
Additive Zero-Knowledge and Applications: SPAM
Prevention

Amitabh Saxena and Ben Soh
Computer Science and Computer Engineering

La Trobe University
Bundoora, VIC, Australia 3086

Chunbo Ma
School of Information Science and Technology

Southwest Jiaotong University
Chengdu, Sichuan, 610031, P. R. China

Abstract— In this paper, we introduce the concept ofadditive
zero knowledge. Essentially, an additive proof can be considered
as a proof system involving many provers and one verifier such
that the statements of all the provers are proved simultaneously.
Our model of additive proofs is presented using constructions
of blind group identification, aggregate signaturesand chained
signatures. The security of our protocols relies on the difficulty
of the underlying Diffie-Hellman problem in bilinear maps. As
applications, we present a novel method to prevent Spam.

I. I NTRODUCTION

An additive proof is a non-interactive proof involving many
provers and one verifier such that the verifier process accepts
if and only if all the provers are honest. The ‘zero-knowledge’
property requires that other than this fact, no ‘extra’ informa-
tion is revealed to the verifier. We use the following notation:

1) A statement is any claim that can be True or False.
For examples = “I know x corresponding toy” is a
statement. We denote the set of all statements byS.

2) Let s ∈ S andp ∈ {0, 1}∗. We say that the tuple〈s, p〉
constitutes anon-interactive proof system (NIPS or
simply PS from now onwards) if there is an efficiently
computable mappingVer1 : S × {0, 1}∗ 7→ {0, 1} such
thatVer1(s, p) = 1 if and only if s is True. Analogously,
we say that a statements is True if and only if∃p ∈
{0, 1}∗ : Ver1(s, p) = 1.

3) A composite statementis simply a collection of state-
ments combined using the logical conjunction (∧) oper-
ation. A composite statement is True if and only if all
its constituent statements are simultaneously True.

4) Let S ⊂ S be some composite statement let andp ∈
{0, 1}∗ be some string. We say that the tuple〈S, p〉
constitutes a (non-interactive)composite proof system
(CPS) if and only if there is an efficiently computable
mapping Ver2 : 2S × {0, 1}∗ 7→ {0, 1} such that
Ver2(S, p) = 1 if and only if ∀si ∈ S, si is True. Note
that Ver2({s}, p) = Ver1(s, p).

5) 〈S, p〉 is a composite zero-knowledge proof system
(CZKPS) if and only if 〈S, p〉 is a CPS and the ver-
ifier cannot later use the proofp to convince anyone
(including himself) about the validity of the individual
constituent statements ofS independently of the others.
Formally, given〈S, p〉 it is infeasible to compute a pair
〈Si, pi〉 6= 〈S, p〉 such thatVer2(Si, pi) = 1 ∧ Si ⊆ S.

6) 〈S, p〉 is an additive zero-knowledge proof system
(AZKPS) if and only if 〈S, p〉 is a CZKPS and given
〈S, p〉, an efficient algorithm exists to compute a tuple
〈Si, pi〉 such that:
Ver2(Si, pi) = 1 ∧ Si = S ∪ {si} ∧ si /∈ S ∧ si is True
∧ 〈Si, pi〉 is also a CZKPS.
It may be possible that each such resulting CZKPS
〈Si, pi〉 is also an AZKPS. These are the type of additive
proofs we will be interested in.

7) Finally, we differentiate between two types of composite
proof systems: (a)parallel in which the individual
statements can be supplied toVer2 in any order and (b)
sequential in which the individual statements must be
supplied in a specific order.

To give a meaningful context to additive proofs, we will
present three distinct examples:

1) Blind Group Identification: A group of users can identify
themselves to a server such that: (a) if all users are
honest the server always accepts and (b) If any users
are dishonest the server always rejects. However, in this
case it is impossible to find out the actual identity of
the particular cheating user(s). We thus coin the term
‘blind’ identification to this process.

