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Abstract

The matroid associated to a linear code is the representable matroid that is
defined by the columns of any generator matrix. The matroid associated to a
self-dual code is identically self-dual, but it is not known whether every identically
self-dual representable matroid can be represented by a self-dual code.

This open problem was proposed in [8], where it was proved to be equivalent to
an open problem on the complexity of multiplicative linear secret sharing schemes.

Some contributions to its solution are given in this paper. A new family of iden-
tically self-dual matroids that can be represented by self-dual codes is presented.
Besides, we prove that every identically self-dual matroid on at most eight points
is representable by a self-dual code.

Keywords: identically self-dual matroids, self-dual codes, multi-party computa-
tion, multiplicative linear secret sharing schemes.

1 Introduction

1.1 Self-dual codes and identically self-dual matroids

Let C be a [n, k] linear code over a finite field K , where n and k are, respectively, the
length and the dimension of C. A generator matrix of C is any k × n matrix M with
entries in K whose rows span the codewords in C. That is, the vectors in the form
x = uM ∈ Kn, where u ∈ Kk, are precisely the codewords in C. The columns of the
matrix M define a K -representable matroid M(M) on the set of points Q = {1, . . . , n}.
Some basic definitions and results on Matroid Theory are given in Section 2 and the
reader is addressed to [13] for a reference book on this topic. All generator matrices
of the code C define the same matroid and, hence, M(M) is said to be the matroid
associated to the code C and is denoted by M(C). In addition, we say that the code
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C is a K-representation of the matroid M. While a unique matroid is associated to a
linear code C, different codes can represent the same matroid.

Greene’s Theorem [10], which relates the weight enumerator of a code to the Tutte
polynomial of its associated matroid, is the most well known result about that con-
nection between codes and matroids. Several works have appeared afterwards on that
subject [1, 5, 6, 9].

Let N be a parity-check matrix of the code C, that is, any (n−k)×n matrix N with
maximum rank such that MN> = 0, where N> denotes the transpose of N . Then, N
is the generator matrix of a [n, n− k] linear code that is called the dual code of C and
is denoted by C⊥. If C⊥ = C, we say that C is a self-dual code. Of course, n = 2k in
every self-dual code.

It is well known that the matroid associated to the dual code C⊥ is the dual matroid
of the matroid associated to C. Then, the matroid associated to a self-dual code is
identically self-dual. Nevertheless, it is not known whether every identically self-dual
representable matroid can be represented by a self-dual code. Specifically, the following
open problem was stated in [8].

Open Problem 1. To determine whether every identically self-dual K -representable
matroid can be represented by a self-dual linear code over some finite field L, an alge-
braic extension of K .

Matroids that are represented by a self-dual code over the field K will be said to
be self-dually K -representable. Since every Z2-representable matroid admits an unique
code representing it over Z2, all identically self-dual Z2-representable matroids are self-
dually Z2-representable. The uniform matroids Uk,2k form another family of identically
self-dual matroids for which the answer to Open Problem 1 is affirmative. Moreover, if
M1 and M2 are self-dually K -representable matroids, the sum M = M1 ⊕(q1,q2) M2

of these matroids is self-dually L-representable, where L is an algebraic extension of
K with [L : K ] ≤ 2. As a consequence of this fact and other properties of the sum of
matroids, solving Open Problem 1 can be restricted to indecomposable matroids, that
is, those that can not be expressed as the sum of two smaller matroids [8]. Finally,
the identically self-dual bipartite matroids were proved to be self-dually representable
in [8].

1.2 Ideal multiplicative linear secret sharing schemes

The interest of that open problem is increased by its relation to the multiplicative
property of linear secret sharing schemes. That property was introduced by Cramer,
Damg̊ard and Maurer [7] in order to construct efficient secure multi-party computation
protocols for a general (that is, not necessarily threshold-based) adversary. The readers
are referred to [17, 7, 8] for more information about secret sharing, the multiplicative
property and secure multi-party computation.

A K -linear secret sharing scheme Σ with access structure Γ on the set of players P
is said to be multiplicative if every player i ∈ P can compute a value ci from its shares
si, s′i corresponding to two shared secret values s, s′ ∈ K in such a way that the product
ss′ is a linear combination of the values (ci)i∈P . Such schemes can be constructed if
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and only the set of players is not the union of two unqualified subsets [11, 7]. In this
case, we say that the access structure of the scheme is Q2. One of the key results
in [7] is a method to construct, from any K -linear secret sharing scheme with Q2

access structure, a multiplicative K -linear secret sharing scheme with the same access
structure and whose complexity is only twice the complexity of the original scheme.
One of the main open problems about this topic is to determine for which Q2 access
structures there exists a multiplicative scheme with the same complexity as the best
linear scheme. This problem has been studied in [8] for minimally Q2 access structures
that can be realized by an ideal linear secret sharing scheme, that is, a scheme in
which all shares have the same length as the secret. Namely, the next open problem is
proposed in that paper, where it is proved to be equivalent to Open Problem 1.

