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Abstract. The main goal of this paper is to study the power of additively homomorphic public-key cryptosys-
tems, and in particular, to study what can be achieved under the sole assumption that such a cryptosystem
is IND-CPA secure. We extend the conditional disclosure of secrets transformation to work over additively
homomorphic public-key cryptosystems, and using this, construct several novel protocols that are all one-
round, computationally receiver-private (assuming that the underlying cryptosystem is IND-CPA secure and
sufficiently rough) and statistically sender-private, in the complexity-theoretic model against a malicious adver-
sary. In particular, we propose an oblivious transfer protocol with log-squared communication, a millionaire’s
protocol with logarithmic communication, and a few simpler protocol for tasks from linear algebra and privacy-
preserving data mining. We hope that by presenting our results and in particular, our real applications, we can
help to popularise the notion of conditional disclosure of secrets that has, unfortunately, until now been studied
only in an handful of papers.
Keywords. Conditional disclosure of secrets, homomorphic encryption, malicious model, millionaire’s prob-
lem, oblivious transfer, two-party computation.

1 Introduction

A relatively large family of well-known cryptographic protocols can be jointly described as follows: Receiver
generates a secret key and public key pair for an IND-CPA secure additively homomorphic public-key cryp-
tosystem. He sends the public key to Sender, and possibly proves its correctness. Later, during the protocol,
he transfers some encrypted values to Sender. Sender performs a number of protocol-dependent operations on
the ciphertexts and returns the resulting ciphertexts to Receiver. Some noteworthy tasks that can be efficiently
solved by using such additively homomorphic one-round protocols include computationally-private information
retrieval [AIR01,Ste98,Lip04], millionaire’s problem [BK04], and various tasks of linear algebra (e.g., private
matrix multiplication) and privacy-preserving data mining (e.g., private scalar product and private set intersection
cardinality).

Additively homomorphic one-round protocols can usually be shown to be computationally receiver-private
in the complexity-theoretic model, given the IND-CPA security of the underlying public-key cryptosystem PKC.
Statistical sender-privacy and correctness (e.g., that the parties know their inputs) are usually guaranteed by us-
ing zero-knowledge proofs and proofs of knowledge. However, in practice, correctness is often left out from the
security requirements; such a “relaxed” security definition that only considers privacy is de facto standard in
the case of computationally-private information retrieval, oblivious transfer and oblivious keyword search pro-
tocols [NP01,AIR01,Lip04,FIPR05]. Such protocols are statistically sender-private in the complexity-theoretic
model without using zero-knowledge proofs (of knowledge).

As the first contribution of this paper, we propose precise privacy definitions for additively homomorphic one-
round protocols. As done in the mentioned papers on oblivious transfer, we are only interested in the privacy (more
precisely, in computational receiver-privacy and statistical sender-privacy). Moreover, we require that an additively
homomorphic one-round protocol remains private even under a concurrent execution with (a restricted/polynomial
number of) other additively homomorphic one-round protocols, even if the same key pair of Receiver is used in
all such protocols. This is a strictly stronger requirement than the one given say in [Gol04], but in our setting,
it holds almost straightforwardly in the case of one-round protocols. Proven privacy in such a multi-user setting
enables one to perform the possibly costly key generation and key correctness verification phase only once, in the
initialisation phase; the same key can then used many times in many different protocols.

According to our definitions, computational receiver-privacy of an additively homomorphic one-round proto-
col in the malicious model follows directly from the IND-CPA security of the underlying public-key cryptosystem.
On the other hand, well-known additively homomorphic one-round protocols are often statistically sender-private
only in the semi-honest model, that is, when Receiver encrypts correct values. Often, there is no guarantee of



sender-privacy whatsoever in the case of malicious Receiver and in some protocols, a malicious Receiver can
retrieve Sender’s input during a single protocol run.

To make additively homomorphic one-round protocols private in the malicious model, one must guarantee that
Receiver obtains only the “required amount of information” even if he encrypts invalid inputs. To the best of our
knowledge, the only transformation that transforms one-round protocols, secure in the semi-honest model, into
one-round protocols, secure in the malicious model, and works in the complexity-theoretic model is the condi-
tional disclosure of secrets (CDS) transformation of Gertner, Ishai, Kushilevitz and Malkin [GIKM00]. In the case
of a single server (that we are interested in this paper), the first CDS transformation was proposed in [AIR01]. Ac-
cording to [AIR01], a conditional disclosure of secrets (CDSS

d ) protocol for a set S and for some d is a two-party
protocol, at the end of what Receiver obtains a secret t ∈ Zd specified by Sender only if Receiver’s private input
% belongs to S, and “non-relevant” information, otherwise. As briefly mentioned in [AIR01], one can use a suit-
able additively homomorphic one-round protocol for CDSS

d to transform a large class of additively homomorphic
one-round protocols, sender-private in the semi-honest model, to additively homomorphic one-round protocols,
sender-private against malicious adversaries in the complexity-theoretic model. The resulting CDS transformation
is especially efficient with protocols where the correctness of Receiver’s inputs can be verified publicly and in par-
ticular without the knowledge of Receiver’s secret key. We call such protocols conventional; almost all additively
homomorphic one-round protocols in the literature are conventional.

The CDS transformation of Aiello, Ishai and Reingold works only in conjunction with an IND-CPA secure
homomorphic cryptosystem PKC that has plaintext space of prime order and where Sender can verify whether
a public key is correct without any interaction with Receiver. The only widely known such cryptosystem, ElGa-
mal [El 84], is multiplicatively homomorphic modulo a prime n, while many real-life protocols require PKC to
be additively homomorphic modulo some integer n. In the case of all widely-known additively homomorphic
cryptosystems, n is a large composite integer with large prime factors.

We modify the CDS transformation so that it can be used in conjunction with a PKC that satisfies substantially
weaker properties; in particularly, it has to be IND-CPA secure, and the smallest prime factor Φ(n) of n should
not be too small. Let us call such PKC CDS-friendly; as an example, the cryptosystems from [Pai99,DJ01] are
CDS-friendly. Our construction consists of three steps. First, we design an additively homomorphic one-round
1-out-of-N -oblivious transfer protocol for `-bit strings, with ` := blog2 Φ(n)− log2N − λ+ 1c, where N is the
number of Sender’s inputs and 2−λ is the desired security level for Sender, that is computationally receiver-private
and statistically sender-private assuming that the underlying additively homomorphic public-key cryptosystem is
CDS-friendly. In this protocol, honest Receiver’s first message is just an homomorphic encryption of the database
index. This protocol is the first oblivious transfer protocol with such properties and therefore interesting in its own
right. We then show how to transform Lipmaa’s recent 1-out-of-N -computationally-private information retrieval
protocol [Lip04], with communication Θ(k · log2N + ` · logN), into an additively homomorphic one-round
statistically sender-private oblivious transfer protocol for `-bit strings with a minimal increase in the communi-
cation, given that PKC is a CDS-friendly length-flexible additively homomorphic public-key cryptosystem; the
communication increases to Θ(

√
logN · 2

√
logN · ` · k) if PKC is not length-flexible [Ste98]. This is the first such

transformation that works under the sole complexity-theoretic assumption that PKC is IND-CPA secure. Here, k
is the security parameter (a constant or a polylogarithmic value in ` ·N , depending on the security model).