2) Aggregate Signatures: A group of users will sign indi-
vidual messages and combine the individual signatures
to get an aggregate signature such that the verification
process on the aggregate signature succeeds if and only
if (a) all the individual signatures were valid and (b)
the exact list of users (ignoring the order) involved
in the aggregation is input to the verification process.
Moreover, once the aggregate signature is created, it is
impossible to extract any individual signatures.

3) Chained Signatures: These are exactly like aggregate
signatures with the additional requirement that the exact
order of the individual signers must be supplied to the
verification process to make it accept a valid signature.

Throughout this paper, we will use the following notation.
If A is a non-empty set, thenx ← A denotes thatx
has been uniformly chosen inA. An ordered sequence of
i elementsα1, α2, . . . αi is denoted by〈α1, α2, . . . αi〉. If
S = 〈α1, α2, . . . αi〉 is some finite sequence then〈S, α〉 =
〈α1, α2, . . . αi, α〉 is also a finite sequence. For any two
sequencesS = 〈α1, α2, . . . αi〉 and T = 〈β1, β2, . . . βj〉,

S = T ⇔ (i = j & αi = βi ∀i).
The rest of the paper is organized as follows. In section II

we present the cryptographic primitives used in our proto-
col. In section III, we describe the underlying Public Key
Infrastructure required for our protocols. We present the group
identification protocol in sections IV. Finally, in section V
and VI, we present the aggregate signature and chained
signature protocols along with a brief security analysis.

II. B ILINEAR PAIRINGS

All the constructions presented in this paper are based on
the existence of efficiently computable non-degenerate bilinear
maps which can be abstractly described as follows: LetG1 be
a cyclic additive group of prime orderq and G2 be a cyclic
multiplicative group of the same order. Assume that computing
the discrete logarithm in bothG1 and G2 is hard. A bilinear
pairing is a mape : G1×G1 7→ G2 that satisfies the following
properties [1]:

1) Bilinearity: e(aP, bQ) = e(P,Q)ab ∀P,Q ∈ G1 and
a, b ∈ Zq

2) Non-degeneracy: P 6= 0⇒ e(P, P) 6= 1
3) Computability: e is efficiently computable

The above properties also imply:

e(P + Q,R) = e(P,R) · e(Q,R) ∀P,Q,R ∈ G1

e(P,Q + R) = e(P,Q) · e(P,R) ∀P,Q,R ∈ G1

Typically, the mape will be derived from either the Weil or
Tate pairing on an elliptic curve over a finite field. Despite
the complex mathematics involved in constructing such maps,
cryptographic protocols based on pairings can be described
entirely without ever referring to the actual implementation.
We refer the reader to [1], [2], [3] for more details. Pairings
and other parameters should be selected in proactive for
efficiency and security. For appropriately selected parameters,
the following assumptions should hold unconditionally.

A. Assumptions

1) Discrete Logarithm Assumption: The Discrete Loga-
rithm Problem (DLP) in G1 (and consequentlyG2)
is intractable. In other words, given any two elements
P, Y ∈ G1, computingx ∈ Z∗

q such thatY = xP is
hard.

2) Diffie-Hellman Assumption: Given P, Y, R ∈ G1 such
that Y = xP and R = rY for unknownsx, r ∈ Z∗

q ,
computing U = rP is infeasible. This is theDiffie-
Hellman Problem (DHP).

3) Extended Diffie-Hellman Assumption: Given P, Y, R ∈
G1 such thatY = xP andR = rY for unknownsx, r ∈
Z∗

q , computingU = r2P is infeasible. We call this the
Extended Diffie-Hellman Problem (EDHP).

4) Extended Decisional Diffie-Hellman Assumption: Given
P, Y, R,U ∈ G1 such thatY = xP and R = rY
for unknownsx, r ∈ Z∗

q , deciding if U = r2P with
probability > 1/2 is infeasible. This is theExtended
Decisional Diffie-Hellman Problem (EDDHP). (We note
that the Decisional Diffie-Hellman Problem (DDHP),

which requires deciding ifU = rP is easy in this case,
since it only requires two pairing computations to decide
if e(P,R) = e(Y, U). All pairing based schemes make
use of this observation [1]).

