Additive Zero-Knowledge and Applications: SPAM

Abstract—In this paper, we introduce the concept ofadditive
zero knowledge. Essentially, an additive proof can be considered

Prevention

Amitabh Saxena and Ben Soh Chunbo Ma
Computer Science and Computer Engineering School of Information Science and Technology
La Trobe University Southwest Jiaotong University
Bundoora, VIC, Australia 3086 Chengdu, Sichuan, 610031, P. R. China

6) (S,p) is an additive zero-knowledge proof system
(AZKPS) if and only if (S,p) is a CZKPS and given

as a proof system involving many provers and one verifier such
that the statements of all the provers are proved simultaneously.
Our model of additive proofs is presented using constructions
of blind group identification aggregate signaturesand chained
signatures The security of our protocols relies on the difficulty
of the underlying Diffie-Hellman problem in bilinear maps. As
applications, we present a novel method to prevent Spam.

I. INTRODUCTION

(S, p), an efficient algorithm exists to compute a tuple
(S, p;) such that:

Verg(Si,pi) =1AS8,=SU {Sl} N 8; ¢ S A s; is True

A (S, p;) is also a CZKPS.

It may be possible that each such resulting CZKPS
(S;, pi) is also an AZKPS. These are the type of additive
proofs we will be interested in.

Finally, we differentiate between two types of composite
proof systems: (a)parallel in which the individual

provers and one verifier such that the verifier process accepts
if and only if all the provers are honest. The ‘zero-knowledge’

property requires that other than this fact, no ‘extra’ informal;0
tion is revealed to the verifier. We use the following notation:

1)

sequential in which the individual statements must be
supplied in a specific order.

give a meaningful context to additive proofs, we will

) i present three distinct examples:
A statementis any claim that can be True or False. ) o . .
1) Blind Group IdentificationA group of users can identify

For examples = “l know z corresponding tg,” is a

statement. We denote the set of all statementS.by
2) Lets e S andp € {0,1}*. We say that the tuplés, p)

constitutes anon-interactive proof system (NIPS or

simply PS from now onwards) if there is an efficiently

computable mappinyer; : S x {0,1}* — {0,1} such
thatVer, (s,p) = 1 if and only if s is True. Analogously,
we say that a statementis True if and only if3p €
{0,1}* : Ver,(s,p) = 1.

3) A composite statements simply a collection of state-
ments combined using the logical conjunctiay) pper-

ation. A composite statement is True if and only if all

its constituent statements are simultaneously True.
4) Let S C S be some composite statement let gnd

{0,1}* be some string. We say that the tup(#, p)

constitutes a (non-interactivepmposite proof system

(CPS) if and only if there is an efficiently computable

mapping Ver, : 2% x {0,1}* ~— {0,1} such that
Very(S,p) = 1 if and only if Vs; € S, s; is True. Note
that Ver,({s},p) = Ver (s, p).

themselves to a server such that: (a) if all users are
honest the server always accepts and (b) If any users
are dishonest the server always rejects. However, in this
case it is impossible to find out the actual identity of
the particular cheating user(s). We thus coin the term
‘blind’ identification to this process.

) Aggregate SignaturesA group of users will sign indi-

vidual messages and combine the individual signatures
to get an aggregate signature such that the verification
process on the aggregate signature succeeds if and only
if (&) all the individual signatures were valid and (b)
the exact list of users (ignoring the order) involved
in the aggregation is input to the verification process.
Moreover, once the aggregate signature is created, it is
impossible to extract any individual signatures.

) Chained SignaturesThese are exactly like aggregate

signatures with the additional requirement that the exact
order of the individual signers must be supplied to the
verification process to make it accept a valid signature.

