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Abstract. We introduce new methods for detecting control-flow side channel attacks, transforming C source
code to eliminate such attacks, and checking that the transformed code is free of control-flow side channels.
We model control-flow side channels with a program counter transcript, in which the value of the program
counter at each step is leaked to an adversary. The program counter transcript model captures a class of side
channel attacks that includes timing attacks and error disclosure attacks.

We further show that the model formalizes previous ad hoc approaches to preventing side channel attacks.
We then give a dynamic testing procedure for finding code fragments that may reveal sensitive information by
key-dependent behavior, and we show our method finds side channel vulnerabilities in real implementations
of IDEA and RC5, in binary modular exponentiation, and in the lsh implementation of the ssh protocol.

Further, we propose a generic source-to-source transformation that produces programs provably secure
against control-flow side channel attacks. We implemented this transform for C together with a static checker
that conservatively checks x86 assembly for violations of program counter security; our checker allows us to
compile with optimizations while retaining assurance the resulting code is secure. We then measured our
technique’s effect on the performance of binary modular exponentiation and real-world implementations in
C of RC5 and IDEA: we found it has a performance overhead of at most 5× and a stack space overhead
of at most 2×. Our approach to side channel security is practical, generally applicable, and provably secure
against an interesting class of side channel attacks.

1 Introduction

The last decade has seen a growing realization that side channel attacks pose a significant threat to
the security of both embedded and networked cryptographic systems. The issue of information leakage
via covert channels was first described by Lampson [29] in the context of timesharing systems, but
the implications for cryptosystem implementations were not recognized at the time. In his seminal
paper, Kocher showed that careful timing measurements of RSA operations could be used to discover
the RSA private key through “timing analysis” [26]. Kocher, Jaffe, and Jun showed how careful power
measurements could reveal private keys through “power analysis” [27]. Since then, side channel attacks
have been used to break numerous smart card implementations of both symmetric and public-key
cryptography [11, 32, 31, 33]. Later, Boneh and Brumley showed that a timing attack could be mounted
against a remote web server [10]. Other recent attacks on SSL/TLS web servers make use of bad version
oracles or padding check oracles; remote timing attacks can reveal error conditions enabling such attacks
even if no explicit error messages are returned [30, 6, 43, 7, 24, 25, 35].

Defending against side channels requires a combination of software and hardware techniques. We
believe a principled solution should extend the hardware/software interface by disclosing the side-channel
properties of the hardware. Just as an instruction set architecture specifies the behavior of the hardware
to sufficient fidelity that a compiler can rely on this specification, for side-channel security we advocate
that this architecture should specify precisely what information the hardware might leak when executing
by each instruction. This boundary forms a “contract” between hardware and software countermeaures
as to who will protect what; the role of the hardware is to ensure that what is leaked is nothing more
than what is permitted by the instruction set specification, and the role of the software countermeasures
is to ensure that the software can tolerate leakage of this information without loss of security.



Our main technical contribution is an exploration of one simple but useful contract, the program
counter transcript model, where the only information the hardware leaks is the value of the program
counter at each step of the computation. The intuition behind our model is that it captures an adversary
that can see the entire control flow behavior of the program, so it captures a non-trivial class of side-
channel attacks. This paper develops methods for detecting such attacks on C programs and shows how
to secure software against these attacks using a C-to-C code transformation.

First, we show the program counter model captures an interesting class of attacks, including timing
analysis, a form of simple power analysis, and error disclosure attacks. For example, the model captures
an adversary attempting network timing attacks of the type demonstrated by Boneh and Brumley [10].
We give a formal definition of program counter security, which expresses the requirement that the control
flow behavior of the program contains no information of use to the attacker. We motivate our model
by illustrating how previously proposed ad hoc countermeasures against error disclosure side channel
attacks produce software that is program counter secure.

The program counter model enables testing for potential side channel vulnerabilities. The side chan-
nel behavior of a code fragment may leak information about the secret; therefore we would like to find
and eliminate such fragments. We demonstrate a dynamic testing tool that searches for vulnerabilities
in C code, and we show how the tool discovers real vulnerabilities in implementations of the RC5 and
IDEA block ciphers, in binary modular exponentiation, and the lsh implementation of the ssh protocol.
Once we have found a potential vulnerability, we want to eliminate it in a principled way.

We introduce a source-to-source program transformation that takes a program P and produces a
transformed program P ′ with the same input-output behavior and with a guarantee that P ′ will be
program counter secure. We built a prototype implementation of this transformation that works on C
source code. We applied our implementation to implementations of RC5 and IDEA written in C, as
well as an implementation of binary modular exponentiation. The resulting code is within a factor of
at most 5 in performance and a factor of 2 in stack usage of untransformed code (§ 5.2).

Because our transform works at the C source level, we must be careful that the compiler does not
break our security property. We build a static analysis tool that conservatively checks x86 assembly code
for violations of program counter security. For example, we were able to show that our transformed code,
when compiled with the Intel optimizing C compiler, retains the security properties.

The program counter model does not cover all side channel attacks. In particular, data dependent side
channels (such as DPA or cache timing attacks [5]) are not eliminated by our transform. Nevertheless,
we still believe the model is of value. We do not expect software countermeasures alone to solve the
problem of side channels.

Instead, the program counter model states a contract: given that the hardware leaks only program
counters, we can use our software transform to obtain security against side channel attacks. Designing
hardware that meets this contract becomes itself an intriguing open problem, which can draw on the
growing library of hardware side channel countermeasures. Furthermore, our framework is more general
that the program counter transcript model. By varying the transcript model, we can shift more of the
burden to hardware or software as needed. In Appendix A we sketch alternative transcript models.

Our transform for the program counter model provides a principled and pragmatic foundation for
defending against an interesting class of side channel attacks. Our results show that, for all but the most
performance-conscious applications, it may be possible to defend against control-flow side channels using
a generic and automatic transformation instead of developing application-specific defenses by hand.
Furthermore, we give static and dynamic methods for discovering side channel attacks in the program
counter model. These methods generalize to alternative transcript models, as well.

In short, we show how to discover and defend against a class of attacks, while leaving defenses
against some important attacks as an open question. Our work opens the way to exploring a wide
range of options for the the interface between hardware and software side channel countermeasures, as



formalized by different transcript models. As such, our work is a first step towards efficient, principled
countermeasures against side channel attacks.

2 A Transcript Model for Side Channel Attacks

We formalize the notion of side information by a transcript. We view program execution as a sequence of
n steps. A transcript is then a sequence T = (T1, . . . , Tn), where Ti represents the adversary’s observation
of the side channel at the ith step of the computation. We will then write Pk(x) to mean the program
P running on secret input k and non-secret input x. Informally, a program is secure if the adversary
“learns nothing” about k even given access to the side-channel transcript produced during execution
of Pk(x) for x values of its choice. Our model can be thought of as a “single-program” case of the
Micali-Reyzin model, in which their “leakage function” corresponds to our notion of a transcript [34].

The transcript is the way we formalize the contract between hardware and software. It is the job
of hardware designers to ensure that the hardware leaks nothing more than what is specified in the
transcript, and the rest of this paper assumes that this has been done.

We write D ∼ D′ if D and D′ have the same distribution (perfect indistinguishability). Programs
will take two inputs, a key k and an input x; we write Pk(x) for the result of evaluating P on key k

and input x. Define #Pk(x)#
def
= (y, T ), where y = Pk(x) is the result of executing P on (k, x) and T

denotes the transcript produced during that execution. If P is randomized, Pk(x) and #Pk(x)# are
random variables. We abuse notation and write #Pk# for the map #Pk#(x) = #Pk(x)#. We can then
define transcript security as follows:

Definition 1 (transcript security). A program P is said to be transcript-secure (for a particular choice
of transcript) if for all probabilistic polynomial time adversaries A, there exists a probabilistic polynomial
time simulator S, which for all keys k satisfies SPk ∼ A#Pk#.

Remark 1. In our model, the attacker is assumed to know the text of the program P . In fact, we allow
the adversary A to depend on P in any way whatsoever. Thus, we do not consider any security that
might be obtained through use of secret programs (“security through obscurity”); security must instead
be obtained through the secrecy of the key k [23].

Remark 2. We could weaken the definition by letting ∼ denote statistical or computational indistin-
guishability, instead of perfect indistinguishability (as used in the formulation above). Because our
schemes satisfy the stronger notion, our formulation above uses perfect indistinguishability, but the
weaker notions are also meaningful. Further, the definition stated above requires that the simulation suc-
ceed for all keys k. Alternately, one could consider a weaker notion that requires only that simulation suc-
ceed for all but a negligible fraction of keys: e.g., for all A there exists S such that (k, SPk) ∼ (k, A#Pk#).
This weaker notion would also be meaningful; however, since our schemes achieve the strong definition
given above, we focus on the definition in its strongest form.

