a_{2}=0, f\left(x_{1}, x_{2}\right)=$ $c_{1} x_{1}^{2}+a_{3} x_{2}^{2}+O\left(x_{1}, x_{2}\right)$ which belongs to 1$)$.

Case $2 \quad\left(a_{1} \neq 0\right) f_{1}\left(x_{2}\right)=a_{1} x_{2}^{2}+b_{1} x_{2}+c_{1}=a_{1}\left[\left(x_{2}+b^{\prime}\right)^{2}-r_{1}\right],\left(\frac{r_{1}}{p}\right)=-1$:
$f\left(x_{1}, x_{2}\right)=x_{1}^{2}\left(a_{1} x_{2}^{2}+b_{1} x_{2}+c_{1}\right)+x_{1}\left(a_{2} x_{2}^{2}\right)+a_{3} x_{2}^{2}+O\left(x_{1}, x_{2}\right)$
$=a_{1} x_{1}^{2}\left[\left(x_{2}+b^{\prime}\right)^{2}-r_{1}\right]+a_{2} x_{1}\left[\left(x_{2}+b^{\prime}\right)^{2}-r_{1}\right]+a_{3}\left[\left(x_{2}+b^{\prime}\right)^{2}-r_{1}\right]+O\left(x_{1}, x_{2}\right)$
$=\left(a_{1} x_{1}^{2}+a_{2} x_{1}+a_{3}\right)\left[\left(x_{2}+b^{\prime}\right)^{2}-r_{1}\right]+O\left(x_{1}, x_{2}\right)$.
Because $f\left(x_{1}, x_{2}\right)=\left(a_{1} x_{1}^{2}+a_{2} x_{1}+a_{3}\right) x_{2}^{2}+\left(b_{1} x_{1}^{2}+b_{2} x_{1}+b_{3}\right) x_{2}+\left(c_{1} x_{1}^{2}+c_{2} x_{1}+c_{3}\right)$, $a_{1} x_{1}^{2}+a_{2} x_{1}+a_{3}$ is the coefficient of x_{2}^{2}, hence, never zero. So, $f\left(x_{1}, x_{2}\right)$ belongs to $2)$.

In fact, we have determined all the $S A C(n-1)$ functions for $n=1,2$. We will give some constructions for $n \geq 3$.

CONSTRUCTION $1 \quad(n \geq 3, p \geq 3)$
$I=\{1,2, \ldots, n\}, I_{i}=\left\{i_{1}, i_{2}, \ldots, i_{r_{i}}\right\}, i=1,2, \ldots, t . I_{i} \cap I_{j}=\phi$ if $i \neq j$,
$I_{1} \cup I_{2} \cup \ldots \cup I_{t}=I$. Let $f\left(x_{1}, \ldots, x_{n}\right)=a \prod_{i=1}^{t}\left(l_{i}^{2}-\alpha_{i}\right)$, where α_{i} are nonsquares, i.e. $\left(\frac{\alpha_{i}}{p}\right)=-1, a \in G F(p)^{*}, l_{i}=a_{i 1} x_{i_{1}}+a_{i 2} x_{i_{2}}+\ldots+a_{i r_{i}} x_{i_{r_{i}}}+b_{i}, a_{i j} \in G F(p)^{*}$, $j=1,2, \ldots r_{i}, i=1,2, \ldots t$, then f is obviously $S A C(n-1)$.

In general, we have
Theorem 13. Let $I=\{1,2, \ldots, n\}=I_{1} \cup I_{2}, I_{1} \cap I_{2}=\phi, I_{2}=J_{1} \cup \ldots \cup J_{s}, J_{i} \cap J_{j}=\phi$ if $i \neq j$. Let $J_{k}=\left\{k_{1}, \ldots, k_{r_{k}}\right\}, k=1,2, \ldots, s$, using CONSTRUCTION 1 to construct f_{k} on $x_{k_{1}}, \ldots, x_{k_{r_{k}}}$, then
$f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \in I_{1}} a_{i} x_{i}^{2}+\sum_{j=1}^{s} f_{j}+O\left(x_{1}, \ldots, x_{n}\right)$ is $S A C(n-1)$.
CONSTRUCTION $2 \quad(n \geq 3, p \geq 3)$
Step 1: Choose any $b_{1}, b_{2}, \ldots, b_{n}, c_{0}, d_{0}$ from $G F(p)$.
Step 2: Choose any nonsquare r_{1}, r_{2}.
Step 3: If $b_{i}=0$, choose any \bar{b}_{i} from $G F(p)^{*}$, if $b_{i} \neq 0$, let $\bar{b}_{i}=0$.
Step 4: Choose a_{i} such that

