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Abstract. During a conditional disclosure of secrets (CDS) protocol for set S, the receiver obtains sender’s
secret iff receiver’s input to the protocol belong to S. By constructing a new seeded randomness extractor, we
extend the CDS protocol to work over additively homomorphic cryptosystems and construct a CDS protocol for
every set from NP/poly. Some of the proposed applications are a oblivious transfer protocol with log-squared
communication and a millionaire’s protocol with logarithmic communication. We show how to implement
private, universally verifiable and robust multi-candidate electronic voting so that all voters only transmit an
encryption of their vote. The only hardness assumption in all these protocols is that the underlying public-key
cryptosystem is IND-CPA secure.
Keywords. Conditional disclosure of secrets, oblivious transfer, two-party computation.

1 Introduction

In a homomorphic two-message protocol, the receiver forwards some homomorphically encrypted ciphertexts to
the sender who, after computing on ciphertexts, sends some ciphertexts to Calista, who can be either the receiver
or a coalition of third parties for decryption. The underlying cryptosystem may be either multiplicatively homo-
morphic (MH) like Elgamal or additively homomorphic (AH) like Paillier. MH two-message protocols—that run
over a MH cryptosystem—often have limited applicability, because there the receiver usually has to compute a
discrete logarithm to recover the protocol outcome. Thus, MH two-message protocols are usually only feasible
if the protocol outcome is “small” (e.g., in two-candidate e-voting protocols). If instead an AH cryptosystem
PKC [Pai99,DJ01] is used then one can omit the costly discrete logarithm computing step. Thus, AH two-message
protocols—that run over an AH cryptosystem–can used when one needs exponentially larger output space and
thus also, input space. Efficient AH two-message protocols exist for computationally-private information retrieval
(CPIR, [AIR01,Ste98,Lip05]), millionaire’s problem [BK04], and various privacy-preserving data mining tasks
(e.g., private scalar product [WY04,GLLM04], private set intersection cardinality).

Since in two-message homomorphic protocols, only one party obtains an output, one is only interested
in relaxed-security—i.e., receiver-privacy and sender-security in the malicious model—, leaving full receiver-
security to an upper level protocol. See, e.g., [AIR01,FIPR05] for a fuller explanation. Computational receiver-
privacy of an AH two-message protocol in the malicious model follows from the IND-CPA security of PKC. How-
ever, if the receiver encrypts invalid inputs then he either can obtain extra information or attack the correctness of
the protocol. To avoid this, the receiver is usually required to prove in zero-knowledge that his inputs are valid.
Unfortunately, this either increases the number of messages or requires a security model with non-complexity-
theoretic assumptions, e.g., common reference string (CRS) or random oracles. While CRS is a plausible assump-
tion in protocol design, the current non-interactive zero-knowledge protocols for NP in the CRS model are always
not really practical.

Conditional disclosure of secrets CDSS` [GIKM00,AIR01], also known as input verification gadget [BGN05],
offers an alternative. In the CDSS` protocol, Calista obtains sender’s input iff the receiver encrypted an element
from the set S ∈ {0, 1}`. In parallel and in another protocol, the sender uses this secret to mask the output

? Third public version. Compared to the second version (21.11.2005), this version has better readability. The most important
additions: the use of Elliptic Curve Method of factoring to achieve additional security, and the unified explanation of several
protocols by using a forked compostion together with a communication-efficient CPIR, see Thm 2.
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values, sent to Calista. The resulting two-message protocols [AIR01,BGN05] are relaxed-secure in the complexity-
theoretic model. However, the Aiello-Ishai-Reingold CDSS` protocol [AIR01] works only in conjunction with an
IND-CPA secure homomorphic public-key cryptosystem PKC that has plaintext space of prime order n such
as Elgamal [Elg85], while almost all known AH cryptosystems have a composite n with large prime factors. The
Boneh-Goh-Nissim CDSS` protocol [BGN05] uses a 2-DNF homomorphic PKC that works on groups of composite
order, and allows the sender to compute-on-ciphertexts any quadratic functions of the plaintexts. Paradoxically,
their CDS protocol is secure exactly because their PKC has inefficient decryption: also here, one has to compute
a discrete logarithm to decrypt.

Our contributions. All previous CDS protocols require protocol’s output space to be small. To overcome this,
we construct an AH two-message CDS protocol. Due to the state of the art it has to work over plaintext groups of
composite order. More precisely, the new CDS protocol can be used in conjunction with an IND-CPA secure PKC

that satisfies substantially weaker algebraic properties than required by [AIR01,BGN05]; in particularly, PKC has
to be (1) AH: this is weaker than the property required by [BGN05], and (2) the smallest prime factor spf(n)
of n has to be sufficiently large: this is weaker than the property required by [AIR01]. Let us call a PKC that
satisfies (2) rough. Additionally, we need that the correctness of the used public key is verified. This aspect will be
thoroughly studied in Sect. 9. Briefly, we can either assume (a) the PKI model where the sender has a certified copy
of receiver’s public key, (b) that the receiver and the sender execute the key correctness proof once, and the same
key is thereafter used in many protocols, or (c) the ECM factoring method is used online to verify that the public
key is sufficiently rough. Thus, one can use standard model but that incurs either some extra communication
or computation. We stress that most of the previous papers on AH homomorphic protocols either explicitly or
implicitly assume (a) and/or (b), we are just formalizing the—given the current state of the art—inevitable.

Our construction consists of several steps. In a disclose-if-equal (DIE) protocol, the receiver obtains sender’s
private input β if his own private input α is equal to some fixed public constant b. We construct an AH two-
message AH protocol for DIE that is crucially based on a randomness extractor for the distribution family
D = {mZn : m ∈ Zn ∧m 6= 0}, i.e., for the family of uniform distributions of all nonzero subgroups of Zn.
Functionally, it is sufficient for the extractor to deterministically extract the lower order bits of its input. The con-
ceptual difficulty is that the extractor needs to be computable-on-ciphertexts, i.e., to be an affine map modulo n,
while bit extraction is not affine. Similarly, most of the known deterministic extractors for any non-trivial distri-
bution families are not affine. Instead, we design an affine seeded extractor Ext for D, that we also show—in the
full version—to be close to optimal. This is the crucial step in our construction that takes care of the composite
group order; the next steps work with any AH cryptosystem given the existence of such extractor.

To simplify the presentation of the next steps, in Sect. 3 we define a forked composition of two-message
protocols. In a forked composition of several protocols with the same first message, the sender computes a database
of the second messages of all composed protocols, and then the receiver uses a communication-efficient two-
message CPIR protocol to recover the database elements he needs to obtain the protocol outcome. The rest of
our protocols are all forked compositions of suitable DIE protocols and in particular can be constructed on top of
the extractor Ext and of a communication-efficient two-message CPIR. Such a unifying framework is important
because it lets us to derive some of the subsequent proofs automatically from the general security proof of forked
compositions.