Open Problem 2. To determine whether there exists, for every minimally Q2 ac-
cess structure Γ that can be realized by an ideal K -linear secret sharing scheme, an
ideal multiplicative L-linear secret sharing scheme, being the finite field L an algebraic
extension of K.

The equivalence between these two problems is due to the close relation between
ideal linear secret sharing schemes, linear codes and matroids. Actually, an ideal linear
secret sharing schemes can be identified to a linear code. The access structure of
the scheme is then determined by the matroid associated to the code. The connection
between ideal secret sharing schemes and matroids, which applies to non-linear schemes
as well, was discovered by Brickell and Davenport [4] and has been studied afterwards
in may other works, being [17, 16, 12, 2] some of them. It plays a key role in one of the
main open problems in secret sharing: the characterization of the access structures of
ideal secret sharing schemes.

In addition, the notion of duality that applies to codes and matroids is extended to
access structures. Self-dual access structures coincide with the minimally Q2 ones.
Moreover, every self-dual code defines an ideal multiplicative linear secret sharing
scheme with self-dual access structure.

1.3 Our results

The aim of this paper is to provide new results towards the solution of Open Problem 1.
A new family of indecomposable self-dually representable matroids is presented in

Section 5. By using some of the matroids in that family and other techniques we get
our main result. Namely, the answer to Open Problem 1 is affirmative for matroids on
at most eight points.

Theorem 3. Let M be an identically self-dual connected matroid on at most eight
points (or, equivalently, with rank at most four). Then M is representable. Moreover,
if M is K -representable, then M can be represented by a self-dual linear code over
some finite field L, an algebraic extension of K .

This is proved by enumerating all non-isomorphic identically self-dual matroids with
rank at most four and checking that the result holds for every one of them.

By taking into account the equivalence between Open Problems 1 and 2, the fol-
lowing result is a direct consequence of Theorem 3.
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Corollary 4. Let Γ be a self-dual access structure on a set P with at most seven players.
Let us suppose that Γ can be realized by an ideal secret sharing scheme over a finite
field K . Then, for some algebraic extension L of K , there exists an ideal multiplicative
L -linear secret sharing scheme with access structure Γ.

1.4 Organization of the paper

Some basic definitions and facts about Matroid Theory are recalled in Section 2. Sec-
tions 3 and 4 contain some technicalities that are needed in the proofs in the following
sections. A new family of self-dually representable matroids is introduced in Section 5.
Finally, Section 6 contains the proof of Theorem 3, our main result.

2 Basics on Matroid Theory

Let E be a K-vector space and Q = {v1, . . . ,vn} ⊂ E a finite set of vectors. The
subsets of Q can be linearly independent or dependent, every subset spans a subspace
of E with a certain dimension and some of them are basis of the subspace spanned
by Q. A matroid is an abstraction of these concepts. Several axioms that fit in the
situation above are given to define the matroids on a set of points Q = {1, . . . , n}.
See [13] for a general reference on Matroid Theory.

There exist many different equivalent definitions of matroid. The one we present
here is based on the concept of basis.

Definition 5. A matroid M is a finite set Q together with a family B of subsets of Q
such that:

1. B is nonempty,

2. if B1, B2 ∈ B and B1 ⊂ B2, then B1 = B2, and

3. for any B1, B2 ∈ B and i ∈ B1 − B2, there exists j ∈ B2 − B1 such that (B1 −
{i}) ∪ {j} is in B.

The set Q is the set of points of the matroid M and the sets in B are called the
bases of M. All sets in B have the same number of elements, which is the rank of M.
The most simple examples of matroids are the uniform ones. The uniform matroid Uk,n

is the matroid on a set Q of n points whose bases are all sets with exactly k points.
A subset X ⊂ Q is said to be independent if there exists a basis B ∈ B with X ⊂ B,

while we say that X ⊂ Q is a spanning subset if B ⊂ X for some basis B ∈ B. The
dependent subsets are those that are not independent. A point p ∈ Q is called a loop if
{p} is a dependent subset and a coloop is a point p ∈ Q such that p ∈ B for every basis
B ∈ B. A circuit is a minimally dependent subset and the maximally independent
subsets coincide with the bases. The rank of X ⊂ Q is the maximum cardinality of
the subsets of X that are independent. Observe that the rank of Q coincides with the
rank of the matroid M that was defined before. A matroid is said to be connected if,
for every two points i, j ∈ Q, there exists a circuit C with i, j ∈ C.
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We say that X ⊂ Q is a flat if rank(X ∪ {i}) > rank(X) for every i /∈ X. The flat
〈X〉 = {i ∈ Q : rank(X ∪ {i}) = rank(X)} is called the flat spanned by X. If X is a
flat, any maximally independent subset B ⊂ X is called a basis of the flat X.