Second, we propose an additively homomorphic one-round protocol for CDSS
2` that works with any CDS-

friendly additively-homomorphic public-key cryptosystem. For this, we use the new oblivious transfer protocol.
This results in the polylogarithmic communication and linear computation in ]S for any set S, given that PKC

is a CDS-friendly length-flexible additively homomorphic public-key cryptosystem; again, the communication
increases to quasipolynomial if PKC is not length-flexible. We use arithmetic circuit evaluation to reduce the
communication and computational complexity of the CDSS

2` protocol for some specific interesting sets S.
Third, we propose the conditional disclosure of secrets (CDS) transformation that transforms an arbitrary con-

ventional additively homomorphic one-round protocol Π (where the valid input set Valid has an efficient CDSValid
d

protocol), secure in the semi-honest model, to a protocol that is secure in the malicious model. The basic idea
is as in [AIR01]: in parallel with the original protocol, Receiver and Sender execute a conditional disclosure of
secrets protocol for Receiver’s input. Sender masks the output with secrets, corresponding to all different Re-
ceiver’s inputs. As a result, Receiver will obtain any of the outputs only if his all inputs belong to the valid input
sets. The resulting protocol is secure in the malicious model, has one round and is—in many cases, interesting in
practice—surprisingly computation and communication efficient. The only security assumption is that the under-
lying public-key cryptosystem is IND-CPA secure. The CDS transformation is efficient whenever the valid input
set S has an efficient conditional disclosure of secrets protocol, and the number of outputs L is reasonably small.
If we require only computational sender-privacy then the communication can be reduced almost L times. We de-
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fine rigorously all the needed primitives and propose corresponding security proofs in the language of concrete
security.

Until now, the CDS transformation has been overlooked until now by most of the researchers, with only a
couple of published papers that do more than mention it and with most of the contemporary papers using zero-
knowledge proofs in a situation where the CDS transformation would provide a simpler solution. This unfortunate
situation might be partially due to the relatively small number of applications proposed for this transformation.
To remedy this situation and to popularise the CDS transformation, throughout this paper, we propose several
interesting applications to demonstrate the power of the new tools. We hope that they will motivate further studies
in this area.

First, based on Lipmaa’s recent log-squared computationally-private information retrieval protocol [Lip04], we
construct an oblivious transfer protocol and a conditional disclosure of secrets protocol with log-squared commu-
nication, for a length-flexible PKC, and with quasi-polylogarithmic communication, for any PKC. (See Cor. 2.)
Second, we construct a private millionaire’s protocol with logarithmic communication. (See Cor. 4.) Third, we
construct efficient private protocols for a few other tasks like scalar product and set intersection cardinality. (See
Sect. 6.) All constructed protocols are one-round, computationally receiver-private and statistically sender-private
solely under the assumption that the underlying additively homomorphic public-key cryptosystem is CDS-friendly.
Note also that the first two protocols do not directly use the generic CDS transformation but related techniques
from this paper.
Road-map. In Section 2, we give preliminaries. In Section 3, we define additively homomorphic one-round proto-
cols and their security. In Section 4, we propose a new additively homomorphic one-round protocol for oblivious
transfer and prove its security. In Section 5, we propose an additively homomorphic one-round protocol for con-
ditional disclosure of secrets and show how to implement it efficiently for many interesting sets. In Section 6, we
present our generic CDS transform and prove its security. In Appendix D, we discuss about the optimality of our
padding method.

2 Preliminaries

For an integer s, let [s] := {1, 2, . . . , s}. For an integer n, let Φ(n) be the smallest prime divisor of n. We say
that n is p-rough if Φ(n) ≥ p. The statistical difference of two distributions X and Y over a discrete support Z
is defined as Dist (X‖Y ) := maxS⊆Z |Pr[X ∈ S] − Pr[Y ∈ S]|. For an arbitrary set Z, let U(Z) denote the
uniform distribution over it; we sometimes identify Z with U(Z). A set Z with a binary operation ◦ : Z2 → Z
is a quasigroup iff ∀a, b ∈ Z there exist unique x, y ∈ Z such that ax = b and ya = b. In particular, for every
a ∈ Z, a ◦ U(Z) = U(Z).

Public-key cryptosystem is a triple PKC = (Gen,Enc,Dec), where Gen is a key generation algorithm that
returns a secret and public key pair (sk, pk), Enc is a randomized encryption algorithm and Dec is a decryption
algorithm with the usual syntax. For fixed PKC and for a fixed public key pk, let R be the randomness space, let
M be the plaintext space and let C be the ciphertext space.

For an adversary A, define AdvIND-CPA

PKC (A) := 2 · |Pr[(sk, pk) ← Gen, (m0,m1) ← A(pk), b ← U(Z2) :
A(pk,m0,m1,Encpk(mb;U(R))) = b] − 1

2 |, where the probability is taken over the coin tosses of Gen and A,
and over the choice of random variables. We say that PKC is (ε, τ)-IND-CPA-secure if Adv IND-CPA

PKC (A) ≤ ε for any
probabilistic algorithmA that works in time τ .

A public-key cryptosystem PKC is homomorphic, if for any key pair (sk, pk), any x1, x2 ∈ M and any r1, r2 ∈
R, Encpk(x1; r1) ·Encpk(x2; r2) = Encpk(x1 +x2; r1◦r2), where + is a group operation inM and ◦ is a groupoid
operation in R. We say that PKC is additively homomorphic ifM = Zn for some n, and multiplicatively homo-
morphic, if M = Z

∗
n for some n. Several homomorphic cryptosystems [El 84,OU98,NS98,Pai99,DJ01,DJ03]

are IND-CPA secure under reasonable complexity assumptions; from these, the ElGamal cryptosystem [El 84]
is multiplicatively homomorphic (and the only one where M has a prime order), while other cryptosystems
(e.g., [Pai99,DJ01]) are additively homomorphic with a usually rough composite n.

The Paillier cryptosystem [Pai99] (as modified in [DJ01]) is one of the most efficient known IND-CPA se-
cure public-key cryptosystems. Here, M = Zn, R = Z

∗
n and C = Z

∗
n2 for an RSA modulus n. Thus, n is√

n/2-rough. The Paillier cryptosystem is IND-CPA secure, assuming that the Decisional Composite Residuosity
Problem (DCRP) is hard [Pai99], and additively homomorphic.

Later, we need an efficient zero-knowledge correctness proof KProof for pk. KProof can be omitted if the
correctness of pk can be verified interactively (e.g., if pk is valid iff it is an element of a residue class ring). We
require that if (sk, pk) ∈ Gen then in the case of an honest prover and verifier, the verifier accepts. We say that PKC
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is εzk-sound if for any invalid public key, the probability that KProof accepts is less than εzk. Within this paper,
we will assume that KProof is computationally zero-knowledge with perfect hiding; this considerably simplifies
the presentation. For example, if KProof is imperfectly hiding, we will have to talk about colliding Senders who
pool together their advantages they get by observing their runs of KProof. Our results however also work in the
general case but then the proofs become more involved. (See, e.g., App. B.)

