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Abstract. During a conditional disclosure of secrets (CDS) protocol,Alice obtains a secret, held by Bob, if and
only if her inputs to the protocol were “valid”. As an output masking technique, CDS protocol can be used as
a subroutine in other protocols to guarantee either Bob-privacy or correctness against a malicious Alice. Using a
simple seeded randomness extractor, we extend the Aiello-Ishai-Reingold CDS protocol to work over additively
homomorphic public-key cryptosystems. Based on this, we construct several new two-message protocols like an
oblivious transfer protocol with log-squared communication and a millionaire’s protocol with logarithmic com-
munication. Additionally, we show how to implement private, universally verifiable and robust multi-candidate
electronic voting so that all voters only transmit an encryption of their vote. Importantly, the only cryptographic
hardness assumption in these protocols is that the underlying public-key cryptosystem is IND-CPA secure.
Keywords. Conditional disclosure of secrets, electronic voting, homomorphic encryption, malicious model, mil-
lionaire’s problem, oblivious transfer, two-party computation.

1 Introduction

It is well known that one can implement secure computation byusing garbled circuit techniques. However, since
using garbled circuits often results in too inefficient protocols (that in particular take communication, linear in the
circuit size), cryptographers tend to use alternative mechanisms. As an important example, the El Gamal cryptosys-
tem [El 84] was used successfully to construct e-voting [CGS97] and other protocols. However, due to the limitations
of El Gamal-like multiplicatively homomorphic public-cryptosystems, in such protocols the intended receiver has
to compute discrete logarithm to recover the protocol outcome. Therefore, basing protocols on multiplicatively ho-
momorphic public-key cryptosystems is often only feasiblein tasks where the expected outcome is “small” (e.g., in
two-candidate e-voting protocols [CGS97]).

Additively homomorphic (AH) public-key cryptosystemsPKC like the Paillier [Pai99] make it possible to effi-
ciently implement many interesting cryptographic protocols without the need of solving discrete logarithms. In this
paper we consider protocols where Alice forwards somePKC-ciphertexts to Bob who, after computing on cipher-
texts, sends some other ciphertexts to Chalice (who, say, can be the same person as Alice or a coalition of third
parties who will threshold-decrypt the ciphertexts). We call such protocols eitherreturn-to-senderor threshold ad-
ditively homomorphic (AH) two-message protocols. Some noteworthy tasks that can be efficiently solved by using
AH two-message protocols include computationally-private information retrieval (CPIR, [AIR01,Ste98,Lip05]), mil-
lionaire’s problem [BK04], linear algebraic tasks (e.g., private matrix multiplication), various privacy-preserving data
mining tasks (e.g., private scalar product [WY04,GLLM04] and private set intersection cardinality), multi-candidate
electronic voting [DJ01] and electronic auctions [LAN02].

Now, computational Alice-privacy of an AH two-message protocol in the malicious model follows directly from the
IND-CPA security of the underlying AH public-key cryptosystem. On the other hand, many common return-to-sender
AH two-message protocols (e.g., the basic variants of [AIR01,Ste98,Lip05,BK04,WY04,GLLM04]) are statistically
Bob-private only in the semi-honest model, that is, under the assumption that Alice encrypts correct values. Often,
there is no guarantee of Bob-privacy whatsoever in the case of malicious Alice. Analogously, many threshold AH two-
message protocols [DJ01,LAN02] are correct only in the semi-honest model. Therefore, one must guarantee that if
Alice encrypts invalid inputs then she obtains no new information (in the case of return-to-sender protocols) or Chalice
will be able to detect the sending of invalid inputs (in the case of threshold protocols). These desiderata are usually
achieved by using zero-knowledge proofs that either increase the number of rounds or require a security model with
non-complexity-theoretic assumptions (e.g., random oracles).

Alternatively, one can use conditional disclosure of secrets (CDSS
ℓ ) from [GIKM00,AIR01], also known as input

verification gadget [BGN05], where Chalice obtains Bob’s secret input if and only if Alice encrypted anℓ-bit string
from the setS. In parallel and in another protocol, this secret can be usedby Bob to mask the output values, sent
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to Chalice. However, the Aiello-Ishai-Reingold CDS protocol [AIR01] works only in conjunction with an IND-CPA
secure homomorphic public-key cryptosystemPKC that has plaintext space of prime ordern. The only widely known
such cryptosystem, ElGamal [El 84], is multiplicatively homomorphic while in the case of almost all AH cryptosys-
tems,n is a large composite integer with sufficiently large prime factors. Alternatively, the Boneh-Goh-Nissim CDS
protocol [BGN05] uses aPKC that satisfies stronger requirements than additive homomorphicity: namely, there Bob
can compute-on-ciphertexts any quadratic functions of theplaintexts. ThePKC of [BGN05] works also on plaintext
groups of composite order but paradoxically, their CDS protocol is secure exactly because the Boneh-Goh-Nissim
PKC has inefficient decryption. (Also here, one has to compute discrete logarithms to decrypt.) We would like to
achieve security even in the case whenPKC has efficient decryption.

In this paper, we modify the Aiello-Ishai-Reingold CDS protocol so that it can be used in conjunction with aPKC

that satisfies substantially weaker (algebraic) properties than required by [AIR01,BGN05]; in particularly,PKC has
to be AH, IND-CPA secure, and the smallest prime factorΦ(n) of n has to be large. (See Thm. 2 for the precise
requirements.) Let us call suchPKC CDS-friendly; the cryptosystems from [Pai99,DJ01] are CDS-friendly.

Our construction consists of several steps. First, we design a lightweight seeded randomness extrac-
tor [GRS04,GR05a] for the family of distributionsD = {mZn : m ∈ Zn ∧m 6= 0}, and use it to construct an AH
two-message1-out-of-ν-oblivious transfer protocol forℓ-bit strings (whereℓ is reasonably large) that is computa-
tionally Alice-private and statisticallyε-Bob-private assuming that the underlying public-key cryptosystem is CDS-
friendly. This is the first AH two-message oblivious transfer protocol, where honest Alice’s first message is just an
homomorphic encryption of the database index, and thus interesting by itself.

Second, we show how to transform any two-message1-out-of-ν-computationally-private information retrieval
(CPIR) protocol into a two-message statistically Bob-private oblivious transfer protocol and aCDSS

ℓ protocol with
exactly the same communication. If we use the Gentry-RamzanCPIR protocol [GR05b] then the resulting protocols
have communicationΘ(log ♯S) but Bob’s computation will beΘ(♯S). Assume that the input size is equal tolog2 ♯S.
Using arithmetic circuit evaluation, we show thatS has aCDSS

ℓ protocol with polynomial resources iffS ∈ P/poly.
Because we use an AH public-key cryptosystem, the resourceswill often be low-degree logarithmic.

Third, we propose theconditional disclosure of secrets (CDS) transformationthat transforms an arbitrary AH
two-message protocolΠ that securely implements apublic functionf in the semi-honest model to a protocol that is
secure in the malicious model. The basic idea is as in [AIR01]: in parallel withΠ, Alice and Bob execute a CDS
protocol for Alice’s input so that the first message of the twoprotocols coincide. Bob masks the output with secrets,
corresponding to all different Alice’s inputs. Therefore,Alice recovers any of the outputs only if all of his inputs
belong to the valid input sets. The resulting AH two-messageprotocol is efficient whenever the valid input setS has
an efficient conditional disclosure of secrets protocol andthe number of outputsλ is reasonably small. If we require
only computational Bob-privacy then the resulting protocol is communication-efficient also for the large values ofλ.