$$
a_{i} \neq \begin{cases}-b_{i}^{2}\left(k^{2}-r_{2}\right) & \text { if } b_{i} \neq 0 \\ -\bar{b}_{i}^{2}\left(k^{2}-r_{1}\right) & \text { if } b_{i}=0\end{cases}
$$

for $k=0,1, \ldots, \frac{p-1}{2}, i=1,2, \ldots, n$.
Step 5: Let $f\left(x_{1}, \ldots, x_{n}\right)$
$=a_{1} x_{1}^{2}+\ldots+a_{n} x_{n}^{2}+\left[\left(b_{1} x_{1}+\ldots+b_{n} x_{n}+c_{0}\right)^{2}-r_{1}\right]\left[\left(\bar{b}_{1} x_{1}+\ldots \bar{b}_{n} x_{n}+d_{0}\right)^{2}-r_{2}\right]$.
f is obviously $S A C(n-1)$.
Generally, we have
Theorem 14. Let $I=\{1,2, \ldots, n\}=I_{1} \cup I_{2} \cup \ldots \cup I_{s}, I_{i} \cap I_{j}=\phi$ if $i \neq j,\left|I_{j}\right|=t_{j}$, $\sum_{j=1}^{s} t_{j}=n, I_{j}=\left\{j_{1}, j_{2}, \ldots j_{t_{j}}\right\}, j=1,2, \ldots s$. Using CONSTRUCTION 2 to construct f_{j} on $x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{t_{j}}}$, then
$f\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{s} f_{j}+O\left(x_{1}, \ldots, x_{n}\right)$ is $S A C(n-1)$.
Let A_{1} be the set of all the functions of Theorem 13. Let A_{2} be the set of all the functions of Theorem 14. We have

Theorem 15. $A_{1} \nsubseteq A_{2} \nsubseteq A_{1}$
Proof. It's not hard to prove that if there exist i with $a_{i} \neq 0$, then the functions of A_{2} don't belong to A_{1}. On the other hand, $f\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}^{2}-r_{1}\right) \ldots\left(x_{n}^{2}-r_{n}\right) \in A_{1}$, where the r_{i} are nonsquares for $i=1,2, \ldots, n$. For any function from A_{2}, its algebraic degree is at most $\max (4, n)$. Hence, f doesn't belong to A_{2} since its algebraic degree is $2 n$.

Theorem 16. The maximal algebraic degree of $S A C(n-1)$ functions is $2 n$.
Proof.

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{k_{1}=0}^{p-1} \sum_{k_{2}=0}^{p-1} \ldots \sum_{k_{n}=0}^{p-1} a_{k_{1} k_{2} \ldots k_{n}} x_{1}^{k_{1}} x_{2}^{k_{2}} \ldots x_{n}^{k_{n}}
$$

we know $k_{j} \leq 2$ for each j by theorem 11, hence $\operatorname{deg}(f) \leq 2 n$. On the other hand, $\left(x_{1}^{2}-r_{1}\right) \ldots\left(x_{n}^{2}-r_{n}\right)$ has degree $2 n$, where $\left(\frac{r_{i}}{p}\right)=-1$.

7. Some Open Questions

We have the following open questions:
Q1: Do CONSTRUCTION 1 and 2 give all the $S A C(n-1)$ functions?
Q2: Does $f=a \prod_{i=1}^{n}\left[\left(a_{i} x_{i}+b_{i}\right)^{2}-r_{i}\right]+O\left(x_{1}, \ldots, x_{n}\right)$ give all the $S A C(n-1)$ functions with degree $2 n$?

