
Breaking RSA May Be As Difficult As Factoring

Daniel R. L. Brown∗

April 12, 2006

Abstract

If factoring is hard, this paper shows that straight line programs cannot efficiently solve
the low public exponent RSA problem. More precisely, no efficient algorithm can take an RSA
public key as input and then output a straight line program that efficiently solves the low public
exponent RSA problem for the given public key — unless factoring is easy.

Key Words: RSA, Factoring, Straight Line Programs.

1 Introduction

A long standing open question in cryptology is whether the RSA problem is as difficult as factoring.
This paper provides a partial answer to this question: solving the RSA problem with a straight line
program is almost as difficult as factoring, provided that the public exponent has a small factor.

A straight line program is an algorithm limited to a fixed sequence of addition, subtraction
or multiplication steps. No branching or looping is allowed, so such a program computes a fixed
integer polynomial function of its input. This paper shows that any efficient algorithm that takes an
RSA modulus as input and outputs an efficient straight line program that solves the corresponding
low exponent RSA problem can be used to factor the RSA modulus. Therefore if factoring is hard,
then the RSA problem cannot be solved by a straight line program.

Note, however, that straight line programs also appear unable to solve certain problems that
are known to be tractable, such as computing multiplicative inverses modulo an RSA number
of unknown factorization. The difficulty of solving the RSA problem with algorithms that are
not straight line programs is not addressed in this paper. Therefore, the existence of the efficient
unlimited algorithms for solving the RSA problem, analogous to the Euclidean algorithm for finding
inverses, has not been excluded.

Related Work: An RSA private exponent is known to reveal the factorization of the RSA
modulus. This classical result about the difficulty of the RSA problem has been attributed in [8] to
de Laurentis [4] and Miller [6], while in [5], it is attributed to [9]. The result in this paper extends
the class of information that reveals the factorization. Let an RSA private exponent d correspond
to the straight line program that takes input x and computes xd. This straight line program solves
the RSA problem. The extension here is that any other straight line program for solving the RSA
problem also reveals the factorization. A secondary aspect of the extension is that, if a straight
line program for xd does not directly reveal d, the factorization is revealed nonetheless.

∗Certicom Research

1

Rabin [7], in another classic result, showed that finding eth roots where the RSA (Rabin) public
exponent e has a very small factor, namely two, is equivalent to factoring. In some sense, this paper
generalizes Rabin’s result to larger factors of e, albeit adding the severe limitation to straight line
programs. Table 1 illustrates the relationship between the results of this paper and the classical
reductions [4, 6, 7, 9], showing its intermediacy between [4, 6, 9] and [7].

Any e [4, 6, 9]

Small e′ | e [0]

2 | e [7]

Exponentiation SLP Any root-finding algorithm

Table 1: Relation of this reduction [0] to classical reductions between finding roots and factoring

The results of this paper combined with Rabin’s result suggest an interesting pattern: the
difficulty of finding eth roots decreases as the smallest prime factor of e increases. Curiously, other
results suggest just the opposite: that small e is less secure. Boneh and Venkatesan [2] show that
solving the RSA problem may be easier than factoring, provided that the public exponent e is
small or a product of small factors. They do so by proving that a straight line reduction cannot
prove that solving the RSA problem is as difficult as factoring (unless factoring is easy). Their
result, although in the opposite direction of the work here, did not contradict either the classical
results [4, 6, 7, 9], and does not contradict the extension discussed here either, because the classical
reduction and the extension do not fit exactly into the type of reduction considered in [2].

Also going towards the trend that smaller e is less secure is the long series work culminating
in results such as Coppersmith’s [3] that eth roots can be found efficiently once partial information
is known about the eth root, provided that e is very small. These results apply to e = 2 as well.
The fact that the partial information reveals full information about the root means that if it is
hard to find the root, which is widely believed, then it is also hard to find merely some partial
information about the root. For a general discussion of the paradoxical connection between attacks
and security proofs, see §G. Shoup [10] has already argued, somewhat similarly, that e = 3 may
offer more security than larger e in the context of OAEP. In the context of this paper, namely
reductions between finding roots and factoring, we merely comment that this observation about
the difficulty of finding even partial information about small degree roots ties in to the difficulty of
factoring.

Organization of the Remainder of the Paper: Section 2 provides some definitions and
lemmas for straight line programs and inverse pairs of polynomials. Section 3 gives reductions
between factoring and solving the RSA problem with a straight line program when the public
exponent has a small factor. Section 4 discusses how the implications of the paper are limited.
Section 5 discusses why this paper does not contradict Boneh and Venkatesan’s paper. Appendix A
discusses a moderately complicated straight line program for computing cube roots. Appendix B
discusses the difficulty of computing inverses using a straight line program. Appendix C discusses
some generalizations of the RSA problem. Appendix D discusses applicability of this result to
variants of the RSA problem such as the strong RSA problem. Appendix E discusses allowing
division in the definition of straight line programs. Appendix F sketches how to extend the results
of this paper to wider a class of algorithms that allow branching based on testing of equality.

2

Appendix G discusses a general form duality between positive and negative security results and its
impact on this paper.

2 Straight Line Programs and Inverse Integer Polynomials

Straight line programs are a class of algorithms that do not branch, and whose steps are just
addition, subtraction or multiplication.
Definition 1. A straight line program of length L is a sequence

P = ((i1, j1, ◦i), . . . , (iL, jL, ◦L)) (1)

of triples, such that −1 6 ik, jk < k and ◦k ∈ {+,−, ·}. On input x, program P computes an
output P (x) as follows.

1. Let x−1 = 1 and x0 = x.

2. For 1 6 k 6 L, compute xk = xik ◦k xjk
.

3. Output P (x) = xL.

Let R be a ring. If x ∈ R, then P (x) ∈ R. An important ring for this paper is the ring Z/〈n〉
of integers modulo n, where n is the product of two large primes. This is the type of ring over
which the RSA problem is defined. The ring Z[X] of integer polynomials over the indeterminate X
is useful for classifying straight line programs. The ring Z has a natural embedding in any ring R
(there is a unique homomorphism), and similarly the ring Z[X] has a natural embedding in R[X]
such that X maps to X. Thus, f(r) makes sense for any f(X) ∈ Z[X] and any r ∈ R. Apply
the straight line program P to the polynomial X ∈ Z[X], and let P̂ (X) ∈ Z[X] be the resulting
output. The polynomial P̂ (X) characterizes the action of P in any ring:
Lemma 1. If P : X 7→ P̂ (X) ∈ Z[X], then P : r 7→ P̂ (r) for any r ∈ R and any ring R.

Proof. In the natural embedding of Z[X] intoR[X], we haveX 7→ X and P̂ (X) 7→ P̂ (X). Therefore,
in the ring R[X], we have P : X 7→ P̂ (X). Now apply the natural homomorphism R[X] → R, such
that X 7→ r, to get in the ring R that P : r 7→ P̂ (r).

A straight line program P is essentially a particular algorithm to compute the polynomial P̂
in any ring. The length of P is a simple measure of its efficiency, and an upper bound on the
complexity of computing the polynomial P̂ . A secondary measure of efficiency, memory usage, will
not be considered in this paper. Note that the degree of the polynomial f(X) that P computes is
at most 2L, and similarly the largest coefficient is at most 2L.