5) Linear Diffie-Hellman Assumption: Given P, Y, R ∈ G1

such thatY = xP and R = rY for unknownsx, r ∈
Z∗

q , computingany pair 〈Z,Q〉 such thatZ = rP +
xQ is infeasible. We call this theLinear Diffie-Hellman
Problem (LDHP).

6) Linear Decisional Diffie-Hellman Assumption: This re-
lates to the decisional variant of the LDHP. Given
P, Y, R,Z,Q ∈ G1 such thatY = xP and R = rY
for unknownsx, r ∈ Z∗

q , deciding ifZ = rP +xQ with
probability > 1/2 is infeasible. We call this theLinear
Decisional Diffie-Hellman Problem (LDDHP).

The observed relationship between the different problems
considered above is depicted in figure 1. An arrow indicates a
reduction with the tail end representing the harder problem [4].

DHP (Hard) ks +3 EDHP3;

nnnnnnnnnnnn

nnnnnnnnnnnn
ks EDDHP (Hard ?)

LDHP (Hard ?) LDDHP (Hard ?)

dl QQQQQQQQQQQQQ

QQQQQQQQQQQQQ

Fig. 1. Problem Hierarchy

III. SETUP PKI

In the rest of the discussion, we will using a PKI which
will be setup as follows: A central authority is responsible for
generating the security parameters. A trusted CA is responsible
for certifying the public keys. To participate in the protocol
each user must have a certified public key.

1) Let e : G1 × G1 7→ G2 be a bilinear mapping and
P ∈ G1 be a generator ofG1. The parameters〈e, G1, P 〉
are generated by the trusted authority and made public
in an authentic way.

2) Each participantIDi generatesxi ← Zq as the private
key. The corresponding public key isYi = xiP ∈ G1.
Each user also obtains a certificate from the CA linking
the identityIDi and the public keyYi. In other words,
the CA fixes the pairs〈Yi, IDi〉.

IV. B LIND GROUP IDENTIFICATION

This scheme enables a group of users to identify themselves
to a server such that: (a) The identification test passes if none
of the users cheat, (b) if any users cheat, the test will fail
with a high probability, (c) it is not possible for the server
or the users to know which person cheated. An important
application for this type of scheme is in the following type
of group systems: Assume that two users Alice and Bob want
to identity themselves jointly to a server (for example, because
they don’t trust each other to individually login to the server
without the other’s approval). Alice wants to ensure that the
identification succeeds if and only if the other user is really
Bob. Bob has a similar requirement.

Assume that{ID1, ID2, . . . IDn} are the set of users who
want to jointly identify themselves. It is necessary that each
user IDi must have a certified public keyYi as described
earlier. The goal of the protocol is that all users will simulta-
neously identify themselves to a serverS.

In other words, each userIDi will prove possession of
the discrete logarithmxi of Yi (to base P) such thatS
cannot be convinced about any of the individual statements
separately. That is, the proof is valid only on all the statements
together: “IDi knows xi” ∀i : 1 ≤ i ≤ n but not on
any of the individual statements like “ID1 knows x1” or
“ID2 knowsx2” independently of the others. We will assume
the infrastructure of section III. The identification is done as
follows:

1) Then proversID1, ID2 . . . IDn start by claiming toS
that they know the discrete logarithmsx1, x2, . . . xn ∈
Zq of Y1, Y2, . . . Yn ∈ G1 (to baseP) respectively.

2) The verifierS generatesr1, r2, . . . rn ← Zq and com-
putesRi = riYi and Ui = r2

i P . It makes the list of
challenges〈IDi, Ri, Ui〉 public.

3) Each IDi computes Vi = 1
xi

Ri and checks that
e(Vi, Vi) = e(Ui, P). If this test passes, it generates
Qi ← G1 and computesZi = Vi + xiQi

4) All users then collaborate to jointly compute the value
Z =

∑j=n
j=1 Zj . This computation is hidden fromS

so that individual valuesZj are effectively kept secret
from it’s view. The combined proof{Z,Q1, Q2 . . . Qn}
is sent toS.