Until now, the CDS protocol has been largely overlooked in literature, with only a couple of published pa-
pers [GIKM00,AIR01,BGN05] that do more than mention it and with many papers using zero-knowledge proofs
where the CDS protocol could provide a simpler solution. This situation might be partially due to the relatively small
number of proposed applications. To remedy this situation and to popularise the CDS protocol, we propose several
interesting applications to demonstrate the power of the new tools. First, we construct a new oblivious transfer proto-
col and a new CDS protocol with log-squared communication and computation. (See Cor. 2.) Second, in Sect. 6, we
construct a private millionaire’s protocol with logarithmic communication. Third, we construct efficient private pro-
tocols for a few other tasks like conditional oblivious transfer and multiplicative relationship (see Sect. 6), and scalar
product(see Sect. 7). We also show how to construct efficientthresholdAH protocols for e-voting and e-auctions.
(See Sect. 6.) All constructed protocols are round-optimal, computationally Alice-private and statistically Bob-private
solely under the assumption that the underlying public-keycryptosystemPKC is CDS-friendly. Importantly, the only
complexity-theoretic hardness assumption is thatPKC is IND-CPA secure.

Road-map. In Section 2, we state preliminaries. In Section 3, we propose a new seeded randomness extractor. In
Section 4, we propose a new AH two-message protocol for oblivious transfer and prove its security. In Section 5, we
propose an AH two-message protocol for conditional disclosure of secrets and show how to implement it efficiently
for all sets inP/poly. In Section 6, we propose several interesting applications. In Section 7, we present our generic
CDS transform and prove its security. In Appendices, we giveproofs of some results.
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2 Preliminaries

For an integern, let [n] := {1, 2, . . . , n} and letΦ(n) be the smallest prime divisor ofn. We say thatn is p-
rough if Φ(n) ≥ p. The statistical difference of two distributionsX andY over a discrete supportZ is defined as
Dist (X‖Y ) := maxS⊆Z |Pr[X ∈ S]− Pr[Y ∈ S]|. We say thatX andY areε-close (X

ε∼ Y ) if Dist (X‖Y ) ≤ ε.
For an arbitrary setZ, letU(Z) denote the uniform distribution over it; we sometimes identify Z with U(Z). LetD
be a family of distributions on some setM1. A functionExt : M1×S →M2 is aseededε-extractor[GRS04,GR05a]
for D if for every distributionX in D, Ext(X,U(S))

ε∼ U(M2). A setZ with a binary operation◦ : Z2 → Z is a
quasigroup if and only if for everya ∈ Z, a ◦ U(Z) = U(Z) = U(Z) ◦ a.

Throughout this paper, we omit the security parameterk by assuming that the adversary works in time that is less
than some fixed public constantτ , then alsok is a constant. Sometimes, one needs security against adversaries that
work in time, polynomial in the input sizeκ of the protocolΠ. Then,k will depend onκ. More precisely, assume that
the underlying computationally hard problem, with inputn of sizeκ := log2 n, can be broken in timeLn[a, b] :=
exp(a(lnn)b · (ln lnn)1−b) for some0 < b ≤ 1. To guarantee security against such polynomial adversaries, it is
necessary thatLn[a, b] = ω(κc) for every constantc, or thatkb ·ln1−b k = ω(lnκ). Omitting the logarithmic factor, we
get thatk = Ω(ln1/b κ). E.g., when basing a protocol on the Decisional Composite Residuosity Assumption [Pai99]
with b = 1/3, we must assume thatk = Ω(log3−o(1) κ).

Public-key cryptosystem is a triplePKC = (Gen,Enc,Dec), whereGen is a key generation algorithm that returns
a secret and public key pair(sk, pk), Enc is a randomised encryption algorithm andDec is a decryption algorithm
such thatDecsk(Encpk(m; r)) = m. For a fixedPKC and for a fixed public key, letR be the randomness space,
letM be the plaintext space and letC be the ciphertext space. For an algorithmA, defineAdvIND-CPA

PKC (A) := 1
2 ·∣∣SuccIND-CPA

PKC,1(A)− SuccIND-CPA

PKC,0(A)
∣∣, where

SuccIND-CPA

PKC,b(A) := Pr[(sk, pk)← Gen, (m0,m1)← A(pk) : A(pk,m0,m1,Encpk(mb;U(R))) = 1] ;

the probability is taken over the coin tosses ofGen andA, and over the choice of random variables. We say thatPKC

is (ε, τ)-IND-CPA-secureif AdvIND-CPA

PKC (A) ≤ ε for anyτ -time probabilistic algorithmA.
A public-key cryptosystemPKC is homomorphic, if for any key pair(sk, pk), anyx1, x2 ∈M and anyr1, r2 ∈ R,

Encpk(x1; r1) ·Encpk(x2; r2) = Encpk(x1 +x2; r1 ◦ r2), where+ is a group operation inM and◦ is a groupoid oper-
ation inR. We say thatPKC is additively homomorphic(AH) if M = Zn for somen, andmultiplicatively homomor-
phic, ifM = Z

∗
n for somen. Several well-known homomorphic cryptosystems [El 84,OU98,NS98,Pai99,DJ01,DJ03]

are IND-CPA secure under reasonable complexity assumptions. The ElGamal cryptosystem [El 84] is multiplicatively
homomorphic (and the only one whereM has an odd prime order), while other cryptosystems are AH with a usually
rough compositen.

The Paillier cryptosystem [Pai99] is one of the most efficient known IND-CPA secure AH public-key cryptosys-
tems. Here,M = Zn,R = Z

∗
n andC = Z

∗
n2 for an RSA modulusn. Thus,n is

√
n/2-rough. Its IND-CPA security

follows from the Decisional Composite Residuosity Assumption [Pai99].
Return-to-sender AH two-message protocols.Let α denote the private input of Alice andβ denote the private
input of Bob. We mainly consider return-to-sender two-message protocols between Alice and Bob that implement
the following functionality for somepublic functionf : an unbounded Alice learnsf(α, β) and nothing more, and a
computationally bounded Bob learns no new information. Anreturn-to-sender AH two-message protocol forf consists
of the next phases. In the initialisation phase that is usually shared by different protocols, Alice generates his key pair
(sk, pk) for PKC by executingGen and transferspk to Bob. In the following, we explicitly assume that the validity of
public keys is assured. This can be achieved either in the presence of PKI (this assumption is normal in the case of
applications like e-voting), or by letting Alice to prove once, separately and in an isolated manner (no other messages
of different protocols are sent by Alice at the same time), toevery Bob thatpk is valid.