Then, using circuit evaluation and a suitable forked composition of DIE protocols, we show that every S ∈
NP/poly has a CDSS` protocol with polynomial resources. In particular, this protocol is often much more efficient
than proving in non-interactive zero-knowledge that receiver’s input belongs to S. Finally, we propose the CDS
transformation that transforms any private AH two-message protocol Π to a relaxed-secure AH two-message
protocol. The CDS transformation is basically a forked composition of Π and a CDS protocol. The sender masks
the output of Π with secrets, corresponding to all different receiver’s inputs of Π . Thus, the receiver recovers any
of the outputs only if all of her inputs belong to the valid input sets. The resulting AH two-message protocol is
efficient whenever the valid input set S has an efficient CDS protocol and the number of outputs λ is “small”.
We construct a computationally sender-secure protocol that is communication-efficient for larger values of λ.
All constructed protocols are relaxed-secure in the PKI model assuming only that the underlying IND-CPA AH
cryptosystem is rough.
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Applications. The CDS protocol has been largely overlooked in literature, with only a couple of published pa-
pers [GIKM00,AIR01,BGN05] more than mentioning it, and with many papers using zero-knowledge proofs
where the CDS protocol can provide a simpler solution. We propose several interesting applications that demon-
strate the power of the new tools. The CDS protocols from [AIR01,BGN05] can be applied in most of these
settings but often with an exponentially smaller output space. First, we use the forked composition to construct
a CPIR to OT transformation. Based on that, we propose an OT protocol with log-squared communication. (See
Thm. 6.) Second, in Sect. 7, we construct a private millionaire’s protocol with logarithmic communication. Third,
we construct efficient private protocols for a few other tasks like conditional OT and multiplicative relationship
(see Sect. 7) and scalar product (see Sect. 8). Finally, we show how to construct efficient threshold AH protocols
for e-voting and e-auctions. (See Sect. 7.) All new protocols are round-optimal (in the PKI model), computa-
tionally receiver-private and statistically sender-secure solely under the assumption that the underlying IND-CPA
secure AH cryptosystem PKC is rough.

Due to the space limitations, all proofs have been moved to the Appendix.

2 Preliminaries

For an integer n, let [n] := {1, 2, . . . , n} and let spf(n) be the smallest prime divisor of n. We say that n is p-rough
if spf(n) ≥ p. The statistical difference of two distributions D1 and D2 over a discrete support Z is defined as
d (D1,D2) := maxS⊆Z |Pr[D1 ∈ S]−Pr[D2 ∈ S]|. D1 and D2 are ε-close, D1

ε∼ D2, if d (D1,D2) ≤ ε. For an
arbitrary set Z, U(Z) denotes the uniform distribution over it; we sometimes identify Z with U(Z). A quasigroup
(Z, ◦) is a set with a binary operation ◦ : Z2 → Z, such that for every a ∈ Z, a ◦ U(Z) = U(Z) = U(Z) ◦ a.
Throughout this paper, we omit the security parameter k by assuming that it is a constant, and that the adversary
works in time that is less than some fixed public constant τ . App. A discusses adversaries that work in time that is
polynomial in input size.

Public-key cryptosystem is a triple PKC = (Gen,Enc,Dec), where Gen is a key generation algorithm that
returns a secret and public key pair (sk, pk), Enc is a randomized encryption algorithm and Dec is a decryption
algorithm such that Decsk(Encpk(m; r)) = m. For a fixed PKC and for a fixed public key, letR be the randomness
space, letM be the plaintext space and let C be the ciphertext space. Denote Encpk(m) := Encpk(m; U(R)). For
an algorithm A, define AdvIND-CPA

PKC (A) :=
∣∣SuccIND-CPA

PKC,1(A)− SuccIND-CPA

PKC,0(A)
∣∣, where SuccIND-CPA

PKC,b(A) := Pr[(sk, pk)←
Gen, (m0,m1) ← A(pk) : A(pk,m0,m1,Encpk(mb)) = 1]; the probability is taken over the coin tosses of Gen,
Enc and A. PKC is (ε, τ)-IND-CPA-secure if AdvIND-CPA

PKC (A) ≤ ε for any τ -time probabilistic algorithm A.
A cryptosystem PKC is homomorphic, if for any key pair (sk, pk), any x1, x2 ∈ M and r1, r2 ∈ R,

Encpk(x1; r1) · Encpk(x2; r2) = Encpk(x1 + x2; r1 ◦ r2), where + is a group operation. We additionally assume
that ◦ is a quasigroup operation—this is necessary for rerandomization—, that M and R are efficiently sam-
plable, and that membership in C can be efficiently verified. PKC is additively homomorphic (AH) ifM = Zn

for some n, and multiplicatively homomorphic, if M is a multiplicative group where computing discrete loga-
rithm is difficult (e.g., a prime-order subgroup of Z

∗
n, or an elliptic curve group). Many well-known homomorphic

cryptosystems [Elg85,OU98,NS98,Pai99,DJ01,DJ03] are IND-CPA secure under some complexity assumptions.
The Elgamal cryptosystem [Elg85] is MH (and the only one whereM has an odd prime order), while other cryp-
tosystems are AH with a usually rough composite n. The Paillier cryptosystem [Pai99] is one of the most efficient
known IND-CPA secure AH cryptosystems, withM = Zn, R = Z

∗
n and C = Z

∗
n2 for an RSA modulus n. Thus,

n is
√
n/2-rough.

3 AH Two-Message Protocols

Let α denote the private input of the receiver and β denote the private input of the sender. A (single output) two-
message protocol between the receiver and the sender implements the following functionality for a public function
f : an unbounded receiver learns f(α, β) and nothing more, and a computationally bounded sender learns no new
information. The dual case of bounded receiver and unbounded sender, considered say in [CCKM00], is out of the
scope for the current paper.
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We state our results in the PKI model, where one assumes that a trusted key generator initially (TKG) runs Gen

for an AH cryptosystem PKC, and then privately sends (sk, pk) to the receiver and pk to the sender. In particular,
the sender knows that pk corresponds to this fixed receiver. This key pair is then possibly used in many different
protocol runs. The PKI model is normal in applications like e-voting. Still, we stress that we use the PKI model
only for the sake of simplicity of security proofs (and for some gain in efficiency). In Sect. 9, we investigate
the conditions under which AH two-message protocols stay secure in the “standard model”, where the receiver
generates (sk, pk) and sends pk to the sender without the presence of any trusted third parties. Next, fix an AH
cryptosystem PKC and a key pair (sk, pk).

During an AH two-message protocol Π , and on input α, the receiver computes q ←
(Encpk(α1), . . . ,Encpk(αµ)), where α = (α1, . . . , αµ), αi ∈ M, for some µ ≥ 1. He sends q to the
sender. Note that one can efficiently verify, given only pk, that q is a valid message because we assumed that
membership test of C is efficient. After that, the sender replies with the second message a = a(β, q) by applying
some randomized algorithm to the received ciphertexts and returning the resulting ciphertexts. We assume that
a = ⊥ if the sender does not have the public key, the sender halts or q is malformed. Finally, the receiver
obtains the answer by decrypting the received ciphertexts and then applying some local algorithm to the resulting
plaintexts. The communication of this protocol is equal to |q|+ |a|.
CPIR/OT protocols. During a 1-out-of-ν CPIR (CPIRν` ) protocol for `-bit strings, the receiver fetches βα from
the database β = (β1, . . . , βν) maintained by the sender, βi ∈ {0, 1}`, so that a computationally bounded
sender does not know which entry the receiver is learning. Clearly, the protocol where the sender just trans-
fers the whole database to the receiver is a CPIRν` protocol. In the case of 1-out-of-ν oblivious transfer, OTν` ,
also sender’s privacy is guaranteed. For a fixed CPIR/OT protocol Γ , let CΓ,i(ν, `′) denote the length of its ith
message. A close-to-polylogarithmic CPIRν` protocol working over a non-length-flexible PKC, was proposed by
Stern [Ste98]. Lipmaa’s CPIRν` protocol [Lip05], based on a length-flexible AH cryptosystem [DJ01], has polylog-
arithmic receiver-computation, linear sender-computation, and communication (log2