5) (S,p) is a composite zero-knowledge proof system Throughout this paper, we will use the following notation.
(CZKPS) if and only if(S,p) is a CPS and the ver-If A is a non-empty set, them «— A denotes thatr
ifier cannot later use the progf to convince anyone has been uniformly chosen iA. An ordered sequence of
(including himself) about the validity of the individual: elementsay,as,...«; is denoted by(ai,as,...q;). If
constituent statements 6findependently of the others. S = (a;,as,...q;) is some finite sequence theé$, o) =
Formally, given(S, p) it is infeasible to compute a pair (o1, as,...q;,«) is also a finite sequence. For any two

<S77p1> 7é <S,p> such that\/erg(Si,pi) =1AS5;,CS.

sequencesS = (aq,qq,...q;) and T = (B, 02,...05;),



S=T<&(i=j& a; =f; Vi). which requires deciding it/ = rP is easy in this case,
The rest of the paper is organized as follows. In section Il since it only requires two pairing computations to decide

we present the cryptographic primitives used in our proto- if e(P, R) = e(Y,U). All pairing based schemes make

col. In section Ill, we describe the underlying Public Key use of this observation [1]).

Infrastructure required for our protocols. We present the group5) Linear Diffie-Hellman AssumptiorGiven P,Y, R € G,

identification protocol in sections IV. Finally, in section V such thatY = zP and R = rY for unknownsz,r €

and VI, we present the aggregate signature and chained Zj, computingany pair (Z,Q) such thatZ = rP +

signature protocols along with a brief security analysis. zQ is infeasible. We call this theinear Diffie-Hellman
Problem (LDHP)

Il. BILINEAR PAIRINGS 6) Linear Decisional Diffie-Hellman Assumptiofihis re-

All the constructions presented in this paper are based on lates to the decisional variant of the LDHP. Given
the existence of efficiently computable non-degenerate bilinear P,Y,R,Z,Q € G such thaty’ = zP and R = rY
maps which can be abstractly described as follows:@.ebe for unknownsz, r € Z7, deciding if Z = r P + x@Q with
a cyclic additive group of prime order and G, be a cyclic probability > 1/2 is infeasible. We call this theinear
multiplicative group of the same order. Assume that computing ~ Decisional Diffie-Hellman Problem (LDDHP)
the discrete logarithm in botfy; and G, is hard. A bilinear  The observed relationship between the different problems
pairing is a mag : G; x G; — G that satisfies the following considered above is depicted in figure 1. An arrow indicates a

properties [1]: reduction with the tail end representing the harder problem [4].
1) Bilinearity: e(aP,bQ) = e(P,Q)* VP,Q € G; and
a,b €7 DHP (Hard) <——= EDHP <— EDDHP (Hard ?)
2) Non-degeneracyP # 0 = e¢(P, P) # 1 / \
3) Computability e is efficiently computable
The above properties also imply: LDHP (Hard ?) LDDHP (Hard ?)
e(P+Q,R)=¢e(P,R) e(Q,R)VP,Q,R € Gy Fig. 1. Problem Hierarchy

e(P,Q+ R) =¢e(P,Q)-e(P,R) VP,Q,R € Gy
Typically, the mape will be derived from either the Weil or
Tate pairing on an elliptic curve over a finite field. Despite ll. SETUPPKI
the complex mathematics involved in constructing such maps,In the rest of the discussion, we will using a PKI which
cryptographic protocols based on pairings can be describ&il be setup as follows: A central authority is responsible for
entirely without ever referring to the actual implementatiorgenerating the security parameters. A trusted CA is responsible
We refer the reader to [1], [2], [3] for more details. Pairing$or certifying the public keys. To participate in the protocol
and other parameters should be selected in proactive &ch user must have a certified public key.
efficiency and security. For appropriately selected parametersy) Lete : G; x G; — G, be a bilinear mapping and
the following assumptions should hold unconditionally. P € G, be a generator d,. The parameter&, G, P)
are generated by the trusted authority and made public
in an authentic way.
1) Discrete Logarithm AssumptioriThe Discrete Loga-  2) Each participanfD; generates; < Z, as the private

A. Assumptions

rithm Problem (DLP)in G; (and consequentlyGs) key. The corresponding public key ¥§ = x; P € G;.

is intractable. In other words, given any two elements  Each user also obtains a certificate from the CA linking
PY € G;, computingz € Z; such thatY” = zP is the identityZD; and the public key;. In other words,
hard. the CA fixes the pairgY;,ZD;).