During an AH two-message protocolΠ, on inputα, a Alice computes a randomised messagemq and sends it
to Bob. We assume that one can efficiently verify, given onlypk, thatmq is a valid message. In our setting,mq =
(Encpk(α1; r1), . . . ,Encpk(αµ; rµ)), whereα = (α1, . . . , αµ), αi ∈ M andri ∈ R, for someµ ≥ 1. Therefore,
validity verification can be done efficiently if and only if membership inC can be tested efficiently. In the second
round, Bob replies with the second messagemt, computed on inputs(β,mq). We assume thatmt = ⊥ if Bob does
not have the public key, Bob halts ormq is malformed. Finally, Alice recovers the answer by using a special recovery
algorithm. In our setting, this means that Bob applies a number of randomised operations to the received ciphertexts,
and returns the resulting ciphertexts; Alice then decryptsthe received ciphertexts, and applies some local algorithmto
the resulting plaintexts. Thecommunicationof an AH two-message protocol is equal to|mq|+ |mt|.
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We use the “standard” relaxed security definitions (see, e.g., [AIR01,FIPR05]) where one only cares about the
correctness and the privacy of participants. Briefly, (1)Π is correctif in the case of honest Alice and Bob, Alice always
recoversf(α, β); (2) Π is (ε, τ)-Alice-private, if noτ -time adversary who tries to impersonate Bob can distinguish
between the different possible inputs Alice might hold withprobability larger thanε/2 (see the earlier definition of
IND-CPA security), and (3) Bob-privacy is defined by considering an ideal trusted party that gets the inputsf , β and
α, and givesf(α, β) to Alice. We require in the real implementation that Alice does not get any information beyond
the value off(α, β). Due to the structure of AH two-message protocols, to prove Bob’s privacy, it suffices to define a
simulator that on inputs(f, α∗, β) generates an output distribution that isε-close to Alice’s view of the real protocol,
whereα∗ is the input, actually submitted by Alice; i.e.,α∗ can be uniquely recovered from the first message of a
protocol by just decrypting it. If such a simulator exists, then we say that the protocol isε-Bob-private. We say thatΠ
is (ε, τ ; ε′)-private if it is (ε, τ)-Alice-private andε′-Bob-private.

In a threshold AH two-message protocols, the secret key is owned by Chalice, most usually a coalition of servers.
Alice encrypts her inputs by using Chalice’s public key, forwards some ciphertexts to Bob, who applies some opera-
tions to them, and forwards the resulting ciphertexts to Chalice who threshold-decrypts them. This setting is usual in
e-voting and e-auction protocols [CGS97,DJ01,LAN02]. In this case we also care about the correctness. See [Gol04]
for the standard security definitions.
Computationally-private information retrieval and obliv ious transfer. During a 1-out-of-ν computationally-
private information retrieval(CPIRνℓ ) protocol forℓ-bit strings, Alice fetchesβα from the databaseβ = (β1, . . . , βν)

maintained by Bob,βi ∈ {0, 1}ℓ, so that computationally bounded Bob does not know which entry Alice is learning.
In the following, we will also need the case whereβ = (βi)βi∈S for an arbitrary public setS ⊆ Zn. In this case,
we call the resulting protocol aCPIRS

ℓ protocol. Many two-message computationally-private information retrieval
protocols (e.g., [Ste98,AIR01,Lip05]) are (return-to-sender) AH two-message protocols. The most efficient known
AH two-messageCPIRνℓ protocol by Lipmaa [Lip05] was until recently the most efficientCPIRνℓ at all. When based
on the Damgård-Jurik length-flexible AH public-key cryptosystem [DJ01], Lipmaa’s protocol has communication
(log2

2 ν + (s + 3
2 ) · log2 ν + 1)k, wherek := log2 n is the security parameter ands := ⌈ℓ/k⌉. (For a non-length-

flexible PKC, a close-to-polylogarithmic AH two-message protocol was proposed by Stern [Ste98].) Only recently,
a more communication-efficientCPIRνℓ protocol, with communicationΘ(log ν + ℓ + k), was proposed by Gentry
and Ramzan [GR05b]. Their protocol is not an AH protocol. Moreover, the Gentry-Ramzan protocol does not have
polylogarithmic Alice-side computation that might be relevant in some applications.

A CPIRνℓ protocol is acomputationally Alice-private and statistically Bob-private1-out-of-ν oblivious transfer
protocol forℓ-bit strings(anOTνℓ protocol) if also Bob’s privacy is guaranteed;OTS

ℓ protocols are defined analogously.
The next private AH two-messageOTνℓ protocol was defined by Aiello, Ishai and Reingold [AIR01]. Let PKC be an
IND-CPA secure homomorphic cryptosystem such that for all possible secret keyssk,M is a cyclic group with public
prime order|M| ≥ 2ℓ. To obtain the elementβα ∈M, Alice sends to Bob a random encryptionc = Encpk(α;U(R)).
For all i ∈ [ν], Bob replies with a random encryption of(α − i)U(M) + βi. Alice obtainsβα ← Decsk(cα).
Unfortunately, the only well-known homomorphic public-key cryptosystem that works over large message spaces of
prime order, ElGamal, is multiplicative.
Millionaire’s problem. Millionaire’s problem is as follows: given Alice’s privateinputα and Bob’s private inputβ
from Z2ℓ , decide whetherα > β without leaking anything else. Though there have been proposed numerous protocols
for this problem (see, for example, [Fis01,BK04,ST04]), none of the proposals is completely satisfactory. For example,
one of the most elegant previous millionaire’s protocols, an additively homomorphic two-message protocol proposed
by Blake and Kolesnikov [BK04], is Bob-private only in the semi-honest model.

3 A Seeded Randomness Extractor

We will need a seeded randomness extractorExt : Zn × S → Zn wheren is a large composite integer andS is a
suitably chosen subset ofZn. The set of distributionsD is defined as{U(pZn) : p ∈ Zn \ {0}}. Since we compute
Ext on ciphertexts, it has to have the structureExt(m, (s0, s1)) = s0m+ s1 mod n for some setS = {(s0, s1)} that
is chosen so thatExt is anε-extractor forD for as smallε as possible.

Theorem 1. Letn be a positive integer,0 < ε ≤ 1, and letℓ := ⌊log2 Φ(n) − log2(1/ε) + 1⌋. DenoteT :=
⌊
2−ℓn

⌋

andS := 2ℓ · ZT . LetExt(m, s) := m+ s mod n for m ∈ Zn andt ∈ S. ThenExt is anε-extractor forD.

For this theorem we first need the next technical lemma. (Here, U(S) mod p denotes the distribution that we get by
first picking an element ofU(S) and then taking its remainder modulop.)
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Lemma 1. Fix integersn ands, such thats < n/2 andgcd(s, n) = 1. SetT :=
⌊
s−1n

⌋
. For any non-trivial factorp

of n and for an arbitrarym ∈ Zs, (m+ U(sZT )) mod p
ε∼ U(Zp) for ε ≤ s/(2Φ(n)).