2 ν + (s+ 3
2 ) · log2 ν + 1)k =

Θ(k · log2 ν + ` · log ν), where k = Ω(log n) is the security parameter and s := d`/ke. A CPIRν` protocol with
communication Θ(log ν + ` + k) but with superpolylogarithmic receiver-computation was recently proposed by
Gentry and Ramzan [GR05b].
Threshold AH two-message protocols. In threshold AH two-message protocols, the secret key is owned by Cal-
ista, most usually a coalition of servers (here, this coalition could be a coalition of senders). The receiver encrypts
her inputs by using Calista’s public key, forwards ciphertexts to the sender, who applies some operations on them,
and forwards the resulting ciphertexts to Calista who then threshold-decrypts them. This setting is common in the
e-voting and e-auction protocols [CGS97,DJ01,LAN02]. In this case, our methods provide full security [Gol04]
of Calista against a malicious receiver and a semihonest sender. The security definitions carry over.
Relaxed-security of AH two-message protocols. We use “standard” relaxed security definitions (see,
e.g., [AIR01,FIPR05]) where one cares about the correctness, receiver-privacy and sender-security. Since the
sender obtains no output, this is equal to the full security against semihonest sender and malicious receiver. Briefly,
(1) Π is correct if in the case of the honest receiver and honest sender, the receiver always recovers f(α, β); (2)
Π is (ε, τ)-receiver-private, if after seeing the protocol transcript no τ -time adversary can distinguish between
any pair of possible receiver’s inputs with advantage larger than ε (cf. the earlier definition of IND-CPA security),
and (3) sender-security is defined in comparison with the ideal model where there exists a trusted party that gets
the inputs f , α and β, and returns f(α, β) to the receiver. We require in the real implementation that the receiver
does not get any information beyond the value of f(α, β). Due to the structure of AH two-message protocols, to
prove sender’s privacy, it suffices to define a universal non-rewinding probabilistic polynomial-time simulator that
first generates a key pair (sk, pk) ← Gen, sends (sk, pk) to the receiver and pk to the sender, decrypts receiver’s
first message, sends the resulting plaintext tuple α∗ to the TTP, obtains TTP’s output f(α∗, β), and then outputs
a string view∗, such that (sk, pk, view∗) is ε-close to the joint distribution of the key pair and of receiver’s view
of the real protocol. If such a canonical simulator exists, then we say that the protocol is ε-sender-secure. We say
that Π is (ε, τ ;σ)-relaxed-secure if it is correct, (ε, τ)-receiver-private and σ-sender-secure.
General security theorem. For a fixed key pair (sk, pk) and a fixed protocol Π with honest participants, denote
the distribution of queries q byQ(α) and the distribution of answers a byA(α, β). We say thatΠ is σ-simulatable
if there exists an efficient algorithm Σ such that Σ(pk, f(α, β))

σ∼ A(α, β) for any α, β. Intuitively, correctness
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means that the receiver can recover the value f from any correctly formed second message while simulatability
means that correctly distributed second message can be generated from the value of f . It is straightforward to
prove the next general theorem.

Theorem 1. Let Π be an AH two-message protocol in the PKI model that uses an (ε, τ)-IND-CPA-secure AH
cryptosystem PKC. If Π is correct and σ-simulatable then Π is (µε, τ −O(µ);σ)-relaxed-secure.

Thus, computational receiver-privacy of an AH two-message protocol in the malicious model follows from
the IND-CPA security of PKC. Analogously, many threshold AH two-message protocols are secure only in the
semihonest model. To achieve sender-security in the malicious model, one usually designs a protocol that is
sender-secure in the semihonest model and then applies zero-knowledge proofs to assure that the receiver behaves
honestly, i.e., encrypts “valid” inputs. However, this either increases the number of messages or requires a security
model with a common reference string (CRS) or random oracles.
Forked composition. Several of the later defined protocols are what we will now define to be forked compositions
of simpler protocols. We also state a general security theorem for forked composition from which several of the
later theorems follow straightforwardly.

Fix PKC and a key pair. Clearly, if the honest receiver has the same input α in two protocols Π1 and Π2, then
the distribution Q(α) of the first message in the both protocols is the same (it’s just a tuple of encryptions). We
define a forked composition of m protocols Πi, i ∈ [m], with respective receiver-sender input pairs (α, β1), . . . ,
(α, βm), as follows. In (

⊗m
i=1Πi)(α, β1, . . . , βm), the receiver sends q← Q(α) as the first message. The sender

answers with an m-tuple of the second messages ai from all m protocols Πi. The next lemma is straightforward.

Lemma 1. Let m AH two-message protocols Πi for functionalities fi be respectively (ε, τ ;σi)-relaxed-secure in
the PKI model. Then (

⊗m
i=1Πi)(α, β1, . . . , βm) is (ε, τ −O(µ);

∑m
i=1 σi)-relaxed-secure in the PKI model.

Since m can be relatively large and in many cases—as we will show abundantly in the rest of the paper—
the receiver does not need the whole database a = (a1, . . . , am) to recover his private output, we can use an
AH two-message CPIR protocol Γ to transfer only m∗ � m necessary values ai. In practice, it sometimes
suffices to have m∗ = 1. Applying Lem. 1 again on forking-composition of (

⊗m
i=1Πi) and Γ , denoted as

(
⊗m

i=1Πi)Γ (α, β1, . . . , βm), we get the following theorem as a direct conclusion.

Theorem 2. Let m AH two-message protocols Πi for functionalities fi be respectively (ε, τ ;σi)-relaxed-secure
in the PKI model. Let Γ be a (εc, τ)-receiver-private AH two-message CPIR protocol that allows to retrieve
necessary replies ai. Then (

⊗m
i=1Πi)Γ (α, β1, . . . , βm) is (ε+εc, τ −O(tq);

∑m
i=1 σi)-relaxed-secure in the PKI

model, where tq is time needed to compute receiver’s first message.

More precisely, assume that in the worst case, m∗ � m second messages ai suffice for the receiver to recover
his private output. In parallel with

⊗
Πi, the receiver and the sender execute Γ to receive m∗ database elements

where sender’s database consists of the m messages ai, i ∈ [m], that the senders of Πi would have sent on
corresponding inputs (q, βi). That is, the receiver sends out q and the first message of CPIR, and the send replies
with the second message of CPIR applies to (a1, . . . , am).

Note that if α does not correspond to a valid input of the receiver in Πi then ai gives no useful input to the
receiver. As always, we can use the trivial CPIR where the sender just sends all database elements to the receiver.
A similar result holds also for non-AH CPIR protocols like [GR05b]. However, for AH CPIR protocols that are
based on the same PKC as Πi, the only assumption is that PKC is IND-CPA-secure while for non-AH CPIR
protocols, we have to make a separate assumption that C is receiver-private.

4 New Seeded Randomness Extractor

Let D be a family of distributions on some set X1. A map Ext : X1 × S → X2 is a seeded ε-extractor for
D if for every distribution D in D, Ext(D, U(S))

ε∼ U(X2). (See [GRS04,GR05a,KM05b,CFGP05] for related
references.) We need a seeded randomness extractor Ext : Zn×S → Zn where n is a large composite integer and
D := {U(xZn) : x ∈ Zn \ {0}}. Since we compute Ext on ciphertexts, it has to be affine, i.e., Ext(m, (s0, s1)) =
s0m+ s1 mod n for some set S = {(s0, s1)} ⊆ Z

2
n, chosen so that Ext is an ε-extractor for D for as small ε as

possible. This requirement makes common extractors unusable.
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Theorem 3. Let n > 0 be an odd integer, 0 < ε ≤ 1, and let ` := blog2 spf(n)− log2(1/ε) + 1c. Denote
T :=

⌊
2−`n

⌋
and S := 2` · ZT =

{
2`t : 0 ≤ t ≤ T − 1

}
. Let Ext(m, s) := m + s mod n for m ∈ Zn and

s ∈ S. Then Ext is an ε-extractor for D, i.e., xU(Zn) + U(2` · ZT )
ε∼ U(Zn) for any x 6≡ 0 (mod n).