3 Additively Homomorphic One-Round Protocols and Their Security

Let % denote the private input of Receiver and σ denote the private input of Sender. In this paper, we consider
one-round (i.e., two-message) protocols between Receiver and Sender that implement the following functionality
for some public function f : an unbounded Receiver learns f(%, σ) and nothing more, and a computationally
bounded Sender learns no new information. More precisely, we are interested in additively homomorphic one-
round protocols that consist of the next phases. In the initialisation phase (usually shared by different protocols),
Receiver generates his key pair (sk, pk) for PKC by executing Gen. After that, Receiver (as a prover) and an
arbitrary interested Sender (as a verifier) invoke the KProof protocol. Sender halts when the proof is incorrect,
and Receiver can halt when Sender behaves maliciously. Sender either accepts or rejects the key proof. After
running Gen and KProof, the same key pair (sk, pk) can be reused—possibly, in parallel—in many (although a
restricted number of) instantiations of possibly different protocols with possibly different Senders. Since KProof

is executed rarely, it can be relatively complex and thus can be perfectly hiding.
A concrete additively homomorphic one-round protocol Π is specified by a triple of efficient algorithms

(Query,Transfer,Recover), and by three efficiently samplable distributions RQ, RT and RR. In the first mes-
sage of a protocol instantiation, Receiver sends a randomised message msgq ← Querypk(%;U(RQ)), for some
% ∈ MQ, to Sender. We additionally assume that one can efficiently verify, given only pk, that msgq ∈
Querypk(MQ;RQ). In our setting, msgq is a tuple of ciphertexts, all encrypted under the same key, and thus
this verification can be done efficiently given that membership in C can be tested efficiently. In the second mes-
sage, Sender replies with msgt ← Transferpk(σ,msgq;U(RT )). In our case, this means that Sender applies a
number of randomized operations to the received ciphertexts, and returns the resulting ciphertexts. We assume
that msgt = ⊥ if Sender does not have the public key, Sender halts or msgq is malformed. Finally, Receiver
recovers the answer by computing Recoversk(%,msgt;U(RR)). In our setting, this means that he decrypts the
received ciphertexts, and applies some local algorithm to the resulting plaintexts. We call such a protocol an ad-
ditively homomorphic one-round protocol for f . The communication of an additively homomorphic one-round
protocol is equal to |msgq|+ |msgt|.

We say that Π is (ε, τ)-receiver-private in the malicious model, if for any adversary A with the working time
τ ,

AdvRECPRI

Π (A) := 2 ·max

∣∣∣∣∣∣∣
Pr




(sk, pk)← Gen,R and A run KProof,

b← U(Z2),msgq← Querypk(%b;U(RQ)) :

A(pk, %0, %1,msgq) = b


−

1

2

∣∣∣∣∣∣∣
≤ ε ,

Here, probability is taken over the coin tosses of Gen, KProof, Query,A, and over the choice of random variables.
The maximum is taken over all possible inputs (%0, %1). If KProof is perfectly hiding then it can be omitted from
the definition. Privacy in the semi-honest model is defined as usually.

For defining sender-privacy, we note that in our case, there exists a function Extract, such that
Extractsk(Querypk(%; r)) = % for every % ∈ MQ and r ∈ RQ; Extract just decrypts all ciphertexts in
Querypk(·; ·). We require that the only piece of new information that a potentially malicious Receiver obtains
by running the protocol is f(%∗, σ), where %∗ = Extractsk(msgq) is his submitted input. The existence of Extract

makes it easy to mix inputs from different protocols since then merging queries from different protocols yields
a consistent output even if Receiver is malicious. More formally, we define the sender-privacy of Π by requiring
that there exists an unbounded simulator Sim that for every unbounded receiver A, on access to A’s first message
msgq in the protocol, to A’s random tape rA, and to f(Extractsk(msgq), σ), generates a output that is statistically
indistinguishable from transcript of a protocol run between A and the honest Sender, given the same rA. That is,
we define

AdvSENPRI

Π,Sim(A) := max
(sk,pk)∈Gen

(%∗,σ)

Dist (Simpk(%
∗, f(%∗, σ), rA)‖(msgq,Transferpk(σ,msgq;U(RT )))) ,

4



where msgq ← A(pk, %∗; rA), σ is the private input of Sender, and %∗ ← Extractsk(msgq). The probability is
taken over the coin tosses of Transfer andA. We say that Π is statistically ε′-sender-private if for some unbounded
simulator Sim and for every unbounded algorithm A, AdvSENPRI

Π,Sim(A) ≤ ε′. Sender-privacy is said to be perfect if
for some unbounded simulator Sim and for every unbounded algorithm A, AdvSENPRI

Π,Sim(A) = 0. We say that Π is
(ε, τ ; ε′)-private if it is (ε, τ)-receiver-private and ε′-sender-private.

Above, we omitted the security parameter k by assuming that the adversary works in time that is less than some
fixed public constant τ , then also k is a constant. Sometimes, one needs security against adversaries that work in
time, polynomial in the input size ν of the protocol Π. Then, k will depend on ν. More precisely, assume that the
underlying computationally hard problem, with input n of size ν := log2 n, can be broken in time Ln[a, b] :=
exp(a(lnn)b · (ln lnn)1−b) for some 0 < b ≤ 1. To guarantee security against such polynomial adversaries, it
is necessary that Ln[a, b] = ω(νc) for every constant c, or that kb · ln1−b k = ω(ln ν). Omitting the logarithmic
factor, we get that k = Ω(ln1/b ν). For example, when basing a protocol on the Decisional Composite Residuosity
Assumption with b = 1/3, we must assume that k = Ω(log3−o(1) ν).

Computationally-private information retrieval and oblivious transfer. During a 1-out-of-N computationally-
private information retrieval (CPIRNd ) protocol for elements from Zd, Receiver fetches σ[%] from the database
σ = (σ[1], . . . , σ[N ]), σ[i] ∈ Zd, so that a computationally bounded Sender does not know which entry Re-
ceiver is learning. In the following, we will also need the case where σ = (σ[h])h∈S for an arbitrary public
set S ⊆ Zn, in this case we call the resulting protocol a CPIRS

d protocol. We assume that N (or S) is public.
With a few exceptions (for example, [Cha04]), all one-round computationally-private information retrieval pro-
tocols (e.g., [Ste98,AIR01,Lip04]) are additively homomorphic one-round protocols. The most efficient known
CPIRNd protocol by Lipmaa [Lip04] is also an additively homomorphic one-round protocol. When based on the
Damgård-Jurik length-flexible additively homomorphic public-key cryptosystem [DJ01], it has communication
(log2N + (s + 3

2 ) · logN + 1)k, where k := log2 n is the security parameter, and s := d 1
k · log2 de. A CPIRNd

protocol is a computationally chooser-private and statistically sender-private 1-out-of-N oblivious transfer pro-
tocol for elements from Zd (an OTNd protocol) if also Sender’s privacy is guaranteed; OTS

d protocols are defined
analogously.

The next private additively homomorphic one-round protocol for 1-out-of-N -oblivious transfer was defined
by Aiello, Ishai and Reingold [AIR01]. Assume that PKC is an IND-CPA secure homomorphic cryptosystem
such that for all possible secret keys sk, M is a cyclic group with public prime order. To obtain the element
σ[%], Receiver sends to Sender a random encryption c = Encpk(%;U(R)). For all i ∈ [N ], Sender replies with
ci ← (c · Encpk(−i; 0))U(M) · Encpk(σ[i];U(R)). Receiver obtains σ[%] ← Decsk(c%). Unfortunately, the only
well-known homomorphic public-key cryptosystem that works over message spaces of prime order, ElGamal, is
multiplicative.