The main results of this paper use an observation about the actions of inverse pairs of integer
polynomials in rings. If integer polynomial functions invert each other in finite ring R, then they
invert each other in any image of R:
Lemma 2. Let R be a finite ring, let p(X), q(X) ∈ Z[X], and let σ : R → S be a surjective
homomorphism. If p(q(r)) = r with probability µ for random r ∈ R, then p(q(s)) = s with
probability at least µ for random s ∈ S.

3

Proof. Given a random s ∈ S, choose a random r ∈ R, such that s = σ(r). Over random s, the
resulting r is uniformly random over R. With probability µ, we have p(q(r)) = r and

p(q(s)) = p(q(σ(r)))
= p(σ(q(r)))
= σ(p(q(r)))
= σ(r)
= s,

(2)

using the fact that homomorphisms commute with integer polynomials.

If p(q(r)) 6= r, which happens with probability 1−µ, it may be still be the case that p(q(s)) = s,
so we can only get a lower bound of µ on the probability that p(q(s)) = s.

For the sake of greater generality, one can also consider straight line programs that include
division steps, not just addition, subtraction and multiplication steps. Such straight line programs
have already been considered in [2], but are also reviewed briefly in §E of this paper for completeness.
For even greater generality, one can also consider steps that branch based on whether two previous
values are equal, which is consider in §F.

3 Factoring, the RSA Problem, and Straight Line Programs

When the RSA public exponent e is sufficiently small, one can use an efficient straight line program
for the RSA private key operation to efficiently factor the RSA modulus. The case of e = 3 is
especially simple, so is described first. Larger e involves a more detailed case analysis, but follows
the same principles. More generally, it suffices for e to have a small factor.

3.1 Cube Roots: Public Exponent e = 3

A straight line program that finds cube roots modulo n can be used to construct another straight
line program that finds a factor of n:
Theorem 3. Let f(X) ∈ Z[X], let p and q be primes with p ≡ q ≡ 2 mod 3, let n = pq and let
R = Z/〈n〉. Suppose that f(X) is efficiently computable with a straight line program F of length
L, and that for random r ∈ R, the probability that f(r3) = r is µ. Then n can be factored with a
probability of success at least 2

3µ
2, using a straight line program running over R of length 7L+K,

for some constant K, together a small amount of additional work.

Proof. Pick a random u ∈ R, until one is found with
(

u
n

)
= −1. Without loss of generality, assume

that (
u

p

)
= 1 and

(
u

q

)
= −1. (3)

Let U = R[X]/〈X2 − u〉, which is a quadratic extension of R. The ring U has structure:

U ∼= Fp × Fp × Fq2 . (4)

To see this, suppose that v2 = u in Fp. Let ψ be the isomorphism that maps a + bX ∈ U , to
(a + bv, a − bv, a + bX) ∈ Fp × Fp × Fq2 , where the integers a and b are reduced modulo the
appropriate modulus and Fq2 is represented as Fq[X]/〈X2−u〉. Elements of U that map to (s, 0, 0)

4

form a subring S ∼= Fp, and elements mapping to the form (0, s̄, 0) form a subring S̄ ∼= Fp. Elements
of S can also be characterized as elements a + bX of U such that a = b and q | a, while elements
of S̄ can be characterized as those with a = −b and q | a. Elements of U that map to (0, 0, t) form
a subring T , which can also be characterized as those elements a+ bX, with p | a, b.

Because R ∼= Fp×Fq, there are surjective homomorphisms σ : R→ S and σ̄ : R→ S̄. Lemma 2
then implies that f(s3) = s with probability at least µ for any random s ∈ S, and similarly if s ∈ S̄.

Now pick a random r ∈ U and compute f(r3) using straight line program F ; this can be done
by Lemma 1. Suppose that ψ(r) = (s, s̄, t). Because ψ is an isomorphism, we have

ψ(f(r3)) = (f(s3), f(s̄3), f(t3)). (5)

With probability at least µ2, we have f(s3) = s and f(s̄3) = s̄, since s and s̄ are independent. In
this event, we have:

ψ(f(r3)− r) = (0, 0, f(t3)− t). (6)

If f(t3) 6= t, then f(r3)− r ∈ T \ {0}, and thus has the form a+ bX where p | a, b and one of a or
b is nonzero. Therefore

p ∈ {gcd(a, n), gcd(b, n)} (7)

and n has been factored.
Otherwise f(t3) = t. We will now see that this event can happen with probability at most 1

3 .
Note that q2 ≡ 1 mod 3, so that 3 | q2 − 1. Hence T ∼= Fq2 has an element ω of multiplicative order
3. It follows that only one third of elements in T are perfect cubes, and each perfect cube has
three cube roots. These cube roots are called conjugates. A set of such conjugates always takes
the form {z, ωz, ω2z}, which is called a conjugacy class. For a random t ∈ T with a given value of
t3, each element of the conjugacy class has probability 1

3 of occurring. Given only t3, there is at
most 1

3 chance of determining t, no matter what algorithm is used. Therefore, the event f(t3) 6= t
has probability at least 2

3 .
With one run of F on the ring U , we have a probability of 2

3µ
2 of obtaining a factor of n.

Running F on the ring U can be implemented as a straight line program G running on the ring R.
The resulting program has length at most 7L+K, because multiplication in U can be implemented
as seven ring operations in R, since (a+ bX)(c+ dX) = (ac+ bdu) + (cb+ ad)X.

A small example may help illustrate. Any straight line program F for polynomial X7 finds cube
roots in R = Z/〈55〉. The ring U = Z[X]/〈55, X2−6〉 is isomorphic to F5×F5×F121. For a random
element of U , we can pick r = 4 + 7X. Then we compute y = r3 = 17− 26X, and submit y to the
straight line program F , which gives z = F (y) = y7 = 9 + 17X. Now F (r3)− r = z− r = 5 + 10X.
As predicted, z − r is 0 + 0X mod 5, and also happens to be nonzero in U (which should happen
with probability at least 2

3). In this case, computing gcd(55, c) = 5, where c is either coefficient of
z − r, recovers the desired factor of n = 55.

Given that the classical result [4, 6, 9] of a private exponent revealing the factorization, and
that 7 is a private exponent for 3 modulo 55, one could have also used the classical results instead
of Theorem 3. The example above does not illustrate the greater generality of Theorem 3. A class
of polynomials outside the range of the classical result is those of the form Xd where d = 1

3 mod m
and m is some proper factor of lcm(p−1, q−1). These have success rate µ < 1. Technically, such a
d is not a private exponent, even though it can be used to find cube roots for a fraction of elements
in Z/〈pq〉. We would expect, however, that the proofs in [4, 6, 9], or some minor extensions thereof,
apply to such d. The polynomial 11X3 + 45X17 will also compute cube roots modulo in Z/〈55〉,

5

being derived via the Chinese remainder theorem. This polynomial is not of the form Xd, but on
the other hand the factorization of 55 is readily ascertained from its coefficients. Another class of
polynomials can be derived from Cipolla’s algorithm (see §A). While any given small example may
obviously reveal the factorization by inspection, the power of Theorem 3 is that all examples will
reveal the factorization.

The factor µ2 in the success rate of factoring can be improved to µ, because the proof used in
Theorem 3 is actually a simplification that does not exploit the full strength of the reduction.
Theorem 4. Theorem 3 is also true with a success rate of the factoring algorithm of at least 2

3µ.