5 AH Two-Message Protocol for Disclose-If-Equal

A disclose-if-equal (DIE) protocol DIEb` for `-bit strings fulfills the next functionality: the receiver has a private
input α ∈ {0, 1}`, and the sender has a private input β ∈ {0, 1}`. The common input b ∈ {0, 1}` is public. The
receiver obtains sender’s private input β exactly if α = b. Like always in the case of AH two-message protocols,
receiver obtains some element from some almost β-independent distribution otherwise.

Following [AIR01], one can define the next AH two-message DIE protocol. Let PKC be an IND-CPA secure
AH cryptosystem withM = Zn. The receiver sends to the sender a random encryption of α. The sender replies
with a random encryption a of (α − b)U(M) + β. The receiver obtains β∗ ← Decsk(a). Clearly if α = b
then β∗ = β. This protocol is relaxed-secure if n is prime. However, for a composite n, consider the input
α ← n/spf(n) + b. Then (α − b)U(M) is a random member of a subgroup of Zn of order spf(n) and thus does
not completely hide β.
New DIE protocol. As emphasized before, there are no known IND-CPA secure AH cryptosystems with prime n.
Our goal is to modify the above DIE protocol so that it would work together with an AH public-key cryptosystem
with composite n. For this, define T :=

⌊
2−`n

⌋
and

DIE2b`(q, β) := (q/Encpk(b))
U(M) · Encpk(U(2` · ZT ) + β) ,

i.e., DIE2b` is a random encryption of (Decsk(q) − b)U(M) + U(2` · ZT ) + β. The next DIE protocol, depicted
by Prot. 1, is an extension of the Aiello-Ishai-Reingold OT protocol to the case where the order of the underlying
group is composite but still sufficiently rough.

Query phase: The receiver sends q← Encpk(α), where α ∈ {0, 1}`, to the sender.
Transfer phase: If q /∈ C then the sender returns ⊥. Otherwise, the sender returns a← DIE2b

`(q, β), where β ∈ {0, 1}`.
Postprocessing: The receiver returns Decsk(a) mod 2`.

Protocol 1: Protocol DIEb`

Theorem 4. Let PKC be an (ε, τ)-IND-CPA secure AH cryptosystem, such that n := ]M is (2`+1/σ)-rough for
some 0 < σ ≤ 1 with `← blog2 spf(n)− log2(1/σ) + 1c. Let T :=

⌊
2−`n

⌋
. Then Prot. 1 is an (ε, τ −O(1);σ)-

relaxed-secure AH two-message DIEb` protocol in the PKI model.

Choice of `. In practice, we can assume that σ = 2−80, then a 280-rough n is sufficient for Boolean inputs. If PKC

is Paillier’s cryptosystem then n is
√
n/2-rough, and consequently, one can take ` ←

⌊
1
2 · log2 n− log2(1/σ)

⌋
.

For log2 n = 1024 and σ = 2−80, we get ` = 433.

6 AH Two-Message Protocol for Conditional Disclosure of Secrets

A conditional disclosure of secrets protocol CDSS` [AIR01] for a public set S and `-bit inputs is a (two-party)
two-message protocol for the next functionality: f(α, β) = β if α ∈ S and f(α, β) is a random element of {0, 1}`
otherwise. Next, we construct, given any public S ⊆ Z2` , an AH two-message protocol for CDSS` .

We first define the conjunctive affine equality test protocol CAET
a,b
` . For a µ × v matrix A = (aij) and

a v-element vector b with aij , bj ∈ {0, 1}`, on receiver’s input (α1, . . . , αµ) ∈ {0, 1}µ` and sender’s input
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Fig. 1. An unoptimized and an optimized circuit for GT4(y). The circuit on the left does not use conjunctive affine equality
tests

β ∈ {0, 1}`, the receivers obtain β in CAET
a,b
` if

∧v
j=1[

∑µ
i=1 aijαi

?

=bj ]. Otherwise, the receiver obtains no

information. In our CAET
a,b
` protocol, an honest receiver sends q := (q1, . . . , qµ) to the sender, where qi ←

Encpk(αi). An honest sender replies with an a = CAET2a,b` (q, β) that is a random encryption of
∑v
j=1(

∑µ
i=1 aij ·

Decsk(qi) − bj)U(M) + U(2` · ZT ) + β, where again T :=
⌊
2−`n

⌋
. Receiver outputs Decsk(a) mod 2` as in

DIEb`. Clearly, Thm. 4 also holds for this modified protocol.
Now, we are ready to define the CDS protocol. We specify the predicate [α ∈ S] by a set of constraints on

receiver’s input α, where for the sake of efficiency, α might be broken down to several smaller inputs—usually, its
bits—so that from them, the sender can recover the original encrypted inputs by using homomorphic operations.
We write the constraints down as a suitable formula ΨS with conjunctive affine equality tests, where we allow
threshold operations THRESHOLDi (with THRESHOLDi(x1, . . . , xs) = 0 iff at least i values xj are equal to 0,
and THRESHOLDi(x1, . . . , xs) = 1 otherwise), Boolean operations ∧ and ∨ and conjunctive affine equality tests.
Here, the ∨ gates may have an arbitrary fan-in. It is required that ΨS(x) = 0 iff x 6∈ S. E.g., assume that
S is equal to GTµ(y) := {x ∈ {0, 1}µ : x > y}, for µ-bit strings that are split into µ one-bit inputs. Writing
x = (xµ−1, . . . , x0),

ΨGTµ(y)(x) :=([xµ−1
?

=1] ∧ [yµ−1
?

=0]) ∨
([xµ−1

?

=yµ−1] ∧ [xµ−2
?

=1] ∧ [yµ−2
?

=0]) ∨
([xµ−1

?

=yµ−1] ∧ [xµ−2
?

=yµ−2] ∧ [xµ−3
?

=1] ∧ [yµ−3
?

=0]) ∨ · · · ∨
([xµ−1

?

=yµ−1] ∧ [xµ−2
?

=yµ−2] ∧ · · · ∧ [x1
?

=y1] ∧ [x0
?

=1] ∧ [y0
?

=0]) .

Here, every row corresponds to one conjunctive affine equality test. Circuit evaluation is done as follows (Fig. 1):
Construct a circuit where every leaf ψ implements acorresponding conjunctive affine equality test and every in-
ternal node implements a gate from the set {THRESHOLD,∨,∧}. Let size(ΨS) be the size of this circuit. Next,
enumerate all nodes starting with leafs ψ ∈ [ν], where ν = L(ΨS) is the number of leafs (conjunctive affine
equality tests) in this circuit, and ending with internal nodes ψ ∈ {ν + 1, . . . , size(ΨS)}. Process the circuit re-
cursively from top to bottom, similarly to the approach of [BL88]. Assign a secret βψ ← U({0, 1}`) to the
unique topmost gate ψ of the circuit. For every ∧ gate ψ with children ψ1, ψ2 and a secret βψ assigned to it, pick
βψ1
← U({0, 1}`) and βψ2

← βψ − βψ1
mod 2`, and assign βψi to ψi. For every ∨ gate, just push the output

secret downwards. For a THRESHOLDk gate, generate a random k-degree polynomial fψ with fψ(0) = βψ and
assign the secret fψ(i) to its ith child.

The CDS protocol CDSS` is a forked composition of conjunctive affine test protocols CAET,

(
⊗ν

ψ=1 CAET
(aψ,bψ)
` )Γ,m∗((α1, . . . , αµ), β

′
1, . . . , β

′
ν) where the value of m∗ ≤ ν depends on the concrete proto-

col and (aψ, bψ) specifies the conjunctive affine equality test at leaf ψ. That is, the receiver sets qi ← Encpk(αi)
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for i ∈ [µ]. The sender prepares a database (a1, . . . , aν), where aψ ← CAET(aψ,bψ)(α, βψ). In parallel, the re-
ceiver uses Γ to obtain m∗ ≤ ν values aψ from the correct branch of the circuit that he needs to recover the
output. After that, by inversely following circuit generation, the receiver decrypts ciphertexts that correspond to
the correct branch in the circuit and recovers β (modulo 2`). In particular, in the case of a threshold gate, she uses
the Lagrange interpolation formula to recover βψ (modulo 2`). Unless all the affine equality tests of ψ are satisfied,
the receiver learns nothing from cψ; in particular, the receiver does not learn which equality tests fail. We call the
resulting protocol CircuitCDSS` .