2) Diffie-Hellman AssumptionGiven P, Y, R € G; such
thatY = P and R = rY for unknownsz,r € Z, IV. BLIND GROUPIDENTIFICATION
computingU = rP is infeasible. This is theDiffie- This scheme enables a group of users to identify themselves
Hellman Problem (DHP) to a server such that: (a) The identification test passes if none

3) Extended Diffie-Hellman Assumptio@iven P,Y, R € of the users cheat, (b) if any users cheat, the test will falil
Gy such thay” = xP andR = rY for unknownse,r € with a high probability, (c) it is not possible for the server
Z;, computingU' = r2P is infeasible. We call this the or the users to know which person cheated. An important
Extended Diffie-Hellman Problem (EDHP) application for this type of scheme is in the following type

4) Extended Decisional Diffie-Hellman Assumpti@iven of group systems: Assume that two users Alice and Bob want
P YR, U € Gy such thatY = P and R = rY to identity themselves jointly to a server (for example, because
for unknownsz,r € Z;, deciding if U = r2P with they don't trust each other to individually login to the server
probability > 1/2 is infeasible. This is theExtended without the other’s approval). Alice wants to ensure that the
Decisional Diffie-Hellman Problem (EDDHP(We note identification succeeds if and only if the other user is really
that the Decisional Diffie-Hellman Problem (DDHP)Bob. Bob has a similar requirement.



Assume tha{ZD,,ZD,,...ID,} are the set of users who
want to jointly identify themselves. It is necessary that each
userZD; must have a certified public key; as described
earlier. The goal of the protocol is that all users will simulta-
neously identify themselves to a serr

In other words, each usefD; will prove possession of
the discrete logarithme; of Y; (to base P) such thaf

cannot be convinced about any of the individual statements

to the hardness of the EDHP. Thus a dishonest verifier
will not be able to make anyone accept his/her challenge
as valid as shown in [4]. We also note that the task
of a dishonest verifier (EDHP) is considerably harder
than that of a dishonest verifier (LDHP). This ensures
an implicit (dishonest verifier) zero-knowledge property.

Zero Knowledge

separately. That is, the proof is valid only on all the statements' "€ case of a dishonest verifier can be ignored due to the

together: ZD; knows z;” Vi :
any of the individual statements likeZD; knows x,” or

1 < i < n but not on above reasoning. We analyze the zero knowledge property for
likeT D the following:

“ID, knowsz,” independently of the others. We will assume 1) Honest Verifier Zero KnowledgeS can generate a

the infrastructure of section Ill. The identification is done as
follows:

1) Then proversiD,,ZDs...1ID,, start by claiming taS
that they know the discrete logarithms, -, ...x, €

Zq Of Y1,Y5,...Y,, € G, (to baseP) respectively.

The verifierS generates,rs, ..., < Z, and com-
putesR;, = r;Y; andU; = r2P. It makes the list of
challengesZD;, R;,U;) public.

Each ZD; computesV; %Ri and checks that
e(V;, Vi) = e(U;, P). If this test passes, it generates
QT; «— G; and Computegi =V, + J’7QL

All users then collaborate to jointly compute the value
Z = 3377 Z;. This computation is hidden fron§
so that individual valuesZ; are effectively kept secret
from it's view. The combined proofZ, Q1,Q2 ... Qn}

is sent toS. _ _

5) S accepts ife(Z — >332V P, P) = [[;Z] e(Q;, Y).