Proof. Fix m ∈ Zs. Let p be a non-trivial factor ofn. Then T = ap + b for a non-negative
a and for a b ∈ [0, p − 1]. Since gcd(p, s) = 1, then s is a generator ofZp. Therefore,
we can partition Zp into two sets T0 = {c ∈ Zp : Pr[(m+ U(sZT )) mod p = c] = a/T } and T1 =
{c ∈ Zp : Pr[(m+ U(sZT )) mod p = c] = (a+ 1)/T }. According to the definition of statistical difference,(m +
U(sZT )) mod p

ε∼ U(Zp), whereε = max {♯T0 · (1/p− a/T ), ♯T1 · ((a+ 1)/T − 1/p)}. Sinceb = T − ap,
♯T0 = p − b and♯T1 = b, thenε = max {((p− b)b)/(Tp), (b(p− b))/(Tp)} = (b(p − b))/(Tp) ≤ p/(4T ). From
T = ⌊n/s⌋ ≥ (n− s)/s ≥ n/(2s) it follows thatε ≤ p/(4T ) ≤ n/(4Φ(n)T ) ≤ s/(2Φ(n)). ⊓⊔

Proof (Thm. 1).Assume thatX ∈ D, i.e., thatX = pZn for somep ∈ Z \ {0}. If gcd(p, n) = 1 thenpZn = Zn

and the claim follows. Otherwise, sets := 2ℓ. Therefore, as♯pZn = n/p, Pr[Ext(m,U(S)) ≡ y (mod n)] =
p/n · Pr[Ext(m,U(S)) ≡ y (mod p)] = p/n · Pr[m + U(S) ≡ y (mod p)] for any y ∈ Zn. Lem. 1 assures
thatDist (Ext(X,U(S))‖U(Zn)) = Dist (Ext(X,U(S)) mod p‖U(Zp)) = Dist ((m+ U(S)) mod p‖U(Zp)) ≤
2ℓ−1/(Φ(n)) ≤ ε. ⊓⊔

4 AH Two-Message Protocol for Oblivious Transfer

We need an AH two-message oblivious transfer protocol. Given the state of the art in AH public-key cryptosystems,
it means that this oblivious transfer protocol must work on groups of composite order. In [Lip03,Cha04], the authors
have tried to generalise the Aiello-Ishai-Reingold protocol correspondingly. Lipmaa [Lip03] claimed that the Aiello-
Ishai-Reingold protocol is a “weakly” Bob-private1-out-of-ν-oblivious transfer protocol under the assumption thatn
is ν-rough; weak security meaning that a malicious Alice will, even in the case of incorrect inputs, obtain information
about exactly one database element. Lipmaa’s proof in [Lip03] is however faulty, because in the case of a malicious
Alice, the Aiello-Ishai-Reingold protocol leaks partial information abouts database elements, wheres is the number
of different prime factors ofn. Namely, assume thatn =

∏
paii for different primesp1 < p2 < · · · < ps. If Alice’s

inputα∗ is such thatα∗ ≡ αi mod pi for some mutually different valuesαi ∈ [ν], then Alice can straightforwardly
compute the valuesβαi mod pi, i ∈ [s], even ifα /∈ [ν]. Alice who knows how to factorn can therefore easily, by
using the Chinese Remaindering Theorem, compute the requiredα∗.

The same observation underlies, in a constructive way, Chang’s 2-out-of-ν-oblivious transfer protocol; [Cha04]
actually proved that ifn is a product of two safe primes then no more information thanβαi mod pi, i ∈ [2], is
revealed. Chang [Cha04] also proposed a1-out-of-ν-oblivious transfer protocol; however, since there a honest Alice
has to encrypt values that depend on the secret key and thus isunusable in the CDS protocol, proposed in Sect. 5.

Next, we propose a new1-out-of-ν-oblivious transfer protocol (see Prot. 1) that achieves Bob-privacy. It is an
extension of the Aiello-Ishai-ReingoldOTνℓ protocol to the case where the order of the underlying group is composite
but still sufficiently rough. In this protocol, we need a randomised functionencoding : {0, 1}ℓ → Zn, computable on
ciphertexts, such that for anyp ∈ Zn \{0} given in an encrypted form, anyβ1, β2 ∈ Zn, and for as smallε as possible,
encoding(p, β1)

ε∼ encoding(p, β2); while on the other hand, if the encrypted value isp = 0, then one can efficiently
recoverβ givenencoding(p, β).

LetD andS = 2ℓ ·ZT be defined as in Sect. 3. Now, notice that forp ∈ Zn, pU(Zn) ∈ D if p 6= 0 andpU(Zn) = 0
otherwise. Therefore, it is quite straightforward to construct encoding by using a seeded randomness extractor on top
of exponentiation with a random group element. More precisely, (a) we first multiply the encrypted value with a
random element ofZn; (b) after that, we use a seededε-extractorExt forD, such thatExt(X,U(S))

ε∼ U(Zn) for any
X ∈ D, while Ext(0, U(S)) ≡ 0 mod 2ℓ for a relatively largeℓ. The extractor defined in Thm. 1 is sufficient. Thus,
we will use an (again, relatively lightweight) randomised encodingencoding(p, β0) := Ext(pU(Zn), U(2ℓ ·ZT ))+β0

mod n = pU(Zn) + U(2ℓ · ZT ) + β0 mod n. Now, we are ready to prove the next theorem:

Theorem 2. Let PKC = (Gen,Enc,Dec) be an AH public-key cryptosystem that satisfies the next require-
ments: (a) it is(ε, τ)-IND-CPA secure, (b)n := ♯M is (2ℓ+1ν/ε′)-rough for some0 < ε′ ≤ 1 with ℓ ←
⌊log2 Φ(n)− log2 ν − log2(1/ε

′) + 1⌋, (c)R is a quasigroup, (d)M andR are efficiently samplable, and (e) mem-
bership inC can be efficiently verified. Assume thatpk is valid. Then Protocol 1 is an(ε, τ − O(1); 2ℓν/Φ(n) ≤ ε′)-
private AH two-message protocol forOTνℓ .
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Common parameters:ℓ, T :=
¨
2−ℓn

˝
, PKC = (Gen, Enc, Dec) andpk.

Private input:Alice hassk andα ∈ {1, . . . , ν}, Bob has a tupleβ1, . . . , βν ∈ {0, 1}ℓ.
Private output:Alice obtainsβα.

First message, by Alice:Sendmq← Encpk(α; U(R)) to Bob.
Second message, by Bob:

If mq /∈ C then return⊥.
// Now, mq is an encryption of some elementα∗.
For j ∈ [ν]: Let cj be a random encryption of(α∗ − j)U(M) + U(2ℓ · ZT ) + βj .

// I.e., setcj ← (mq/Encpk(j; ∗))
U(M) · Encpk(U(2ℓ · ZT ) + βj ; U(R)), where∗ is an arbitrary element ofR.

Return(c1, . . . , cν).
Postprocessing, by Alice:ReturnDecsk(cα) mod 2ℓ.

Protocol 1: An AH two-message protocol forOTνℓ

Proof. First, if pk is valid thenDecsk(cj) is distributed asExt((α∗−j)U(Zn), U(2ℓ ·ZT ))+βj mod n, whereα∗ :=
Decsk(mq). Correctnessis straightforward, sinceDecsk(cα) is distributed asExt((α−α)U(Zn), U(2ℓ ·ZT )) + βα =
U(2ℓ · ZT ) + βα. Since alwaysDecsk(cα) < n thenDecsk(cα) ≡ βα mod 2ℓ. Computational Alice-privacyfollows
directly from the IND-CPA security ofPKC, since Bob sees only a random encryption ofα. Statistical Bob-privacy:
Assume that Bob is honest and thatpk is valid. Then, for anyj, Dsk(cj) is distributed according toVj := Ext((α −
j(U(Zn), U(2ℓ·ZT ))+βj . Moreover, sinceR is a quasigroup thencj is arandomencryption of a random element from
Vj and thus reveals no more information than a random element ofVj . Due to Thm. 1,Dist (Vj‖U(Zn)) ≤ 2ℓ/(2Φ(n)).
As all ν distributionsVj are independent thenDist ((V1, . . . , Vν)‖U(Zνn)) ≤ ν2ℓ/(2Φ(n)) ≤ ν/(2Φ(n)) ·Φ(n)/ν · 2 ·
ε′ = ε′. Here, the second inequality follows from (b). Thus, we can simulate Alice’s view as follows: Computesk that
corresponds topk. Setα∗ ← Decsk(mq), setmt = ⊥ if mq is not a valid ciphertext. For allj ∈ [ν] do: If j 6= α∗, set
ĉj ← Encpk(U(Zn);U(R)). If j = α∗, setĉj ← Encpk(Ext(0, U(2ℓ ·ZT ))+βα∗ ;U(R)). Outputĉ = (ĉ1, . . . , ĉν). If
adversary is semi-honest then the simulation is perfect, otherwise the statistical difference betweenĉ and the real view
is less or equal thanν2ℓ/(2Φ(n)). ⊓⊔