5) S accepts ife(Z −
∑j=n

j=1 rjP, P) =
∏j=n

j=1 e(Qj , Yj).
We claim that this test will pass if and only if each
IDi knows xi. To summarize the goals of the protocol, the
individual users can jointly authenticate themselves to the
server such that:

(a) If all users are honest, the server always accepts.
(b) If any of the users are dishonest, the server rejects with

a high probability.
(c) The protocol is zero knowledge. It is not possible

for anyone (including the server) to know which user
cheated.

(d) Collusions are possible between users but not with the
server (the server is trusted).

The protocol is secure based on the following analysis.

A. Correctness And Soundness

The properties of bilinear maps ensure that the verification
is always successful if none ofIDi cheat while the soundness
property holds because:

1) Dishonest Prover: Computing individual proofs〈Zi, Qi〉
without xi or ri is infeasible due to the linear Diffie-
Hellman assumption. That is, a dishonest prover must
solve the LDHP in order to cheat.

2) Dishonest Verifier: A dishonest verifier will generate
R non-randomly and will therefore not knowri corre-
sponding toRi. Due to this it will be hard for this verifier
to generateUi such thate(1

xi
Ri,

1
xi

Ri) = e(Ui, P) due

to the hardness of the EDHP. Thus a dishonest verifier
will not be able to make anyone accept his/her challenge
as valid as shown in [4]. We also note that the task
of a dishonest verifier (EDHP) is considerably harder
than that of a dishonest verifier (LDHP). This ensures
an implicit (dishonest verifier) zero-knowledge property.

B. Zero Knowledge

The case of a dishonest verifier can be ignored due to the
above reasoning. We analyze the zero knowledge property for
the following:

1) Honest Verifier Zero Knowledge:S can generate a
valid accepting transcript on its own corresponding to
{ri, Ri, Ui} ∀i : 1 ≤ i ≤ n as follows: S generates
αi ← Zq ∀i and computesQi = αiP , Ri = riYi. Then
Z =

∑j=n
j=1 riP + αiYi.

2) Honest Verifier Secrecy: We require that it is impossible
for a passive adversary to decide the honesty of the
verifier. The reasoning for the single user case can be
extended here. That is, givenP, xiP,Ri, Ui, deciding if
e(1

xi
Ri,

1
xi

Ri) = e(Ui, P) is infeasible without knowl-
edge ofri or xi due to the hardness of the EDDHP [4].

3) Honest Prover Secrecy: Assume that all the provers are
honest and thus,S will eventually accept. We require
that it is impossible for a passive adversary (including
the provers) to decide the honesty some prover. We note
that givenP, xiP, rixiP, r2

i P,Qi, Zi, deciding if Zi =
riP + xiQi is infeasible without knowledge ofr or x
due to the hardness of the LDDHP inG1 as shown in
[4]. Thus a passive adversary cannot decide the outcome
of the identification.

4) Dishonest Prover Secrecy: Assume that some of the
provers are dishonest. In this case, deciding if any given
Zi = 1

xi
Ri+xiQi is infeasible without knowledge ofxi

or ri due to the decisional linear Diffie-Hellman assump-
tion. That is, givenP, xiP, rixiP,Q,Zi ∈ G1, deciding
if Zi = riP + xiQ is infeasible without knowing at
least one of{xi, ri}. Therefore ifS rejects, none of the
provers know which pairs〈Zi, Qi〉 correspond to invalid
proofs (if the individual coin tossesri of S are kept
secret andS is honest, no information is leaked to the
provers). Similarly if the individual valuesZi are kept
secret (fromS), the identity of the dishonest provers
is still concealed since computing individual proofsZi

just fromZ,Q1, Q2 . . . Qn such thatZi = riP+xiQi ∀i
is infeasible without knowledge of eachxi due to the
hardness of the DHP inG1 as shown in theorem 4.4
of [5] (cf. aggregate extraction). Consequently, even the
verifier S does not have the ability to decide which of
the provers are dishonest.
Finally, if the joint computation ofZ is carried out in a
way that any one individual prover or a small coalition of
provers can knowZi’s for only a small fraction of users,
the identities of dishonest provers can still be effectively
hidden, even ifS can be coerced to reveal all the coin
tossesri.