We claim that this test will pass if and only if each
ID; knows z;. To summarize the goals of the protocol, the
individual users can jointly authenticate themselves to the
server such that:

(a) If all users are honest, the server always accepts.

(b) If any of the users are dishonest, the server rejects with
a high probability.

(c) The protocol is zero knowledge. It is not possible
for anyone (including the server) to know which user
cheated.

(d) Collusions are possible between users but not with the
server (the server is trusted).

The protocol is secure based on the following analysis.

2)

3)

4)

A. Correctness And Soundness

The properties of bilinear maps ensure that the verification
is always successful if none @fD; cheat while the soundness
property holds because:

1) Dishonest Prover: Computing individual prodfs;, Q;)
without z; or r; is infeasible due to the linear Diffie-
Hellman assumption. That is, a dishonest prover must
solve the LDHP in order to cheat.

Dishonest Verifier: A dishonest verifier will generate
R non-randomly and will therefore not know corre-
sponding taR;. Due to this it will be hard for this verifier

to generatd/; such thate(L R;, L R;) = ¢(U;, P) due

1
T; T

2)

2)

3)

4)

valid accepting transcript on its own corresponding to
{ri,R;,U;} Vi : 1 < i < n as follows: S generates

a; « Z4 Vi and compute®); = «; P, R; = r;Y;. Then

Z = E;z? ’I“iP + OziY;'.

Honest Verifier Secrecy: We require that it is impossible
for a passive adversary to decide the honesty of the
verifier. The reasoning for the single user case can be
extended here. That is, givdh x; P, R;, U;, deciding if
e(+R;, L R;) = e(U;, P) is infeasible without knowl-
edge ofr; or z; due to the hardness of the EDDHP [4].
Honest Prover Secrecy: Assume that all the provers are
honest and thusS will eventually accept. We require
that it is impossible for a passive adversary (including
the provers) to decide the honesty some prover. We note
that given P, z; P,r;x; P,r? P, Q;, Z;, deciding if Z; =

r; P + z;Q; is infeasible without knowledge of or =

due to the hardness of the LDDHP @y as shown in

[4]. Thus a passive adversary cannot decide the outcome
of the identification.

Dishonest Prover Secrecy: Assume that some of the
provers are dishonest. In this case, deciding if any given
Z; = L R;+2,;Q; is infeasible without knowledge of;

orr; due to the decisional linear Diffie-Hellman assump-
tion. That is, givenP, x; P, r;x; P, Q, Z; € G, deciding

if Z; = r;P + z;Q is infeasible without knowing at
least one of x;, r; }. Therefore ifS rejects, none of the
provers know which pair$Z;, Q;) correspond to invalid
proofs (if the individual coin tosses; of S are kept
secret andS is honest, no information is leaked to the
provers). Similarly if the individual valueg; are kept
secret (fromsS), the identity of the dishonest provers
is still concealed since computing individual prodfs
justfromZ,Q1,Q>...Q, suchthatZ; = r;, P+x,Q; Vi

is infeasible without knowledge of eachy due to the
hardness of the DHP ifis; as shown in theorem 4.4
of [5] (cf. aggregate extraction). Consequently, even the
verifier S does not have the ability to decide which of
the provers are dishonest.

Finally, if the joint computation ofZ is carried out in a
way that any one individual prover or a small coalition of
provers can know?;’s for only a small fraction of users,
the identities of dishonest provers can still be effectively
hidden, even ifS can be coerced to reveal all the coin
tossesr;.