Theorem 5. Let PKC be an (ε, τ)-IND-CPA secure AH cryptosystem, such that n := ]M is (2`+1ν/σ)-rough
for some 0 < σ ≤ 1 with ` ← blog2 spf(n)− log2 ν − log2(1/σ) + 1c. For `′ := blog2 ]Cc, let Γ be an (εc, τ)-
receiver-private AH two-message CPIRν`′ protocol in the PKI model. Let m∗ be a protocol-specific value defined
as above. The CircuitCDSS` protocol is (µ · ε+ εc, τ −O(tq);σ)-relaxed-secure in the PKI model, where tq is the
time that the honest receiver takes to compute the first message of the protocol.

Clearly, CircuitCDSS` has receiver-communication of µ + m∗ · CΓ,1(L(ΨS), log2 ]C) ciphertexts and sender-
communication of CΓ,2(L(ΨS), log2 ]C) ciphertexts. The use of conjunctive affine equality tests helps one often
decrease the communication: as seen from Fig. 1, formulas without conjunctive tests can be much larger. Without
counting the time to need to execute CPIR, receiver’s worst-case computation isΘ(µ+size(ΨS)) group operations
and sender’s worst-case computation is O(µ · L(ΨS)) group operations. Going back to the motivating example,
L(ΨGTµ(y)) = µ. (See Fig. 1, right. Here, the sender conditionally transfers the same secret µ times.)

Thus, under the same assumptions as in Thm. 5 and with using a trivial CPIR, there exists an (µ·ε, τ−O(µ);σ)-
relaxed-secure AH two-message protocol for CDSGTµ(y)

` , ` = µ, with the communication of 2µ cipher-
texts, logarithmic in ]S receiver’s computation and log-squared in ]S sender’s computation. Together with
a CPIR, this protocol is (µ · ε, τ − O(µ + CΓ,1(µ, log2 ]C));σ)-relaxed-secure, have the communication of
µ + CΓ,1(µ, log2 ]C) + CΓ,2(µ, log2 ]C) ciphertexts—e.g., µ + Θ(log µ) ciphertexts if the CPIR by Gentry and
Ramzan is used—, and with computation increased by the CPIR-ing cost. In this case, m∗ = 1.

In general, if the size of ΨS is polynomial in log2 ]S then CircuitCDSS` has computation and communication
that is polynomial in log2 ]S. Moreover, we can include non-monotonous circuits by first pushing all negations
down the circuit (using De Morgan laws) to the leaves, and then representing the inputs in a way that gets rid of the
negations of affine equality tests. (E.g., [4x2 +2x1 +x0 6= 7] is equivalent to [x2 = 0]∨ [x1 = 0]∨ [x0 = 0].) Note
that THRESHOLD gates usually do not decrease communication but may slightly decrease computation. Hence, all
languages S in NP/poly—NP, since the known witness can be entered as a part of the input—have a family of
CDSS` protocols with polynomial communication and computation. Since affine maps can be presented by using
polynomial circuits then the CircuitCDSS` protocol has polynomial resources iff S ∈ NP/poly. This can be
compared to the fact that it is only known how to compute-on-ciphertexts maps from NC1 [SYY99]. For most of
the interesting protocols, the communication of the receiver is Θ(log `) ciphertexts, and the communication of the
sender can be reduced to Θ(log `) by using the Gentry-Ramzan CPIR.

7 Applications

AH Two-Message Protocol for Oblivious Transfer. Aiello, Ishai and Reingold [AIR01] defined an elegant
relaxed-secure two-message OTν` protocol. However, as mentioned in the full version of [AIR01], the proto-
cols of [AIR01] only work efficiently if all encrypted values are elements of the underlying group. Moreover,
their protocol does not work if the plaintext group has a composite order n =

∏
paii , for different primes

p1 < p2 < · · · < pt. Really, if receiver’s input α∗ is such that α∗ ≡ αi mod pi for some mutually differ-
ent values αi ∈ [ν], then the receiver can straightforwardly compute the values βαi mod pi, i ∈ [t]. The receiver
who knows how to factor n can therefore easily, by using the Chinese Remaindering Theorem, compute the
required α∗. The same observation underlies, in a constructive way, Chang’s 2-out-of-ν-oblivious transfer proto-
col; [Cha04] proved that if n is a product of two safe primes then no more information than βαi mod pi, i ∈ [2],
is revealed. Chang also proposed a 1-out-of-ν-OT protocol; however, there a honest receiver has to encrypt values
that depend on the secret key which makes it unusable in some of the applications.
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Assume that Γ is an arbitrary AH two-message CPIRν`′ protocol with `′ > log2 ]C. Clearly, the ν-times forked
composition (

⊗ν
i=1 DIEi`)(α, (β1, . . . , βν))Γ,1 is functionally equal to an oblivious transfer protocol: if α = i

for some i ∈ [ν] then the receiver obtains the secret (database element) βν and otherwise the receiver obtains no
new information. This construction, otherwise equivalent to the construction of [AIR01] but working over an AH
cryptosystems, presents yet another CPIR to OT transformation. The next theorem is a straightforward corollary
of Thm. 2/4:

Theorem 6. Let PKC, Γ and `′ satisfy the requirements of Thm. 5. Let T :=
⌊
2−`n

⌋
. Then

(
⊗ν

i=1 DIEi`)Γ,1(α, (β1, . . . , βν)) is an (ε + εc, τ − polylog(ν);σ)-relaxed-secure AH two-message OTν` pro-
tocol in the PKI model.

Note that in the CPIRν`′ protocol from [Lip05] has communicationΘ(k ·log2 ν+`·log ν), where k is a possibly
non-constant security parameter. Lipmaa [Lip05] constructed an OT protocol in the PKI model with log-squared
communication, assuming both that PKC is IND-CPA secure and the Decisional Diffie-Hellman problem is hard.
Thus, Thm. 6 achieves the same result assuming only that PKC is IND-CPA secure. For a non-length-flexible
PKC, Thm. 6 and [Ste98] result in an OTν` protocol with sublinear-but-superpolylogarithmic communication. Due
to [GR05b], there exists a non-AH two-message OTν` protocol with communication Θ(log ν + ` + k), assuming
both that PKC is IND-CPA secure and that Φ Hiding is hard. Note that two-message oblivious transfer protocol
in the standard model that works over message spaces of composite order n was proposed by Kalai [Kal05]. It is
relaxed-secure even if n is maliciously chosen, without any need for key correctness proofs. However, in Kalai’s
protocol, unknown parts of receiver’s message are encryptions of completely random values.