For our applications, we need a one-round oblivious transfer protocol that works on groups of composite order.
In [Lip03,Cha04], the authors have tried to generalise the Aiello-Ishai-Reingold protocol correspondingly. Lip-
maa [Lip03] claimed that the Aiello-Ishai-Reingold protocol is a “weakly” sender-private 1-out-of-N -oblivious
transfer protocol, under the weakened assumption that n is N -rough; weak security meaning that a malicious
Receiver will, even in the case of incorrect inputs, obtain information about exactly one database element. Lip-
maa’s proof is however faulty, because in the case of a malicious Receiver, the Aiello-Ishai-Reingold protocol
leaks information about L database elements, where L is the number of different prime factors of n. Namely,
assume that n =

∏
pαii for different primes p1 < p2 < · · · < pL. If Receiver’s input %′ is such that %′ = %i

mod pi for some mutually different values %i ∈ [N ], then Receiver can straightforwardly compute the value σ[%i]
mod pi even if % /∈ [N ]. A receiver who knows how to factor n can therefore easily, by using the Chinese Re-
maindering Theorem, compute the required %′. The same observation underlies, in a constructive way, Chang’s
2-out-of-N -oblivious transfer protocol; [Cha04] actually proved that if n is a product of two safe primes then no
more information than σ[%i] mod pi, i ∈ [2], is revealed. Based on this observation, Chang [Cha04] proposed
also a 1-out-of-N -oblivious transfer protocol; however, since there a honest Receiver has to encrypt values that de-
pend on the secret key then according to our definition it is not an additively homomorphic protocol. In particular,
it will be unusable in the additive CDS transformation.

Millionaire’s problem. Yao’s millionaire problem is as follows: given Receiver’s private input % and Sender’s
private input σ from some set Zd, decide whether % > σ. Though there have been proposed numerous protocols
for this problem (see, for example, [Fis01,BK04,ST04]), none of the proposals is completely satisfactory. For
example, one of the most elegant previous millionaire’s protocols, a one-round additively homomorphic one-
round protocol proposed by Blake and Kolesnikov [BK04], is sender-private only in the semi-honest model, while
a somewhat different protocol by [ST04] uses zero-knowledge proofs to achieve privacy in the malicious model.
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PRIVATE INPUT: Receiver has % ∈ {1, . . . , N} and Sender has a tuple σ[1], . . . , σ[N ] ∈ Z
2` .

PRIVATE OUTPUT: Receiver obtains σ[%].

Querypk(%; ·): Set Querypk(%; r)← Encpk(%; r) for r← U(R).
Transferpk(σ, msgq; ·):

If msgq /∈ C then return Transferpk(msgq, σ; ·)← ⊥.
For j ∈ [N ]

Set padded(σ[j])← σ[j] + 2` · zj , where zj ← U(ZTj ) for Tj ←
⌊
(n− σ[j] − 1) · 2−`

⌋
.

Set cj ← (msgq · Encpk(−j; 0))sj · Encpk(padded(σ[j]); U(R)), where sj ← U(M).
Return Transferpk(msgq, σ; t, s, r)← (c1, . . . , cN ).

Recoversk(%,msgt; ·): Return Decsk(c%) mod 2`.

Protocol 1: An additively homomorphic one-round protocol for OTN2`

Composability of additively homomorphic one-round protocols. We next show that privacy of additively ho-
momorphic one-round protocols is preserved under reasonable concurrent (parallel and sequential) executions.
For an honest sender, we assume that KProof has been successful (otherwise Sender just does not participate in
any protocol).

Lemma 1. Assume that KProof is εzk-sound. Assume that additively homomorphic one-round protocols Πi are
εi-sender-private on the promise that the public key pk is valid. Then a concurrent composition Π of protocols Πi,
that all share the same key pair (sk, pk), is an ε′-sender-private protocol, where ε′ = max {εzh, ε1 + . . .+ εs}.

The proof is given in App. A. Composing additively homomorphic one-round protocols preserves the receiver-
privacy; the corresponding result—that we will not need in this paper but which is needed to ascertain the validity
of the multi-user setting—is given in App. B. As a result, we have established that any protocol based on additively
homomorphic one-round protocols that either share or do not share the same key pair preserves privacy, provided
that the KProof protocol runs are executed in isolation. The latter is quite easy to achieve in practice by introducing
timing limits for key proof protocols.

4 Additively Homomorphic One-Round Protocol for Oblivious Transfer

Next, we propose a new 1-out-of-N -oblivious transfer protocol (see Protocol 1) that achieves sender-privacy under
the assumption that n is sufficiently rough. We first need the following technical lemma about the difference of
two related distributions.

Lemma 2. Fix integers n, ` and κ, such that 2` ≤ κ ≤ n/2 and gcd(n, κ) = 1. For x ∈ {0, 1}`, denote
Zx :=

{
x+ κt : 0 ≤ t < n−x

κ

}
. LetZyx denote the distribution that one gets by first uniformly choosing a random

element of Zx and then reducing it modulo y. Then, for any x ∈ {0, 1}` and for any non-trivial factor p of n,
Dist (Zpx‖U(Zp)) <

κ
2Φ(n) .

The proof of this technical lemma is given in App. C.

Theorem 1. Let PKC = (Gen,Enc,Dec) be an additively homomorphic public-key cryptosystem that satisfies
the next requirements: (a) it is (εPKC, τ)-IND-CPA secure and εzk-sound, (b) n is (2λ−1 · 2`N)-rough for some
λ ∈ Z

+, (c)R is a quasigroup, (d)M andR are efficiently samplable, and (e) membership in C can be efficiently
verified. Assume that Sender has verified the corrected of pk by using KProof and halted if the verification failed.
Fix ` ← blog2 Φ(n) − log2N − λ + 1c. Then Protocol 1 is an (εPKC, τ − O(1); εzk + ε′)-private additively
homomorphic one-round protocol for OTN2` , where ε′ = 2`N/Φ(n) ≤ 2−λ.

Proof. Correctness is straightforward, since Decsk(c%) = (% − %) · s% + padded(σ[%]) = σ[%] + 2` · zj < n.
Computational receiver-privacy follows directly from the IND-CPA security of PKC, since Sender sees only
a random encryption of %. Statistical sender-privacy: Assume that Sender is honest and that pk is valid.
Then, for any j, cj is an encryption of vj := (% − j)sj + padded(σ[j]) where vj is distributed as Vj :=
(% − j)U(Zn) + σ[j] + 2` · U(ZTj ). Since R is a quasigroup, cj is a random encryption of vj . Let q :=
gcd(% − j, n) 6= 0. Clearly, Pr[vj ≡ y (mod n)] = q

n · Pr[U(Zσ[j]) ≡ y mod q]. Now, Lemma 2 as-

sures that Dist (U(Zn)‖Vj) = Dist (U(Zq)‖Vj mod q) ≤ 2`

2Φ(n) . As all N distributions Vj are independent,

6



Dist
(
(V1, . . . , VN )‖ZNn

)
≤ N2`

2Φ(n) ≤ N
2Φ(n) ·

Φ(n)
N · 2−λ+1 = 2−λ. Here, the second inequality follows from the

assumption (b). Thus, we simulate Receiver’s view as follows: Compute sk corresponding to pk, halt if it does
not exist. Set % ← Decsk(msgq), set msgt = ⊥ if msgq is not a valid ciphertext. For all j ∈ [N ] do: If j 6= %,
set cj ← Encpk(U(M);U(R)). If j = %, set cj ← Encpk(padded(σ[%]);U(R)). Output c = (c1, . . . , cN ). If
adversary is semi-honest then simulation is perfect, otherwise we get a statistical difference that is smaller than
2−λ. ut

All well-known homomorphic public-key cryptosystems [El 84,OU98,NS98,Pai99,DJ01,DJ03] have the required
properties. In all practical situations, we can assume that λ = 80 and N ≤ 280, then a 2160-rough n is sufficient.
In this case, ` ≤ 81− log2N , this is sufficient if inputs are Boolean. If PKC is Paillier’s cryptosystem then n is√
n/2-rough, and consequently, one can take ` =

⌊
1
2 log2 n− log2N − λ

⌋
. For log2 n = 1024 and λ = 80, we

get ` = b433− log2Nc. Finally, Protocol 1 can be straightforwardly modified to transfer `′ > ` bits by repeating
the second message of the proposed oblivious transfer protocol d`′/`e times.