Proof. The proof is the same as the proof of Theorem 3, except that we only use the event f(s3) = s,
so that it does not matter if f(s̄3) 6= s̄. If f(s3) = s and f(t3) 6= 0, then

ψ(f(r3)− r) = (0, y, z) (8)

for some y ∈ Fp and 0 6= z ∈ Fq2 . Let c = f(r3)− r. Write c = a+ bX, and let c̄ = a− bX. Then
ψ(c̄) = (y, 0, z̄) for some z̄ ∈ Fq2 . The norm of c is cc̄ = a2 − b2u, and

ψ(a2 − b2u) = ψ(cc̄) = (0, y, z)(y, 0, z̄) = (0, 0, zz̄). (9)

Therefore, p | a2 − b2u and q - a2 − b2u, because z 6= 0 implies z̄ 6= 0.

This improvement in the success rate of factoring is important, because otherwise, for small but
non-negligible µ, the factoring algorithm could have a negligible success rate.
Theorem 5. Let A be a probabilistic algorithm that takes as input an RSA modulus n of given
size with public exponent of three and outputs an efficient straight line program F that finds cube
roots modulo n with probability at least µ. Then A can be used to factor RSA numbers of the
given size with probability at least 2

3µ. The cost of the factoring algorithm is roughly the cost of
A plus seven times the cost of evaluating F .

Proof. To factor n, run algorithm A, then apply Theorem 4 to its output program.

Provided that µ is not too small, that F is efficient, and that A is efficient, then one can factor
efficiently. The success rate of the factoring algorithm can be increased by repeating it, or by using
random self-reducibility of the RSA problem to first increase the success rate of A. Increase of the
success rate in this manner costs extra computation time in the usual trade-off.

The results above extend to straight line programs with division, although the efficiencies may
change slightly due to the cost of implementing in division in the extension ring.

3.2 Higher Degree Roots: Public Exponent e > 3

The results for e = 3 generalize to higher public exponents. The following result requires e to be
sufficiently small to make certain approximations in the proof, but this upper bound seems well
above the threshold of values for which the result has cryptological significance.
Theorem 6. Let f(X) ∈ Z[X], let e > 3 be an integer, let p and q be primes with gcd(e, (p−1)(q−
1)) = 1 and p, q � e, let n = pq and let R = Z/〈n〉. Suppose that f(X) is efficiently computable
as a straight line program F of length L, and for random r ∈ R, the probability that f(re) = r

is µ. Then n can be factored with an approximate probability of success at least (e−1)(E−1)
φ(e)eE µ,

where E is the base of the natural logarithm, using a straight line program of length at most about

6

3φ(e)2L + K running over R, together with a small amount of other work, for some constant K
depending on e and R.

Proof. There are two phases to the factoring algorithm. In the first phase, a random polynomial
g(X) ∈ R[X] of degree φ(e) is selected. The second phase uses the resulting g(X), generalizes the
previous proofs, and is successful if g(X) has a root modulo p and is irreducible modulo q (or vice
versa). After presenting the second phase, we analyze the probability of that the first phase obtains
this necessary condition on g(X) for the second phase to succeed.

If g(X) meets the condition, then factoring proceeds almost exactly as in the proof of Theorem 4.
Let:

U = Z[X]/〈n, g(X)〉 (10)

Because of the property of g(X), the ring U has structure:

U ∼= Fp × Fpd2 × · · · × Fpds × Fqφ(e) (11)

Let S be a subring of U isomorphic to Fp and let T be the subring isomorphic to Fqφ(e) . Note that
T ∗ has qφ(e) − 1 elements, and that e | qφ(e) − 1, so that a fraction 1

e of elements of T are perfect
eth powers, and that every such perfect power has exactly e roots forming a conjugacy class.

Pick a random r ∈ U . Compute F (re). Let s and t be the homomorphic projections of r in
components S and T . Then F (se) = s with probability at least µ, because S ∼= Fp and Fp is
the homomorphic image of R, where F computes eth roots, so Lemma 2 applies. In this event,
F (re)− r projects to 0 in S. Let F (re)− r = z0 + z1X + · · ·+ zφ(e)−1X

φ(e)−1 = z(X). In the proof
of Theorem 4, a norm was calculated. The generalization needed here is the resultant:

Res(z(X), g(X)) (12)

The resultant is defined here as the determinant of the Sylvester matrix of the two polynomials.
For polynomials defined over a field, the resultant is the product of all the differences between roots
of the first and second polynomials, times the product of the leading coefficients each raised to the
degree of the other polynomial. The resultant can be computed efficiently using a determinant
or using an algorithm similar to the Euclidean algorithm. This takes approximately O(φ(e)3),
or O(φ(e)2) respectively, Z/〈n〉 operations, including divisions. Henceforth, we absorb this as a
relatively small cost, but note that for large e this cost may actually be significant compared to
factoring n.

Let s be the root of g(X) in Fp that was assumed to exist. A polynomial u(X) ∈ Z[X] regarded
as an element of U projects to the subring S as u(s). Since z(X) projects to 0 in S, we have
z(s) = 0 in S. Therefore, z(X) and g(X) have a common root s in S. Thus the resultant projects
to zero in S. But the resultant is a polynomial of degree zero, and is thus an element of Z/〈n〉.
Being an integer and belonging to S, implies being divisible by p. Therefore:

p | gcd(n,Res(z(X), g(X))) (13)

With probability at most 1
e this gcd is n, which corresponds to F having guessed correctly which

of the e conjugates t was. Note that g(X) is irreducible modulo q, so the only chance of having
common factors with z(X) is if g(X) | z(X), and thus F found a root in Fqφ(e) . Therefore, with
probability at least e−1

e , the gcd is p, which gives the desired factor of n.
In the first phase, a random monic polynomial g(X) ∈ R[X] of degree d = φ(e) was selected.

We now calculate the probability of the polynomial having a root or being irreducible in the field

7

Fp, to determine the success rate of the second phase. The total number of monic polynomials of
degree d is pd. The number of irreducible polynomials of degree d is:

1
d

∑
f |d

µ

(
d

f

)
pf , (14)

where µ(·) is the Möbius function. This can be seen by applying the inclusion-exclusion principle
to the degrees of elements in extension fields of Fp. For large p, the probability of being irreducible
is thus approximately 1

d . For large p, this approximation is very tight. The number of g(X) with
at least one root is:

d∑
f=1

(−1)f−1

(
p

f

)
pd−f . (15)

This can be seen by the inclusion-exclusion principle on the set of roots. Therefore, for large p,
the probability of having a root in Fp is approximately E−1

E , where E is the base of the natural log
(not to be confused the RSA public exponent), with a better approximation for larger d. A more
accurate estimate for the probability, especially for smaller e is

1
1!
− 1

2!
+ · · · ± 1

φ(e)!
, (16)

which approaches E−1
E quite quickly. Estimate (16) uses the approximation

(
p
f

)
≈ pf

f ! , which is only
accurate if p � f . Once e gets large enough, other estimates may take over with the alternating
sum in (15) being quite different from (16).

The straight line program F , as run over U , can be translated into a longer straight line program
G running over R. Each multiplication step in F involves at most about 2φ(e)2 multiplication steps
in G and φ(e)2 addition steps.