3 Program Counter Security: Security Against Certain Side-Channel Attacks

The notion of program counter security (PC-security) is motivated by the following side channel attacks:
Timing attacks. In a timing attack, the attacker learns the total time taken by the computation.

Thus, the side-channel transcript T seen by the adversary might contain a single value representing the
time taken during execution of the program. Any program that is transcript-secure with this definition
of transcript will then be secure against timing attacks.

Simple power analysis. We could also consider leakage due to the difference in power consumption
between different types of machine instructions. For instance, a MUL (multiply) instruction might



consume more power than an XOR instruction; a LD (load) instruction might have a different pattern
of power consumption than a CMP (comparison). This suggests a model of security where the adversary
is permitted to see the opcode (type of instruction) executed at each step, but not the value of its
operands.

We observe that these models are concerned mainly with the control-flow behavior of the program.
In each case, the side channel leaks partial information about the path the processor takes through the
program, but nothing about the data values. Consequently, these models can be subsumed by a single,
more general model of security, which we call the program counter model or PC model.

In the PC model, the transcript T conveys the sequence of values taken on by the processor’s program
counter during the computation. To be specific, our concrete notion of security is as follows:

Definition 2 (PC-security). A program P is PC-secure if P is transcript-secure when the transcript
T = (T1, . . . , Tn) is defined so that Ti represents the value of the program counter at the ith step of the
execution.

Consequently, in the PC model, the attacker learns everything about the program’s control-flow be-
havior but nothing about other intermediate values computed during execution of the program. In the
remainder of this work, we make two assumptions about the hardware used to execute the program:
first, that the the program text is known to the attacker. This implies that the program counter at time i
reveals the opcode that was executed at time i. Second, the side-channel signal observed by the attacker
depends only on the sequence of program counter values, e.g., on the opcode executed. For example,
we assume that the execution time of each machine instruction can be predicted without knowledge
of the values of its operands, so that its timing behavior is not data-dependent in any way. Warning:
This is not true on some architectures, due to, among other things, cache effects [5], data-dependent
instruction timing, and speculation.

We stress that our transcript model is intended as an idealization of the information leaked by the
hardware; it may be that no existing system meets the transcript precisely. Nonetheless, we believe
these assumptions are reasonable for some embedded devices, namely those which do not have caches or
sophisticated arithmetic units. With these assumptions, PC-security subsumes the attacks mentioned
above. Given a transcript of PC values, the attacker can infer the total number of machine cycles used
during the execution of the program, and thus the total time taken to run this program; consequently,
any program that is PC-secure will also be secure against timing attacks.

3.1 Justifying Previous Ad Hoc Countermeasures

It is interesting to note that many heuristic defenses that have been previously proposed in the literature
can be formally justified using the notion of PC-security. We give some examples.

Coron’s table-lookup method. The simple square-and-multiply exponentiation algorithm shown in
Fig. 1(a) is insecure against power analysis, because squaring leaves a different pattern of power con-
sumption than multiplication. Coron proposed a method using table lookups to defend against this
attack [15]; see Fig. 1(b). The security of Coron’s method rests on similar assumptions to those formal-
ized in PC-security: the power consumption of all operations must be independent of their operands.

We note that Coron’s method can be readily justified by our notion of PC-security. Indeed, Coron’s
modified exponentiation algorithm is PC-secure (given an appropriate implementation of the multipli-
cation and squaring subroutines), since the sequence of program counter values is independent of the
key k.

Universal exponentiation. Clavier and Joye proposed a new exponential algorithm. Their algorithm
operates as an interpreter for a very simple register-based language, executing a sequence of instructions
Γ = (Γ1, . . . , Γ`) written in this language in a manner secure against side channels [14]. In their language,



Exponentiate(k, x):
1. y ← 1; `← len(k)
2. for i← `− 1, . . . , 0:
3. if ki = 1
4. then y ← y2 × x

5. else y ← y2

6. return y

(a) The insecure version.

Coron-Exp(k, x):
1. y ← 1; `← len(k)
2. for i← `− 1, . . . , 0:
3. A[1]← y2 × x

4. A[0]← y2

5. y ← A[ki]
6. return y

(b) Coron’s method.

Universal-Exp(Γ, x):
1. Parse Γ as (Γ1, . . . , Γ`)
2. Parse each Γi as (γi : αi, βi)
3. R[α1]← x; R[β1]← x

4. for i← 1, . . . , `:
5. R[γi]← R[αi]×R[βi]
6. return R[γ`]

(c) Clavier-Joye’s method.

Fig. 1. Three methods for computing xk in some (unspecified) group. Method (a) is insecure, because of the key-dependent
if statement. Method (b) uses a table lookup to avoid a key-dependent branch, while method (c) interprets a small program
γ that takes time independent of the key k.

a = a << 1;

if (carry)

a = a ^ 0x1B;

(a) Näıve.

a = a << 1;

b = a;

a = a - (a + carry);

a = a & 0x1B;

a = a ^ b;

(b) SKKS.

b = a;

b = b << 1;

a = a / 128;

a = a * 0x1B;

a = a ^ b;

(c) BS #1.

f = a >> 7;

a = a << 1;

x[0] = a ^ 0x00;

x[1] = a ^ 0x1B;

a = x[f];

(d) BS #2.

Fig. 2. Four implementations of the AES xtime operation, intended for 8-bit microprocessors. The first is insecure against
timing and DPA attacks. The next three have been used by implementors to defend against such attacks. Note: the
instruction ‘a << 1’ sets the carry bit if the most significant bit of a is set.

there are m registers R[1], . . . , R[m], and every instruction has the form Γi = (γi : αi, βi), which is
interpreted as R[γi] ← R[αi] × R[βi]. See Fig. 1(c). They, too, assume that power consumption is not
data-dependent in any way. Because the sequence of program counter values depends only on ` and not
on Γ , the Clavier-Joye algorithm is PC-secure assuming that ` is public and that the multiplication and
squaring subroutines are implemented appropriately.

In other words, their algorithm takes as input an addition chain Γ (k) (for exponentiation to the kth

power) and a base x and applies the exponentiation chain securely to compute xk in a way defined so
that side channels will not reveal k. See Fig. 1(c). Assuming that `, the length of the addition chain,
is public, their algorithm is PC-secure (given an appropriate implementation of the multiplication and
squaring subroutines), since the sequence of program counter values depends only on ` and not on Γ .

The AES xtime primitive. One of the main operations used in AES is the xtime function, which
corresponds to shifting a 8-bit LFSR left one bit (or, equivalently, multiplying by ’02’ in GF (28)). It is
well-known that the straightforward implementation of xtime (see Fig. 2(a)) is susceptible to timing and
differential power analysis (DPA) attacks, because it uses a conditional jump instruction [28]. Sano, et
al., proposed an alternate implementation that runs in constant time and hence is secure against timing
attacks [40] (See Figure 2(b)), and Blömer and Seifert described two more [9] (See Figure 2(c) and
(d)). We note that all three alternate implementations can be readily shown to be PC-secure, providing
further justification for these countermeasures.

Error disclosure attacks. Some implementation attacks exploit information leaks from the disclosure
of decryption failures. Consider a decryption routine that can return several different types of error
messages, depending upon which stage of decryption failed (e.g., improper PKCS formatting, invalid
padding, MAC verification failure). It turns out that, in many cases, revealing which kind of failure
occurred leaks information about the key [6, 43, 7, 24, 25, 35].



OAEP-Insecure(d, x):

1. (e, y)← IntToOctet(xd mod n)
2. if e then return Error

3. (e′, z)← OAEPDecode(y)
4. if e′ then return Error

5. return z

(a) Näıve code (insecure).

OAEP-Secure(d, x):

1. (e, y)← IntToOctet(xd mod n)
2. y ← Cond(e, dummy value, y)
3. (e′, z)← OAEPDecode(y)
4. return Cond(e ∨ e′, Error, z)

(b) A transformed version (PC-secure).

Fig. 3. Two implementations of OAEP decryption. We assume that each subroutine returns a pair (e, y), where e is a
boolean flag indicating whether any error occurred, and y is the value returned by the subroutine if no error occurred.
The code on the left is insecure against Manger’s attack, because timing analysis allows to distinguish an error on Line 2
from an error on Line 3. The code in the right is PC-secure and hence not vulnerable to timing attacks, assuming that the
subroutines are themselves implemented in a PC-secure form.