If M is a matroid on the set Q, with family of bases B, then B∗ = {Q−B : B ∈ B}
is the family of bases of a matroid M∗ on the set Q, which is called the dual of M.
A self-dual matroid is isomorphic to its dual while an identically self-dual matroid is
equal to its dual. Observe that |Q| = 2 rank(M) if the matroid is self-dual.

Let K be a finite field and M be a k×n matrix with rank(M) = k with entries in K .
A matroid M on the set Q = {1, . . . , n} is defined from the matrix M by considering
that a subset B = {i1, . . . , ik} ⊂ Q is a basis if and only if the corresponding columns of
M form a basis of Kk. In this situation, we say that the matrix M is a K -representation
of the matroidM. The matroids that can be defined in this way are called representable.
As it was said before, all generator matrices of a linear code C define the same matroid
M = M(C). In this case, we say that C is a K -representation ofM, or that C represents
M over K .

3 Almost self-dual codes

We say that a [2k, k] linear code C with generator matrix M is almost self-dual if there
exists a non-singular diagonal matrix D = diag(λ1, . . . , λ2k) such that MD is a parity
check matrix. Since the matrices M and MD represent the same matroid, the matroid
associated to an almost self-dual code is identically self-dual. By the next proposition,
in order to prove that a matroid is self-dually representable, it is enough to prove that
it can be represented by an almost self-dual code.

Proposition 6. Let M be an identically self-dual matroid that is represented, over the
finite field K , by an almost self-dual code. Then, there exists a finite field L , which is
an algebraic extension of K , such that M is represented by a self-dual code over L .

Proof : Let C be an almost self-dual code over a finite field K . Let M be a generator
matrix and D = diag(λ1, . . . , λ2k) the non-singular diagonal matrix such that MD is a
parity check matrix. Let us consider, in an extension field L ⊃ K , the diagonal matrix
D1 = diag(

√
λ1, . . . ,

√
λ2k). Then, M1 = MD1 is a generator matrix of a self-dual

code C1. The matroids associated to C and to C1 are equal.

Let C be a [n, k] linear code with generator matrix M and let us put E = Kk. In
the dual space E∗, that is, the vector space formed by all linear forms π : E → K, let
us consider the linear forms π1, . . . , πn such that uM = (π1(u), . . . , πn(u)) for every
u ∈ E. Observe that every one of these linear forms corresponds to a column of M .
Then, we will write M = (π1, . . . , πn).

If π ∈ E∗, then π ⊗ π denotes the symmetric bilinear form π ⊗ π : E × E → K
defined by (π⊗π)(u,v) = π(u)π(v). We notate S(E) for the symmetric bilinear forms
on E. The dimension of S(E) is k(k + 1)/2, where k = dimE. The following lemma is
proved in [8].
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Lemma 7. Let M = (π1, . . . π2k) be a generator matrix of a [2k, k] linear code C and let
us take Q = {1, . . . , 2k}. Let us suppose that the matroid associated to C is identically
self-dual and connected. Then, in the space S(E), the vectors {πj ⊗ πj : j ∈ Q− {i}}
are linearly independent for every i ∈ Q. In addition, the code C is almost self-dual if
and only if the vectors {πj ⊗ πj : j ∈ Q} are linearly dependent.

We present in the following a method to prove that a code C whose associated
matroid is identically self-dual and connected is almost self-dual.

Let M = (π1, . . . , π2k) be a generator matrix of C. From Lemma 7, it is enough to
check that the subspace 〈π1 ⊗ π1, . . . , π2k ⊗ π2k〉 ⊂ S(E) has dimension 2k − 1. Every
symmetric bilinear form Λ ∈ S(E) can be represented by the symmetric k × k matrix
M(Λ) = (λij) such that Λ(x1,x2) = x1M(Λ)x>2 for every x1,x2 ∈ E. One can prove
that dim〈π1⊗π1, . . . , π2k⊗π2k〉 = 2k−1 by showing dimS(E)−(2k−1) = (k−1)(k−2)/2
linearly independent linear equations in the form

∑
1≤i≤j≤k cijλij = 0 that are fulfilled

by the coefficients (λij)1≤i≤j≤k of every one of the bilinear forms πi ⊗ πi.
Observe that, if π = (v1, . . . , vd) ∈ E∗, the coefficients of the bilinear form π⊗π are

λij = vivj . Then, the code C is almost self-dual if the components of every one of the
vectors {π1, . . . , π2k} satisfy (k − 1)(k − 2)/2 linearly independent quadratic equations
in the form

∑
1≤i≤j≤k cij vivj = 0.