To increase the success rate of the factoring algorithm, one can repeat the process. A better
improvement may be possible, however, with a more judicious selection of g(X). For example,
increasing the chance that g(X) is irreducible may be possible by selecting g(X) to be irreducible
over the integers. It is not clear, however, when doing so, what the probability of having a root is.
Alternatively, one may select g(X) = Xd − u, with u random. The factorization of such binomials
is well understood: it depends on the field size and the order of u in the field. Such polynomials
are never irreducible over Fp if 4 | t and p ≡ 3 mod 4, but otherwise they can be irreducible for
certain choices of u. This approach has the potential to increase the probability of finding g(X) by
preprocessing u through computation of higher degree equivalents of the Jacobi symbol, resorting
to higher degree equivalents of quadratic reciprocity.

Instead of the resultant in the proof, a greatest common divisor of polynomials could have
been used. Modulo p, the polynomials z(X) and g(X) have a common root, namely s, so (X −
s) | gcd(z(X), g(X)), so the gcd has degree at least 1. Modulo q they do not have a root, so
gcd(z(X), g(X)) has degree 0. Modulo n, we should therefore have gcd(z(X), g(X)) as a polynomial
of degree at least 1, all of whose non-constant coefficients are zero modulo q. Therefore one of the
non-zero non-constant coefficients c is such that gcd(c, n) = p. The only problem with this approach
is defining the greatest common divisor over the ring Z[X]/〈n〉. The resultant has the advantage
of being easily definable as the determinant of the Sylvester matrix, so it is not necessary to deal
with a generalized definition of greatest common denominators in the proof.

8

One may be able use smaller extension degrees than used in the proof of Theorem 6. For
example, if algorithm F fails to find eth roots in Fp2 or Fq2 , even though unique eth roots exist in
both these fields, it is sufficient to work in a quadratic extension. In the proof, we cannot make
such an assumption, so we use an extension of higher degree. It is possible to devise a factoring
strategy that tries a quadratic extensions first, then extensions of degree of successive higher factors
d | φ(e), which may succeed in factoring more often (or quickly, in iterated form), except in the
worst case.

The analogue of Theorem 5 about algorithms that take an RSA modulus and output a straight
line program for finding roots is:
Theorem 7. Let A be a probabilistic algorithm that, on input n of an RSA number of given size
with public exponent of a fixed e, outputs an efficient straight line program F that finds eth roots
modulo n with probability at least µ. Then A can be used to factor RSA numbers of the given
size, with probability at least (e−1)(E−1)

φ(e)eE µ where E is the base of the natural logarithm, and with

similar cost to the cost of A plus the 3φ(e)2 times cost of the straight line program it outputs.

Proof. To factor n, run algorithm A, then apply Theorem 6 to its output program.

If A is as slow as factoring, then the straight line program F can be very efficient, such as
exponentiating by the private exponent. The opposite extreme is with A very efficient, almost
negligible compared to the cost of factoring, which entails a method to solve the RSA problem
almost purely with a straight line program. We can consider how low the cost of F can be in this
case. Essentially, the cost of solving the RSA problem almost purely with a straight line program
is at least (E−1)(e−1)

3Eφ(e)3
times the cost of factoring. This estimate uses Theorem 7 and incorporates a

strategy of repeating F as often as necessary until the factorization is obtained.
With the commonly used public exponent e = 216 + 1, key size n ≈ 21024, and standard

estimate that factoring costs the equivalent of about 280 operations in Z/〈n〉 for this key size, then
the estimated lower bound on the difficulty of solving the associated RSA problem purely with a
straight line program is about 230 operations in Z/〈n〉. This very loose estimate may be made more
precise by more careful accounting in the proofs, (and perhaps it can be improved as well, with
some optimization of the proof algorithms, such as Karatsuba).

The results above extend to straight line programs with division, although the efficiencies may
change slightly due to the cost of implementing in division in the extension ring.

It must be emphasized that the actual difficulty of the RSA problem may be higher than the
bounds proven here, or lower when not limited to straight line programs.

3.3 Security of the Hybrid Public Exponent e = 3(216 + 1)

If the public exponent e has a small factor d, then any algorithm for finding eth roots can be used
to find dth roots, simply by calculating the eth root and then exponentiating by e

d . Therefore, the
theorems above extend to when the public exponent is any multiple of stated public exponent.

The smaller the smallest factor of an RSA public exponent is, the tighter the bounds between
the RSA problem and factoring given in the theorems above are. Furthermore, with a smallest
factor of two, the classical reduction [7] between finding square roots and factoring can applied.
This is very a tight reduction, and moreover is not limited to straight line programs. With a
smallest factor of three, the reduction described here is quite tight, but limited to straight line
programs.

9

Because there are various security concerns about low public exponent RSA, such as the attacks
of Coppersmith [3] (see also [1] for a survey of such attacks), and the theoretical work of Boneh and
Venkatesan [2], it has been natural to doubt the general security of the low public exponent RSA
problem, and especially the equivalence of its security to factoring. This paper may set aside some
doubts, but only in a limited way because of the restriction to straight line programs. Therefore,
it still remains prudent to use a moderately large public exponent, rather than, say, e = 3. By
the same token, it may also be prudent to use a public exponent that is not product of small
exponents. Otherwise, if the RSA problem is solvable for each of the small exponents, then it is
solvable for their product. In this light, the commonly used prime public exponent e = 216 + 1
enjoys some security properties: it resists the known attacks and yet is small enough to offer very
competitive performance of public key operations. The exponent e = 216 + 1, though, does not
enjoy significantly the benefits of this paper, especially when compared to e = 3. The results of
this paper are strongest when e = 3, or a multiple thereof.

Fortunately, there are public exponents that enjoy some of the benefits of both e = 3 and
e = 3(216 + 1). Consider the exponent e = 3(216 + 1). Computing eth roots is at least as difficult
as computing cube roots, and thereby the results described in this paper provide some assurance,
however limited it may be, of the hardness of the RSA problem for public exponent e = 3(216 + 1).
Conversely, computing eth roots is as difficult as computing (216 + 1)th roots, so this choice of e
is at least as secure as the exponent 216 + 1, which is in widespread use today. Public exponent
3(216 + 1) is only slightly more expensive to implement than 216 + 1, so the cost of extra security
benefit may be low enough to warrant such a practice. Also, the exponent e = 3(216 + 1), like
e = 216 + 1, seems to resist some of the attacks, such as Hastad’s and Coppersmith’s, against the
public low exponent RSA scheme.

4 Limited Implications

The implications of the results in this paper have several limitations.

Small factors required in the public exponent. The results in this paper require the RSA
public exponent to have a small factor. Otherwise, the extension degree gets quite large, and
factoring with this result becomes much slower than solving the RSA problem. The results in this
paper do not apply, for example, to large prime public exponents e, and thus do not provide any
lower bounds on the RSA problem in these instances. Somewhat surprisingly, past work — such as
the attacks of Coppersmith [3] and others (see [1] or [8] for a survey of other such attacks) and more
theoretical results such as Boneh and Venkatesan’s [2], — has generally shown security concerns
with low public exponent RSA. The results of this paper in no way undo such past work. Despite
the results here in favour of low exponent RSA, low exponent RSA should be avoided. At least,
countermeasures to the known attacks are necessary, if low exponent RSA must be for some arcane
reason.