Näıvely, one might expect that attacks can be avoided if the implementation always returns the
same error message, no matter what kind of decryption failure occurred. Unfortunately, this simple
countermeasure does not go far enough. Surprisingly, in many cases timing attacks can be used to learn
which kind of failure occurred, even if the implementation does not disclose this information explicitly
[6, 43, 7, 24, 25, 35, 30]. See, for instance, Fig. 3(a). The existence of such attacks can be viewed as a
consequence of the lack of PC-security. Thus, a better way to defend against error disclosure attacks is
to ensure that all failures result in the same error message and that the implementation is PC-secure.

Suppose we had a subroutine Cond(e, t, f) that returns t or f according to whether e is true or
false. Using this subroutine, we propose in Fig. 3(b) one possible implementation strategy for securing
the code in Fig. 3(a) against error disclosure attacks. If there is an error in Line 1, we generate a dummy
value (which can be selected arbitrarily from the domain of OAEPDecode) to replace the output of
Line 1. If all subroutines are implemented in a PC-secure way and we can generate a dummy value in
a PC-secure way, then our transformed code will be PC-secure and thus secure against error disclosure
attacks. There is one challenge: we need a PC-secure implementation of Cond. We propose one way to
meet this requirement through logical masking:

Cond(e, t, f):
1. m←Mask(e)
2. return (m ∧ t) ∨ (¬m ∧ f)

Here ¬,∨,∧ represent the bitwise logical negation, OR, AND (respectively). This approach requires a
PC-secure subroutine Mask satisfying Mask(false) = 0 and Mask(true) = 2`−1 = 11 · · · 12, assuming t
and f are `-bit values. The Mask subroutine can be implemented in many ways. For instance, assuming
true and false are encoded as values 1 and 0, we could use Mask(e) = (2` − 1)× e; Mask(e) = −e (on
two’s-complement machines); Mask(e) = (e � (` − 1)) ≫ (` − 1) (using a sign-extending arithmetic
right shift); or several other methods. With the natural translation to machine code, these instantiations
of Mask and Cond will be PC-secure.

3.2 Straight-Line Code is PC-Secure

The key property we have used to show PC-security of code in the previous section is that the code is
straight-line, by which we mean that the flow of control through the code does not depend on the data
in any way. We now encapsulate this in a theorem.

Theorem 1. (PC-security of straight-line code). Suppose the program P has no branches, i.e., it has
no instructions that modify the PC. Then P is PC-secure.



CONST static uint16 mul(register uint16 a, register uint16 b) {

register word32 p;

p = (word32) a * b;

if (p) {

b = low16(p);

a = p >> 16; mean stddev min max

return (b - a) + (b < a); 27.00 0.03 26 27

} else if (a) {

return 1 - a; 7.00 0.02 7 8

} else {

return 1 - b; 0.00 0.02 0 1

}

}

Fig. 4. PGP’s implementation of multiplication mod 216 +1. This routine is called a total of 34 times per IDEA operation.
The numbers on the right show the mean, standard deviation, minimum, and maximum number of times each of the
corresponding source code lines is visited per IDEA call over 10, 000 random keys and a fixed plaintext. The non-zero
standard deviation indicates these lines as potential trouble spots, since it means the number of times these lines are
executed varies as the secret input varies. Therefore, measuring a program’s behavior on these lines may reveal information
about the secret input.

Proof. Since P is branch-free, for all inputs x and all keys k the program counter transcript T of Pk(x)
will be the same. For any adversary A, consider the simulator S that runs A, outputting whatever A does
and answering each query x that A makes to its oracle with the value (Pk(x), T ). Then SPk ∼ A#Pk#

for all k.

In fact, it suffices for P to be free of key-dependent branches. We can use this to show that some
looping programs are PC-secure.

Theorem 2. (PC-security of some looping programs). Suppose the program P consists of straight-line
code and loops that always run the same code body for a fixed constant number of iterations in the same
order (i.e., the loop body contains no break statements and no assignments to the loop counter; there
are no if statements). Then P is PC-secure.

Proof. As before, for all inputs x and all keys k, the program counter transcript T of Pk(x) will be the
same, so we can use the same simulation strategy.

4 Finding Side Channel Attacks With Run-time Profiling

Not only does PC-security give us a way to prove the security of code, but it can also guide us to
potential attacks. By looking at the transcripts of programs on many different secret inputs, we can
search for key-dependencies in the transcripts. In particular, if we find any input x and any pair of keys
k, k′ so that Pk(x) yields a different program counter transcript than Pk′(x), we can conclude that P
is not PC-secure. Our algorithm, then is simple: pick an input x; pick many random keys k1, . . . , kn;
and look for any variation whatsoever in the resulting program counter transcripts. Variations indicate
potential side channel vulnerabilities and thus demand further investigation.

We built a tool that automates this process. We use the the GNU gcov tool to measure how many
times each line of code is executed during each execution. We execute the program many times with
many different secret keys, and we compute statistics for each line. This allows us to detect whether
there is any line of code that is executed more times with one key then with another, which indicates a
violation of PC-security.



This tool is fairly crude, in several respects. First, it does not gather entire program counter tran-
scripts, so it could in principle miss some violations of PC-security. Second, gcov does not handle
optimized C code very well, so we focus mainly on unoptimized code. We could work around these
limitations by using an emulator, such as Bochs or Valgrind, but we leave this for future work [13]. Still,
as we will see, our tool gives us a simple yet powerful test for potential side channel vulnerabilities.

Case Study: IDEA. To gain experience with this approach, we applied our tool to the implementation of
the International Data Encryption Algorithm (IDEA) block cipher in PGP, Inc.’s version of PGP 2.6.2.
IDEA relies heavily on multiplication modulo 216 +1. However, this operation is tricky to implement in
a constant-time way, because multiplying by zero must be treated as a special case. Others have shown
the existence of timing attacks against some IDEA implementations based on this observation [22].

We decided to apply our tool to PGP’s IDEA implementation. It quickly found several lines of code
that were executed more times for some keys than others, indicating the possibility of a side-channel
attack. See Fig. 4 for the tool’s output. Upon investigating these key-dependencies, we noticed that
these indicate a real vulnerability. In the case where either a or b is zero, the code takes a shortcut
and returns in three instructions. If neither a nor b is zero, the code takes six instructions, leading to a
timing difference. Thus, our tool sufficed to discover an instance of the aforementioned timing attack,
even though our tool contains no special knowledge of that attack.

Upon further investigation, we discovered that these kind of timing dependencies are common in
IDEA implementations. PGP 6.58 contains similar code. PGP 2.3a has an even worse timing difference;
the multiplication is only carried out if both operands are non-zero.

Other case studies. Through similar methods, we discovered that the lsh implementation of the ssh
protocol has different behavior when a username corresponds to a valid user and when it does not. This
allows a remote attacker to guess usernames and confirm his guess by measuring the timing behavior of
the server’s response. We also found that the implementation of RC5 shipped with TinyOS is not PC-
secure. TinyOS is an operating system designed for wireless sensor networks; the RC5 implementation we
considered was part of the link-layer encryption scheme TinySEC, though it has since been deprecated
and replaced by Skipjack due to patent concerns. These examples illustrate that violations of PC-security
are easy to find with runtime profiling, and that they often correspond to side-channel vulnerabilities.

5 Code Transformation for PC-Security

The examples we have seen so far illustrate the relevance of PC-security, but enforcing PC-security by
hand is highly application-dependent and labor-intensive. We describe a generic method for transforming
code to be PC-secure. Given a program P , the transformed program P ′ is PC-secure and has the same
input-output behavior as P on all inputs (i.e., Pk(x) ∼ P ′

k(x) for all k, x). It may be surprising that
almost all code can be transformed in this way, but we show in the Appendix how this can be done for
loops where a fixed upper bound is known at compile time (i.e., primitive recursive function). We first
explain informally how our transform works, and then we carefully prove its security.