In order to illustrate this method we apply it to prove the well known result that
the uniform matroid Uk,2k can be K -represented by an almost self-dual code for every
finite field with |K | ≥ 2k. Let us take 2k pairwise different elements x1, . . . , x2k ∈ K
and, for every i = 1, . . . , 2k, the linear form πi = (1, xi, x

2
i , . . . , x

k−1
i ) ∈ E∗. From the

properties of the Vandermonde matrix, it is clear that the code C defined by those linear
forms is a K -representation of Uk,2k. Moreover, all vectors πi verify the (k−1)(k−2)/2
linearly independent quadratic equations vivj = vi−1vj+1, where 2 ≤ i ≤ j ≤ k − 1,
and, hence, the code C is almost self-dual.

4 Sum of matroids and flat-partitions

We present next the definition of the sum of two matroids, an operation that is usually
called 2-sum in the literature. Let M1 and M2 be connected matroids on the sets
Q1 and Q2, respectively. Let B1 and B2 be their families of bases. Let us suppose
that Q1 ∩ Q2 = ∅ and let us take two points q1 ∈ Q1 and q2 ∈ Q2 such that qi is
neither a loop nor a coloop of Mi. The sum of M1 and M2 at the points q1 and q2,
which will be denoted by M = M1 ⊕(q1,q2) M2, is the matroid on the set of points
Q = (Q1 ∪Q2)− {q1, q2} whose family of bases is B = B′1 ∪ B′2, where

• B′1 = {B1 ∪ C2 ⊂ Q : B1 ∈ B1, C2 ∪ {q2} ∈ B2},
• B′2 = {C1 ∪B2 ⊂ Q : C1 ∪ {q1} ∈ B1, B2 ∈ B2}.

It is not difficult to check that B verifies the axioms in Definition 5 and that M is a
connected matroid with rankM = rankM1 + rankM2 − 1. Observe that, if M2 is
the uniform matroid U1,2, then M1 ⊕(q1,q2) U1,2

∼= M1 for every possible pair of points
(q1, q2). This is said to be a trivial sum. A matroid is said to be indecomposable if it is
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not isomorphic to any non-trivial sum of matroids. The matroid M = M1 ⊕(q1,q2)M2

is identically self-dual if and only if both M1 and M2 are identically self-dual [8]. The
next proposition was also proved in [8].

Proposition 8. Let M1 and M2 be two matroids that are represented over a finite
field K by almost self-dual codes. Then, the sum M = M1 ⊕(q1,q2) M2 can be rep-
resented over K by an almost self-dual code. Besides, if M1 and M2 are self-dually
K -representable, the sum M is self-dually L -representable, where L is an algebraic
extension of K with [L : K ] ≤ 2.

Let M be a matroid on a set of points Q and let (X1, X2) be a partition of Q.
We say that (X1, X2) is a flat-partition of M if X1 and X2 are flats of M. If M is
connected and ∅ 6= X ⊂ Q, then rank(X) + rank(Q−X) > rank(M) [13, Proposition
4.2.1]. The following lemma is a direct consequence of this fact.

Lemma 9. Let M be a connected matroid and let (X1, X2) be a flat-partition of M.
Then, rank(X1) + rank(X2) > rank(M) and rank(Xi) > 1 for i = 1, 2.

The next proposition, which is a consequence of [13, Theorem 8.3.1], provides a
characterization of indecomposable identically self-dual matroids in terms of their flat-
partitions.

Proposition 10. Let M be a connected identically self-dual matroid. Then M is
indecomposable if and only if rank(X1) + rank(X2) > rank(M) + 1 for every flat-
partition (X1, X2) of M. Moreover, if there exists a flat-partition ofM with rank(X1)+
rank(X2) = rank(M) + 1, then, there exist two connected identically self-dual matroids
M1, M2 with rank(Mi) = rank(Xi) and M = M1 ⊕(q1,q2) M2.

The next two technical lemmas deal with properties of flat-partitions in identically
self-dual matroids that will be needed in the following sections. The first one is a
direct consequence of the fact that rank∗(X) = |X|− rank(M)+rank(Q−X) for every
matroid M and for every subset X ⊂ Q, where rank∗(X) is the rank of X in the dual
matroid [13, Proposition 2.1.9].