All well-known homomorphic public-key cryptosystems [El 84,OU98,NS98,Pai99,DJ01,DJ03] have the required
properties. In all practical situations, we can assume thatε′ = 2−80 and ν ≤ 240, then a2120-roughn is suffi-
cient for Boolean inputs. IfPKC is Paillier’s cryptosystem thenn is

√
n/2-rough, and consequently, one can take

ℓ ←
⌊

1
2 · log2 n− log2 ν − log2(1/ε

′)
⌋
. For log2 n = 1024 andε′ = 2−80, we getℓ = ⌊433− log2 ν⌋ ≥ 393.

Finally, Protocol 1 can be straightforwardly modified to transferℓ′ > ℓ bits by repeating the second message of the
proposed oblivious transfer protocol⌈ℓ′/ℓ⌉ times.

Corollary 1. Let ε, ε′, τ and ℓ be as in Thm. 2, and letS ⊆ M be an arbitrary public index set. There exists an
(ε, τ −O(1); ε′)-private AH two-messageOTS

ℓ protocol with communicationΘ(ν).

Proof. As in Prot. 1, but letcj be a random encryption ofExt((α∗ − hj)U(Zn), U(2ℓ ·ZT )) + βj for hj ∈ S, and set
mt← (cj)j∈S . ⊓⊔

Given an arbitraryCPIRνℓ′ (resp.,CPIRS
ℓ′) protocol withℓ′ > log ♯C, one can construct an efficientOTνℓ (resp.,OTS

ℓ )
protocol as follows: as in Protocol 1, Alice sendsEncpk(α; r) to Bob, who computes the valuesci as in Prot. 1 (resp.,
Cor. 1) but without sending them to Alice. In parallel, Aliceuses theCPIRνℓ′ protocol to retrievecα. In particu-
lar, [Lip05] gives us the next result.

Corollary 2. Let ε′ and ℓ be as in Thm. 2. LetPKC be a length-flexible AH cryptosystem [DJ01] that satisfies the
same properties as required in Thm. 2. LetS ⊂ M be an arbitrary public index set with♯S = ν. There exists an AH
two-message(ε · log2 ν, τ −polylog(ν); ε′)-privateOTS

ℓ protocol with communicationΘ(k · log2 ν+ ℓ · log ν), where
k is a possibly non-constant security parameter.

Proof. Correctnessis obvious.Alice-privacy is the same as in Lipmaa’s computationally-private information retrieval
protocol from [Lip05].Bob-privacyfollows from Thm. 2. ⊓⊔
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Lipmaa [Lip05] proved that applying the Aiello-Ishai-Reingold oblivious transfer protocol results in an oblivious
transfer protocol with log-squared communication if one assumes both thatPKC is IND-CPA secure and the Decisional
Diffie-Hellman problem is hard. Thus, Cor. 2 achieves the same result but under a weaker security assumption.

For a non-length-flexiblePKC, application of Cor. 1 to theCPIRνℓ protocol from [Ste98] gives anOTνℓ protocol
with communicationΘ(ℓ·2

√
log ν+k·

√
log ν ·2

√
log ν). Moreover, due to [GR05b], there exists a non-AH two-message

OTS
ℓ protocol with communicationΘ(log ν + ℓ+ k), assuming both thatPKC is IND-CPA secure and thatΦ Hiding

is hard.
On the optimality of the extractor. Recall the notation from Sect. 3. Assume thatε ≫ 1/n andε < 1 − 1/n. All
distributionsX ∈ D have at leastlog2 Φ(n) bits of entropy,H(X) ≥ log2 Φ(n), and for someX ∈ D, H(X) =
log2 Φ(n). Thus for everyX ∈ D, for Ext(X,U(S)) to beε-close toU(Zn) and thus to haveH(Ext(X,U(S))) ≥
log2 n+ 2

n · log2 n, we need thatH(U(S)) ≥ log2 n+ 2
n · log2 n− log2 Φ(n). Thus, for any fixedx and in particular

for x = 0, H(Ext(x, U(S))) ≥ log2 n + 2
n log2 n − log2 Φ(n). This means that if we transmit any elementz from

Zn that is masked by an output ofExt(X,U(S)) for someX ∈ D then one can only recoverΦ(n) − 2
n log2 n bits

of z. We defer a longer discussion of the optimality to the full version of the paper. Therefore,Ext is quite close to
the optimal. This is remarkable especially sinceExt is so lightweight. (Compare this to the elaborated constructions
in [GRS04,GR05a].)

5 AH Two-Message Protocol for Conditional Disclosure of Secrets

For the purposes of the current paper, a conditional disclosure of secrets protocolCDSS
ℓ [AIR01] for a public setS

andℓ-bit inputs is a (return-to-sender) two-message protocol for the next functionality:f(α, β) = β if α ∈ S and
f(α, β) is a random element from someβ-independent distribution otherwise. If theCDSS

ℓ protocol is AH then Bob
also obtains an encryption ofα. The next result is straightforward:

Corollary 3. Let Π be a(ε, τ ; ε′)-private two-message protocol forOTS
ℓ . Then there exists a(ε, τ ; ε′)-private two-

message protocolΠ′ for CDSS
ℓ . If Π is AH thenΠ′ is AH.

Proof. Follows from Cor. 1 and Cor. 2 by executingOTS
ℓ with databaseβ′, whereβ′[i] = β for all i ∈ S. ⊓⊔

As previously, one can baseCDSS
ℓ on the Gentry-Ramzan oblivious transfer protocol, given that the AH property is not

required. Therefore, every public (efficiently computable) setS has a CDS protocol withΘ(log ♯S) communication.
However, because Bob’s computation in anOTS

ℓ protocol is linear, then Bob’s computation in the resultingCDSS
ℓ

protocol is also linear in♯S. In some of the protocols,♯S = 2ℓ for ℓ defined as in Thm. 2, and thus Bob’s computation
becomes prohibitive.

Next, we will show how to use explicit circuit evaluation to construct, given any publicS ⊆ Z2ℓ , an AH two-
message protocol forCDSS

ℓ that is often computationally much more efficient. Namely, we specify the predicate
[α ∈ S] by a set of constraints on Alice’s inputα, where for the sake of efficiency,α might be broken down to several
smaller inputs—e.g., bits—so that from them, Bob can recover the original encrypted inputs by using homomorphic
operations. The constraints can be written down as a suitable monotone Boolean formulaΨS with affine zero tests,
where we allow Boolean operations∧ and∨ and affine zero tests[

∑
aiαi

?

=b]. Here, the∨ gates may have an arbitrary
fan-in. We require thatΨS(x) = 0 if and only if x 6∈ S. We motivate the next discussion with the problem where
S is equal toGTµ(y) := {x ∈ {0, 1}µ : x > y}, for µ-bit strings that are split intoµ one-bit inputs. Writingx =
(xµ−1, . . . , x0),

ΨGTµ(y)(x) :=([xµ−1
?