Transforming conditional statements. An if statement containing only assignment expressions can be
handled in a fairly simple way. To provide PC-security, we execute both branches of the if, but only re-
tain the results from the branch that would have been executed in the original program. The mechanism
we use to nullify the side-effects of either the consequent or the alternative is conditional assignment.
We have already seen one way to implement PC-secure conditional assignment using logical mask-
ing and the Cond subroutine. For example, the C statement if (p) { a = b; } can be transformed



if (n % 2) {

r = r * b;

n = n - 1;

} else {

b = b * b;

n = n / 2;

}

m = -(n % 2);

r = (m & (r * b)) | (~m & r);

n = (m & (n - 1)) | (~m & n);

m = ~m;

b = (m & (b * b)) | (~m & b);

n = (m & (n / 2)) | (~m & n);

Fig. 5. Transforming a simple if statement to ensure PC-security. On the left, the original, insecure version. On the right,
the result of our automatic transformation.

if (n != 0) {

if (n % 2) {

r = r * b;

n = n - 1;

} else {

b = b * b;

n = n / 2;

}

}

m1 = -(n != 0);

m2 = m1 & (-(n % 2));

r = (m2 & (r * b)) | (~m2 & r);

n = (m2 & (n - 1)) | (~m2 & n);

m2 = m1 & ~m2;

b = (m2 & (b * b)) | (~m2 & b);

n = (m2 & (n / 2)) | (~m2 & n);

Fig. 6. An example of our transformation applied to a nested if statement.

to a = Cond(m, b, a), where m = Mask(p). If p represents a 0-or-1-valued boolean variable3, this
might expand to the C code m = -p; a = (m & b) | (~m & a).

Fig. 5 shows a complete transformation for part of an iterative exponentiation routine.
Many architectures have conditional instructions that support conditional assignment more natu-

rally. For instance, virtually any ARM instruction can be made conditional on a processor flag, and the
Pentium Pro and later IA-32 processors have a conditional mov instruction. On these architectures, our
transform can be implemented more efficiently, but our prototype currently does not attempt to take
advantage of native support for conditional assignment.

Nested if statements are only slightly more involved. Instead of assigning the mask based solely on
the value of the predicate, we use a conditional assignment that depends on the value of the mask for
the surrounding if. We conditionally invert the mask before the code for the else clause based on the
enclosing if’s mask. This means that any given statement in the program only needs to care about a
single mask for ifs, regardless of the level of nesting.

Loops. Loops present difficulties because the number of iterations they will perform may not be known
statically, and in particular, the number of iterations may depend on sensitive data. Fortunately, in
many cases a constant upper bound can be established on the number of iterations. We transform the
loop so that it always executes for the full number of iterations, but the results of any iterations that
would not have occurred in the original program are discarded. A specification of our entire transform
may be found in Section 5.1

More generally, it would suffice to know that the number of iterations can be upper-bounded by
a value that depends only on public inputs (even if this bound is not constant). A future version of
our transform might work around this by performing static analysis to determine which loops actually
depend on secret data and which do not. We found, however, that for the examples we looked at such
an analysis was not necessary.

Fortunately, it is frequently the case, particularly in cryptographic algorithms, that the number of
iterations a loop performs is known statically or depends only on non-sensitive data. In these situations,
we can leave the loop unchanged. A more interesting scenario is when a loop may execute for a variable
number of iterations, but we can establish a reasonably tight upper bound on the number of iterations.

3 If p is not guaranteed to be 0-or-1-valued, this definition of m does not work. We use m = !p - 1 instead.



C ∈ Com = Program
E ∈ Exp
B ∈ BoolExp ⊂ Exp
I ∈ Identifier

arithop ∈ AOp = {+, -, *, &, |}
relop ∈ RelOp = {>, <, =}

boolop ∈ BoolOp = {and, or}
n ∈ Num

(a) Syntactic domains.

C ::= I := E | C′; C′′ | if B then C′ else C′′

| for I := n to n′ do C′ | break

E ::= I | n | B | E′ arithop E′′ | ~E′

B ::= 0 | 1 | B′ boolop B′′ | E′ relop E′′ | !B′

(b) Grammar.

Fig. 7. The abstract syntax of IncredibL.

For instance, the loop may contain a break statement intended to cause it to exit early in some cases,
making the program insecure in the PC model. We transform the loop so that it always executes
for the full number of iterations, but the results of any iterations that would not have occurred in the
original program are discarded. In essence, this can be thought of as prepending if (loop done) to every
statement in the loop, and transforming break statements into conditional assignments to loop done.

5.1 Specifying The Transform

With these examples, we are now ready to specify the transform more precisely. As we discuss below,
our implementation handles all of the C language. However, the lack of a formal semantics for C makes
it difficult to prove anything about C, so we focus on a subset of C that contains most of the language
features that are relevant to our analysis. For this subset, we can prove that the transform is semantically
preserving and that it produces PC-secure code.

To precisely capture this subset of C, we introduce IncredibL, a simple imperative language with
restricted control flow. IncredibL is our own invention, but it is derived from Hennessy’s WhileL [19].
The grammar for IncredibL can be found in Fig. 7.

Roughly, IncredibL captures a memory-safe subset of C with only bounded loops, if statements,
and straight-line assignments. Note that we do not allow any forms of recursion or unstructured control
flow, as these may introduce unbounded iteration. We also disallow calls to untransformed subroutines,
including I/O primitives. Note that because loop bounds are known statically in IncredibL, we can in
principle unroll all loops in any IncredibL program to obtain code with no branches.

Our transformation TProgram is specified in Fig. 8. We state the main theorems here. Proofs may be
found in the Appendix.

Theorem 3. TProgram is semantics-preserving: for every valid IncredibL program P and every pair of

inputs k, x, P ′

k(x) ∼ Pk(x), where P ′ def
= TProgram[[P ]].

Theorem 4. TProgram outputs safe code: for every IncredibL program P , TProgram[[P ]] consists only of
straight-line code and loops with straight-line code bodies that run for a fixed constant number of iterations
with no assignments to induction variables.

Corollary 1. TProgram enforces PC-security: for every IncredibL program P , TProgram[[P ]] is PC-secure.



TProgram[[C]] = I0 := -1; TCom[[C]](I0, I0) where I0 is a fresh identifier

TCom[[I := E]](Iif, Ibrk) = conditional-assign(I, (Iif & Ibrk), E, I)

TCom[[C; C′]](Iif, Ibrk) = TCom[[C]](Iif, Ibrk); TCom[[C′]](Iif, Ibrk)

TCom[[if B then C else C′]](Iif, Ibrk) = conditional-assign(I0, (Iif & Ibrk), (0-B), 0); TCom[[C]](I0, Ibrk);
conditional-assign(I0, (Iif & Ibrk), ~I0, 0); TCom[[C′]](I0, Ibrk)

where I0 is a fresh identifier

TCom[[for I := n to n′ do C]](Iif, Ibrk) = conditional-assign(I0, (Iif & Ibrk), -1, 0);
for I := n to n′ do TCom[[C]](Iif, I0)

where I0 is a fresh identifier

TCom[[break]](Iif, Ibrk) = conditional-assign(Ibrk, (Iif & Ibrk), 0, Ibrk)

conditional-assign(I, Em, Et, Ef ) = I := (Et & Em) | (Ef & ~Em)

Fig. 8. A formal specification of our transform.
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Fig. 9. The speed, code size, and stack size overhead of our transform, as applied to modular exponentiation, IDEA, and
RC5. The -xf suffix indicates the automatic application of our transform, while the -hand suffix indicates a hand-optimized
application of our transform. Values are normalized: the untransformed version of a program takes unit time by definition,
while the transformed version of the same program is shown with the relative multiplicative overhead compared to the
untransformed version.

5.2 Transform Implementation

We applied our transform to implementations of the IDEA and RC5 block ciphers, which are known
to be susceptible to timing attacks unless implemented carefully [22, 18]. We also applied our transform
to a simple binary modular exponentiation implementation built on top of the GNU Multiprecision
Library. We chose x86 as our reference platform due to its widespread popularity, and we used the
Intel C Compiler, Version 8.1 for our performance results. Our tests were run on a 2.8 GHz Pentium 4
running FreeBSD 6-CURRENT (April 17, 2005).

We first optimized our transform by hand on IDEA’s multiplication routine to determine how fast
our transform can be in principle. Our hand-optimized transformation achieves a factor of 2× slowdown
compared to untransformed code, when both are compiled using the Intel C compiler with -O3.

We then implemented an automatic C source-to-source transformation using the C Intermediate
Language package [36]. Our implementation was intended as an early prototype to demonstrate the fea-
sibility of applying our transformation automatically. With more careful attention, better performance
from an automatic transform may be possible.

Performance results. Our performance results for modular exponentiation, IDEA, and RC5 are pre-
sented in Fig. 9. For IDEA, we transformed only the mul routine, which we identified as the main
candidate for timing and power attacks. For RC5, we performed the transformation on the rotate rou-
tine, for similar reasons. For modexp, we transformed only the main loop, but did not transform GnuMP
library functions.