V. AGGREGATE SIGNATURES signature scheme of [5] and construct very short constant-sized

Aggregate signatures first introduced by Boneh et al. [gjwained signatu_res. Spme of the definitions are si_mplified since
allow a number of signatures on the same or different messa$sdo not provide a rigorous security proof in this paper (for
by different users to be verified in one step. The advantage'¥fich the reader is referred to [6]).
this scheme is evident in scenarios where batch authenticatioh? this scenario there are ordered distinct participants
is possible. A very short aggregate signature scheme based®R1:ZD2,...ID,) and one message to be signed. The
pairings is presented in [5]. Usually aggregate signatures c@figinal signer of the message is Z7D,. The message is
have the following variants: passed froniZD; to ZD;,, along with a chain-signature as

1) Signatures of different users on different messages g%scribed below. We will use the infrastructure of section IIl.
verified in a batch.

2) Signatures of the same user on different messages AreSigning
verified in a batch. Let L, = (ZD1,ID>,...ID,) for r > 1. Definezy =0 €
3) Signatures of different users on the same message @re Define recursivelyz; = z;H(m, L;) + z;_1. The chain-
verified in a batch. signature ofZD; on the message: is (z;, L;)

Efficient constructions for each of these variants can be
constructed from the schemes of [5]. It should be noted that Verification
Fh(_ase variants are mutually exclusivg. That is, in variant (1)’IDi+1 accepts the signaturé;, L;) of ZD; as valid if
it is necessary that each user be distinct and each message P)= Hrfi e(H(m, L,),Y,).
be distinct. We briefly describe the scheme Hereset of n v r=1 e
users{ZID;,ID,,...ZD,} will create _individua_l_sigr_watures C. Non-Repudiation
on message$mi, ms ... m,} which will be verified in one o ) _ )
step. We will assume the infrastructure of section Ill where Non-repudiation is provided as follows: using the signature
the private key offD; is x; corresponding to the public keyZi—1 received froniZD;_,, userZ’D; can prove to a judge that
Y; = ;P . The individual signature ofD; is s; = z;H(m;) the messagen was indeed received frofiD,_; by invoking
while the aggregate signaturess= >7=" s,. The aggregate the verification procedure.
signature is accepted (s, P z _le(H(m,),Y,). We . :
refer the reader to [5] fo(r the) SeCEity 1pr(()of<. ») D. Security Analysis
We will now give a brief analysis of the protocol and
show that it achieves the necessary objectives of correctness
Another type of aggregate signatures, not considered in Bdd soundness. Roughly speaking, correctness requires that if
are chained signatures. In this variant, an aggregation gf participants behave correctly, then the verification process
signatures of different users on the same message is verifiedi@uld always output true. On the other hand, soundness
once. Notice that there is a subtle change in the definition fra@quires that the verification process should output false with
aggregate signatures. Unlike aggregate signatures, the chaiggstwhelming probability if even one participant misbehaves.
signatures have the following properties: Recall that we want to ensure that the ordered list of par-
1) Any user can ‘add’ his signature to the aggregation ¢itipants specified in eachi; should correctly and uniquely
signatures, thereby adding his name to the list (or chaiidentify the path of the received message. The objectives of
of signers. the protocol are summarized below:

2) Once a user's signature is added to the aggregation, i) ysing their private keys, participants can add their names
cannot be removed by any other user. _ to the end of the list (contained in the signature) without
3) The order in which each user added to the aggregation jnteraction. Arbitrary names cannot be added to a list
IS presgrved (i-e. it cannot be changed) . without access to the corresponding private keys.
Chained signatures allow any node to authenticate path qb) Once added, a name cannot be removed from the list
any received message and provide non-repudiation. The need without access to the corresponding private key. How-
for chained signatures is evident in scenarios where a number ever, the authenticity of the list can be verified (without
of participants are involved and the order of participants needs interaction) using only the public keys of the participants
to be ascertained. Trivially, chained signatures can be realized jnvolved.
by having each participant explicitly sign the identities of all (c) The authenticity of the list can be verified if and only if
previous participants along }Nlth the message an_d m_clude It the correct order of all the participants is supplied.
as part of the aggregate signature before passing it to th@) Non-repudiation must be provided. A holder of a
next participant. However, the scheme is efficient because chained signature should be able to convince a judge
the signature size increases linearly. We extend the aggregate about the identities of all participants in the chain (in