Q3: Are there any $S A C(k)(0 \leq k \leq n-2)$ functions such that the degrees for some x_{i} are more than 2 ?

This paper was finished on Mar,2004.

References

[1] Luke O'Connor " An Upper Bound on the Number of Functions Satisfying the Strict Avalanche Criterion", Information Processing Letters 52 (1994), pp. 325-327.
[2] T.W.Cusick, "Boolean Functions Satisfying a Higher Order Strict Avalanche Criterion", Advances in Cryptology, Eurocrypt'93, pp. 102-117.
[3] T.W. Cusick, Pantelimon Stănică " Bounds on the Number of Functions Satisfying the Strict Avalanche Criterion", Information Processing Letters 60 (1996), pp. 215-219.
[4] T.W.Cusick and Yuan Li " k-th Order Symmetric SAC Boolean Functions and Bisecting Binomial Coefficients", Discrete Applied Mathematics 149 (2005), pp. 73-86.
[5] Forré. R, "The Strict Avalanche Criterion: Spectral Properties of Boolean Functions and an Extended Definition", Advances in Cryptology, Crypto'88, pp. 450-468.
[6] David Gluck, " A Note On Permutation Polynomials And Finite Geometries", Discrete Mathematics (8) pp. 97-100 1990.
[7] Habong Chung and P.V.Kumar, " A New General Construction for Generalized Bent Functions", IEEE Transactions on Information Theory Vol. 35, No. 1,January 1989. pp. 206-209.
[8] Jennifer Seberry, Xian-Mo Zhang, Yuliang Zheng "Improving the Strict Avalanche Characteristics of Cryptographic Functions", Information Processing Letters 50 (1994), pp. 37-41.
[9] S.Lloyd, "Counting Binary Functions with Certain Cryptographic Properties". Journal of Cryptology, 5: pp. 107-131, 1992.
[10] Yutaka Hiramine, " A Conjecture On Affine Planes of Prime Order", J. Combinatorial Theory (A), 52, pp. 44-50, 1989.
[11] Keqin Feng And Fengmei Liu, "New Results On The Nonexistence of Generalized Bent Functions", IEEE Transactions on Information Theory Vol. 49, No. 11, November 2003, pp. 3066-3071.
[12] P.V.Kumar, R.A.Scholtz, and L. R. Welch, "Generalized Bent Functions and Their Properties", J. Combinatorial Theory (A), Vol. 40, pp. 90-107, 1985.
[13] R.Lidl and H.Niederreiter, "Finite Fields" (Encyclopedia of Mathematics and Its Applications, vol. 20). Reading, MA: Addison-Wesley, 1984
[14] Mulan Liu, Peizhong Lu and Gary L. Mullen, "Correlation-Immune Functions over Finite Fields", IEEE Transactions on Information Theory vol 44, No 3, May 1998, pp. 1273-1276.
[15] L.Ronyiai and T.Szonyi, "Planar Functions Over Finite Fields", Combinatorica 9(3) (1989), pp. 315-320.
[16] A.F.Webster and S.E.Tavares, "On the Design of S-Boxes", Advances in Cryptology, Crypto'85, Lect. Notes. Comp. Sci:218, Springer Verlag, 1986, pp. 523-534.
[17] A.M. Youssef, S.E. Tavares " Comment on "Bounds on the Number of Functions Satisfying the Strict Avalanche Criterion"", Information Processing Letters 60 (1996), pp. 271-275.
[18] Yuan Li and T. W. Cusick, "Linear Structures of Symmetric Functions over Finite Fields", Information Processing Letters, accepted.
[19] Yupu Hu and Guozhen Xiao "Resilient Functions Over Finite Fields", IEEE Transactions on Information Theory Vol 49, No. 8, August 2003, pp. 2040-2046

SUNY Department of Mathematics, 244 Mathematics Building, Buffalo, NY 14260
E-mail address: email:yuanli@buffalo.edu, cusick@buffalo.edu

[^0]: Key words and phrases. Fourier transform, cryptography, Boolean functions, algebraic normal form, strict avalanche criterion, resilience, bent functions, permutation polynomials, finite field, quadratic residue, Legendre symbol,