V. AGGREGATE SIGNATURES

Aggregate signatures first introduced by Boneh et al. [5]
allow a number of signatures on the same or different messages
by different users to be verified in one step. The advantage of
this scheme is evident in scenarios where batch authentication
is possible. A very short aggregate signature scheme based on
pairings is presented in [5]. Usually aggregate signatures can
have the following variants:

1) Signatures of different users on different messages are
verified in a batch.

2) Signatures of the same user on different messages are
verified in a batch.

3) Signatures of different users on the same message are
verified in a batch.

Efficient constructions for each of these variants can be
constructed from the schemes of [5]. It should be noted that
these variants are mutually exclusive. That is, in variant (1),
it is necessary that each user be distinct and each message
be distinct. We briefly describe the scheme here.1 A set of n
users{ID1, ID2, . . . IDn} will create individual signatures
on messages{m1,m2 . . .mn} which will be verified in one
step. We will assume the infrastructure of section III where
the private key ofIDi is xi corresponding to the public key
Yi = xiP . The individual signature ofIDi is si = xiH(mi)
while the aggregate signature iss =

∑r=n
r=1 sr. The aggregate

signature is accepted ife(s, P) ?=
∏r=n

r=1 e(H(mr), Yr). We
refer the reader to [5] for the security proof.

VI. CHAINED SIGNATURES

Another type of aggregate signatures, not considered in [5]
are chained signatures. In this variant, an aggregation of
signatures of different users on the same message is verified at
once. Notice that there is a subtle change in the definition from
aggregate signatures. Unlike aggregate signatures, the chained
signatures have the following properties:

1) Any user can ‘add’ his signature to the aggregation of
signatures, thereby adding his name to the list (or chain)
of signers.

2) Once a user’s signature is added to the aggregation, it
cannot be removed by any other user.

3) The order in which each user added to the aggregation
is preserved (i.e. it cannot be changed)

Chained signatures allow any node to authenticate path of
any received message and provide non-repudiation. The need
for chained signatures is evident in scenarios where a number
of participants are involved and the order of participants needs
to be ascertained. Trivially, chained signatures can be realized
by having each participant explicitly sign the identities of all
previous participants along with the message and include it
as part of the aggregate signature before passing it to the
next participant. However, the scheme is efficient because
the signature size increases linearly. We extend the aggregate

1It should be noted that the construction of aggregate signatures presented
here is not ours and was presented in [5]. We include the scheme here for
the sake of completeness

signature scheme of [5] and construct very short constant-sized
chained signatures. Some of the definitions are simplified since
we do not provide a rigorous security proof in this paper (for
which the reader is referred to [6]).

In this scenario there aren ordered distinct participants
〈ID1, ID2, . . . IDn〉 and one messagem to be signed. The
original signer of the messagem is ID1. The message is
passed fromIDi to IDi+1 along with a chain-signature as
described below. We will use the infrastructure of section III.

A. Signing

Let Lr = 〈ID1, ID2, . . . IDr〉 for r ≥ 1. Definez0 = 0 ∈
G1. Define recursivelyzi = xiH(m,Li) + zi−1. The chain-
signature ofIDi on the messagem is 〈zi, Li〉

B. Verification

IDi+1 accepts the signature〈zi, Li〉 of IDi as valid if
e(zi, P) =

∏r=i
r=1 e(H(m,Lr), Yr).

C. Non-Repudiation

Non-repudiation is provided as follows: using the signature
zi−1 received fromIDi−1, userIDi can prove to a judge that
the messagem was indeed received fromIDi−1 by invoking
the verification procedure.