Choice of `. If σ = 2−80 and ν ≤ 240 then a 2120-rough n is sufficient for Boolean inputs. If PKC is Paillier’s
cryptosystem then n is

√
n/2-rough, and consequently, one can take `←

⌊
1
2 · log2 n− log2 ν − log2(1/σ)

⌋
. For

log2 n = 1024 and σ = 2−80, we get ` = b433− log2 νc ≥ 393. The protocol can be modified to transfer `′ > `
bits by repeating its second message d`′/`e times.
Multiplicative relationships and polynomial arithmetic. A paper by Kissner and Song on privacy-preserving set
operations [KS05] but also several previous papers [FNP04,KM05a] use AH two-message protocols in a setting
where one encrypts the coefficients of some polynomials, where the important quantity is the set of roots of this
polynomial. For example, if S1 is the set of roots of f1(x) and S2 is the set of roots of f2(x) then S1 ∪ S2 is
the set of roots of f1(x) · f2(x). In such situations one has the next subproblem: given Encpk(x), Encpk(y) and

Encpk(z) for x, y ∈ {0, 1}`/2 and z ∈ {0, 1}`, encrypted by the receiver, the receiver must obtain the correct

answer only if z = xy. Now, by the long multiplication rule, z = xy iff z =
∑`/2−1
i=0 xyi2

i. Therefore, Ψ[z=xy] is
a conjunction of the next tests, where wi are auxiliary encrypted values: (1) zi ∈ {0, 1} for i ∈ Z`, (2) xi ∈ {0, 1}
for i ∈ Z`/2, (3) [(yi = 0 ∧ wi = 0) ∨ (yi = 1 ∧ wi = x)] for i ∈ Z`/2, and (4) [z =

∑`/2−1
i=1 wi · 2i], where

z ← ∑`−1
i=0 zi · 2i and x ← ∑`/2−1

i=0 xi · 2i. Thus, receiver’s communication is 2.5` ciphertexts and sender’s
communication is L(Ψ[z=xy]) ≤ 4`+ 1 ciphertexts. Thus, the total communication is 6.5`+ 1 ciphertexts (using
a CPIR could decrease it even more). Now, we can also construct a CDS protocol for the set S = {(fg, f, g)},
since the ith coefficient of fg is a sum of the products of the coefficients of f and g. Then, e.g., we can verify that
for some sets X , Y and Z, it holds that X ∪ Y = Z.
Millionaire’s protocol with logarithmic communication. The millionaire’s problem is, given receiver’s private
input α and sender’s private input β from {0, 1}`, decide whether α > β. Though there have been proposed
numerous protocols for this problem (see, for example, [Fis01,BK04,ST04]), none of the proposals is completely
satisfactory. E.g., the AH two-message protocol of Blake and Kolesnikov [BK04] is sender-secure only in the
semihonest model, while a different protocol by [ST04] uses zero-knowledge proofs to achieve sender-security in
the malicious model.

The next generic modification of CircuitCDSS` can be used in the case of some private sets S that de-
pend on β. Assume that the receiver has a private input α and that Server has a private input β ∈ {0, 1}`
and that the CircuitCDSS` protocol is written down in a disjunctive normal form over affine equality tests,
ΨS =

∨λ
i=1

∧ni
j=1[

∑µ
i=1 aiαi

?

=b]. Now, modify the CircuitCDSS` protocol as follows. Assume Γ is the trivial
CPIR, this is necessary since S is not public. Fix a public value t (for example, t = 0) and push it down the circuit.



Additive Conditional Disclosure of Secrets *** Draft. August 8, 2006 *** 10

For every leaf gate ψ, let the sender to compute aψ as previously, but return the values aψ in a random order. This
must be done so that the number of accepting leaf gates is always either 0 if ΨS = 0, or some non-zero constant
if ΨS = 1. Thus, by testing that at least one of the ciphertexts aψ encrypts 0, the receiver gets to know whether
ΨS(α, β) is true or not. Since L(ΨGTµ(y)) = µ, we get a new two-message protocol for millionaire’s problem of
µ-bit strings that is secure against malicious adversaries, with communication of 2µ ciphertexts, receiver’s com-
putation Θ(µ) and sender’s computation Θ(µ2), assuming only that the underlying AH public-key cryptosystem
is IND-CPA secure. Compared to the Blake-Kolesnikov protocol [BK04] which is only secure in the semihonest
model, this means quadratically more sender-computation but otherwise the new protocol is roughly as efficient.
Conditional OT. In a conditional oblivious transfer (COTS` ) protocol [DOR99], the receiver has a private input α
and the sender has a private input (β1, β2). The receiver obtains β2 exactly if ΨS(α, β1) = 1 for some public set
S of valid receiver’s and sender’s input pairs. In the case of a CDSS` protocol, β1 is an empty string and therefore
a COTS×∅` protocol can be used to implement a CDSS` protocol. Assume now that S ∈ NP/poly is such that for
some circuit representation ΨS , the number of accepting leaf gates is always either 0 if ΨS = 0, or some non-zero
constant if ΨS = 1. To implement COTS` for S, we use the same idea as in the case of the millionaire’s problem
with only one modification: the secret to push down the circuit is t = 0L||β2, where say L = 80.
Electronic voting and auctions without random oracles. In the case of threshold AH two-message proto-
cols, conditional disclosure of secrets can be used to guarantee full security against a malicious receiver. As
in [BGN05], consider an electronic voting protocol where every voter sends an AH encryption ci ← Encpk(vi) to
talliers. We assume that the protocol is secure if vi ∈ Valid for some publicly known set Valid; this is true in typical
AH e-voting protocols [DJ01]. Now, in the original protocols, it is usually assumed that every voter accompanies
his or her vote with a non-interactive zero-knowledge proof that vi ∈ Valid. Instead, the talliers can jointly apply
the CDS protocol, with output secret 0, to ci (this can be done very efficiently if Valid is the set of powers of a
fixed integer) and then threshold-decrypt the result. If the plaintext is equal to 0, talliers accept the vote as correct.
Of course, every step of the talliers has to be accompanied by a zero-knowledge proof of correctness (to each other
and to every possible outside observer), but since the number of talliers is significantly smaller than the number of
voters, this is doable in practice; see [BGN05] for discussion. As a result, we get a voter-private, universally verifi-
able and robust e-voting scheme only assuming that there exists an IND-CPA secure AH public-key cryptosystem
(and in particular, without using random oracles), where the voters have to only perform one encryption. The same
trick can be used to eliminate the need for random oracles in the AH electronic auction scheme of [LAN02] and in
many other similar protocols. Compared to the protocols of [BGN05], our protocols are more efficient in the case
of multi-candidate elections ([BGN05] allows to efficiently decrypt only if the plaintext is small) and is based on
an incomparable but a somewhat more standard security assumption.

8 CDS Transformation

Next, we present a generic transformation from private (i.e., secure in the semihonest model) AH two-message
protocols to relaxed-secure AH two-message protocols. It can also be used as a subprotocol in many-message
protocols. Fix an AH two-message protocol Π . Denote receiver’s input by α = (α1, . . . , αµ), sender’s input
by β = (β1, . . . , βν), and receiver’s output by δ = (δ1, . . . , δλ). W.l.o.g., we assume that αi, βi and δi belong
to {0, 1}`, where ` is defined as in Thm. 5. Larger inputs and outputs can be handled straightforwardly. The
query phase consists of sending the elements Encpk(αi) and the transfer phase consists of sending the elements
Encpk(δj). We assume that α, β and δ have already been modified to allow efficient circuit evaluation. E.g., in
the case of GTµ(y), every αi is a bit. Assume that the input α of an honest receiver belongs to some public set
Valid that in particular does not depend on the value of sk. Most of the known AH two-message protocols have
this property, Chang’s OT protocol [Cha04] being one of the few exceptions. We assume that if α 6∈ Valid then for
any input value of an honest the sender, f(α, β) is defined to be a uniformly random value from {0, 1}`.

Let Π be an AH two-message protocol for f with λ outputs from {0, 1}`, where ` is as defined in Thm. 6.
Let Πcds be an AH two-message protocol for CDSS` . The basic idea is to forked-compose—without using any
CPIR—an instantiation of Π with an instantiation of Π cds on the same inputs α and β. Assume that the query
phases of Π and Πcds are the same; this is possible since in the CDSValid

` protocol of Thm. 5, the receiver learns a
secret t ∈ {0, 1}`λ iff α ∈ Valid, and the sender learns the corresponding ciphertexts Pi = Encpk(αi). Thus, in the
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Common parameters: `, T :=
⌊
2−`n

⌋
, PKC = (Gen, Enc, Dec), pk, Π , Π cds.