Algorithms exist that solve SLP-hard problems. Inverses in R = Z/〈n〉 can be found
efficiently using the Euclidean algorithm. The Euclidean algorithm neither requires the factorization
of n nor is known to help significantly in factoring n. Straight line programs for computing inverses
in R, however, typically compute a polynomial Xkφ(n)−1. If one can extract the exponent from
the program, then one can factor n as long as k is small enough. Moreover, it may be possible to
extend the results here to show that any straight line program for computing inverses in Z/〈n〉 can

10

be used to factor n. Preliminary attempts (see Appendix B) to do this involve using an extension
whose degree grows with the length of the straight line program, and if this works out, it is likely
to be a far looser reduction than between the RSA problem and factoring

Most functions Z/〈n〉 are not polynomials. Not all functions in an RSA ring R = Z/〈n〉
can be computed with a polynomial. All functions from a field to itself can be computed with a
polynomial, but only a negligible proportion of functions f : R→ R can be expressed as polynomial
functions. If n = pq, then the number of polynomial functions is ppqq, which is considerably smaller
than the total number of functions, which is (pq)pq. The probability that a random function on
R is a polynomial is thus approximately n−

√
n. Non-polynomial functions can be very simple: the

function f(x) = b2x
n c, where 0 6 x < n cannot be expressed as a polynomial. Also the Jacobi

symbol cannot be expressed as an integer polynomial, since it is not true that x ≡ y mod p implies(
x
n

)
≡

(y
n

)
mod p. If it is the case that efficient non-polynomial functions can be used solve the

RSA problem, then this paper’s results would not apply to give a factoring algorithm.

Most polynomials are not SLP-efficient. Efficient straight line programs can only evaluate
a very small proportion of all integer polynomials. The number of straight line programs of length
L is 3L(L + 1)!2. Consider the field Fp with p ≈ 2512. The number of polynomial functions is
pp ≈ 22521

. In the context of RSA factorization, we may consider a straight line program to be
efficient if L 6 280. The number of such straight line programs is quite a bit less than 2288

. Certain
integer polynomial may not be efficiently computable with a straight line program, but may be
computable by other algorithms. If so, they may be useful for solving the RSA problem, and this
paper shows nothing to the contrary.

5 Why This Paper Does Not Contradict Boneh and Venkatesan’s

The results of this paper, not to mention the classical results [4, 6, 7, 9], do not immediately
contradict the results of Boneh and Venkatesan [2], despite being results in opposite directions.
Neither this paper nor [2] claim to resolve the open question of whether the RSA problem is as
difficult as factoring — both papers only provide evidence towards one possible answer — so there
is no contradiction between the opposite sounding claims, at least without inspecting the details.
Nevertheless, even though each piece of evidence is inconclusive in its own right, one naturally
wonders how such conflicting pieces of evidence could co-exist, so a few words of explanation are
worthwhile to explain the lack of contradiction.

Recall that Boneh and Venkatesan show that any factoring algorithm that is a straight line
program that also uses an oracle for solving the RSA problem can be made into another factoring
algorithm that is a straight line program that does not use an oracle for solving the RSA problem.
In other words, if the initial factoring algorithm is a straight line reduction, then factoring is easy.
Our reductions appear not to be straight line reductions, as defined in [2], for the reasons given
below, and therefore we have no technical contradictions between the oppositely directed results.

The straight line reductions defined in [2] are very powerful in that they do not look inside
the RSA problem solving oracle. Any proof about such powerful reductions does not apply to
reductions that violate this condition, such as ours. In other words, results such as [2] about
straight line reductions, or more generally reductions with oracle-only access to the RSA problem
solving algorithm, are weak in the sense that they are limited to a very special kind of reduction.

11

Normally, in direct reductions, having oracle-only access is the strongest possible condition.
In metareductions, reductions about reductions, however, oracle-only access becomes a weaker
condition on the results. At first, this appears counterintuitive, but once one gets use to the
idea of metareductions such as [2], it should become clearer. Since our reductions are direct
reductions, not metareductions, the fact that we use more than oracle-only access means that
our results are weaker than the strongest possible. Oracle-only access strengthens direct reductions
but weakens metareductions. Therefore both the result of this paper and [2] are weaker than they
could theoretically be.

Perhaps a bottom line metaphor would be the reductions given a lower negative bound and [2]
gives a positive upper bound, which are non-contradictory bounds on the opposite side of quantity.
Neither result completely settles the dilemma of whether the quantity is positive or negative, that
is, whether the RSA problem is as difficult as factoring.

6 Conclusion

Solving the low public exponent RSA problem with a straight line program (even one that depends
on the RSA public key) is as difficult as factoring. If factoring is hard, then no efficient algorithm
can output a straight line program that solves the RSA problem efficiently, provided the public
exponent has a small enough factor. The reduction is loose for the common public exponent
e = 216 + 1, but is quite tight for public exponents divisible by three. It must be emphasized that
this work in no way rules out algorithms that solve the RSA problem other than by a straight line
program.

Acknowledgments

Steven Galbraith pointed out a major mistake in a previous paper of the author. The author’s
efforts to correct this mistake ultimately led to this paper. Alfred Menezes provided extensive
comments on the presentation of this paper. Adrian Antipa, Rob Lambert, Scott Vanstone, Rene
Struik, and John Goyo also provided comments.

References

[1] D. Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of the American Math-
ematical Society, 46(2):203–213, 1999. http://crypto.stanford.edu/∼dabo/abstracts/
RSAattack-survey.html.

[2] D. Boneh and R. Venkatesan. Breaking RSA may be easier than factoring. In K. Nyberg, editor,
Advances in Cryptology — EUROCRYPT ’98, number 1403 in LNCS, pages 59–71. IACR,
Springer, May 1998. http://crypto.stanford.edu/∼dabo/abstracts/no rsa red.html.

[3] D. Coppersmith. Finding a small root of a univariate modular equation. In U. Maurer, editor,
Advances in Cryptology — EUROCRYPT ’96, number 1070 in LNCS, pages 155–165. IACR,
Springer, May 1996.

[4] J. M. de Laurentis. A further weakness in the common modulus protocol for the RSA cryp-
toalgorithm. Cryptologia, 8:253–259, 1984.

12

http://crypto.stanford.edu/~dabo/abstracts/RSAattack-survey.html
http://crypto.stanford.edu/~dabo/abstracts/RSAattack-survey.html
http://crypto.stanford.edu/~dabo/abstracts/no_rsa_red.html

[5] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.

[6] G. L. Miller. Riemann’s hypothesis and test for primality. Journal of Computer and Systems
Science, 13(3):300–317, 1976.

[7] M. O. Rabin. Digitalized signatures and public-key functions as intractable as factorization.
LCS/TR 212, MIT, 1979.

[8] R. L. Rivest and B. Kaliski. Encyclopedia of Cryptography and Security, chapter
RSA Problem. Kluwer, 2002. To appear. http://theory.lcs.mit.edu/∼rivest/
RivestKaliski-RSAProblem.pdf.

[9] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21:120–126, 1978.

[10] V. Shoup. OAEP reconsidered. ePrint, IACR, 2000. http://eprint.iacr.org/2000/060.