D. Security Analysis

We will now give a brief analysis of the protocol and
show that it achieves the necessary objectives of correctness
and soundness. Roughly speaking, correctness requires that if
all participants behave correctly, then the verification process
should always output true. On the other hand, soundness
requires that the verification process should output false with
overwhelming probability if even one participant misbehaves.
Recall that we want to ensure that the ordered list of par-
ticipants specified in eachLi should correctly and uniquely
identify the path of the received message. The objectives of
the protocol are summarized below:

(a) Using their private keys, participants can add their names
to the end of the list (contained in the signature) without
interaction. Arbitrary names cannot be added to a list
without access to the corresponding private keys.

(b) Once added, a name cannot be removed from the list
without access to the corresponding private key. How-
ever, the authenticity of the list can be verified (without
interaction) using only the public keys of the participants
involved.

(c) The authenticity of the list can be verified if and only if
the correct order of all the participants is supplied.

(d) Non-repudiation must be provided. A holder of a
chained signature should be able to convince a judge
about the identities of all participants in the chain (in
the correct order). The above properties automatically
imply non-repudiation.

1) Correctness:We must show that if all the participants
behave correctly, then the verification process will always
succeed. The correctness of the verification process follows
directly from the property of bilinear maps: LHS of verifi-
cation condition= e(zi, P) = e(

∑r=i
r=1 xrH(m,Lr), P) =∏r=i

r=1 e(H(m,Lr), xrP) = RHS.
2) Soundness:To prove soundness of our scheme we need

to show the verification process fails with a high probability if
the protocol is not followed correctly. The standard accepted
notion of soundness (i.e.chosen ciphertext security) for sig-
natures is existential unforgeability [7], [8], [9]. To achieve
chosen ciphertext security for chained signatures, however, two
types of existential forgeries must be considered:

• Forgery on any previously unsigned messages
• Forgery on any previously unsigned sequence of identities

In other words, we must show that the signatures are
unforgeable with respect to any chosen messagem or any
chosen sequenceLi. This follows from the following theorem.

Theorem 1: Assume that the DHP inG1 is hard. Then
our scheme is secure against existential forgery on messages
or sequence of identities.

Proof: We assume that the hash functionH is a random
oracle. It is easy to see thatzi is an aggregation of
individual signatures ofIDr on 〈m,Lr〉 ∀r ≤ i using the
aggregate signature scheme of [5]. To see this letsr ∈ G1

be the individual signature ofIDr on 〈m,Lr〉 where
sr = xrH(m,Lr). We can then rewrite:
zi =

∑r=i
r=1 xrH(m,Lr) =

∑r=i
r=1 xrH(m,Lr) =

∑r=i
r=1 sr

It is shown in theorem 3.2 of [1] that our scheme is secure
against existential forgery ofindividual signatures ifH is a
random oracle. Assuming thatIDr 6= IDj wheneverr 6= j, it
is also ensured thatLr 6= Lj wheneverr 6= j (in other words,
all Lr are distinct). It is shown in theorem 3.2 of [5] that
this scheme is secure against existential forgery ofaggregate
signatures if the messages〈m,Lr〉 are all distinct.

Consider any aggregationzi of individual signatures
{s1, s2 . . . si} such that none of the individual signatures are
known. It is shown in theorem 4.5 of [5] that extracting
any individual signature (or any sub-aggregation of individual
signatures) fromzi is not feasible if the DHP inG1 is hard.

To prove that our chained signature scheme is secure, it
remains to be shown that an adversary cannot even change
the order of the identities used in the verification. First note
that existential forgery on individual signatures is not possible.
If H is a random oracle, the probability of finding collisions
of the typeH(m,Li) = H(m′, L′

i) where〈m,Li〉 6= 〈m′, L′
i〉

is negligible. This ensures that the pairs〈zi,m〉 and 〈zi, Li〉
are both fixed from the adversary’s point of view. In other
words, each individual signaturezi corresponds to the unique
sequenceLi and a unique messagem ∈ Σ∗. This completes
the proof of security of our scheme. To summarize, this
scheme is secure against the following attacks:

1) Existential forgery of aggregate signatures

2) Existential forgery of the order of signers
3) Extraction of individual signatures from an aggregation

E. Overview Of The Protocol

We see that the chained signatures have an “additive”
property, demonstrated by the fact thatIDi+1 can ‘add’ more
information to the signaturezi of IDi by computingzi+1. A
few points about this protocol are noteworthy:

1) Any userIDi who passes the message can add its name
in the list of the signature. Once added, users cannot
remove names of other users from the list (without
completely making the list empty), nor can they change
the order or add new names.