Private input : The receiver has inputs sk and α = (α1, . . . , αµ), the sender has inputs β = (β1, . . . , βν).
Private output : The receiver obtains (δ1, . . . , δλ) = f(α, β) where δj ∈ {0, 1}`.

Receiver’s first message:
For i ∈ [µ]: Let Pi be receiver’s first Π-message on input αi. // I.e., Pi = Encpk(α).
Send (P1, . . . , Pµ) to the sender.

Sender’s second message:
For j ∈ [λ]:

Compute t̂j ← U(Zn−2`) and tj ← t̂j mod 2`.
Compute the set of ciphertexts {cij} from the output secret tj as in Πcds.
Compute ∆j as in Π .
Set ∆′

j ← ∆j · Encpk(tj).
Send (∆′

1, . . . , ∆
′

λ; {ci1} , . . . , {ciλ}) to the receiver.
Recovery:

For j ∈ [λ]: The receiver recovers tj from (α, q, {cij}) by using the recovery algorithm of Π cds.
She recovers δ′j from (α; q; ∆′

j) by using the recovery algorithm of Π .
She sets δj ← δ′j − tj mod 2`.
Return (δ1, . . . , δλ).

Protocol 2: Private computation of f in malicious model by using additive CDS transformation

transfer phase, the sender can use the ciphertexts Pi as input to an AH two-message protocol Π that evaluates f .
Finally, the sender masks the outputs (∆1, . . . ,∆λ) ofΠ with sub-secrets (t1, . . . , tλ), ti ∈ {0, 1}`, and sends the
corresponding encryptions ∆i · Encpk(ti) to the receiver. Thus, the receiver can peel off the masks ti and recover
the outputs iff her inputs are in the correct range.

Theorem 7. Fix an AH public-key cryptosystem PKC = (Gen,Enc,Dec). Assume the PKI model, and fix a secret
and public key pair (sk, pk). Let Πcds be an (ε, τ ;σ1)-relaxed-secure AH two-message protocol for CDSValid

` . Let
Π be an (ε, τ ;σ2)-secure AH two-message protocol for computing f in the semihonest model, such that Π cds and
Π have a common algorithm for computing receiver’s first message. Then Prot. 2 is an (ε, τ−O(1);σ1+σ2+σ3)-
relaxed-secure AH two-message protocol for computing f , where σ3 = 2`λ/n.

With a slight modification (setting t̂j ← U(Zn) and using the CDS on a 2`+1 bit secret tj where one bit
indicates that tj ≥ n− 2`), one can remove the addend σ3. Note that this theorem does not require PKC to be an
AH public-key cryptosystem; with a small modification, the same proof goes through also with a multiplicatively
homomorphic public-key cryptosystem.
Optimizations. The communication overhead of the CDS transformation is linear in the number of outputs. There-
fore, it is not advantageous to use the transformation for functions with many outputs (e.g., private matrix opera-
tions). However, if computational sender-security is sufficient, one can use an arbitrary pseudo-random function
prf to stretch the transformation’s secret to privately implement the function f̂ where f̂j(α, β) = (δj +prf(t, j), t)

if α ∈ Valid and f̂j(α, β) = (δj + prf(t, j),⊥) if α /∈ Valid, for a single random key t. Such a protocol remains
computationally sender-secure as long as prf is secure.
An example application: private scalar product protocol. In a private scalar product protocol protocol, the
receiver has a Boolean vector α of dimension µ and the sender has a Boolean vector β of the same dimension.
Receiver’s private output is δ, such that δ =

∑µ
i=1 βiαi, and the sender has no private output. It is simple to

compute this functionality in the semihonest model [GLLM04,WY04]: Assume that ci is a random encryption of
αi. Then, the sender sends ∆ =

∑µ
i=1 c

βi
i ·Encpk(0) to the receiver. The receiver decrypts ∆. It is straightforward

to apply the CDS transformation to get a protocol that is sender-secure in the malicious model. This protocol
also computes the private set intersection. Similar ideas can be used to construct private protocols for many other
related problems (e.g., matrix-to-vector multiplication and other similar problems from linear algebra).
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9 Implementing Protocols in The Standard Model

Recall that in the PKI model, a trusted key generator TKG generates a key pair (sk, pk) by executing Gen, transfer-
ring (sk, pk) to the receiver and pk to the sender. The presence of PKI is normal in e-voting or in many applications
of oblivious transfer, where a correct pk has been already defined by an upper level protocol that for efficiency
reasons lets several different subprotocols to use the same key. In fact, in several places we already explicitly
used a parallel composition of two or more AH protocols that use the same key. Because this key can be reused
in other homomorphic protocols, this model is weaker than the common reference string protocol. Moreover, the
constructed protocols (including the ones that use the new CDS transform) are in most of the cases considerably
more efficient than the up-to-date non-interactive proofs of knowledge in the stronger common reference string
model.

We can get rid of the PKI model by letting the receiver to execute once, separately and in an isolated manner
(i.e., no other messages of different protocols are sent by the receiver at the same time), with every sender a zero-
knowledge proof of knowledge that pk is valid and that he knows the corresponding secret key. This is followed by
the real protocol. In the security proof, the simulator extracts the secret key by rewinding and thereafter continues
to work as previously. Since we require statistical sender-security—and thus can use an unbounded simulator—
then it is actually sufficient to have a zero-knowledge proof that the key is correct: the simulator just computes the
secret key corresponding to the (correct) public key. Note that it is not relevant whether the receiver computes the
public key with a correct distribution since for the proof we only need the existence of the secret key.

Next, we propose another possible solution that works in standard model, does not need extra rounds but
needs an extra amount of computations by an honest sender. Namely, the extractor, described by Thm. 3, guar-
antees the security if spf(n) is large. (Some extra care might be needed, see [Kal05]. Note that the known
AH cryptosystems like the Paillier remain homomorphic even if n is incorrectly formed.) Thus, the pub-
lic key verification can just consist of verifying that spf(n) ≥ p for some suitably large p. If p is not too
large then this can be done efficiently by using Lenstra’s Elliptic Curve Method [Len87] that works in time
exp((

√
2 + o(1))

√
ln p · ln ln p) [Zim06a,ZD06]. If we want sender’s computation to be polynomial in log n then

we have to take lnε n = exp((
√

2 + o(1))
√

ln p · ln ln p) or
(
(ln ε+ ln lnn)/(

√
2 + o(1))

)2
= ln p · ln ln p, or

p = 2(1/
√

2+o(1)) ln2 lnn.
In concrete numbers, for example, assume that ECM is “efficient” for 88-bit spf(n) and that σ = 2−40, where

σ is as in Thm. 4; the latter choice of σ is most probably sufficient in practice. Then, in the case of the DIE
protocol, one has ` = 47, which is sufficient for several applications. We verified this approach by using the
suggested optimal parameters from [Zim06b], on an AMD Athlon 64 3000+ processor by using the GMP-ECM
software. As an example, if n = pq, where q is an 88-bit prime and q is an (1024 − 88)-bit prime then one has
to run the ECM algorithm on expected 206 curves with bounds B1 = 50 000 and B2 = 5 000 000. Testing on
one curve with these parameters takes ≈ 2.5 seconds, and thus testing that spf(n) ≥ 289 takes an expected 9
minutes. On the other hand, if q is an 66-bit prime then it takes 77 expected curves with bounds B1 = 11 000
and B2 = 1 100 000. On the same platform, testing one curve with these parameters takes ≈ 0.66 seconds, and
thus testing that spf(n) ≥ 267 takes less than expected 51 seconds. Given the advances in the ECM [Zim06a], we
would expect the quoted timings to decrease dramatically over the next few years.
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A On Polynomial Security

Sometimes, one needs security against adversaries that work in time, polynomial in the input size κ of the protocol
Π . Then, k will depend on κ. More precisely, assume that the underlying computationally hard problem, with input
n of size κ := log2 n, can be broken in time Ln[a, b] := exp(a(lnn)b · (ln lnn)1−b) for some 0 < b ≤ 1. To
guarantee security against such polynomial adversaries, it is necessary that Ln[a, b] = ω(κc) for every constant
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c, or that kb · ln1−b k = ω(lnκ). Omitting the logarithmic factor, we get that k = Ω(ln1/b κ). E.g., when basing
a protocol on the Decisional Composite Residuosity Assumption [Pai99] with b = 1/3, we must assume that
k = Ω(log3−o(1) κ).