A Cipolla’s Algorithm for Cube Roots over Composite Rings

Choose two large primes p < q. Suppose that:

gcd(p2 − 1, q2 − 1) | q − p (17)

Let D be such that:

D ≡ p+ 1 mod p2 − 1

D ≡ q + 1 mod q2 − 1
(18)

The Chinese remainder theorem, together with (17), ensures that D exists. If p ≡ q ≡ 2 mod 3,
then D ≡ 0 mod 3. Let d = D/3. Let c = lcm(p2−1

3 , q2−1
3). Let n = pq and let t ∈ Z/〈n〉. Define

the ring:
Rt = Z[X,Y]/〈n, Y 2 − tY +X〉 (19)

Every element in this ring can be represented in the form a(X) + b(X)Y , where a(X), b(X) ∈
Z[X]/〈n〉, by repeatedly substituting Y 2 = tY −X until no higher powers of Y remain. Use this
observation to define a polynomial f(X) with the property:

(r + sY)cY d = f(X) + g(X)Y, (20)

where r, s are some random elements of Z/〈n〉. For a fixed t and random x ∈ Z/〈n〉, then f(x)3 = x
with probability about 1

36 . To see this, we work in the ring Rt,x = Rt/〈X−x〉 = Z[Y]/〈n, Y 2−tY +
x〉. Suppose that Y 2 − tY + x is irreducible in Fp[Y] and Fq[Y], which happens with probability
about 1

4 . In this case:
Rt,x

∼= Fp2 × Fq2 . (21)

Consider the image of Y D in Fp2 :
Y D = Y p+1 = Y Y p. (22)

The roots of the polynomial Y 2 − tY + x in Fp2 are Y and Y p (with a slight abuse of notation).
The product of the roots is the constant coefficient, so Y D = x. The same holds in Fq2 and thus in
Rt,x. Therefore Y d is a cube root of x, which is what we seek, but is not yet in the correct form.

13

http://theory.lcs.mit.edu/~rivest/RivestKaliski-RSAProblem.pdf
http://theory.lcs.mit.edu/~rivest/RivestKaliski-RSAProblem.pdf
http://eprint.iacr.org/2000/060

Again, working in Fp2 , note that Y d is a cube root of x ∈ Fp, but it may not be the case that
Y d ∈ Fp. But since, p ≡ 2 mod 3, there exists exactly one cube of x in Fp, say y. Therefore, Y d is
y or a conjugate of y. Let u be a primitive cube root of unity in Fp2 , which exists since 3 | p2 − 1.
Then we have y ∈ {Y d, uY d, u2Y d}. One approach is to compute u, then try each conjugate of Y d

in order to find y. A slightly different approach is to take random v = r + sY ∈ Fp2 and compute
v(p2−1)/3Y d, because v(p2−1)/3 ∈ {1, u, u2}. The latter approach gives a 1

3 probability of obtaining
y. This holds in Fq2 and thus in Rt,x. The left hand side of (20) equals y, the unique cube root
of x in the ring Z/〈n〉, with probability 1

4 ×
1
3 ×

1
3 . When this happens, the right hand side is in

Z/〈n〉, because y is, therefore the second coefficient g(x) = 0. It thus suffices to consider only the
polynomial f(X).

To be a relevant example for this paper, the polynomial f(X) should be efficiently computable
via a straight line program. This can be done using a square and multiply algorithm to compute
the powers in (20), with reduction modulo Y 2−tY +X done at every step. Each intermediate value
in the straight line program for f(X), will be either Y 0 or the Y 1 coefficient of some intermediate
value of the square-and-multiply algorithm for (r + sY)cY d.

This example used a quadratic extension to find cube roots. Other degree extensions can be
used to find other degree roots. A large variety of straight line programs exist that solve the RSA
problem. This paper shows that finding any of these programs without knowing the factorization
is almost as difficult as factoring.

B An Easy but SLP-Hard Problem: Finding Inverses

Finding inverses in Z/〈n〉 is easy with the Euclidean algorithm. Straight line programs can also
find inverses, just as they can be used to find cube roots. Typical straight line programs for finding
inverses reveal the factorization of n. In this section, we investigate whether any such straight line
program reveals the factorization. If so, then finding inverses is an example of a problem that is
(a) similar to the RSA problem, in that it can be solved with a straight line program but only if
the factorization is known, but (b) dissimilar to the RSA problem in that we know how to solve it
easily with another kind of algorithm. If finding inverses is an easy but SLP-hard problem, then
the RSA problem might be too.

Suppose f(X) ∈ Z[X] is such that xf(x) ≡ 1 mod n for any x ∈ Z/〈n〉, and that f(X) is
efficiently computable as a straight line program (SLP) of length L. Note that the degree of f(X)
is at most 2L, and that Xf(X)− 1 has at most 2L + 1 roots in any field.

Let g(X) ∈ Z[X] be a polynomial that is irreducible over Fq with degree d such that qd � 2L+1.
Suppose that g(X) has a root in Fp. The ring R = Z/〈n, g(X)〉 has subrings isomorphic to the
fields Fp and Fqd . In the field Fqd , the polynomial Xf(X)− 1, has a negligible proportion of zeros.
For random r ∈ R, the probability that rf(r) = 1 in R is thus negligible. However, the image of
rf(r) in the subring isomorphic to Fp will be 1. Write rf(r)−1 in R as z(X) for some z(X) ∈ Z[X].
Then, as before, gcd(n,Res(z(X), g(X))) = p, gives the desired factorization.

The efficiency and success rate of the procedure above depends on the degree d of g(X). Larger d
reduces the efficiency, and larger L increases d. We can bound d above by 2L. The highest possible
degree of f(X) is 2L, which is attained only by f(X) = X2L

. For this f(X) of this maximum
degree, there is only one root. But the polynomial X2L − 1 has length L+ 1 and 2L distinct roots
of over the algebraic closure Fq.

Therefore, finding inverses modulo an RSA modulus of unknown factorization using a straight
line program (without division) may be somewhat difficult, at least to do with a very short straight

14

line program.

C Generalized RSA

For some rings Z/〈n〉, the function E(x) = xe is a bijection. The bijectivity of this function is the
basis for the RSA public key cryptosystem. One may generalize this by taking E(x) to be some
other rational function, rather than a monomial. (More generally, one need not confine oneself to
rings Z/〈n〉.) This leads to a couple questions:

1. When is a rational function E(x) is a bijection over Z/〈n〉, and how does one compute its
inverse?

2. When can such a bijective rational function E(x) over Z/〈n〉 serve securely as a public key
operation, thus generalizing the RSA public key cryptosystem? In particular, when do the
results of this paper generalize to such an E(x)?

To address these questions, write E(x) = e1(x)
e0(x) where e0 and e1 are polynomials. For E to

be a bijection the equation E(x) = E(y) must imply x = y for x, y ∈ R. Therefore consider the
expression E(x) − E(y) = 0. Multiply this by e0(x)e0(y) to a get a polynomial in x and y. This
polynomial is zero whenever x = y, so we may divide out by the factor x − y, to get another
polynomial e2(x, y) in two variables, that is

e2(x, y) =
(E(x)− E(y))(e0(x)e0(y))

x− y
=
e1(x)e0(y)− e0(x)e1(y)

x− y
(23)

In fact, the factor x − y may actually divide e2(x, y) as defined above, once again. So instead, in
that case, we define e2(x, y) by dividing the highest power of (x− y) possible. Bijectivity of E(x)
over the ring R, is now essentially characterized by the condition that the curve e2(x, y) = 0 has
no points in R×R.

The results of this paper may apply if we can find extension rings S of ring R, such that we can
ensure that with a sufficiently larger probability for a given x there exists a y with e2(x, y) = 0 in
one field component of the ring S, but not for the other field component. The problem is then to
start with fields in which the curve defined by e2 has no points, and extending the field until the
curve has some points.

Some examples may illustrate the general applicability of the framework above.

• Let E(x) = xe. Then e2(x, y) =
∏e−1

j=1(u
j − y), where u is a primitive eth root of unity. The

curve e2 = 0 has an R-rational point if and only if uj ∈ R for some 1 6 j 6 e − 1. This
example is just the classic RSA case. For R = Zidealn, there are no such uj , but in the
reductions of this paper, we found extensions for which such uj existed.