The performance of untransformed, optimized code is set to 1, and the performance of transformed
code is reported relative to this value; for example, the bar with height “2” for idea-hand indicates



not_pc_secure:

1 movl $1, %eax

2 movl $42, %edx

3 cmpl $100, %eax

4 jge out

5 loop: imull %eax, %edx

6 addl 4(%esp), %eax

7 cmpl $100, %eax

8 jl loop

9 out: movl %edx, %eax

10 ret

pc=1 untainted={}

pc=2 untainted={%eax}

pc=3 untainted={%eax, %edx}

pc=4 untainted={%eax, %edx, eflags}

pc=5 untainted={%eax, %edx, eflags}

pc=9 untainted={%eax, %edx, eflags}

pc=6 untainted={%eax, %edx, eflags}

pc=10 untainted={%eax, %edx, eflags}

pc=5 untainted={%edx}

pc=6 untainted={}

pc=5 untainted={}

pc=7 untainted={%edx}pc=7 untainted={}

pc=8 untainted={%edx}pc=8 untainted={}

pc=9 untainted={%edx}

ERROR

pc=9 untainted={}

pc=10 untainted={%eax, %edx}pc=10 untainted={}

Fig. 10. Example: State space explored by the static verifier.

that our hand-transformed IDEA code took 2 times as long as untransformed code. We also found that
code size increased by at most a factor of 2. Finally, we considered the stack usage of transformed code;
this is the most relevant metric of memory usage for systems without dynamically allocated memory.

We can see that both our automatic transform is within a factor of 5 in performance of the optimized
untransformed code in all cases. Again, our implementation is a prototype intended to test feasibility;
with more work, more efficient code may be possible. Further, our stack size and code size increase by
at most a factor of 2, showing that the transformed code may still be reasonable even in constrained
environments. Our results suggest that a fully automatic transformation with slowdown acceptable for
many applications is possible with care.

A static analysis for PC-security. We cannot guarantee that the compiler will preserve our trans-
form’s straight-line + restricted-loop guarantee when it generates assembly language. We addressed this
problem by building a simple static checker for x86 assembly code that detects violations of PC-security.
If the compiler does introduce assembly constructs that violate PC-security, these constructs will be
flagged by the checker. We can then revise the code or improve our transform. Our checker is sound,
but not complete: it will catch all violations of PC-security, but may also report false positives.

In fact, our checker caught unsafe constructs in the gcc 3.3.2 compilation of our transformed C code
to x86 assembly. In certain expression contexts, gcc compiles the logical negation (!) operator into an
assembly sequence involving a conditional branch. Further experimentation reveals that this idiom is
not limited to the x86; the Sun C compiler on an UltraSPARC-60 machine exhibits similar behavior. We
discovered, however, that the Intel C compiler does not compile ! using conditional jumps, so we used
the Intel compiler for our performance experiments. One alternative would be to change the transform



to avoid the ! operator, but we did not find a portable and efficient replacement. Another alternative
would be to modify gcc to add an extra mode that respects the PC-security of compiled code; we found it
easier, however, to simply use the Intel compiler for our tests. Our experience shows the merely turning
off optimizations does not guarantee that transformed C code will be PC-secure after compilation.

The checker works by performing an information flow analysis on the control flow graph for the
program. Register and memory locations are classified as either sensitive or public. A public value is
one that is derived entirely from constants, whereas a sensitive value is not, and therefore may depend
on secret data. The program is simulated on a nondeterministic abstract machine in which each state
consists of a program counter and a set of public locations. State transitions are defined solely based on
the input/output behavior of the instructions in the program, except for conditional branches, which
are handled specially. For these branches, both branch directions are explored nondeterministically.
Additionally, if branch predicate is sensitive, the machine transitions to an error state and flags a
violation of PC-security.

For these branches, both branch directions are explored nondeterministically. Additionally, if branch
predicate is sensitive, the machine transitions to an error state and flags a violation of PC-security.

This approach is sound but not complete; it identifies all actual violations of PC-security, but may
also report false positives. False positives arise because some aspects of the execution environment
(pointer aliasing in particular) are difficult or impossible to model accurately using our analysis, and
so we adopt conservative approximations. Furthermore, the model does not capture the fact that some
computations such as x⊕x produce a public output on sensitive inputs. Nevertheless, these false positives
do not appear to be a problem in practice; we encountered none in the programs we examined. Since
the verifier only needs to understand data and control flow and not actual instruction semantics, our
implementation is relatively simple, consisting of about 1800 lines of Java code. Fig. 10 shows the state
space explored on one possible translation of the following C program to x86 assembly.

int not_pc_secure(int x) {

int res = 42;

for (int i = 1; i < 100; i += x)

res *= i;

return res;

}

The program is not PC-secure because the execution of all loop iterations after the first are dependent
upon the unknown input x. The second branch is flagged as a violation of PC-security because it depends
on the processor’s less than flag (part of the eflags register), which is sensitive at the branch point.

The state space diagram shows that the program is not PC-secure. We find the first branch does
not violate PC-security because in the unique control path that reaches it, the flags that determine the
branch direction are public. The tool considers both branch directions: the left path (which is infeasible
in practice) skips the loop entirely and returns from the function, and the right path executes the loop
body. In the rightmost path, 4(%esp), the potentially sensitive parameter to the function, is added to
%eax, so %eax is sensitive. Hence, eflags is made sensitive by the comparison of %eax to 100 on line 7,
and the branch on line 8 is flagged as a violation of PC-security.

For the sake of comprehensiveness, the tool also explores the center path in the figure. This path
corresponds to the second and subsequent loop iterations, which have an even smaller set of public
values than the first iteration. Note that even though there is no practical bound on the number of
iterations of the loop in this example, the sensitive set stabilizes quickly, so the state space that must
be explored is small.



6 Related Work

Many previous side channel defenses are application-specific. For example, blinding can be used to
prevent timing attacks against RSA [26, 10]. The major advantage of an application-specific defense is
that it can be efficient. Experimental measurements show that blinding only adds a 2–10% overhead;
contrast this with the overhead we measured in § 5.2.

Unfortunately, no proof of security for blinding against side channel attacks is known. In the absence
of proof, it is difficult to assess whether the defense works. For example, defenses were designed for the
five AES finalists [31]. These defenses had no formal model of information leaked to the adversary and
hence no way to verify security. In fact, Coron and Goubin later pointed out a subtle flaw in one of
the techniques [16]. Blömer, et al., give several more examples of techniques that were thought to be
secure but failed, and of cases where innocent-looking “simplifications” failed. These examples motivate
their study of provably secure defenses against side channels [8]. We note that Hevia and Kiwi showed
that conditional branches in some implementations of DES leak information about the secret key; this
is another motivation for PC-security.

Chevallier-Mames, Ciet, and Joye show a clever construction for performing modular exponentiation
without incurring undue overhead. They show that, under an appropriate physical assumption, only the
Hamming weight of the exponent is leaked by their algorithm. Blömer, et al., also define a model
for provable security against side channel attacks and show how to implement AES securely in this
model [8]. While these methods are a step forward, they still require a great deal of new effort for each
new application.

The programming languages community has studied the problem of secure information flow exten-
sively, but most work regarding C code has focused on detecting covert channels and side channels [39],
not on eliminating them via code transformation. One exception is Agat’s work, which transforms out
timing leaks by inserting dummy instructions to balance out the branches in a program’s control-flow
graph [1, 2]. His work is focuses primarily on timing attacks, while our approach is more general. There
are also languages such as Jif and Flowcaml that include information flow support as part of the lan-
guage [44, 42].

Micali and Reyzin examine “physically observable cryptography” through a framework that is closely
related to ours. Their model specifies a “leakage function” (analogous to our notion of transcript)
and allows the adversary to measure the outputs of this leakage function on a “physical machine”
which may be executing some number of “virtual Turing Machines.” Our model, in contrast, is simpler
since we consider only a single program executing at a time. Also, Micali and Reyzin focus more on
how side channel attacks affect basic theorems of cryptography, while we are interested in automatic
transforms that improve security against such attacks [34]. Goldreich and Ostrovsky also proposed a
transformation for RAM machines that makes the sequence of memory accesses independent of the input
with polylogarithmic slowdown; this would provide security in our sense with a transcript containing
such memory accesses, but we are not aware of any practical implementation [17].