B Proof of Theorem 1

Proof. Computational receiver-privacy: A standard hybrid argument since the sender only sees µ different cipher-
texts. Statistical sender-security: The universal simulator Sim does the following. First, it generates (sk, pk) ←
Gen and sends (pk, sk) to the malicious receiver and pk to the sender. After receiving q from the receiver, it verifies
that q is correctly formed. If q is malformed, Sim sends the halt symbol ⊥ to TTP and provides no second mes-
sage to the receiver. Otherwise, q = (Encpk(α

∗
1; r1), . . . ,Encpk(α

∗
µ; rµ)) for some α∗i , ri. Sim uses sk to obtain

receiver’s protocol inputs α∗ = (α∗1, . . . , α
∗
µ), and sends α∗ to TTP. After obtaining both α∗ and sender’s input

β, TTP answers with f∗ := f(α∗, β). Then Sim computes a
∗ ← Σ(pk, f∗), and outputs whatever the receiver

outputs on the input a
∗. Since the honest sender did not output anything, we have to consider only the output of

the receiver. Because a
∗ σ∼ A(α, β) then receiver’s output on a

∗ is σ-close to his output on random message from
A(α, β). ut

C Proof of Lemma 1

Proof. Computational receiver-privacy is straightforward, since receiver’s message is same as in each protocol.
Statistical sender-security. Let Simi be the universal non-rewinding simulator for Πi. The simulator Simf for the
forked composition does the following. It generates (sk, pk) ← Gen, sends (sk, pk) to the receiver and pk to the
sender. Simf receives q, where q is the first common message of all Πi from the receiver. If the receiver value
is malformed then Simf outputs ⊥. Otherwise, Simf uses sk to obtain α∗ from q. She sends α∗ to TTP. After
receiving f1(α∗, β1), . . . , fm(α∗, βm) TTP, Simf runs all canonical Simi with fi(α∗, βi), as message from TTP,
and combines simulated replies a

∗
i into a single simulated reply a

∗. The claim follows, as ai
σi∼ a

∗
i for all i ∈ [m].

ut

D Proof of Theorem 3

For Thm. 3 we need the next technical lemma. (Here, U(S) mod p denotes the distribution that we get by first
picking an element of U(S) and then taking its remainder modulo p.) The result is somewhat trivial as Lemma 2
essentially computes the statistical difference between U(ZT ) mod p and U(Zp) when p� T .

Lemma 2. Fix integers n and v, such that v < n/2 and gcd(v, n) = 1. Set T :=
⌊
v−1n

⌋
. For any non-trivial

factor p of n and for an arbitrary m ∈ Zv , (m+ U(vZT )) mod p
ε∼ U(Zp) for ε ≤ v/(2 · spf(n)).

Proof. Fix m ∈ Zv. Let p be a non-trivial factor of n. Then T = ap + b for a non-negative
a and for a b ∈ [0, p − 1]. Since gcd(p, v) = 1, then v is a generator of Zp. Thus, we
can partition Zp into two sets T0 = {c ∈ Zp : Pr[(m+ U(vZT )) mod p = c] = a/T} and T1 =
{c ∈ Zp : Pr[(m+ U(vZT )) mod p = c] = (a+ 1)/T}. Then (m + U(vZT )) mod p

ε∼ U(Zp), where ε =
max {]T0 · (1/p− a/T ), ]T1 · ((a+ 1)/T − 1/p)}. Since b = T − ap, ]T0 = p − b and ]T1 = b, then ε =
max {((p− b)b)/(Tp), (b(p− b))/(Tp)} = (b(p−b))/(Tp) ≤ p/(4T ). From T = bn/vc ≥ (n−v)/v ≥ n/(2v)
it follows that ε ≤ p/(4T ) ≤ n/(4 · spf(n)T ) ≤ v/(2 · spf(n)). ut

Proof (Thm. 3). Assume thatm is chosen uniformly from aZn for some a ∈ Z\{0}. If gcd(a, n) = 1 then aZn =
Zn and the claim follows. Otherwise, a = p is a non-trivial factor of n. Set v := 2`. Therefore, as ]pZn = n/p,
Pr[Ext(m,U(S)) ≡ y (mod n)] = Pr[U(pZn) +U(S) ≡ y (mod n)] = p/n ·Pr[U(S) ≡ y (mod p)] for any
y ∈ Zn. Lem. 2 assures that d (U(pZn + U(S)), U(Zn)) = d (U(S) mod p, U(Zp)) ≤ 2`−1/spf(n) ≤ ε. ut
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E Proof of Theorem 4

Proof. If pk is valid then Decsk(a) ∼ Ext((α∗ − b)U(M), U(2` · ZT )) + β mod n, where α∗ := Decsk(q).
Correctness is straightforward, since if α∗ = b then Decsk(a) ∼ Ext(0 ·U(M), U(2` ·ZT ))+β = U(2` ·ZT )+β.
Since always Decsk(a) < n then Decsk(a) ≡ β mod 2`. According to Thm. 1 we now just must show that
Prot. 1 is σ-simulatable. Construct the next Σ1(pk, f(α∗, β)): If f(α∗, β) = 1 (i.e., α∗ = b) then set â ←
Encpk(Ext(0, U(2` · ZT )) + β). Otherwise, set â ← Encpk(U(M)). Denote V := Ext((α − b)U(M), U(2` ·
ZT )) + β. In the case of the honest sender, Decsk(â) ∼ V . Since R is a quasigroup then â ∼ Encpk(V ). Due to
Thm. 3, d (V,U(M)) ≤ 2`/(2 · spf(n)) ≤ σ. The claim follows. ut

F Proof of Theorem 5

Proof (Sketch). Corollary of Thm. 2/4. The simulator Sim computes the secret key sk corresponding to pk. Then,
she decrypts all inputs Pi and obtains the corresponding input α∗. Sim propagates t = f(α∗, β) down to the leaf
level and computes the corresponding sender’s second messages. ut

G Proof of Theorem 7

Proof. Correctness: If α ∈ Valid and both parties follow the protocol then recovery phase of the CDSValid
` protocol

is successful, the receiver obtains t̂j mod 2` and consequently the correct end-result, as there are no modular
wrappings. Receiver-privacy: Consider an adversary B∗ that obtains advantage ε against Prot. 2; B∗ can then
used to break the Πcds protocol, since the query phase is exactly the same. For the same reason, Prot. 2 cannot be
more receiver-private than Π . Statistical sender-security: Clearly, Π ′ is a forked composition of two statistically
sender-secure AH two-message protocols. Therefore,Π ′ is an (σ1+σ2)-sender-secure AH two-message protocol
for f̂ defined as f̂j(α, β) = (δj + tj , tj), if α ∈ Valid, and f̂j(α, β) = (δj + tj ,⊥), if α /∈ Valid. The claim
follows as tj are almost random plaintexts and σ3/λ = d (U(Zn−2`), U(Zn)) = 2`/n. ut