• Let E(x) = 1/x. Then e2(x, y) = −1. The curve e2 = 0 has no R-rational points for any
ring R. The inverse function is bijective, but since the curve e2 = 0 never has any points
for any ring, it is much harder to apply the results of this paper (but see §B). Much more
importantly, the function E(x) is completely insecure as a public key operation, since it is its
own inverse.

• Let

E(x) =
(3x2 + a)2

4(x3 + ax+ b)
− 2x, (24)

15

which is the formula for computing the x-coordinate of the double of point (x, y) on an elliptic
curve defined by y2 = x3 + ax+ b. If p is an odd prime, and this curve has an odd number of
points modulo p, then E(x) is essentially invertible in Fp. In this case, e2(x, y) has a rather
complicated expression:

e2(x, y) = x3y3 + axy(x2 + xy + y2) + 2ax2y2 + b(x3 + x2y + xy2 + y3)

+ 8bxy(x+ y)− 2a2xy − a2(x2 + xy + y2)− 2ab(x+ y)− 8b− a3, (25)

from which not a lot is immediately obvious. However, knowing that E(x) represents a point
doubling formula, we realize that if we find an extension of Fp over which y2 = x3 +ax+b has
an even number of points, we can expect E(x) to be at least two-to-one over this extension. In
other words, we need a point of order two, which must have form (x, 0), so that x3+ax+b = 0.
Note that because the curve order is odd over Fp, the polynomial x3 + ax + b has no roots
in Fp, and thus is irreducible. In a third degree extension of Fp, the polynomial x3 + ax+ b
always has at least one root, so the curve order over Fp3 is always even. If the curve order is
even, then ensure E(x) = x′ has at least two solutions x for every x′ ∈ Fp3 . Suppose algorithm
A takes an RSA modulus n for which E(x) is invertible over Z/〈n〉 and outputs a straight
line program F that inverts E(x). Take a random third degree polynomial g(X) ∈ Z[X] and
form the ring R = Z[X]/〈n, g(X)〉. As usual, with reasonable probability we will have that
g(X) is irreducible modulo q, but has a root modulo p. As in the reductions between root-
finding algorithms and factoring, compute F (E(r)) for random r ∈ R. Note that F (E(r)) = r
modulo p, or more precisely that this holds in a projection to a subring isomorphic to Fp.
Meanwhile, modulo q, we will have F (E(r)) 6= r, with probability at least 1

2 . As before, in
this event a resultant and a gcd can be used to find p. This gives some evidence that E(x)
could be used securely as a public key encryption function.

D Variant RSA Problems

It is not uncommon in cryptology to consider easier variants of the RSA problem, because the
security of certain RSA-based cryptographic schemes can be proven more easily and more tightly
related to the easier variant RSA problems than to the classic RSA problem. For example:

• In the strong RSA problem, the exponent is part of the solution. The input is (n, y), where
n is the RSA modulus, and the output is (e, x) such that xe ≡ y mod n for some e > 1. The
strong RSA problem is easier than the classic RSA problem.

• The oracle RSA problem is m+1 copies of the classic RSA problem except that the solver gets
m accesses to an oracle for solving the classic RSA problem. The input is (n, e, y1, . . . , ym+1),
and the output is (x1, . . . , xm+1), such that xe

i ≡ yi mod n. Before generating its output, the
solver may select any (w1, . . . , wm) and receive (z1, . . . , zm) such that ze

i ≡ wi mod n.

It is natural to ask whether the results of this paper say anything about the difficulty of such
variants of the RSA problem. For the strong RSA problem, it appears that nothing can be said
because the results in this paper say nothing for large public exponent e.

For the oracle RSA problem, the public exponent would have to be small for our results to
apply, but a complication arises from answering the oracle queries. It appears to be possible to
simulate correct oracle responses by using extension rings, as follows. Apply the reduction in this

16

paper until the problem solver makes its first oracle query. Note what this element is, and then
start over with a larger extension ring in which the oracle input has a root. This process must be
repeated m times, with the extension ring expanding m times. The field component of the final
extension ring look like Fpem . In order for the ring operations to be efficient, m has to be quite
small.

E Straight Line Programs with Division

In the rings of interest in this paper, Z/〈n〉, division is almost always defined, and furthermore
can be computed via an efficient algorithm, namely the Euclidean algorithm for inversion. More
precisely, failure of division of two random elements occurs with negligible probability in Z/〈n〉 if
n is an RSA modulus. More importantly, if a division does fail, then the factorization of n will
generally be revealed, because the denominator will have a nontrivial gcd with n.

Rings like Z/〈n〉 with the property that division is almost always defined (and can be computed
effectively) will be called near-fields. Straight line programs with division allowed make sense for
near-fields. To extend the main results of this paper to straight line programs with division, the
following helps:
Lemma 8. Let R be a near-field and let g(X) ∈ Z[X]. Then S = R[X]/〈g(X)〉 is a near-field.
Any straight line program (with division) over S can implemented as a (multi-input) straight line
program (with division) over R.

Proof. By definition, S is a ring, so it suffices to define inverses on S for almost all elements of S. Let
d be the degree of g(X). Elements of S may be represented as polynomials in R[X] of degree at most
d−1. For almost any element s(X) ∈ S with this representation, we can compute s(X)−1 using the
extended Euclidean algorithm applied to g(X) and s(X). The extended Euclidean algorithm will
generally involve d applications of the polynomial division algorithm. Each polynomial division will
require a certain number of divisions in the near-field R. The total number of near-field division in
R is generally about

(
d
2

)
, when computed as above. However, upon simplification all these divisions

in R can be consolidated into a single division, if desired.
Addition, subtraction, multiplication and division in S can each be implemented as multi-input

straight line programs acting on the coefficients of elements of S when represented as polynomials
in R[X].

To illustrate, suppose that g(X) = X3 +aX2 +bX+c, and that we want to compute the inverse
of f(X) = rX2 + sX + t. We will apply the polynomial division algorithm twice to get:

g(X) = q(X)f(X) + h(X) (26)
f(X) = u(X)h(X) + k(X) (27)

where q(X), h(X) and u(X) have degree one, while k(X) = k has degree zero, so is a constant
scalar. Combining these equations, we get k = f −uh = f −u(g− qf) = (qu+1)f −ug. Therefore

17

f (qu+1)
k ≡ 1 mod g. The results of the polynomial divisions give:

q(X) =
1
r
X +

a

r
− s

r2
, (28)

h(X) =
(
b− t

r
− as

r
+
s2

r2

)
X + c− at

r
+
st

r2
, (29)

u(X) =
r3

br2 − rt− rsa+ s2
X +

r3(s(br2 − rt− rsa+ s2)− (cr2 − art+ st))
(br2 − rt− rsa+ s2)2

, (30)

k(X) = t− r(s(br2 − rt− rsa+ s2)− (cr2 − art+ st))(cr2 − art+ st)
(br2 − rt− rsa+ s2)2

. (31)

Upon simplification to a single division we get:

1
rX2 + sX + t

= (
(br2 − rt− rsa+ s2)X2

+ (s2a− rsa2 − r2c− st+ r2bc)X

+t2 + r2b2 − ast− acr2 − 2brt− rsab+ rsc+ a2rt+ bs2
)

r3c2 − bcr2s− 2acr2t+ b2r2t− abrst+ acrs2 + 3crst+ a2rt2 − 2brt2 + t3 − ast2 + bs2t− cs3
.