Lemma 11. Let M be a connected identically self-dual matroid and let (X1, X2) be
a flat-partition of M. Let us take k = rank(M) and ri = rank(Xi). Then, |X1| =
k + r1 − r2.

Lemma 12. Let M be an identically self-dual matroid and let C ⊂ Q be a circuit of
M with rank(C) < rank(M). Let us consider the flat X1 = 〈C〉 and X2 = Q − X1.
Then, (X1, X2) is a flat-partition of M.

Proof : We have to prove that X2 is a flat. Otherwise, there exists x ∈ X1∩〈X2〉. Since
C is a circuit, there exists a basis B1 of X1 with x /∈ B1. Besides, there exists C2 ⊂ X2

such that B = B1 ∪ C2 is a basis of M. Let us consider the basis B′ = Q−B and we
take B2 = B′ ∩X2.

We claim that, in this situation, X2 ⊂ 〈B2〉. Let us suppose that, on the contrary,
there exists y ∈ X2 − 〈B2〉. Observe that y ∈ C2 and that B2 ∪ {y} is an independent
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set. Therefore, Q− (B2 ∪ {y}) = X1 ∪ (C2 − {y}) is a spanning set. Since 〈B1〉 = X1,
we have that B′′ = B1 ∪ (C2 − {y}) is equally a spanning set, a contradiction with
B′′ ( B.

Therefore, x ∈ 〈B2〉, a contradiction with B2 ∪ {x} ⊂ B′.

5 A family of self-dually representable paving matroids

For a matroid M, we notate δ(M) for the minimum rank of the circuits of M. Observe
that δ(M) ≤ rank(M) and that the uniform matroids are the only ones with δ(M) =
rank(M). Matroids with δ(M) ≥ rank(M) − 1 are called paving matroids. We study
in this section the identically self-dual matroids with δ(M) = rank(M)− 1.

Let M be an identically self-dual matroid with rank(M) = k and δ(M) = k − 1
and let Q = {1, . . . , 2k} be its set of points. The matroid M is completely determined
by the set Ck of all circuits of M with exactly k points, that is, the subsets of k
elements of Q that are not a basis of M. Observe that, for every i ∈ Q, the set
Ck(i) = {C ∈ Ck : i ∈ C} contains exactly one half of the circuits in Ck, being the
other half their complements, that is, Ck = Ck(i) ∪ {Q − C : C ∈ Ck(i)}. From
Lemmas 11 and 12, 〈C〉 = C and (C, Q−C) is a flat-partition of M for every C ∈ Ck.

Lemma 13. Let us consider two circuits C1, C2 ∈ Ck such that C1 6= C2, Q − C2.
Then, 2 ≤ |C1 ∩ C2| ≤ k − 2.

Proof : If |C1∩C2| ≥ k−1, then C1 ⊂ 〈C2〉 = C2 and, hence, C1 = C2. Therefore, there
are at most k− 2 points in the intersection of any two different circuits in Ck. Finally,
if |C1 ∩ C2| ≤ 1, then |C1 ∩ (Q− C2)| ≥ k − 1, a contradiction with C1 6= Q− C2.

Let K be a finite field with |K | ≥ 2k and let α1, α2, . . . , α2k ∈ K be pairwise
different elements such that α1 + · · ·+ α2k = 0. Let us take Q = {1, . . . , 2k}. It is not
difficult to check that B(α1, α2, . . . , α2k) = {{i1, . . . , ik} ⊂ Q : αi1 + · · · + αik 6= 0}
is the family of bases of a matroid on the set of points Q, which will be denoted by
S(α1, α2, . . . , α2k). All matroids in this form are identically self-dual paving matroids.
Moreover, we prove in the next proposition that they are self-dually representable.

Proposition 14. Let K be a finite field with |K | ≥ 2k and let α1, α2, . . . , α2k ∈ K
be pairwise different elements such that α1 + · · · + α2k = 0 Then, the matroid M =
S(α1, α2, . . . , α2k) can be represented over K by an almost self-dual code and, hence, it
is self-dually L-representable, where L is some algebraic extension of K .

Proof : If δ(M) = k, then M is the uniform matroid Uk,2k. Since |K | ≥ 2k, there exists
an almost self-dual code representing M over K .

If δ(M) = k−1, we can suppose without loss of generality that α1+· · ·+αk = 0. Let
us consider the linear forms πi = (1, αi, α

2
i , . . . , α

k−2
i , αk

i ) ∈ (Kk)∗, where i = 1, . . . , 2k,
and the matrix M = (π1, . . . , π2k). We are going to prove that M is a K -representation
of the matroid M and a generator matrix of an almost self-dual code.