=1] ∧ [yµ−1
?

=0])∨
([xµ−1

?

=yµ−1] ∧ [xµ−2
?

=1] ∧ [yµ−2
?

=0])∨
([xµ−1

?

=yµ−1] ∧ [xµ−2
?

=yµ−2] ∧ [xµ−3
?

=1] ∧ [yµ−3
?

=0]) ∨ · · · ∨
([xµ−1

?

=yµ−1] ∧ [xµ−2
?

=yµ−2] ∧ · · · ∧ [x1
?

=y1] ∧ [x0
?

=1] ∧ [y0
?

=0]) .

Circuit evaluation is done as follows (see Fig. 1, left): Construct a circuit where every internal node implements a
Boolean operation and every leaf implements an affine zero test. Process the circuit recursively from top to bottom.
Assignβ ∈ {0, 1}ℓ to the output wire of the circuit. For every∧ gateψ with secretβψ assigned to its output wire,
pickβψ,1 ← U({0, 1}ℓ) andβψ,2 ← βψ−βψ,1 mod 2ℓ, and assignβψ,1, βψ,2 to the two input wires ofψ. For every
∨ gate, just push the output secret downwards. The resulting AH two-messageCDSS

ℓ protocol consists of the three
phases:
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∨

∧ ∧
∧3
i=1[xi

?

=yi] ∧ [x0
?

=1] ∧ [y0
?

=0]

∧3
i=2[xi

?

=yi] ∧ [x1
?

=1] ∧ [y1
?

=0]

[x3
?

=y3] ∧ [x2
?

=1] ∧ [y2
?

=0]
∧

∧[x3
?

=y3]

∧

∧[x3
?

=y3]

[x2
?

=1] [y2
?

=0]

∧[x3
?

=y3]

∧[x2
?

=y2]∧[x2
?

=y2]

[y0
?

=0][x0
?

=1]

[x1
?

=1] [y1
?

=0]∧[x1
?

=y1]

[x3
?

=1]

∨
[x3

?

=1] ∧ [y3
?

=0]

ββ

β

β

[y3
?

=0]

β31β30β21β20β10

β211β210β111β110

β00 β01 β11

β010 β011

β0110 β0111β1110 β1111

β01111β01110

ββββ

β β

Fig. 1. Circuit for GT4(y): unoptimised and optimised versions

Query phase: For everyi ∈ [µ], Alice transfers one ciphertextPi ← Encpk(αi;U(R)).
Transfer phase: For every leafψ with the corresponding affine zero test[

∑µ
i=1 aiαi

?

=b] and output secretβψ, Bob
replies with a random encryption ofExt((

∑µ
i=1 aiαi − b)U(M), U(2ℓ · ZT )) + βψ as in Protocol 1.

Recovery phase:Alice decrypts ciphertexts that correspond to the correct branch in the circuit, and recoversβ (mod-
ulo 2ℓ).

Thus, Alice transfersµ ciphertexts and Bob transfersL(ΨS) ciphertexts, whereL(ΨS) is the number of affine zero
tests. Clearly, this protocol is correct. Following our motivating example,ΨGTµ(y) (see Fig. 1, left), we get a circuit

with L(ΨGTµ(y)) = µ(µ+ 3)/2, and aCDS
GTµ(y)
ℓ protocol with communicationµ(µ+ 5)/2 ciphertexts.

We can do better by allowing leaf gates that implement a conjunction of several zero tests. In such a circuit,β
is propagated to the bottom as previously. The query phase remains unchanged. Letψ be an arbitrary leaf gate that
corresponds to the conjunction ofvψ different zero tests,

∧vψ
j=1[

∑µ
i=1 aijαi

?

=bj]; letβψ be the output secret ofψ. In the
transfer phase, Bob replies withcψ, a random encryption ofExt(

∑vψ
j=1(

∑µ
i=1 aijαi − bj)U(M), U(2ℓ · ZT )) + βψ.

Unless all the affine zero tests ofψ are satisfied, Alice learns nothing fromcψ; in particular, Alice does not learn
which zero tests fail. We call this protocolCircuitCDSS

ℓ . More precisely, letL2(ΨS) be the number of leaves (that is,
of conjunctive affine zero tests) in the latter circuit, and let size2(Ψ(S)) be its size.

Theorem 3. LetΨS : {0, 1}µ → {0, 1} be a public monotone Boolean formula with conjunctive affinezero tests. Let
PKC be an AH public-key cryptosystem that satisfies the same requirements as required in Thm. 2, andExt(m, s) =
m + s mod n be again the seeded randomness extractor withℓ ← ⌊log2 Φ(n)− log2 L2(ΨS)− log2(1/ε

′) + 1⌋.
Then theCircuitCDSS

ℓ protocol is(µ · ε, τ −O(1); ε′)-private.

Proof. Correctnessis clear.Alice-privacy is also straightforward, since Bob sees onlyµ encryptions of0’s and1’s.
Bob-privacy: the simulatorSim works as follows. First, it computes the secret keysk corresponding topk. Then, it
decrypts all inputsPi and obtains the corresponding inputα. Sim propagatest = f(α, β) down to the leaf level and
computes the corresponding Bob’s second messages. If Aliceis honest then the simulation is perfect. Otherwise, the
statistical difference between the replies is at mostε′ as in the proof of Thm. 2. ⊓⊔

The communication ofCircuitCDSS
ℓ is µ+ L2(ΨS) ciphertexts, Alice’s worst-case computation isΘ(µ+ size2(ΨS))

group operations and Bob’s worst-case computation isO(µ · L(ΨS)) group operations. In particular, this means that
if ΨS has a polynomial inlog2 ♯S number of gates thenCircuitCDSS

ℓ has computation and communication that is
polynomial in log2 ♯S. Therefore, all languagesS in P/poly have a family ofCDSS

ℓ protocols with polynomial
communication and computation. Since all affine transformations can be presented by using polynomial circuits then
theCircuitCDSS

ℓ protocol has polynomial resources if and only ifS ∈ P/poly. This can be compared to the fact that
it is only known how to compute on ciphertexts functions fromNC1 [SYY99].

The use of conjunctive affine zero tests helps one often decrease the degree of the polynomial in question. Going
back to the motivating example,L2(ΨGTµ(y)) = µ. (See Fig. 1, right. Here, Bob conditionally transfers the same
secretµ times.) Therefore, under the same assumptions as in Thm. 3, there exists an(µ · ε, τ − O(1); ε′)-private AH
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two-message protocol forCDS
GTµ(y)
ℓ , with the communication of2µ ciphertexts, logarithmic (in♯S = 2µ) Alice’s

computation and log-squared (in♯S = 2µ) Bob’s computation.
Finally, note that theCircuitCDSSℓ protocol per se can also be used on top of the additive versionof El Gamal

public-key cryptosystem.