Corollary 1. Let εPKC, εzk, ε′, τ and ` be as in Thm. 1, and let S ⊆M be an arbitrary index set. There exists an
additively homomorphic one-round protocol for OTS

2` that is (εPKC, τ −O(1); εzk + ε′)-private.

Proof. As in Prot. 1, but compute cj ← (c · Encpk(−hj ; 0))sj · Encpk(padded(σ[j]);U(R)) for hj ∈ S, and set
msgt← {cj : j ∈ S}. ut

Given an arbitrary CPIRNd′ protocol with d′ ≥ C, one can construct an almost as efficient OTNd′ as follows:
as in Protocol 1, Receiver sends Encpk(%; r) to Sender, who computes the values ci. After that, Receiver uses the
CPIRNd′ protocol to retrieve c%. In particular, [Lip04] gives us the next result.

Corollary 2. Let ε′ and ` be as in Thm. 1. Let PKC be a length-flexible additively homomorphic cryptosys-
tem [DJ01] that satisfies the same properties as required in Thm. 1. There exists a one-round (2ε · log2N, τ −
polylog(N); ε′)-private OTN2` protocol with communication Θ(k · log2N + ` · logN), where k is a possibly
non-constant security parameter.

Proof. Correctness is obvious. Receiver-privacy is the same as in Lipmaa’s computationally-private information
retrieval protocol. Sender-privacy follows from Thm. 1. ut

For a non-length-flexible PKC, [Ste98] gives an OTN2` protocol with communicationΘ(
√

logN · 2
√

logN · ` · k).
Discussion on the optimality of the used padding scheme has been moved to App. D.

5 Additively Homomorphic One-Round Protocol for Conditional Disclosure of Secrets

For the purposes of the current paper, a conditional disclosure of secrets protocol CDSS
d for a public set S and

inputs from Zd is an additively homomorphic one-round protocol for the next functionality: f(%, σ) = σ if % ∈ S
and f(%, σ) is a random σ-independent element otherwise. Based on the previous section, we can now prove the
next result (the communication will again increase if PKC is not length-flexible):

Corollary 3. Let ε′ and ` be as in Thm. 1. Let PKC be a length-flexible additively homomorphic cryptosys-
tem [DJ01] that satisfies the same properties as required in Thm. 1. There exists a one-round (2ε · log2N, τ −
polylog(N); ε′)-private one-round additively homomorphic one-round protocol for CDSN2` with communication
Θ(k · log2N + ` · logN), where k is a possibly non-constant security parameter and N = ]S.

Proof. Follows from Cor. 1 and Cor. 2 by executing OTS
2` with database σ′, where σ′[i] = σ for all i ∈ S. ut

Next, we will show how to use explicit circuit evaluation to construct, given an arbitrary set S, an additively
homomorphic one-round protocol for CDSS

d that can be much more efficient than the generic construction implied
by Cor. 3. Namely, we specify the predicate [% ∈ S] by a set of constraints on Receiver’s input %, where for the sake
of efficiency, % might be broken down to several smaller inputs from which one can reconstruct the original inputs
by using affine operators. The constraints can be written down as a suitable monotone Boolean formula with affine
zero tests ΨS , where we allow Boolean operations ∧ and ∨ and affine zero tests [

∑
αi%i

?
=β]. We assume that the

∨ gates have an arbitrary fan-in. We will motivate the next discussion with a real problem, the millionaire’s, with
S equal to GT M (y) := {x ∈ {0, 1}M : x > y}, for M -bit strings that are split into M one-bit inputs. Writing
x = (xM−1, . . . , x0), we get that ΨGTM (y) := ([xM−1 = 1] ∧ [yM−1 = 0]) ∨ ([xM−1 = yM−1] ∧ [xM−2 =
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Fig. 1. Circuit for GT 4(y): unoptimised and optimised versions.

1] ∧ [yM−2 = 0]) ∨ ([xM−1 = yM−1] ∧ [xM−2 = yM−2] ∧ [xM−3 = 1] ∧ [yM−3 = 0]) ∨ · · · ∨ ([xM−1 =
yM−1] ∧ [xM−2 = yM−2] · · · ∧ [x1 = y1] ∧ [x0 = 1 ∧ y0 = 0]).

The general idea of the circuit evaluation process is as follows (see Fig. 1, left): Construct a circuit where every
internal node implements a Boolean operation and every leaf implements an affine zero test. Process the circuit
recursively from top to bottom. Assign a random secret t← U(Z2`) to the output wire of the circuit. For every ∧
gate ψ with secret t′ assigned to its output wire, pick t′1 ← U(Z2`) and t′2 ← t′ − t′1 mod 2`, and assign these
values to the two input wires of ψ. For every ∨ gate, just push the output secret downwards. In the query phase of
the resulting CDSS

d protocol, Receiver transfers Pi ← Encpk(%i;U(R)) for every i ∈ [M ]. In the transfer phase of
the protocol, for every leaf ψ with the corresponding affine zero test [

∑M
i=1 αi%i

?
=β] and output secret tψ, Sender

replies with cψ ← (
∏M
i=1 P

αi
i · Encpk(−β; 0))U(M) · Encpk(padded(tψ);U(R)), where padded(tψ) is defined

as in Protocol 1. In the recovery phase, Receiver decrypts ciphertexts that correspond to the correct branch in the
circuit, and recovers all the secrets (modulo 2`). Therefore, Receiver transfersM ciphertexts and Sender transfers
L(ΨS) ciphertexts, where L(ΨS) is the number of affine zero tests. Clearly, this protocol is correct. Following our
motivating example,ΨGTM (y) (see Fig. 1, left), we get a circuit withL(ΨGTM (y)) = M(M+1)/2+M . Therefore,

applying the previous construction results in a CDS
GTM (y)

2`
protocol with the communication ofM(M+1)/2+2M

ciphertexts.
We can do better by allowing leaf gates that perform a conjunction of several zero tests. In such a circuit, a uni-

formly random secret t is propagated to bottom as previously. Also, the query phase remains unchanged. Now, let
ψ be an arbitrary leaf gate that corresponds to a conjunction of vψ different zero tests,

∧vψ
j=1[

∑M
i=1 αij%i

?
=βj ]; let

tψ be the output secret of ψ. In the transfer phase, Sender first computes wψ,j ←
∏M
i=1 P

αij
i · Encpk(−βj ; 0),

for j ∈ [vψ ], and then replies with cψ ←
∏vψ
j=1 w

U(M)
ψ,j · Encpk(padded(tψ);U(R)). Since Decsk(cψ) =∑vψ

i=1 Decsk(wψ,i) · U(Zn) + padded(tψ), Receiver learns nothing unless all the affine zero tests of ψ are sat-
isfied; in particular, Receiver does not even learn which zero test fails. We call this protocol CircuitCDSS

2` . More
precisely, let L2(ΨS) be the number of leaves (that is, of conjunctive affine zero tests) in the latter circuit. Then
we get the following result.

Theorem 2. Let ΨS : {0, 1}M → {0, 1} be a public monotone Boolean formula with conjunctive affine zero tests.
Let PKC be an additively homomorphic public-key cryptosystem that satisfies the same requirements as required
in Thm. 1, and padded be the corresponding padding with ` ← blog2 Φ(n)− log2 L2(ΨS)− λ+ 1c. Then the
CircuitCDSS

2` protocol is (M · ε, τ −O(1); εzk + ε′)-private with ε′ ≤ 2−λ. The communication of CircuitCDSS
2`

is M + L2(ΨS) ciphertexts.