(32)

A straight line program with division computes a rational function Q[X]. Lemmas 1 and 2 can
be extended accordingly, with polynomials in Z[X] replaced by polynomials in Q[X], rings replaced
with near-fields, straight line programs without division replaced by those allowing division. Unless
specifically stated otherwise, however, straight line programs in this paper will not include division.
Most of the results in this paper extend to straight line programs with division. The proofs of these
extensions and the impact on tightness of the reductions depend on the lemma above, and are not
discussed in detail.

F Straight-Line Equality-Excepted Programs

Straight line programs are called so partly because they do not involve branching steps, that is,
conditional statements. As such, they represent quite a narrow class of algorithms. The results
of this paper would be strengthened if the affected class of algorithms were broadened. In this
section, we consider a limited form of branching where equality-testing is allowed, which we call a
straight-line, equality-branching-excepted program (SLEEP). The significance of this extension will
remain debatable, however, until an convincing example is provided that a SLEEP can do more
powerful things than an SLP. To formally model a SLEEP, we allow another kind of step in the
form (ik, jk, lk,mk), where ij , jk, lk,mk < k, which is taken to mean that xk = xik if xlk = xmk

and
xk = xjk

otherwise.
Neither Lemma 1 nor Lemma 2 apply when an SLP or integer polynomial is replaced by a

SLEEP. Indeed, a SLEEP is capable of computing non-polynomial functions, unlike an SLP. We
therefore consider some modified lemmas, and argue that these lemmas can be used in to make the
proofs of the theorems apply to a SLEEP. The first lemma corresponds to something that was used
as an implicit consequence of Lemma 1: that the action of a program on the product ring was the
product of the actions on each ring.

18

Lemma 9. Let R and S be rings. Let F be a SLEEP. Let (r, s) ∈ R × S. Then F (r, s) =
(F (r), F (s)), or in the course of running F on (r, s), one can find (u, v) ∈ R × S with u = 0 or
v = 0.

Proof. Run F on (r, s) and r and s. Let Fk indicate the SLEEP up to and including the kth step
in the SLEEP. Compare Fk(r, s) and (Fk(r), Fk(s)). At the first k where these two values diverge,
the divergence must be due to an equality testing step (ik, jk, lk,mk), because arithmetic steps will
not cause divergence. Letting rk and sk indicating Fk(r) and Fk(s), one can see this divergence
arises if and only if rlk = rmk

and slk 6= smk
, or vice versa. Let (u, v) = (rlk − rmk

, slk − smk
).

Similarly, we have a modified version of Lemma 2.
Lemma 10. Let R and S be rings. Let σ : R→ S be a surjective homomorphism. Let P and Q be
SLEEPs. Let r ∈ R and s ∈ S be selected at uniformly random. If, P (Q(r)) = r with probability at
least π, then, with probability at least π, P (Q(s)) = s or during the course of computing P (Q(s))
one can find u ∈ R such that u 6= 0 and σ(u) = 0.

Proof. For the given s, we may select r as a random preimage of s under σ. This r is uniformly
randomly distributed in R, so therefore r = P (Q(r)) with probability at least π. Apply σ to both
sides to get s = σ(r) = σ(P (Q(r))). Unlike in Lemma 2, homomorphism σ may not commute with
P and Q, because they are SLEEPs, not integer polynomials. However, it is true that σP σ = Pσ,
where P σ is a modified SLEEP in which equality testing is done modulo the kernel of σ. Therefore,
P (Q(s)) = σ(P σ(Qσ(r))). If P (Q(r)) = P σ(Qσ(r)), then we have established that s = P (Q(s)).

Otherwise P (Q(r)) 6= P σ(Qσ(r)) which can only happen if the divergence is due to the difference
in equality testing. In the first step where divergences happens we will be able to find nonzero u
in the kernel of σ, by subtracting the two quantities being compared for equality, which is similar
in principal to what was done in the proof of Lemma 9.

When applying these modified lemmas in the proofs of the theorems, if they fail to work just
as the original lemmas, then they reveal a factor of n = pq.

G Duality Between Positive and Negative Security Results

A frequent phenomenon in cryptology is that what in some contexts is negative security result,
namely an attack, in other contexts can be interpreted as a positive security result. Although
this may sound counterintuitive, it derives from the logically sound contrapositive. The archetypal
example is the Rabin public-key cryptosystem, which was both (a) proven to be secure as factoring
and (b) broken by a chosen-ciphertext attack. The underlying basis for these two paradoxically
contradictory results is the contrapositive. Result (a) flows from the Rabin problem (RSA problem
with even e) being hard as factoring, and result (b) flows from the factoring being as easy as the
Rabin problem. The fully dramatic and practical form of the contradiction then applies when
different contexts to this simple contrapositive. In result (a), the context is that factoring is
assumed hard and that security is defined is as hardness of the Rabin problem, while in result
(b), the context is that of chosen ciphertext attacks exploiting a victim as an oracle to solve the
Rabin problem. Of course, not every negative or positive security result has such a dual, although
it may be worthwhile examining in each case the possibility and significance of an opposite dual
result. In practice, the paradoxical situation of such dual results can often be resolved by carefully
mitigating the negative side by adjusting the context. For the Rabin cryptosystems, measures can

19

be taken whereby the victim, the private key holder, does not provide an adversary oracle access
to the Rabin problem.

In this paper, we have presented a positive security result, namely that the RSA problem seems
hard because the factoring seems hard. The immediate contrapositive is that factoring is easy if the
RSA problem is easy, specifically easy to enough to solve with an SLP. Truly, one could valiantly
attempt to solve the RSA problem with an SLP in an effort to factor, but hardly anybody expects
that the RSA problem could be that easy. Next, one may more subtly consider a context wherein
the RSA problem becomes easy, say via the victim acting as an oracle to solve it, as was done in the
chosen ciphertext on the Rabin cryptosystem. In this setting, however, we would need the victim
to be an SLP whose description is available to the adversary, because the factoring algorithm
looks inside the SLP in order to run it on extension rings. To make this a realistic attack, the
adversary would essentially have to look inside the victim’s implementation. In practice, of course,
the victim’s implementation would already contain the private key, so it would not be necessary to
use the full power of the theorems in this paper. Thus there does not seem any significance negative
security results deriving from the dual of the positive security results. A possible explanation of
the lesser signficance of the dual of the results in this paper is that the positive security result in
this paper is weaker (with respect to the type of root-finding algorithm allowed) than the positive
security result for the Rabin problem, so therefore the dual attack is correspondingly weaker (with
respect to the type of adversary allowed).

20

	Introduction
	Straight Line Programs and Inverse Integer Polynomials
	Factoring, the RSA Problem, and Straight Line Programs
	Cube Roots: Public Exponent e = 3
	Higher Degree Roots: Public Exponent e > 3
	Security of the Hybrid Public Exponent e = 3(216+1)

	Limited Implications
	Why This Paper Does Not Contradict Boneh and Venkatesan's
	Conclusion
	Cipolla's Algorithm for Cube Roots over Composite Rings
	An Easy but SLP-Hard Problem: Finding Inverses
	Generalized RSA
	Variant RSA Problems
	Straight Line Programs with Division
	Straight-Line Equality-Excepted Programs
	Duality Between Positive and Negative Security Results