The above defenses focus on software; there are also promising solutions that focus on hardware [41,
3, 4, 38]. To coordinate these defenses, we need a contract between hardware researchers and software
researchers as to who will protect what. Our transcript is exactly this: a contract specifying what
information the software can expect the hardware to leak to the adversary.

7 Conclusion and Open Problems

We presented a program counter model for reasoning about side channel attacks, a system that trans-
forms code to increase resistance against attacks, and a static verifier that checks the code output by
our compiler is PC-secure. This framework allows us to prove transformed code is secure against an



interesting class of side channels. With enough work, an even more efficient automatic transformation
for PC-security may be possible.

Looking forward, it is an interesting open problem to extend these methods to handle a larger class of
side-channel attacks. We have argued that specifying a transcript model as part of the hardware/software
interface simplifies development of both hardware and software countermeasures. We leave it as an open
problem to find the “right” contract between these two worlds.
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A The Transformation

We give a formal definition of our transformation and show that it preserves the semantics of the original
program. Although our actual implementation transforms C code, our formal description translates
programs written in the simple imperative language called IncredibL, which is based loosely on WhileL
[19]. The abstract syntax of this language is given in Figure 7.

A.1 A Natural Semantics for IncredibL

Semantic Domains:

g ∈ BreakGuard = {eval, skip}
σ ∈ Store = Identifier 7→ (Num ∪ {unbound})

Expression Transition Relations:

=⇒A : Exp× Store −→ Num

Rule NumR 〈n, σ〉 =⇒A n

Rule IdentR 〈I, σ〉 =⇒A σ(I)

Rule AOpR

〈E , σ〉 =⇒A n
〈E′, σ〉 =⇒A n′

〈E′ arithop E′, σ〉 =⇒A apply(arithop,n,n′)

Rule BitNotR
〈E, σ〉 =⇒A n

〈~E, σ〉 =⇒A bitwise-negation(n)

=⇒B : BoolExp× Store −→ {0, 1}

Rule BOpR

〈B , σ〉 =⇒B n
〈B′, σ〉 =⇒B n′

〈B boolop B′, σ〉 =⇒B apply(boolop,n,n′)

Rule ROpR

〈E , σ〉 =⇒A n
〈E′, σ〉 =⇒A n′

〈E relop E′, σ〉 =⇒B apply(relop,n,n′)

Rule LNotR
〈B, σ〉 =⇒B n
〈!B, σ〉 =⇒B 1−n

Fig. 11. Operational Semantics of IncredibL for Arithmetic and Boolean Expressions

The IncredibL language has only three control flow constructs: if. . . then. . . else, a Pascal-style for

statement, and a break statement to escape from a loop. Loop bounds are required to be constant, which
guarantees that IncredibL programs terminate. Although this language is not universal, it is sufficient to
implement many cryptographic algorithms, including AES, IDEA, and RC5. Furthermore, we will prove
that all programs that can be written in IncredibL can be transformed into observationally equivalent
programs that are PC-secure.



Command Transition Relation:

=⇒C : Com× Store× BreakGuard −→ Store× BreakGuard

Rule AsR
〈E, σ〉 =⇒A n

〈I := E, σ, eval〉 =⇒C 〈σ[n/I], eval〉

Rule ComR

〈C , σ, eval〉 =⇒C 〈σ
′, g′〉

〈C ′, σ′, g′〉 =⇒C 〈σ
′′, g′′〉

〈C; C ′, σ, eval〉 =⇒C 〈σ′′, g′′〉

Rule IfR1

〈B , σ〉 =⇒B 1

〈C, σ, eval〉 =⇒C 〈σ
′, g′〉

〈if B then C else C ′, σ, eval〉 =⇒C 〈σ′, g′〉

Rule IfR2

〈B , σ〉 =⇒B 0

〈C ′, σ, eval〉 =⇒C 〈σ
′, g′〉

〈if B then C else C ′, σ, eval〉 =⇒C 〈σ′, g′〉

Rule ForR1
〈C; for I := n+1 to n′ do C, σ[n/I], eval〉 =⇒C 〈σ

′, g′〉

〈for I := n to n ′ do C , σ, eval〉 =⇒C 〈σ
′[σ(I )/I ], eval〉

where n ≤ n′

Rule ForR2
〈for I := n to n ′ do C , σ, eval〉 =⇒C 〈σ, eval〉

where n > n′

Rule BreakR 〈break, σ, eval〉 =⇒C 〈σ, skip〉

Rule SkipR 〈C, σ, skip〉 =⇒C 〈σ, skip〉

Fig. 12. Operational Semantics of IncredibL for Commands



In order to make the transform more concrete, our definition includes all of the bit manipulation
necessary to implement it on a 2’s complement machine. Therefore, in addition to the usual definitions
for addition and subtraction, we assume the following identities for bitwise operators:

∀a :

a& (−1) = a

a& 0 = 0

a | 0 = a
∼(−1) = 0
∼0 = (−1)

We use σ to denote a store, which can be thought of as a piece of memory where variables are stored.
The notation σ[n/I] represents a new store which is the same as σ except the variable named by I now
has the value n. We denote the value of I in store σ as s(I). If I is not bound in the σ, then s(I) has
the special value unbound.

The natural semantics[21] of IncredibL are given in Figures 11 and 12. As the IncredibL grammar
presented in Figure 7 demonstrates, programs consist of commands, which may modify variables and
induce control flow. Commands, in turn, may be composed of arithmetic and boolean expressions,
which represent mappings from stores to numerical values, but do not have side-effects. We define
three transition relations, =⇒A, =⇒B, and =⇒C , for arithmetic expressions, boolean expressions, and
commands, respectively. Note that the image of =⇒B is a subset of the range of =⇒A, so boolean
expressions are allowed in arithmetic context. This feature is crucial to the implementation of our
transformation.

Our operational description is a natural way to express a simple imperative language such as Incred-
ibL. Unfortunately, it does not lend itself well to modelling non-local exit constructs such as break, as
would a denotational definition. To support break, we add a new component called a break guard to the
command configuration. The guard is normally the symbol eval, but it is changed to skip when a break

is encountered. In configurations where it has the latter value, the corresponding command is always
ignored, and when the first command in a sequence produces a skip, the skip is propagated through
the rest of the sequence. The only command that ignores a skip produced by one of its subcomponents
is for.

Although we omitted the mechanics of it from the grammar of Figure 7 for simplicity, there is also
a restriction that well-formed IncredibL programs do not contain any break statements outside of a for

loop. Therefore, the final state of any such program is always of the form 〈σ, eval〉, for some store σ.

Subtleties Involving Errors, Loops, and Pointers The careful reader may have noticed that
syntactically well-formed programs may exhibit two types of runtime errors: arithmetic errors, such as
divide-by-zero and overflow, and uninitialized variable errors. In general, we consider programs that
would crash on certain inputs to be beyond the scope of our work. Note, however, that for both types
of errors possible in IncredibL, the C language specifies that execution should continue, with the value
of the offending expression being undefined. We could adopt similar semantics by asserting that unbound

evaluates to 0, for instance. By doing so, we can transform correct and erroneous programs alike, and
prove that the resulting code is PC-secure. In practice, it would be better to flag the occurrence of an
error and take appropriate action when execution of the algorithm has completed.

IncredibL lacks pointers, which pose a problem in practice for two reasons. First, they introduce
data-dependent memory reference patterns and cache behavior. A cache hit has different timing from
a cache miss by design, potentially leaking sensitive information. Specific defenses against this type of



side channel are beyond the scope of this paper, and are considered in [37]. Second, in many languages,
dereferencing a pointer may lead to side-effects, depending on the value of the pointer. Consider the
following snippet of C code, for instance.

if (p != NULL)

*p = 42;

If our transformation were applied to this program, the resulting code would construct a mask m

based on the value of the boolean expression p != NULL, then perform an assignment tantamount
to *p = (42 & m) | (*p & ~m). Since NULL is not a valid memory location, the new program would
likely generate a runtime error in cases where p is NULL, thereby leaking information about p.

Another subtle aspect of IncredibL is the particular semantics of loop counter variables. Like Pascal
and unlike C, it is not possible to alter the number of iterations the loop will take by assigning directly
to the loop counter. Any such assignment will simply be ignored on the next loop iteration. This is
necessary to ensure that all IncredibL programs terminate.

Furthermore, unlike other variables, loop counters are in scope only for the duration of the loop.
The operational semantics encode this property by restoring the original value (even if that value is
unbound) at the end of every loop iteration. There is no fundamental reason to impose this restriction;
however, it simplifies the transform significantly. In particular, with these semantics, it is unnecessary
for the transform to nullify the changes to the induction variable in cases where the loop would not
have been executed in the original program. It also allows us to avoid the issue of how to ensure that
the counter has the correct value if the original program uses a break to escape from the loop.