Proof. Correctness is clear. Receiver-privacy is also straightforward, since Sender sees onlyM encryptions of 0’s
and 1’s. Sender-privacy: the simulator Sim works as follows. First, it computes the secret key sk corresponding to
pk; it halts in the case of failure. Then, it decrypts all inputs Pi and obtains the corresponding input %. If ΨS(%) = 0
then Sim replies with L2(ΨS) random encryptions. Otherwise Sim propagates t = f(%, σ) down to the leaf level
and computes the corresponding Transfer messages. If Receiver is honest, the simulation is perfect. Otherwise,
the statistical difference between the replies is at most ε′ as in the proof of Thm. 1. ut

Going back to the motivating example,L2(ΨGTM (y)) = M . (See Fig. 1, right. Here, Sender just transfers the same
secret M times.) Therefore, under the same assumptions as in Thm. 2, there exists an (M · ε, τ −O(1); εzk + ε′)-

private additively homomorphic one-round protocol for CDS
GTM (y)

2`
, with the communication of 2M ciphertexts.
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One-round millionaire’s protocol with logarithmic communication. Before describing the general CDS trans-
formation, we will show how to generalise our methodology to (some) private sets S that depend on σ. More
precisely, assume that Receiver has a private input % and that Server has a private input (σ, t) with t ∈ Z2` . Note
that the CircuitCDSS

2` protocol is most efficient if ΨS is written down in a disjunctive normal form over affine zero
tests, ΨS =

∨L
i=1

∧ni
j=1[

∑M
i=1 αi%i

?
=β]. Now, modify the CircuitCDSS

2` protocol as follows. Fix a public value t
(for example, t = 0) and push it down the circuit. For every leaf gate, let Sender to compute cψ as previously, but
return the values cψ in a random order. Be careful to do that so that the number of accepting leaf gates is always
either 0 (if ΨS = 0) or some non-zero constant (if ΨS = 1); this can be done efficiently for many interesting sets
S. Therefore, by testing that at least one of the ciphertexts cψ encrypts 0, Receiver gets to know whether ΨS(%, σ)
is true or not.

Since L2(ΨGTM (y)) = M , we get a new one-round protocol for millionaire’s problem of M -bit strings that is
secure against malicious adversaries, with communication of 2M ciphertexts, assuming only that the underlying
additively homomorphic public-key cryptosystem is IND-CPA secure.

Corollary 4. The just described protocol is an (ε, τ ; ε′)-private additively homomorphic one-round protocol for
the millionaire’s problem. The error probability is M · 2−`, where Z2` is the secret space.

Proof. The security claims are obvious. If Receiver and Sender are semi-honest and x ≤ y, all M replies are
random encryptions. ut

Conditional oblivious transfer. A conditional oblivious transfer (COTS
d ) protocol [DOR99] is a protocol, at the

end of which Receiver obtains t only if ΨS(%, σ) = 1 for some public set S of valid Receiver’s and Sender’s input
pairs, and no information, otherwise. To implement COTS

d , we use the same idea as in the case of the millionaire’s
problem with only one modification: the secret to push down the circuit is t′ = 0κ||t, where say κ = 80. This
approach works for sets S that have an efficient implementation for formula ΨS .

6 CDS Transformation for Conventional Protocols

In this section, we present a generic transformation from private in the semi-honest model protocols to private
in the malicious model protocols. It can be called as a compiler since this transformation can be constructed
in a relatively automatic manner. More precisely, fix an additively homomorphic one-round protocol Π. Denote
Receiver’s input by % = (%1, . . . , %M ), Sender’s input by σ = (σ1, . . . , σN ) and Receiver’s output by δ =
(δ1, . . . , δL). Here, w.l.o.g., we assume that %i, σi and δi belong to Z2` , where ` is as in Thm. 1. Larger inputs and
outputs can be obtained straightforwardly. The query phase consists of sending the elements Encpk(%i; ri) and the
transfer phase consists of sending the elements Encpk(δj ; r

′′
j ) for some ri and r′′j . We assume that %, σ and δ have

already been modified to facilitate efficient circuit evaluation. For example, in the case of GT M (y), every %i is a
Boolean value.

We say that an additively homomorphic one-round protocol Π is conventional if (a) the input % of an honest
Receiver belongs to some publicly known set Valid that in particular does not depend on the value of sk, and (b)
sender-privacy is guaranteed if % ∈ Valid. Most of the known additively homomorphic one-round protocols are
indeed conventional, Chang’s oblivious transfer protocol [Cha04] being one of the few exceptions. Importantly,
CircuitCDS is a conventional additively homomorphic one-round protocol. Our next transformation works only
for conventional protocols since in an unconventional protocol, Sender does not know the set Valid and thus cannot
execute the CDS protocol. To simplify the implementations, we assume that if % 6∈ Valid then for any input value
of an honest Sender, f(%, σ) is defined to be a uniformly random value from some fixed set.

Let Π be a conventional additively homomorphic one-round protocol for functionality f with L outputs from
Z2` , and let Πcds be a conventional additively homomorphic one-round protocol for CDSS

2` , where ` is as defined
in Thm. 1. The idea is to compose an instantiation of Π with an instantiation Πcds, on the same inputs % and σ,
as follows. Assume that the query phase of both Π and Πcds is the same; this is possible since in the previously
constructed additively homomorphic one-round protocol for CDSValid

2` , Receiver learns a secret t ∈ Z
L
2` iff % ∈

Valid, and Sender learns the corresponding ciphertexts Pi = Encpk(%i;U(R)). Therefore, in the transfer phase,
Sender can use the ciphertexts Pi as input to an additively homomorphic one-round protocol Π that evaluates f .
Finally, Sender masks the outputs (∆1, . . . , ∆L) of Π with sub-secrets ti and sends corresponding encryptions
∆i · Encpk(ti; ri) for ri ← U(R) to Receiver. Therefore, Receiver can peel off the masks ti iff her inputs are in
the correct range.
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PRIVATE INPUT: Receiver has inputs % = (%1, . . . , %M ), Sender has inputs σ = (σ1, . . . , σN ).
PRIVATE OUTPUT: Receiver obtains (δ1, . . . , δL) = f(%; σ) where δj ∈ Z

2` .

Querypk(%; ·):
For i ∈ [M ]: Set Pi ← Querypk(%i; ri), ri ← U(RQ). Send (P1, . . . , PM ) to Sender.

Transferpk(σ, msgq; ·):
For j ∈ [L]:

Compute t̂j ← U(Zn−2` ) and a set of ciphertexts {cij} from the output secret tj ← t̂j mod 2` as in Πcds.
Compute ∆j as in the original protocol. Set maskj ← Encpk(tj ; 0) and ∆′

j ← ∆j ·maskj .
Send (∆′

1, . . . , ∆
′

L; {ci1} , . . . , {ciL}) to Receiver.
Recoversk(%,msgt; ·):

For j ∈ [L]: Set tj ← Recovercds
sk (%, {cij}) as in Πcds. Set δ′j ← Recoversk(%, ∆′

j) and δj ← δ′j − tj mod 2`.
Return (δ1, . . . , δL).

Protocol 2: Private computation of a function f in malicious model by using additive CDS transformation

Theorem 3. Fix an additively homomorphic public-key cryptosystem PKC. Let Gen and KProof be as usually,
and fix a concrete secret and public key pair (sk, pk). Let Πcds = (Query,Transfercds,Recovercds) be an (ε, τ ; ε′1)-
private additively homomorphic one-round protocol for CDSValid

2` . Let Π = (Query,Transfer,Recover) be an
(ε, τ ; ε′2)-private conventional additively homomorphic one-round protocol for computing f in the semi-honest
model. Π′, depicted by Prot. 2, is an (ε, τ − O(1); ε′1 + ε′2 + ε′3)-private additively homomorphic one-round

protocol for computing f in the malicious mode, where ε′3 = 2`

n L.