The first affirmation is proved by showing that k different vectors πi1 , . . . , πik are
linearly dependent if and only if αi1+· · ·+αik = 0. These vectors are linearly dependent
if and only if there exist values (c1, . . . , ck) 6= (0, . . . , 0) such that c1 + c2αij + c3α

2
ij

+
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· · · + ck−1α
k−2
ij

+ ckα
k
ij

= 0 for every j = 1, . . . , k. This is equivalent to the fact that
the polynomial (x− αi1) · · · (x− αik) has the form c′1 + c′2x + · · · c′k−1x

k−2 + xk, which
is equivalent to αi1 + · · ·+ αik = 0.

In order to prove that the code C with generator matrix M is almost self-dual, we are
going to check that the vectors π1, . . . , π2k verify (k− 1)(k− 2)/2 linearly independent
quadratic equations

∑
1≤i≤j≤k cij vivj = 0. Observe that the (k−2)(k−3)/2 equations

vivj = vi−1vj+1, where 2 ≤ i ≤ j ≤ k−2, are fulfilled by those vectors. The same occurs
with the k−3 equations vivk = vi+2vk−1, where 1 ≤ i ≤ k−3. Only one more equation
is needed, which is (a0v1 + . . . + ak−2vk−1 + vk)(b0v1 + . . . + bk−2vk−1 + vk) = 0, where
(x−α1) · · · (x−αk) = a0 +a1x+a2x

2 · · ·+ak−2x
k−2 +xk and (x−αk+1) · · · (x−α2k) =

b0 + b1x + b2x
2 · · ·+ bk−2x

k−2 + xk.

6 Identically self-dual matroids with rank at most four

This section is devoted to prove Theorem 3. We determine all the identically self-dual
connected matroids with rang at most four and we prove that every one of them is
self-dually representable.

Obviously, the uniform matroid U1,2 is the only identically self-dual matroid with
rank one. Let M be an identically self-dual connected matroid with 2 ≤ rank(M) ≤ 4.
By Lemmas 9 and 12, the connectedness of M implies that δ(M) ≥ 2. Then, it is clear
that M = U2,4 if rank(M) = 2. If rank(M) = δ(M) = k = 3, 4, then M = Uk,2k.
If rank(M) = 3 and δ(M) = 2, by Lemma 12 there exists a flat-partition (X1, X2)
of M with rank(X1) = rank(X2) = 2. From Proposition 10, M = U2,4 ⊕ U2,4. If
rank(M) = 4 and δ(M) = 2, we apply again Lemmas 9 and 12 and Proposition 10 and
we get that M = U2,4 ⊕M1, where M1 is an identically self-dual connected matroid
with rank(M1) = 3. Therefore, M = U2,4 ⊕ U3,6 or M = U2,4 ⊕ U2,4 ⊕ U2,4.

Summarizing, if M is an identically self-dual connected matroid with rank at most
three or it has rank four and δ(M) = 2, 4, then M is an uniform matroid or a sum
of uniform matroids. Therefore, for every prime p, the matroid M is self-dually K -
representable for some finite field K with characteristic p.

Let us suppose now that M is an identically self-dual connected matroid on the set
of points Q = {1, 2, . . . , 8} with rank(M) = 4 and δ(M) = 3. Let us consider the set
C4 of the circuits of M with exactly four points and C4(8) = {C ∈ C4 : 8 ∈ C} =
{C1, . . . , Cm}, which contains half of the circuits in C4.

Let us consider D = {D1, . . . , Dm}, where Di = Ci − {8} ⊂ {1, . . . , 7}. From
Lemma 13, |Di ∩ Dj | = 1 if i 6= j. The matroid M is completely determined by D,
which is a family of subsets of 3 elements taken from {1, . . . , 7} verifying that any two
of them intersect in exactly one point. Moreover, there exists an identically self-dual
paving matroid with rank 4 for every such family D.

The projective plane over the finite field Z2, which is called the Fano Plane, consists
of 7 points and 7 lines and every line has exactly 3 points. Of course, any two lines
intersect in a single point. Observe that D must be a subset of {R1, . . . , R7}, the set
of the lines of some Fano Plane defined on the set of points Q− {8} = {1, . . . , 7}.