2) The signing and verification procedures are completely
non-interactive. Moreover, it is possible to combine the
signing and verifying procedures into a singlesign-verify
procedure to increase efficiency.

3) The signature size is constant ignoring the payload of
the identifier list (which cannot be avoided). The per-
formance of the scheme can be summarized as follows
(assumingn users in the chain):

a) Signing: one multiplication inG1, one addition in
G1 and one computation ofH

b) Verification:n pairing computations and multipli-
cations inG2, andn computations ofH

Our protocol demonstrates a type of chaining calledback-
ward chaining where each receiver of the message is re-
sponsible for “adding” a link to the chain. Likewise, we
can also considerforward chaining where the senders of the
message are responsible for creating the chain. In this variant,
each sender is aware of the next receiver during the signing
process. Forward chaining has the advantage that the order of
participants can be strictly specified by senders. However, such
a scheme also restricts the flexibility of the system because the
message will have to be signed multiple times if sent to many
receivers in parallel. Moreover in a backward chaining scheme,
multiple senders within a ‘trust zone’ can use a single signing
gateway without revealing the identity of the recipients. Due
to these reasons, we only considered backward chaining in our
work. It is easy to convert our backward chaining scheme to
a forward chaining one simply by redefiningLj in section as
follows: L0 = 〈ID1〉 and Lk = 〈Lk−1, IDk+1〉 if k > 0.
We note that forward chaining schemes can be trivially made
without pairings as described in [6].2 The resulting signatures,
however, are inefficient in size. We are not aware of any simple
constructions for backward chaining schemes without pairings.
In this regard, our scheme is unique because it enables ad-hoc
backward chaining without involving any third parties.

2Denote bySIGNi the signing function ofIDi using any regular signature
scheme. LetH be any hash function and letm be the message to be signed.
The ordered list of the firsti users is denoted as usual by the sequence
Li = 〈ID1, ID2, . . . IDi〉. We also definefj = SIGNi(H(m, Li+1)).
The forward chain signature ofIDi in this scheme is the orderedi+1-tuple
〈Li+1, f1, f2, . . . fi〉 consisting ofi signatures and a sequence identifier.
To verify the signature check that eachfj is a valid signature ofIDj on
H(m, Lj+1) ∀j ≤ i. This scheme is clearly inefficient because the signature
size increases linearly asO(n)

VII. A N APPLICATION EXAMPLE : SPAM PREVENTION

In this section, we consider possible applications of additive
proofs. Specifically we focus only on chained signatures.
A number of applications of chained signatures have been
proposed in [10]. Here, we present a method to prevent spam
(or unsolicited e-mail) using chained signatures. Our method
essentially involves path authentication of any received mail.

Since it is impossible to completely stop spam, we propose a
combination of proactive and reactive measures. Using the pre-
vious notation, the set of mail relays is{ID1, ID2, . . . IDn}.
We do not involve the senders or recipients simply because
we feel that this process should be completely transparent to
the end users. The only time when a recipient is involved is
when an e-mail is to be reported as spam. Our approach is
based on the following assumptions:

1) We first assume that spam (and all other mail) can be
classified according to the path (of relays) it follows
to reach a recipient. In other words, the path of any
received mail can be accurately determined.

2) Due to assumption 1, thefirst relay mentioned in the
path (of relays) for a spam mail is automatically consid-
ered responsible unless it is able to delegate this liability
to a different relay.

3) A successful mail will be accepted for forwarding if
and only if it is accompanied by a validbackward chain
signature(as described in section VI keepingm as the
mail message).