A.2 Transformation

The transform in Figure 8 is specified in terms of three functions:

TProgram : Program 7→ Program
TCom : Com× Identifier× Identifier 7→ Com
conditional-assign : Identifier× Exp× Exp× Exp 7→ Com

TCom does most of the work, and it can be thought of as an internal subroutine to TProgram. The
identifiers passed as arguments to TCom name variables that will store the control context of the cor-
responding expression at runtime (in the form of masks). Com is a union type, which may represent
an assignment command; a sequence of commands; or an if, for, or break command. Therefore, we
deconstruct the first argument to TCom using pattern matching, much as one would do in ML. For
example, the notation TCom[[I := E]](Iif, Ibrk) = · · · indicates that if the command argument is of the
form I := E, then the corresponding rule should be applied with I and E bound appropriately. Iif and
Ibrk, on the other hand, are ordinary formal parameters.

The conditional-assign function implements an abstraction of conditional assignment, without using
if. That is, conditional-assign(I, Em, Et, Ef ) produces a command that is equivalent to I := Et if Em

evaluates to -1 at runtime, and equivalent to I := Ef if Em evaluates to 0. Our transform enforces the
property that conditional-assign is never called with an Em that may evaluate to something other than
0 or -1. We prove in Lemma 1 that our implementation of conditional-assign behaves as advertised.
However, conditional-assign is merely an abstraction, and it may have a more efficient implementation
on particular architectures, e.g. using a conditional mov instruction. Admittedly, we neglected to develop
an abstraction for the representation of the masks, but doing so would not be difficult.

We see that end result of our transform is a new program with no data-dependent control flow.
All if statements are replaced by blocks of conditional assignments and break statements in for loops
replaced by assignments. Therefore the output of the transformation contains no if or break statements.



Combined with the fact IncredibL only allows loops with a fixed constant number of iterations, we can
take the above discussion as a proof sketch for the following theorem:

Theorem 5. For every IncredibL program P , TProgram[[P ]] consists only of straight-line code and (pos-
sibly nested) loops with straight-line bodies that run for a fixed constant number of iterations with no
assignments to induction variables.

Recall that the bounds of a for loop are lexical constants. Since the transformation is able to eliminate
break statements, it would even be possible to fully unroll all loops statically, producing straight-line
code. In fact, the transition rule ForR1 effectively performs this unrolling. Therefore, we can view
Theorem 5 as a simple extension of Theorem 1. We do not actually perform the unrolling as part of the
transform, though, because doing so results in a worst-case exponential blowup in program size.

A.3 Proof of Semantic Preservation

The transformation introduces new fresh identifiers to model the control state of the original program.
These identifers are guaranteed not to appear in the original code, so their introduction does not affect
the meaning of the program. When we wish to differentiate these two types of identifiers, we will write
the store as the union of σ, which contains the variables that were present in the original program, and
σT , which contains variables added by the transformation. By definition, σ and σT are disjoint.

Definition 3 C ∼σT
C ′ if, for all stores σ,

〈C, σ, eval〉 =⇒C 〈σ
′, eval〉

if and only if

〈C ′, σ ∪ σT , eval〉 =⇒C 〈σ
′ ∪ σ′

T , eval〉.

Remark 3. Intuitively, one might try to say that two commands C and C ′ are observationally equivalent
if, for all input stores, they produce the same output store. However, to allow us to prove that the
transformation is semantically preserving, the definition above excludes any new variables used internally
by the transform.

Lemma 1. Correctness of conditional-assign. If σT (Em) = −1, then

(I := Et) ∼σT
conditional-assign(I, Em, Et, Ef ).

If σT (Em) = 0, then

(I := Ef ) ∼σT
conditional-assign(I, Em, Et, Ef ).

Proof. First, note that conditional-assign(I, Em, Et, Ef ) = (I := (Et & Em) | (Ef & ~Em)). Observe
that by the transition rules for assignment and expressions, we can replace Em with its value in σT to
obtain a command that is equivalent with respect to σT . If σT (Em) = −1, then by the identities for
bitwise operators described previously,

I := (Et & -1) | (Ef & ~-1) ∼σT
I := Et | (Ef & 0)

∼σT
I := Et | 0

∼σT
I := Et

The proof for the Em = 0 case proceeds analogously.



The following lemma states that TCom[[C]](Iif, Ibrk) is essentially a no-op with respect to any store
where either Iif or Ibrk is 0.

Lemma 2. For all commands C, if σT (Iif) = 0 or σT (Ibrk) = 0, then

〈TCom[[C]](Iif, Ibrk), σ ∪ σT , eval〉 =⇒C 〈σ ∪ σ′

T , eval〉.

Furthermore, σT (Iif) = σ′

T
(Iif) and σT (Ibrk) = σ′

T
(Ibrk).

Proof. Consider all five possible deconstructions of C:

1. If C = I := E, then TCom[[C]](Iif, Ibrk) = conditional-assign(I, (Iif & Ibrk), E, I). The expression
(Iif & Ibrk) evaluates to 0 with respect to σT , so by Lemma 1, the conditional assignment is equivalent
to I := I. Transition rules AsR and IdentR yield

〈I := I, σ ∪ σT , eval〉 =⇒∗

C 〈σ[σ(I)/I] ∪ σT , eval〉

Observe that σ[σ(I)/I] = σ.
2. If C = C ′; C ′′, then TCom[[C]](Iif, Ibrk) = TCom[[C ′]](Iif, Ibrk); TCom[[C ′′]](Iif, Ibrk). We may assume by

structural induction that the following statements hold:

〈TCom[[C ′]](Iif, Ibrk), σ ∪ σT , eval〉 =⇒C 〈σ ∪ σ′

T , eval〉

σT (Iif) = σ′

T (Iif) and σT (Ibrk) = σ′

T (Ibrk)

The second line implies that one of σ′

T
(Iif) and σ′

T
(Ibrk) is 0, so we may also conclude by induction

that

〈TCom[[C ′′]](Iif, Ibrk), σ ∪ σ′

T , eval〉 =⇒C 〈σ ∪ σ′′

T , eval〉.

σT (Iif) = σ′

T (Iif) = σ′′

T (Iif) and σT (Ibrk) = σ′

T (Ibrk) = σ′′

T (Ibrk)

Then by transition rule ComR, 〈TCom[[C]](Iif, Ibrk), σ ∪ σT , eval〉 =⇒C 〈σ ∪ σ′′

T
, eval〉.

3. If C = if B then C ′ else C ′′, then TCom[[C]](Iif, Ibrk) introduces two conditional assignments of the
form conditional-assign(I0, (Iif & Ibrk), 2, 0), where I0 is a new identifier. Since (Iif & Ibrk) evaluates
to 0 with respect to σT , Lemma 1 implies that both of these conditional assignments are equivalent
to I0 := 0. Therefore, by induction:

〈TCom[[C ′]](I0, Ibrk), σ ∪ σT , eval〉 =⇒C 〈σ ∪ σ′

T , eval〉

〈TCom[[C ′′]](I0, Ibrk), σ ∪ σ′

T , eval〉 =⇒C 〈σ ∪ σ′′

T , eval〉

Hence, 〈TCom[[C]](Iif, Ibrk), σ ∪ σT , eval〉 =⇒C 〈σ ∪ σ′′

T
[0/I0], eval〉. We also note that σT (Iif) =

σ′′

T
(Iif) and σT (Ibrk) = σ′′

T
(Ibrk) for the same reasons as in case 2.

4. Suppose C = for I := n to n′ do C ′. Just as in case 3, the conditional assignment in the transform
of the for is reducible to I0 := 0. Hence, the evaluation of TCom[[C ′]](Iif, I0) preserves σ and σT (Iif)
by structural induction. If n > n′, then rule ForR2 applies and the proof is trivial. Otherwise, rule
ForR1 applies and we assume by induction on n that

〈for I := n + 1 to n′
do TCom[[C ′]](Iif, I0), σ[n/I] ∪ σ′

T , eval〉 =⇒C 〈σ[n/I] ∪ σ′′

T , eval〉

where σ′′

T
(Iif) = σ′

T
(Iif) = σT (Iif). Therefore, the conclusion of ForR1 asserts that the entire for

expression evaluates to 〈σ[n/I][σ(I)/I] ∪ σ′′

T
, eval〉 = 〈σ ∪ σ′′

T
, eval〉.