If we identify every point in {1, . . . , 7} with the point in Z3
2 − {(0, 0, 0)} corre-
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sponding to its binary representation, we obtain a Fano Plane whose lines are: R1 =
{2, 4, 6}, R2 = {1, 4, 5}, R3 = {3, 4, 7}, R4 = {1, 2, 3}, R5 = {2, 5, 7}, R6 = {1, 6, 7},
R7 = {3, 5, 6}. Therefore, up to isomorphism, the only identically self-dual matroids
with rank equal to 4 and δ(M) = 3 are the matroids Mi, where i = 1, . . . , 9, deter-
mined by: D1 = {R1}, D2 = {R1, R2}, D3 = {R1, R2, R3} (three lines intersecting
in one point), D4 = {R1, R2, R4} (three lines without any common point), D5 =
{R1, R2, R4, R7} (the other three lines intersect in one point), D6 = {R1, R2, R3, R4}
(the other three lines do not have any common point), D7 = {R1, R2, R3, R4, R5},
D8 = {R1, R2, R3, R4, R5, R6}, D9 = {R1, R2, R3, R4, R5, R6, R7}.

The proof of Theorem 3 is concluded by proving that, for every i = 1, . . . , 9, the
matroid Mi is representable and that, for every finite field K such that Mi is K -
representable, there exists an almost self-dual code that is a L-representation of Mi for
some algebraic extension L of K . This is done in Propositions 15, 16, 17 and 18. For
every i = 1, . . . , 7, we notate Ci = Ri ∪ {8} ⊂ Q.

Proposition 15. For i = 1, 3 and for every prime p, and for i = 2 and for every prime
p 6= 2, there exists a finite field K with characteristic p and 2k pairwise different ele-
ments α1, . . . , α8 ∈ K such that Mi = S(α1, . . . , α8) and, hence, Mi can be represented
by an almost self-dual code over the field K .

Proof : Let K be any finite field with characteristic p and let us consider the vector space
E = K8 and the subspace V = {(α1, . . . , α8) ∈ E :

∑8
j=1 αj = 0}. For every A ⊂ Q

with |A| = 4, let us take the subspace V (A) = {(α1, . . . , α8) ∈ E :
∑

j∈A αj = 0} and,
for every pair of different points i, j ∈ Q, the subspace Vj,k = {(α1, . . . , α8) ∈ E : αj =
αk}. Finally, we consider the subspaces W1 = V ∩ V (C1), W2 = V ∩ V (C1) ∩ V (C2)
and W3 = V ∩ V (C1) ∩ V (C2) ∩ V (C3).

It is not difficult to check that W3 ⊂ W2 ⊂ W1 6⊂ Vj,k for all j, k ∈ Q. In addition,
W1 6⊂ V (A) for all A ⊂ Q with |A| = 4 and A 6= C1, Q− C1. Equally, W3 6⊂ V (A) for
all A ⊂ Q with |A| = 4 and A 6= Ci, Q − Ci for every i = 1, 2, 3. Moreover, if p 6= 2,
W2 6⊂ V (A) for all A ⊂ Q with |A| = 4 and A 6= Ci, Q− Ci for every i = 1, 2.

Therefore, for every prime p, there exists a large enough finite fieldK with character-
istic p such that there exists a vector x = (α1, . . . , α8) ∈ W1 with x /∈ Vj,k, V (A) for all
j, k ∈ Q and for all A ⊂ Q with |A| = 4 and A 6= C1, Q−C1. Then,M1 = S(α1, . . . , α8).
A similar argument applies for the matroid M3 and, if p 6= 2, for the matroid M2.

It is not difficult in general to find a set of values αi whose existence is given by
Proposition 15. For instance, if K is a finite field with characteristic p ≥ 17, by using
a very simple computer program one can check that M1 = S(5,−3,−1, 1, 6, 0,−10, 2),
M2 = S(−4, 0, 5, 3, −3,−7, 2, 4) and M3 = S(2, 1,−3, 5,−2,−1, 3,−5).

Proposition 16. The matroid M2 can be represented by an almost self-dual code over
some finite field K with characteristic 2.

Proof : In the corresponding algebraic extension K of Z2, let us take ω ∈ K with
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ω13 = 1 and ω 6= 1. Then, the matrix

M = M(π1, . . . , π8) =




ω 0 ω3 0 ω−1 0 ω−3 0
0 ω2 1 0 0 ω−2 1 0
0 1 0 ω5 0 1 0 ω−5

1 0 0 1 1 0 0 1




is the generator matrix of an almost self-dual code C that represents the matroid
M2 over K . This can be proved by using a simple computer program to check that
det(πi1 , πi2 , πi3 , πi4) = 0 if and only if {i1, i2, i3, i4} = C1, Q− C1, C2, Q− C2 and that
dim〈π1 ⊗ π1, . . . , π8 ⊗ π8〉 = 7.

Proposition 17. For every finite field K and for every i = 4, . . . , 9, if a code C is a
K-representation of the matroid Mi, then C is almost self-dual.