Proof. Correctness: If % ∈ Valid and both parties follow the protocol then recovery phase of the CDSValid
2` protocol

is successful, Receiver obtains t̂j mod 2` and consequently the correct end-result, as there are no modular wrap-
pings. Receiver-privacy: Consider an adversary A that obtains advantage ε against Prot. 2; A can used against
the Πcds protocol, since the query phase is exactly the same. For the same reason, Πcds cannot be more secure
than Π. Sender-privacy: Clearly, Π′ is a parallel execution of two additively homomorphic one-round protocols.
Therefore, it is (ε′1+ε′2)-sender-private implementation of the functionalities f̂j(%, σ) = (δj+tj , tj), if % ∈ Valid,
and f̂j(%, σ) = (δj + tj ,⊥), if % /∈ Valid. The claim follows as tj are almost random plaintexts and ε′3/L is the
statistical difference between U(Zn−2`) and U(Zn). ut

With a slight modification (setting t̂j ← U(Zn) and using the CDS on a 2`+1 bit secret where one bit indicates
the modular wrap), one can remove the addend ε′3. Note that this theorem does not require PKC to be an addi-
tively homomorphic public-key cryptosystem, and thus the same proof goes through also with a multiplicatively
homomorphic public-key cryptosystem.
Comparison with related work. A well-known alternative to the additive CDS transformation is to let Receiver
to prove in zero-knowledge that (P1, . . . , PM ) encrypts a value from Valid; this means that either the resulting
protocol takes at least three messages or that the protocol is only secure in the common reference string (or
random oracle) model. As we have shown, one can use a mixture of arithmetic and Boolean formulas to construct
an efficient additively homomorphic one-round protocol for CDSS

d . A similar efficiency can be achieved by using
non-interactive zero-knowledge proofs that work over additively homomorphic public-key cryptosystems, but
compared to them, the additive CDS transformation uses simpler basic components. The difference in efficiency
comes in the use of a oblivious transfer instead of a zero-knowledge disjunctive proof [CDS94]: the first can
be done in the complexity-theoretic model very efficiently, while non-interactive zero-knowledge proofs are not
possible in the complexity-theoretic model, and are somewhat more complex to implement in the random oracle
model

Compared to the CDS transformation from [AIR01], the additive CDS transformation is applicable in a wider
setting since there exist efficient protocols that crucially rely on additively homomorphic public-key cryptosys-
tems. Using the transformation from [AIR01] in these cases is either impossible or requires one to rely on the
Decisional Diffie-Hellman assumption in addition to the assumption that PKC is IND-CPA secure. Note that the
Aiello-Ishai-Reingold transformation works also only for conventional protocols.
Optimisations. The communication overhead of the additive CDS transformation is linear in the number of out-
puts. Therefore, it is not advantageous to use the transformation for functions with many outputs (e.g., private ma-
trix operations). However, if computational sender-privacy is sufficient, one can use an arbitrary pseudo-random
generator prg to stretch the transformation’s secret to implement the functionalities f̂j(%, σ) = (δj + prg(t), t)
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if % ∈ Valid and f̂j(%, σ) = (δj + prg(t),⊥) if % /∈ Valid, for a single random t. Such a protocol remains
computationally sender-private as long as prg is cryptographically strong.
Private scalar product protocol. Assume that Receiver has a Boolean vector % of dimension M and Sender has
Boolean vector σ of the same dimension. In a private scalar product protocol protocol, Receiver’s private output is
δ, such that δ =

∑M
i=1 σi%i, and Sender has no private output. It is simple to compute this functionality in the semi-

honest model. Assume that ci is a random encryption of %[i]. Then, Sender sends di =
∑M

i=1 c
σ[i]
i ·Encpk(0; ri), for

random ri, to Receiver. Receiver decrypts di. It is straightforward to apply the additive CDS transformation to get
a protocol that is sender-private in the malicious model. This protocol also computes the private set intersection.
Similar ideas can be used to construct private protocols for many other related problems.
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A Proof of Lemma 1

We prove slightly more than required by the definition. This is because the joint protocol that is based on additively
homomorphic one-round sub-protocols might have more than two rounds, as some of Receiver’s inputs might
depend on Sender’s answers. Thus, in the proof we construct a universal simulator that outputs the protocol
messages in chronological order.

Proof. Follows from a standard hybrid argument. First, consider the case when pk is valid and KProof is not
executed at all. Let A be the unbounded malicious receiver. Then the universal black-box Sim for the entire
protocol Π just forwards any query msgqi to the appropriate simulator Simi of Πi and returns answers to A.
Finally, it reconstructs the protocol transcript and outputs it. By induction, it is straightforward to show that the
statistical difference between the original protocol transcript and the simulated one is at most ε1+· · ·+εs: If s = 1
then the claim is trivial. Assume that the claim holds for all s < s0 and consider protocol with s0 sub-protocols.
Let msgqi be the first message. Consider a hybrid protocol run H where the first message is sent according to
protocol Πi and all other replies are simulated. Obviously, the statistical distance between the total simulation and
hybrid runH is at most εi. Similarly, the induction assumption guarantees that the statistical difference between the
hybrid runH and the complete protocol run is at most ε1 + · · ·+ εi−1 + εi+1 + · · ·+ εs. Thus, the claim follows
from the triangle inequality. For the general case, note that KProof messages are independent from Sender’s
inputs. Therefore, there is a difference with the previous case when KProof succeeds for an invalid key. Hence,
the statistical difference between the transcripts is at most max {εzk, ε1 + · · ·+ εs}. ut

Though Lemma 3 suggests that the general protocol structure should be static, Lemma 1 shows that even
adaptive choice of protocol order cannot reveal more information about Sender’s inputs than specified by the
protocol outputs.

B Composing Preserves Receiver-Privacy

We prove a slightly stronger result. Namely, we require only that the KProof is executed at any time in an non-
concurrent manner. Note that the definition of receiver-privacy is adequate even for multi-round protocols. For the
lemma we also need the next definition. We say that KProof is (εh, τ1, δ, τ2)-hiding, if for any malicious verifier
A with an auxiliary input s and working in time τ1, there exist a black-box simulator SimA that works in time
τ1 + δ, such that for any distinguisherD working in time τ2,

AdvZKHID

ZK
(A) := max

D,s
|Pr [DA(s) = 1]− Pr [DSimA(s) = 1]| ≤ εh ,

where the distinguisher is allowed to inspect the output of the oracle, the maximum is taken over all distinguishers
working in time τ2, and the probability is taken over the coin tosses of A, SimA and D. We omit τ2 from the
definition if we consider only a trivial distinguisher that just forwards the outputs.

Lemma 3. Assume that KProof is (εh, τ, δ)-hiding for any key pair (pk, sk). Assume that no messages of other
protocols are sent by Receiver during KProof. Then a concurrent composition Π of (ε1, τ), . . . , (εs, τ)-receiver-
private additively homomorphic one-round protocols Πi, that all share the same key pair (sk, pk), is an (εh+ε1 +
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. . .+ εs, τ
′)-receiver-private protocol where τ ′ = τ − δ −∆ and ∆ = O(s) is the time to form the first message

of the protocol Π.