1 , . the correct order). The above properties automatically
It should be noted that the construction of aggregate signatures presented

here is not ours and was presented in [5]. We include the scheme here for imply non-repudiation.
the sake of completeness

VI. CHAINED SIGNATURES



1) Correctness:We must show that if all the participants 2) Existential forgery of the order of signers
behave correctly, then the verification process will always 3) Extraction of individual signatures from an aggregation
succeed. The correctness of the verification process fO||0\A:[S

directly from the property of bilinear maps: LHS of verifi- Overview Of The Protocol

cation condition= e(z;, P) = 6(2:1 xH(m, L), P) = We see that the chained signatures have an “additive”
1= e(H(m, L,),z,P) = RHS. B property, demonstrated by the fact t&d®,; can ‘add’ more

2) SoundnessTo prove soundness of our scheme we neéraforma_ltion to the S_ignaturei of ZD; by computingz; ;1. A
to show the verification process fails with a high probability ifeW Points about this protocol are noteworthy:
the protocol is not followed correctly. The standard acceptedl) Any userZD; who passes the message can add its name
notion of soundness (i.&hosen ciphertext securjtjor sig- in the list of the signature. Once added, users cannot
natures is existential unforgeability [7], [8], [9]. To achieve =~ remove names of other users from the list (without
chosen ciphertext security for chained signatures, however, two ~ completely making the list empty), nor can they change
types of existential forgeries must be considered: the order or add new names.

« Forgery on any previously unsigned messages 2) The signing and verification procedures are completely

. Forgery on any previously unsigned sequence of identities ~N°"-interactive. Moreover, it is possible to combine the
) signing and verifying procedures into a singlgn-verify
In other words, we must show that the signatures are

: procedure to increase efficiency.
unforgeable with respect to any chosen messager any 3)

. > The signature size is constant ignoring the payload of
chosen sequendg;. This follows from the following theorem. the identifier list (which cannot be avoided). The per-

formance of the scheme can be summarized as follows
(assumingn users in the chain):
a) Signing: one multiplication iffz;, one addition in
Gy and one computation dft

Proof: We assume that the hash functi@f is a random b) Ver.ificat_ion:n pairing computations and multipli-
oracle. It is easy to see that; is an aggregation of cations inG., andn computat|ons.o.fH

individual signatures offD,. on (m, L,) Vr < i using the Our prqtqcol demonstrates a type of chaining cabatk-
aggregate signature scheme of [5]. To see thisslet G, ward chaining where each receiver of the message is re-

be the individual signature offD, on (m,L,) where sponsible for “adding” a link to the chain. Likewise, we

s, = z,H(m, L,). We can then rewrite: can also consideforward chaining where the senders of the
% =S w H(m, L) = Zr:i e H(m, L) = Zr:z‘ s, message are responsible for creating the chain. In this variant,
' =l ’ =L 1] tha’E our scheﬁé is secuf@ch sender is aware of the next receiver during the signing

process. Forward chaining has the advantage that the order of

random oracle. Assuming th&D, # ZD; whenever- # j, it participants can be §trictly spec_ifi_e_d by senders. However, such
is also ensured that, # L; whenever- # j (in other words, a scheme a_lso restricts thg flexibility pf the_ syst_em because the
all L, are distinct). It is shown in theorem 3.2 of [5] thafNessage will have to be signed multiple times if sent to many
this scheme is secure against existential forgerparfregate '€Ceivers in parallel. More9ver Ina b:?\ckward chaining scheme,
signatures if the messagés, L,) are all distinct. multiple sepders W|th|n'a trust zone' can use a s!ngle signing
Consider any aggregatior; of individual signatures gateway without revealing the _|dent|ty of the reC|p|e_:n_ts. _Due
(51,82 ...;} such that none of the individual signatures arLQ these reasons, we only considered backwa_rd_ chaining in our
known. It is shown in theorem 4.5 of [5] that extractind"’ork' It is easy to convert our backward chaining scheme to