5. If C = break, then TCom[[C]](Iif, Ibrk) = conditional-assign(Ibrk, (Iif & Ibrk), 0, Ibrk). By assumption,
either Iif or Ibrk is 0 in σT , so by Lemma 1, the conditional assignment is equivalent to Ibrk := Ibrk.
Therefore, the store is unmodified. ut



Now that we have proven that TCom[[C]](Iif, Ibrk) is a no-op when either Iif or Ibrk is 0, we can show
that the same command is almost equivalent to C with respect to a store where Iif and Ibrk are both
−1. We say “almost” because the transform’s behavior differs in two important ways. First, it adds new
variables to the store, as discussed previously in this section. Second, the transform will not contain any
break commands, so it will never produce a BreakGuard other than eval. However, where the original
program would have executed a break, the transform will set Ibrk to 0. Lemma 2 implies that this has
the effect of causing the transform to nullify all subsequent effects of the loop.

Lemma 3. For any command C, if σT (Iif) = σT (Ibrk) = −1, then

(〈C, σ, eval〉 =⇒C 〈σ
′, g〉) ⇐⇒ (〈TCom[[C]](Iif, Ibrk), σ ∪ σT , eval〉 =⇒C 〈σ

′ ∪ σ′

T , eval〉)

Moreover, σ′

T
(Iif) = −1 and

σ′

T (Ibrk) =

{

−1, if g = eval

0, if g = skip

Proof. Once again we analyze how the transform behaves for each kind of command.

1. If C = I := E, then TCom[[C]](Iif, Ibrk) = conditional-assign(I, (Iif & Ibrk), E, I), where (Iif & Ibrk)

evaluates to -1. Therefore by Lemma 1, TCom[[C]](Iif, Ibrk) ∼σT
C, which clearly implies the desired

result.
2. If C = C ′; C ′′, then TCom[[C]](Iif, Ibrk) = TCom[[C ′]](Iif, Ibrk); TCom[[C ′′]](Iif, Ibrk). Suppose that 〈C ′, σ, eval〉 =⇒C

〈σ′, g′〉 and 〈C ′′, σ′, eval〉 =⇒C 〈σ
′′, g′′〉. Then by rule ComR, we conclude 〈C, σ, eval〉 =⇒C

〈σ′′, g′′〉. We assume by structural induction that

〈TCom[[C ′]](Iif, Ibrk), σ ∪ σT , eval〉 =⇒C 〈σ
′ ∪ σ′

T , eval〉

σ′

T (Iif) = −1, and σ′

T (Ibrk) = −1 if g′ = eval and 0 otherwise

There are now two subcases:
– If g′ = skip, then σ′ = σ′′. Moreover, σ′

T
(Ibrk) = 0, so by Lemma 2,

〈TCom[[C ′′]], σ′ ∪ σ′

T , eval〉 =⇒C 〈σ
′ ∪ σ′′

T , eval〉

and σ′′

T
(Iif) = σ′

T
(Iif) and σ′′

T
(Ibrk) = σ′

T
(Ibrk) = 0.

– If g′ = eval, then σ′

T
(Ibrk) = −1. Hence we assume by induction that

〈TCom[[C ′′]], σ′ ∪ σ′

T , eval〉 =⇒C 〈σ
′′ ∪ σ′′

T , eval〉

and that the usual invariants hold for σ′′

T
(Iif) and σ′′

T
(Ibrk).

3. Suppose C = if B then C ′ else C ′′. The conditional assignments ensure that I0 has value 0 for the
branch that would be evaluated in the untransformed program, and −1 for the other branch. If the
consequent is taken, then the theorem holds for TCom[[C ′]](I0, Ibrk) by induction. The remaining code
in the sequence, corresponding to TCom[[C ′′]](I0, Ibrk), is effectively a no-op by Lemma 2, so it does
not affect the invariants we seek to prove. Similarly, if the alternative is taken, then the transformed
consequent is a no-op, and TCom[[C ′′]](I0, Ibrk) behaves as desired by induction.

4. Suppose C = for I := n to n′ do C ′. Note that the conditional assignment introduced in the transform
TCom[[C]](Iif, Ibrk) initializes I0 to −1. If n > n′ or 〈C, σ, eval〉 =⇒C 〈σ

′, skip〉, then the transformed
loop is clearly equivalent to the original one. Else note that for some σ′, σ′′,

〈C ′, σ, eval〉 =⇒C 〈σ
′, eval〉

〈for I := n + 1 to n′
do C ′, σ′, eval〉 =⇒C 〈σ

′′, eval〉.



By structural induction, 〈TCom[[C ′]](Iif, I0), σ ∪ σT , eval〉 =⇒C 〈σ
′ ∪ σ′

T
, eval〉 where σ′

T
(Iif) = −1

and σ′

T
(Ibrk) = −1. By application of rule ComR and induction on n:

〈for I := n + 1 to n′
do TCom[[C ′]](Iif, I0), σ′ ∪ σ′

T , eval〉 =⇒C 〈σ
′′ ∪ σ′′

T , eval〉

where σ′′

T
(Iif) = −1. The command TCom[[C ′]](Iif, I0) is unaware of Ibrk, since it is passed I0 instead,

so σ′′

T
(Ibrk) = σ′

T
(Ibrk) = −1.

5. If C = break, then 〈C, σ, eval〉 =⇒C 〈σ, skip〉 by rule BreakR. By definition, TCom[[C]](Iif, Ibrk) =
conditional-assign(Ibrk, (Iif & Ibrk), 0, Ibrk), and (Iif & Ibrk) evaluates to −1 with respect to σT . By
Lemma 1, this conditional assignment is equivalent to Ibrk := 0. Therefore

〈TCom[[C]](Iif, Ibrk), σ ∪ σT , eval〉 =⇒C 〈σ ∪ σ′

T , eval〉

where σ′

T
(Ibrk) = 0 and σ′

T
(Iif) = σT (Iif) = −1. ut

Theorem 6. For all IncredibL programs P = C, C ∼σT
TProgram[[C]].

Proof. For any store σ, 〈C, σ, eval〉 =⇒C 〈σ
′, eval〉 for some σ′, since top-level breaks are not allowed.

Let σT denote an empty store, so σ ∪ σT = σ. We have

〈TProgram[[C]], σ, eval〉 = 〈I0 := -1; TCom[[C]](I0, I0), σ ∪ σT , eval〉 by definition of TProgram

=⇒C 〈TCom[[C]](I0, I0), σ ∪ σT [-1/I0], eval〉 by rules ComR and AsR

=⇒C 〈σ
′ ∪ σ′

T
, eval〉 by Lemma 3

Therefore, C ∼σT
TProgram[[C]].



A More Transcript Models

The transcript model can be thought of as a class of threat models. This generality makes it possible
to state definitions that apply to many types of side channel attacks, as we do in § 3, but we must
consider particular instances of the transcript model when analyzing real-world systems. Examples of
the transcript model instances include:

Program counter model. The adversary obtains a list of the program counters reached by a program
during its execution. In a program counter transcript, each step corresponds to a single instruction
execution, and Ti is the memory location of the ith instruction executed.

Hamming weight models. Here the transcript consists of a list of Hamming weights of intermediate
values in the computation. The particular weights available to the adversary might correspond to
the results of each round of a cipher, as in [22], or it could be a hardware-centric notion involving
loads and stores or cache behavior ([2, 5]).

Intermediate result models. These models are similar to Hamming weight models, except that the
adversary is able to observe a few bits of internal state (possibly at locations selected by the ad-
versary). The transcript is a sequence of such observed values. Several previous papers fit into this
model ([8, 20, 12]).

Differential Power Analysis. Differential power analysis uses traces of a device’s power consumption
taken at a particular sampling rate. We can capture this in the transcript model by specifying a
power sample transcript. In such a transcript, at each step the adversary receives a single power
sample Ti.

4

Probing attacks. Along similar lines, one can consider probing attacks, where the adversary is able
to see the value of a few bits of internal state (possibly at locations selected by the adversary). The
transcript is the sequence of such observed values. Several previous papers fit into this model [8, 20,
12].

It is an interesting open problem to try to apply our methods to any of these models, or to develop other
models that capture information that might be available to the adversary in a side-channel attack.

4 To make such a specification complete, we must specify an energy model, which tells us how much energy is consumed
by an instruction given the execution history, state of the machine, and instruction arguments. One simplified energy
model is the Hamming model, where the observed power consumption is correlated to the Hamming weight of various
intermediate values ; one can imagine many other energy models as well.