4) The above assumption ensures that even if some relay
accepts a message without a valid signature (a) either the
message will be rejected by the next relay that validates
the signature or (b) if this relay includes its own valid
signature, it will automatically become liable for spam
according assumption 2.

5) The use of a chain signature ensures that intermediate
names in the list cannot be deleted unlessall names are
deleted. In this case, the relay who deletes the names will
automatically become liable according to assumption 2.

6) Reactive measures (like blacklisting) can be taken
against a relay continuously generating spam.

7) To ensure smooth integration to the existing email
infrastructure, the sender of an email need not worry
about the signing process. Only the relays would be
responsible for the entire authentication process. It is the
duty of each relay to sign only those emails originating
from its local users. Otherwise, it will automatically
become liable according to assumption 2.

We believe that this approach to classifying, enforcing
and blacklisting relays using backward chain signatures will
efficiently reduce spam to an acceptable level. The use of
backward chaining ensures that the same message destined
for multiple recipients (and having branching paths) need
only be signed once at each node. We observe that the
verification process involves many (computationally intensive)
pairing computations. However, typically the number of relays
involved for a mail delivery is very small (usually 2-3). This

ensures that only a few pairing computations are carried out
during verification.

VIII. C ONCLUSION

In this paper we described the notion of additive proofs. In
a nutshell, an additive (zero-knowledge) proof is a composite
proof constructed from (zero-knowledge) proofs of many
individual statements. The intriguing property of such zero-
knowledge proofs is that even though the composite proof
itself proves the correctness of all the individual statements
together, none of the individual statements can be proved
independently of the others. Therefore, an inherent property
of an additive zero-knowledge proof is thatthe proof itself is a
zero-knowledge proof of the fact that “it is a composite proof”.
As concrete examples of additive proofs, we presented three
constructions: (a) blind group identification, (b) aggregate sig-
natures and (c) backward chain signatures. Finally, as a useful
application of backward chained signatures, we presented a
novel method to prevent SPAM.

REFERENCES

[1] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing. In ASIACRYPT ’01: Proceedings of the 7th International
Conference on the Theory and Application of Cryptology and Informa-
tion Security, pages 514–532, London, UK, 2001. Springer-Verlag.

[2] Dan Boneh and Matthew K. Franklin. Identity-based encryption from
the weil pairing. InCRYPTO ’01: Proceedings of the 21st Annual
International Cryptology Conference on Advances in Cryptology, pages
213–229. Springer-Verlag, 2001.

[3] Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott.
Efficient algorithms for pairing-based cryptosystems. InCRYPTO ’02:
Proceedings of the 22nd Annual International Cryptology Conference on
Advances in Cryptology, pages 354–368, London, UK, 2002. Springer-
Verlag.

[4] Amitabh Saxena, Ben Soh, and Serguey Priymak. Zero-knowledge blind
identification for smart cards using bilinear pairings. Cryptology ePrint
Archive, Report 2005/343, 2005.

[5] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate
and verifiably encrypted signatures from bilinear maps. In Eli Biham,
editor, EUROCRYPT, volume 2656 ofLecture Notes in Computer
Science, pages 416–432. Springer, 2003.

[6] Amitabh Saxena and Ben Soh. A mobile agent authentication protocol
using signature chaining with bilinear pairings. Cryptology ePrint
Archive, Report 2005/272, 2005.

[7] Shafi Goldwasser, Silvio Micali, and Ron L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks.SIAM Journal
on Computing, 17(2):281–308, 1988.

[8] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge
proof of knowledge and chosen ciphertext attack. InCRYPTO ’91:
Proceedings of the 11th Annual International Cryptology Conference on
Advances in Cryptology, pages 433–444, London, UK, 1992. Springer-
Verlag.

[9] M. Naor and M. Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. InSTOC ’90: Proceedings of the twenty-
second annual ACM symposium on Theory of computing, pages 427–
437, New York, NY, USA, 1990. ACM Press.

[10] Amitabh Saxena and Ben Soh. One-way signature chaining: A new
paradigm for group cryptosystems and e-commerce. Cryptology ePrint
Archive, Report 2005/335, 2005.