any individual signature (or any sub-aggregation of individué%ﬂ lflorwe‘lrd chaining one Zimply by redefinirig in iection as
signatures) from; is not feasible if the DHP irG; is hard. 1©"'OWS: Lo = (IDy) and Ly, = (Li—1,IDi4y) if &k > 0.
To prove that our chained signature scheme is secure,\/\{? note that forward chaining schemes can be trivially made

remains to be shown that an adversary cannot even cha tglout pairings as _desgrib_ed in [E]The resulting signatur_es,
the order of the identities used in the verification. First note " c el are inefficient in size. We are not aware of any simple

ionstructions for backward chaining schemes without pairings.

Theorem 1 Assume that the DHP inG; is hard. Then
our scheme is secure against existential forgery on messages
or sequence of identities.

It is shown in theorem 3.2 of |
against existential forgery ahdividual signatures ifH is a

that existential forgery on individual signatures is not possiblg.” = . . .
gery g P n this regard, our scheme is unique because it enables ad-hoc

If H is a random oracle, the probability of finding collision o ) ) . . :
of the typeH(m, L;) — H(m’, L) where(m, L) # (m’, L}) ackward chaining without involving any third parties.

is negligible. This ensures that the paits, m) and (z;, L;) 2Denote bySIGN,; the signing function off D; using any regular signature
are both fixed from the adversary’s point of view. In othescheme. Let be any hash function and let be the message to be signed.
words. each individual signatuw COI’fESpOﬂdS to the uniqueThe ordered list of the firsi users is denoted as usual by the sequence

! . % . L; = <ID1,ID2,. . I'Dl) We also definefj = S|GNi(H(m, Li+1))-
sequencel; and a unique message € X*. This completes The forward chain signature @D; in this scheme is the orderéd- 1-tuple
the proof of security of our scheme. To summarize, thig; 1, f1, f2,... f;) consisting ofi signatures and a sequence identifier.
scheme is secure against the foIIowing attacks: To verify the signature check that eagh is a valid signature ofD; on

) . . H(m, Ljy1) V4 < i. This scheme is clearly inefficient because the signature
1) Existential forgery of aggregate signatures size increases linearly a&8(n)



VII. AN APPLICATION EXAMPLE: SPAM PREVENTION ensures that only a few pairing computations are carried out

In this section, we consider possible applications of additi\geurlng verification.

proofs. Specifically we focus only on chained signatures. VIIl. CONCLUSION
A number of applications of chained signatures have been, yis paper we described the notion of additive proofs. In
proposed in [10]. Here, we present a method to prevent Spamy shell, an additive (zero-knowledge) proof is a composite
(or unsolicited e-mail) using chained signatures. Our methad ¢ ~onstructed from (zero-knowledge) proofs of many
essentially involves path authentication of any received maj|,qividual statements. The intriguing property of such zero-
Since itis impossible to completely stop spam, we proposggowledge proofs is that even though the composite proof
combination of proactive and reactive measures. Using the pfgeif proves the correctness of all the individual statements
vious notation, the set of mail relays{D1,7ZDs, ... IDn}.  together, none of the individual statements can be proved
We do not involve the senders or recipients simply becaugfependently of the others. Therefore, an inherent property
we feel that this process should be completely transparentgoyn additive zero-knowledge proof is thae proof itself is a
the end users..T.he only time when a recipient is involved Fero-knowledge proof of the fact that “it is a composite praof”
when an e-mail is to be reported as spam. Our approachai§ concrete examples of additive proofs, we presented three
based on the following assumptions: constructions: (a) blind group identification, (b) aggregate sig-
1) We first assume that spam (and all other mail) can Ipatures and (c) backward chain signatures. Finally, as a useful
classified according to the path (of relays) it followspplication of backward chained signatures, we presented a

2)

3)

4)

5)

6)

7)

to reach a recipient. In other words, the path of anyovel method to prevent SPAM.

received mail can be accurately determined.