6 Applications of CDS Protocol

Multiplicative relationships and polynomial arithmetic. A recent paper by Kissner and Song on privacy-preserving
set operations [KS05] but also several previous papers like[FNP04,KM05] use AH two-message protocols in a setting
where one encrypts the coefficients of some polynomials, where the important quantity is the set of roots of this
polynomial. For example, ifS1 is the set of roots off1(x) andS2 is the set of roots off2(x) thenS1 ∪ S2 is the set
of roots off1(x) · f2(x). In such situations one has the next problem: givenEncpk(x; ·), Encpk(y; ·) andEncpk(z; ·)
for x, y ∈ {0, 1}ℓ/2 andz ∈ {0, 1}ℓ, encrypted by Alice, Alice must obtain the correct answer only if z = xy. Now,
by the long multiplication rule,z = xy if and only if z =

∑ℓ/2−1
i=0 xyi2

i. Therefore,Ψ[z=xy] is a conjunction of the
next tests, wheredi are auxiliary encrypted values: (1)zi ∈ {0, 1} for i ∈ Zℓ, (2) xi ∈ {0, 1} for i ∈ Zℓ/2, (3)

[(yi = 0 ∧ di = 0) ∨ (yi = 1 ∧ di = x)] for i ∈ Zℓ/2, and (4)[z =
∑ℓ/2−1

i=1 di · 2i], wherez ← ∑ℓ−1
i=0 zi · 2i and

x ←
∑ℓ/2−1

i=0 xi · 2i. Thus, Alice’s communication is2.5ℓ ciphertexts and Bob’s communication isL2(Ψ[z=xy]) ≤
4ℓ+ 1 ciphertexts. Therefore, the total communication is6.5ℓ+ 1 ciphertexts. But then we can also construct a CDS
transformation for the multiplication of polynomials, since theith coefficient offg is a sum of the products of the
coefficients off andg. Then, e.g., we can verify that for some setsX , Y andZ, whereX , Y andZ are represented as
the set of roots of some polynomials, it holds thatX ∪ Y = Z.
Two-message millionaire’s protocol with logarithmic communication. A slight modification ofCircuitCDSS

ℓ pro-
tocol of Sect. 5 can be used in the case of some private setsS that depend onβ. More precisely, assume that Alice has
a private inputα and that Server has a private inputβ ∈ {0, 1}ℓ and that theCircuitCDSS

ℓ protocol is written down
in a disjunctive normal form over affine zero tests,ΨS =

∨λ
i=1

∧ni
j=1[

∑µ
i=1 aiαi

?

=b]. Now, modify theCircuitCDSS
ℓ

protocol as follows. Fix apublic valuet (for example,t = 0) and push it down the circuit. For every leaf gateψ, let
Bob to computecψ as previously, but return the valuescψ in a random order. Be careful to do that so that the number
of accepting leaf gates is always either0 (if ΨS = 0) or some non-zero constant (ifΨS = 1); this can be done effi-
ciently for many interesting setsS. Therefore, by testing that at least one of the ciphertextscψ encrypts0, Alice gets
to know whetherΨS(α, β) is true or not. SinceL2(ΨGTµ(y)) = µ, we get a new two-message protocol for millionaire’s
problem ofµ-bit strings that is secure against malicious adversaries,with communication of2µ ciphertexts, Alice’s
computationΘ(µ) and Bob’s computationΘ(µ2), assuming only that the underlying AH public-key cryptosystem is
IND-CPA secure.
Conditional oblivious transfer. A conditional oblivious transfer (COTS

ℓ ) protocol [DOR99] is a protocol where Bob
has a private input(β1, β2). At the end of the protocol, Alice obtainsβ2 only if ΨS(α, β1) = 1 for some public setS
of valid Alice’s and Bob’s input pairs, and no information, otherwise. To implementCOTS

ℓ , we use the same idea as
in the case of the millionaire’s problem with only one modification: the secret to push down the circuit ist = 0L||β2,
where sayL = 80. This approach works for setsS that have an efficient implementation for formulaΨS .
Electronic voting and auctions without random oracles.Conditional disclosure of secrets can also be used to
guarantee correctness in the case of threshold AH two-message protocols. As in [BGN05], consider an electronic
voting protocol where every voter sends an AH encryptionci ← Epk(vi;U(R)) to talliers. We assume that the protocol
is correct ifvi ∈ Valid for some publicly known setValid; this is true in typical AH e-voting protocols [DJ01]. Now,
in the original protocols, it is usually assumed that every voter accompanies his or her vote with a non-interactive
zero-knowledge proof thatvi ∈ Valid. Instead, the talliers can jointly apply the CDS protocol, with output secret0,
to ci (this can be done very efficiently ifValid is the set of powers of a fixed integer) and then threshold-decrypt the
result. If the plaintext is equal to0, talliers accept the vote as correct. Of course, every step of the talliers has to be
accompanied by a zero-knowledge proof of correctness (to each other and to every possible outside observer), but
since the number of talliers is significantly smaller than the number of voters, this is doable in practice. See [BGN05]
for discussion. As a result, we get a voter-private, universally verifiable and robust e-voting scheme only assuming that
there exists an IND-CPA secure AH public-key cryptosystem (and in particular, without using random oracles), where
the voters have to only perform one encryption. One can use the same trick to eliminate the need for random oracles in
the AH electronic auction scheme of [LAN02] and in many otherprotocols of similar vein. Compared to the protocols
from [BGN05], our protocols are more efficient in the case of multi-candidate elections (this is since [BGN05] allows
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Common parameters:ℓ, T :=
¨
2−ℓn

˝
, PKC = (Gen, Enc, Dec), pk, Π, Πcds.

Private input: Alice has inputssk andα = (α1, . . . , αµ), Bob has inputsβ = (β1, . . . , βν).
Private output: Alice obtains(δ1, . . . , δλ) = f(α, β) whereδj ∈ {0, 1}ℓ.

Alice’s first message:
For i ∈ [µ]: Let Pi be Alice’s firstΠ-message on inputαi.
Send(P1, . . . , Pµ) to Bob.

Bob’s second message:
For j ∈ [λ]:

Computebtj ← U(Zn−2ℓ ) andtj ← btj mod 2ℓ.
Compute the set of ciphertexts{cij} from the output secrettj as inΠcds.
Compute∆j as inΠ.
Set∆′

j ← ∆j · Encpk(tj ; ∗) for an arbitrary∗ ∈ R.
Send(∆′

1, . . . , ∆
′
λ; {ci1} , . . . , {ciλ}) to Alice.

Recovery:
For j ∈ [λ]: Alice recoverstj from (α, mq, {cij}) by using the recovery algorithm ofΠcds.
She recoversδ′j from (α;mq; ∆′

j) by using the recovery algorithm ofΠ.
She setsδj ← δ′j − tj mod 2ℓ.
Return(δ1, . . . , δλ).

Protocol 2: Private computation of a functionf in malicious model by using additive CDS transformation

to efficiently decrypt only if the plaintext is small) and is based on an incomparable (but may be a somewhat more
standard) security assumption.

7 CDS Transformation

In this section, we present a generic transformation from private in the semi-honest model AH two-message protocols
to private in the malicious model AH two-message protocols.It can be called as acompilersince this transformation
can be constructed in a relatively automatic manner. It can also be used as a subprotocol in many-message protocols.
More precisely, fix an AH two-message protocolΠ. Denote Alice’s input byα = (α1, . . . , αµ), Bob’s input by
β = (β1, . . . , βν) and Alice’s output byδ = (δ1, . . . , δλ). Here, w.l.o.g., we assume thatαi, βi andδi belong to
{0, 1}ℓ, whereℓ is defined as in Thm. 2. Larger inputs and outputs can be handled straightforwardly. The query phase
consists of sending the elementsEncpk(αi; ri) and the transfer phase consists of sending the elementsEncpk(δj ; r

′
j)

for someri andr′j . We assume thatα, β andδ have already been modified to facilitate efficient circuit evaluation. For
example, in the case ofGTµ(y), everyαi is a bit. Assume that the inputα of an honest Alice belongs to some publicly
known setValid that in particular does not depend on the value ofsk. Most of the known AH two-message protocols
have this property, Chang’sOTνℓ protocol [Cha04] being one of the few exceptions. To simplify the implementations,
we assume that ifα 6∈ Valid then for any input value of an honest Bob,f(α, β) is defined to be a uniformly random
value from some fixed set.