Proof : Let M be one of the matroids M4, . . . ,M9 and let M = (π1, . . . , π8) be
such that the code C with generator matrix M is a K-representation of M. Since
{R1, R2, R4} ⊂ Di for every i = 4, . . . , 9, we have that C1 = {2, 4, 6, 8}, C2 = {1, 4, 5, 8}
and C4 = {1, 2, 3, 8} and their complements are circuits of M. For every i = 1, 2, 4,
let ai

1v1 + ai
2v2 + ai

3v3 + ai
4v4 = 0 and bi

1v1 + bi
2v2 + bi

3v3 + bi
4v4 = 0 be, respectively,

the equations of the hyperplanes Vi = 〈πj : j ∈ Ci〉 and Wi = 〈πj : j ∈ Q − Ci〉.
Therefore, there exist three quadratic equations in the form

(ai
1v1 + ai

2v2 + ai
3v3 + ai

4v4)(bi
1v1 + bi

2v2 + bi
3v3 + bi

4v4) = 0,

where i = 1, 2, 4, that are fulfilled by all the vectors πj . We only have to prove that these
quadratic equations are linearly independent. Let Q1, Q2, Q4 ⊂ K4 be the quadrics
defined by those equations. Observe that Qi = Vi ∪ Wi. By symmetry, it is enough
to prove that Q1 ∩ Q2 6⊂ Q4. This is clear by taking into account that Q1 ∩ Q2 =
〈π4, π8〉 ∪ 〈π2, π6〉 ∪ 〈π1, π5〉 ∪ 〈π3, π7〉 and Q4 = 〈π1, π2, π3, π8〉 ∪ 〈π4, π5, π6, π7〉.

In order to conclude the proof of Theorem 3, it is enough to prove that the matroids
M4, . . . ,M9 are representable. This is done in the next proposition and, even though
it is not necessary, we determine for completeness the characteristics of the fields over
which those matroids admit a representation.

Proposition 18. For every i = 4, . . . , 7 and for every prime p the matroid Mi is
K -representable for some finite field K with characteristic p. The matroid M8 is K -
representable if and only if the characteristic of K is not equal to 2. Finally, the matroid
M9 is K -representable if and only if the characteristic of K is equal to 2.

Proof : Let p be a prime and let us take a prime number q with q ≥ 5 and q 6= p. Let
K be a finite field of characteristic p such that it contains a primitive q-root of unity
ω ∈ K. Then, the code with generator matrix

M4 =




ω3 0 ω2 0 ω4 0 ω 0
0 ω 1 0 0 1 1 0
0 1 0 ω3 0 1 0 1
1 0 0 1 1 0 0 1
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is a K-representation of M4. The matrix

M5 =




ab 0 a 0 1 0 1 0
0 b 1 0 0 a−1 1 0
0 1 0 a 0 1 0 1
1 0 0 1 1 0 0 1




provides a representation of the matroidM5 if a, b 6= 0, 1 and b 6= a−1. A representation
of the matroid M6 is given given by the matrix

M(a, b) =




1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0
0 0 0 1 a b a + b− 1 0




if a, b 6= 0, 1 and a 6= b and a+b 6= 1. The code with generator matrix M(a, 1) represents
M7 if a 6= 0, 1,−1. Therefore, M5, M6 and M7 are K-representable for every finite
field with |K| ≥ 5 and, hence, they can be represented over fields of every characteristic.
Moreover, the matrix M(1, 1) is a representation of M8 for every finite field with
characteristic different from 2 and it provides a K-representation of the matroid M9

if K has characteristic 2. Finally, it is well known that M8 can not be represented
over any field with characteristic 2 while M9 only can be represented over fields with
characteristic 2. See, for instance, the Appendix “Some interesting matroids” in [13],
in which M8 and M9 appear, respectively, as R8 and AG(3, 2).
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C. Padró. On codes, matroids and secure multi-party computation from linear
secret sharing schemes. Advances in Cryptology - CRYPTO 2005, Lecture Notes
in Comput. Sci. 3621 (2005) 327–343. The full version of this paper is available
in Cryptology ePrint Archive, http://eprint.iacr.org/2004/245.

[9] I.M. Duursma. Combinatorics of the two-variable zeta function. Finite fields and
applications, Lecture Notes in Comput. Sci. 2948 (2004) 109–136.

[10] C. Greene. Weight enumeration and the geometry of linear codes. Studies in Appl.
Math. 55 (1976) 119–128.

[11] M. Hirt and U. Maurer. Complete characterization of adversaries tolerable in se-
cure multi-party computation. Proc. 16th Symposium on Principles of Distributed
Computing PODC ’97 (1997) 25–34.
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