Proof. Follows from a standard hybrid argument. First, consider the receiver-privacy when KProof is not ex-
ecuted at all, i.e., when we have an ideal implementation of KProof. Let A be an adversary running in time
τ ′ such that AdvRECPRI

Π (A) > ε1 + · · · + εs and let (%0, %1) with %i = (%i1, . . . , %is) be the correspond-
ing challenge pair. Now consider the distributions Di = (msgq01, . . . ,msgq0i,msgq1,i+1, . . . ,msgq1n) where
msgqbj = Querypk(%bj , U(RQj )) is the first message of Πj . Since A distinguishes D0 and Ds with probability
AdvRECPRI

Π (A), there exists an i such that A distinguishes Di−1 and Di with probability larger than εi. Given pk,
%0, %1 and msgqbi, one can generate an element ofDi−b within time ∆. Thus, there exist an adversaryA′ running
in time τ ′ +∆ that has AdvRECPRI

Πi
(A′) > εi.

For the general case, we have to consider the effect of KProof. W.l.o.g. we can assume that KProof is exe-
cuted after all messages msgqi are sent, since messages can be delayed with constant increase in running-time.
Now we can treat messages msgqi as a part of the auxiliary input of A. Since KProof is εh-hiding, there exists
a simulator SimA that without access to sk can fool any time-bounded distinguisher, and in particular, the dis-
tinguisher that just forwards the output. Hence |Pr [A = 1]− Pr [SimA = 1]| ≤ εh and consequently SimA has
advantage AdvRECPRI

Π (SimA) > ε1 + · · ·+ εs whenever AdvRECPRI

Π (A) > ε1 + · · ·+ εs + εh. As the construction of
A is independent of sk so is the construction of SimA. From the first part of the proof we get that there exists an
adversary Sim′

A such that AdvRECPRI

Πi
(Sim′

A) > εi for some i. The latter is impossible unless the working time of
Sim′

A is larger than τ . The claim follows. ut
It might seem that malicious Sender can mount more powerful attack, as malformed replies can change input

values of Receiver’s inputs. However, Lemma 3 assures that Sender cannot distinguish protocol runs even if
Receiver’s inputs are known. To summarise, receiver-privacy is guaranteed unless protocol description depends
on Sender’s replies, but latter is unavoidable.

Note that this is the only place in the paper we explicitly deal with the imperfectly hiding KProof. As seen
from the proof, dealing with it introduces some technicalities that are relatively straightforward to also include to
other results. Finally, in the multi-user setting, we have to consider the case of colluding Senders. Dealing with
this case is not difficult, we would only have to change εh withXεh, whereX is the number of colluding Senders.

C Proof of Lemma 2

Proof. Let p be a non-trivial factor of n. Fix x ∈ {0, 1}`. Denote s := ]Zx = ap + r for r ∈ [0, p − 1].
As gcd(κ, p) = 1, then κ is a generator of Zp. Therefore, we can partition Zp into two sets T0 =
{z : Pr[Zpx = z] = a/s} and T1 = {z : Pr[Zpx = z] = (a+ 1)/s}. Thus, Dist (Zpx‖U(Zp)) = max{]T0 · ( 1

p −
a
s ), ]T1 · (a+1

s − 1
p )}. Since r = s − ap, ]T0 = p − r and ]T1 = r, we can conclude that Dist (Zpx‖U(Zp)) =

max{ (p−r)r
sp , r(p−r)sp } = r(p−r)

sp ≤ p
4s ≤ n

4Φ(n)s . As s ≥ n−κ
κ , it follows that Dist (Zpx‖U(Zp)) ≤ n

4Φ(n) · κ
n−κ =

n
n−κ · κ

4Φ(n) ≤ κ
2Φ(n) . ut

D Optimal padding scheme

The choice of a good padding scheme in Prot. 1 is crucial, since it must be guarantee both security and relatively
high value of `. One may wonder whether there exist more efficient padding schemes for Protocol 1. Indeed, the
padding used in Protocol 1 is suboptimal, but it is quite close to optimal bounds. More formally, assume that
padded is an efficiently computable function that maps an input σ to padded(σ), independently from msgq. If the
padding depends on msgq, then the scheme either uses generic homomorphic operations or is specially tailored
for the concrete cryptosystem. The former corresponds to a new generic design of homomorphic oblivious transfer
and the latter is not a general solution.

Secondly, we have to consider security. We say that a padding scheme padded is ε′-secure if for any two inputs
σ0 and σ1, the statistical difference between r ·U(n) + padded(σ0) and r ·U(n) + padded(σ1) is less than ε′ for
any r 6= 0. It is easy to verify that Protocol 1 is sender-private if and only if the padding is ε′-secure. Under this
restriction, we can state upper bounds for throughputs of secure padding schemes. More formally, let η denote the
ratio between the transfer bandwidth (how many bits can be transferred by a single plaintext) and the theoretical
limit (how many bits are in a single plaintext). For our padding, η = `

log2 n
. For the sake simplicity, we will give

the upper bound to η only in the case the plaintext order n is a multiple of two distinct primes, this result can be
straightforwardly generalised.
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Lemma 4. Let n be a product of two primes p < q. If Protocol 1 is ε′-sender-private, then the throughput is
bounded from above by

η∗ =
log2 p− log2(1− 2ε′)

log2 p+ log2 q
.

Proof. W.l.o.g., assume that N < p and that the input range of the padding scheme is [κ] = {1, . . . , κ}. Let Zx
denote the output range of padded(x) for x ∈ [κ], and let Zpx (resp.,Zqx) be the output range of padded(x) reduced
modulo p (resp., q).

A malicious Receiver can choose % so that Decsk(ci) ≡ qsi + padded(σ[i]) (mod n) and Decsk(cj) ≡ psj +
padded(σ[j]) (mod n) for i 6= j. But then Extractsk(msgq) /∈ [N ] and the simulator gets no information about
the output. Therefore, for any input pair x, y ∈ [κ]

Dist
(
Zpx‖Zpy

)
≤ 2ε and Dist

(
Zqx‖Zqy

)
≤ 2ε ,

as all Zpx , Zpy , Zqx and Zqy are ε-close the output distribution of the simulator (modulo p or q). We prove upper
bounds to the number κ of padding sets provided that Dist

(
Zpx‖Zpy

)
≤ ε. The analysis for the other factor is

symmetrical.
For x ∈ [κ], let Rx = Zp \ Zpx . As Zpx and Zp1 are ε-close, we get that Pr[z ← Zp1 : z ∈ Rx] ≤ ε. Let R

be the multi-set containing all elements of R1, . . . ,Rq . Then the total probability mass of R with respect to the
distribution over Zp1 is less than qε. Since the probability distributions Zpx and Zp1 are ε-close, we can conclude
that Pr[z ← Zp1 : z ∈ Zpx ] ≥ 1− ε. The latter implies that there can be at most qε

1−ε additional sets Zx, x ≥ q,
because by the Chinese Remainder Theorem there exists one-to-one correspondence between the elements of R
and the elements of Zpq that are not covered by the sets Z1, . . . ,Zq . To summarise, if Dist

(
Zpx‖Zpy

)
≤ ε for

all x, y ∈ {1, . . . , κ}, then κ ≤ q + εq
1−ε = q

1−ε . Since ε-sender-privacy enforces that Dist
(
Zpx‖Zpy

)
≤ 2ε, and

analogously, the bound must also hold for the second prime factor, then the claim follows. ut

Lemma 4 shows that the padding scheme of Protocol 1 is close to optimal if n is a product of two primes. For
the standard parameters of Paillier’ cryptosystem, the difference between η and η∗ is roughly 20%. As encoding
and decoding consist from bit-shifts and addition the padding is extremely efficient.
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