Due to assumption 1, thiirst relay mentioned in the
path (of relays) for a spam mail is automatically consid{1]
ered responsible unless it is able to delegate this liability
to a different relay.

A successful mail will be accepted for forwarding if [2]
and only if it is accompanied by a vallthckward chain
signature(as described in section VI keeping as the

mail message). [3]
The above assumption ensures that even if some relay
accepts a message without a valid signature (a) either the
message will be rejected by the next relay that validates
the signature or (b) if this relay includes its own valid [4
signature, it will automatically become liable for spam
according assumption 2. (5]
The use of a chain signature ensures that intermediate
names in the list cannot be deleted unlaksames are
deleted. In this case, the relay who deletes the names wifll
automatically become liable according to assumption 2.
Reactive measures (like blacklisting) can be takeiy
against a relay continuously generating spam.

To ensure smooth integration to the existing emai s
infrastructure, the sender of an email need not worry
about the signing process. Only the relays would be
responsible for the entire authentication process. It is the
duty of each relay to sign only those emails originatinggj
from its local users. Otherwise, it will automatically
become liable according to assumption 2.

We believe that this approach to classifying, enforcinigol
and blacklisting relays using backward chain signatures will
efficiently reduce spam to an acceptable level. The use of
backward chaining ensures that the same message destined
for multiple recipients (and having branching paths) need

only

be signed once at each node. We observe that the

verification process involves many (computationally intensive)
pairing computations. However, typically the number of relays
involved for a mail delivery is very small (usually 2-3). This

REFERENCES

Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing. INnASIACRYPT '01: Proceedings of the 7th International
Conference on the Theory and Application of Cryptology and Informa-
tion Security pages 514-532, London, UK, 2001. Springer-Verlag.

Dan Boneh and Matthew K. Franklin. Ildentity-based encryption from
the weil pairing. InCRYPTO ’'01: Proceedings of the 21st Annual
International Cryptology Conference on Advances in Cryptol@ages
213-229. Springer-Verlag, 2001.

Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott.
Efficient algorithms for pairing-based cryptosystems.CRYPTO '02:
Proceedings of the 22nd Annual International Cryptology Conference on
Advances in Cryptologypages 354-368, London, UK, 2002. Springer-
Verlag.

] Amitabh Saxena, Ben Soh, and Serguey Priymak. Zero-knowledge blind

identification for smart cards using bilinear pairings. Cryptology ePrint
Archive, Report 2005/343, 2005.

Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate
and verifiably encrypted signatures from bilinear maps. In Eli Biham,
editor, EUROCRYPT volume 2656 oflLecture Notes in Computer
Science pages 416—-432. Springer, 2003.

Amitabh Saxena and Ben Soh. A mobile agent authentication protocol
using signature chaining with bilinear pairings. Cryptology ePrint
Archive, Report 2005/272, 2005.

Shafi Goldwasser, Silvio Micali, and Ron L. Rivest. A digital signature
scheme secure against adaptive chosen-message at®8ks.Journal

on Computing 17(2):281-308, 1988.

Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge
proof of knowledge and chosen ciphertext attack. ARYPTO '91:
Proceedings of the 11th Annual International Cryptology Conference on
Advances in Cryptologypages 433-444, London, UK, 1992. Springer-
Verlag.

M. Naor and M. Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. BTOC '90: Proceedings of the twenty-
second annual ACM symposium on Theory of compuiyages 427-
437, New York, NY, USA, 1990. ACM Press.

Amitabh Saxena and Ben Soh. One-way signature chaining: A new
paradigm for group cryptosystems and e-commerce. Cryptology ePrint
Archive, Report 2005/335, 2005.