LetΠ an AH two-message protocol for functionf with λ outputs from{0, 1}ℓ, and letΠcds be an AH two-message
protocol forCDSS

ℓ , whereℓ is as defined in Thm. 2. The idea is to compose an instantiationof Π with an instantiation
Πcds, on the same inputsα andβ, as follows. Assume that the query phase of bothΠ andΠcds is the same; this is
possible since in the previously constructed AH two-message protocol forCDSValid

ℓ , Alice learns a secrett ∈ {0, 1}ℓλ
if and only if α ∈ Valid, and Bob learns the corresponding ciphertextsPi = Encpk(αi;U(R)). Therefore, in the
transfer phase, Bob can use the ciphertextsPi as input to an AH two-message protocolΠ that evaluatesf . Finally,
Bob masks the outputs(∆1, . . . , ∆λ) of Π with sub-secrets(t1, . . . , tλ), ti ∈ {0, 1}ℓ, and sends the corresponding
encryptions∆i · Encpk(ti;U(R)) to Alice. Thus, Alice can peel off the masksti and recover the outputs if and only if
her inputs are in the correct range.

Theorem 4 (Additive CDS transformation). Fix an AH public-key cryptosystemPKC = (Gen,Enc,Dec). Fix a
concretevalid secret and public key pair(sk, pk). Let Πcds be an(ε, τ ; ε′1)-private AH two-message protocol for
CDSValid

ℓ . LetΠ be an(ε, τ ; ε′2)-private AH two-message protocol for computingf in the semi-honest model, such that
Πcds andΠ have a common algorithm for computing Alice’s first message.Then Prot. 2 is an(ε, τ−O(1); ε′1+ε′2+ε

′
3)-

private AH two-message protocol for computingf in the malicious mode, whereε′3 = 2ℓλ/n.
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Proof. Correctness: If α ∈ Valid and both parties follow the protocol then recovery phase of theCDSValid
ℓ protocol

is successful, Alice obtainŝtj mod 2ℓ and consequently the correct end-result, as there are no modular wrappings.
Alice-privacy: Consider an adversaryB∗ that obtains advantageε against Prot. 2;B∗ can then used to break theΠcds

protocol, since the query phase is exactly the same. For the same reason, Prot. 2 cannot be more Alice-private than
Π. Bob-privacy: Clearly,Π′ is a parallel execution of two statistically Bob-private AHtwo-message protocols. (The
following does not necessarily hold in the case of computationally Bob-private protocols.) Therefore,Π′ is an(ε′1+ε

′
2)-

Bob-private AH two-message protocol for̂f defined aŝfj(α, β) = (δj + tj , tj), if α ∈ Valid, andf̂j(α, β) = (δj +
tj ,⊥), if α /∈ Valid. The claim follows astj are almost random plaintexts andε′3/λ = Dist (U(Zn−2ℓ)‖U(Zn)) =
2ℓ/n. ⊓⊔
With a slight modification (settinĝtj ← U(Zn) and using the CDS on a2ℓ+1 bit secrettj where one bit indicates
that tj ≥ n − 2ℓ), one can remove the addendε′3. Note that this theorem does not requirePKC to be an AH public-
key cryptosystem; with a small modification, the same proof goes through also with a multiplicatively homomorphic
public-key cryptosystem.
Optimisations.The communication overhead of the CDS transformation is linear in the number of outputs. Therefore,
it is not advantageous to use the transformation for functions with many outputs (e.g., private matrix operations).
However, if computational Bob-privacy is sufficient, one can use an arbitrary pseudo-random functionprf to stretch
the transformation’s secret to privately implement the function f̂ wheref̂j(α, β) = (δj + prf(t, j), t) if α ∈ Valid

andf̂j(α, β) = (δj + prf(t, j),⊥) if α /∈ Valid, for a single random keyt. Such a protocol remains computationally
Bob-private as long asprf is secure.
An example application: private scalar product protocol.Assume that Alice has a Boolean vectorα of dimension
µ and Bob has a Boolean vectorβ of the same dimension. In aprivate scalar product protocolprotocol, Alice’s private
output isδ, such thatδ =

∑µ
i=1 βiαi, and Bob has no private output. It is simple to compute this functionality in the

semi-honest model. Assume thatci is a random encryption ofαi. Then, Bob sends∆ =
∑µ

i=1 c
βi
i · Encpk(0;U(R))

to Alice. Alice decrypts∆. It is straightforward to apply the CDS transformation to get a protocol that is Bob-private
in the malicious model. This protocol also computes the private set intersection. Similar ideas can be used to construct
private protocols for many other related problems (e.g., matrix-to-vector multiplication and other similar problems
from linear algebra).

8 Comparison with Related Work

A well-known alternative to the additive CDS transformation is to let Alice to prove in zero-knowledge thatmq

encrypts a value fromValid; this means that either the resulting protocol takes at least three messages or that the
protocol is only secure in the common reference string (or random oracle) model. As we have shown, one can use
a mixture of arithmetic and Boolean formulas to construct anefficient AH two-message protocol forCDSS

ℓ . Similar
efficiency can be achieved by using non-interactive zero-knowledge proofs, but compared to them, the additive CDS
transformation uses simpler basic components. The difference in efficiency comes from the use of a oblivious transfer
instead of a zero-knowledge disjunctive proof [CDS94]: thefirst can be done in the complexity-theoretic model very
efficiently, while non-interactive zero-knowledge proofsare not possible in the complexity-theoretic model, and are
somewhat more complex to implement in the random oracle model.

Compared to the CDS transformation from [AIR01] applied together with multiplicatively homomorphicPKC,
additive CDS transformation is applicable in a wider setting since there exist many efficient protocols that are crucially
based additively homomorphic public-key cryptosystems. Using the transformation from [AIR01] in these cases is
either impossible or requires one to rely on the Decisional Diffie-Hellman assumption (recall Cor. 2) in addition to the
assumption thatPKC is IND-CPA secure.

Recently, Boneh, Goh and Nissim [BGN05] proposed aPKC where one can efficiently compute2-DNF formulas
on the ciphertexts. Given such aPKC, it is straightforward to define a CDS protocol for two-element sets. Unfortu-
nately, theirPKC has two unsuitable properties. First, to decrypt a ciphertext, one has to compute discrete logarithm
(in this sense, their cryptosystem is similar to the additive version of the El Gamal cryptosystem). Therefore, while
their “input verification gadget” can be used as a CDS protocol, their PKC is only usable if the output values of the
protocol are not too large. Second, theirPKC has composite plaintext order. Paradoxically, slow decryption actually
makes their protocols secure modulo a composite integer. However, in the case when one would have a2-DNF homo-
morphic public key cryptosystem with efficient decryption that works over plaintext groups of composite order, one
should use an encoding method similar to ours.
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