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Abstract

We present the first efficient group signature scheme that is provably secure without random
oracles. We achieve this result by combining provably secure hierarchical signatures in bilinear
groups with a novel adaptation of the recent Non-Interactive Zero Knowledge proofs of Groth,
Ostrovsky, and Sahai. Our scheme has logarithmic signature size in the number of signers; we
prove it secure under the Computational Diffie-Hellman and the Subgroup Decision assumptions.

1 Introduction

Group signatures allow any member of a group to sign an arbitrary number of messages on behalf
of the group, moreover the identity of the signer will be hidden from all members of the system.
Preserving the anonymity of the signer can be important in many applications where the signer does
not want to be directly identified with the message that he signed. However, there exist situations
where it can be deemed desirable to revoke a signer’s anonymity. For example, if a signature certified
a malicious program, one would want to identify the party that made the malicious statement.
Therefore, in group signatures there exists a special party known as the group manager which has
the ability to trace the signer of any given signature.

Almost all group signatures scheme are only provably secure in the random oracle model, where
we can only make a heuristic argument about security. Additionally, efficient constructions are
based on strong assumptions ranging from the Strong Diffie-Hellman [BBS04, BS04] and Strong
RSA [ACJT00, ATS02, CL02] assumptions to the LRSW [CL04, LRSW99] assumption which itself
has the challenger act as an oracle. The first construction proved secure in the standard model is
due to Bellare et. al. [BMW03]. They give a method of constructing group signatures from any
signature scheme by using Non-Interactive Zero Knowledge (NIZK) techniques. However, since
they use generic NIZK techniques their scheme is too inefficient to be useful in practice.

We approach the problem of group signatures with the goal of creating an efficient group
signature scheme that is provably secure without random oracles under reasonable assumptions. In
particular we at least wish to avoid “oracle-like” assumptions since the value of removing random
oracles from the proofs of security while using these types of assumptions is dubious.

In order to solve this problem we combine two recent ideas from pairing-based cryptography.
First, we derive our underlying signature scheme from the Waters [Wat05] signature scheme that
was proven secure under the computational Diffie-Hellman assumption in bilinear groups. We create
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a two-level signature scheme where the first level is the signer identity and the second level is the
message to be signed. For example, user ID is given a signature on the first level message “ID” as his
private key. Group member ID can sign message M by creating the two-level hierarchical signature
on “ID.M”. Clearly, the signature σ on “ID.M” from the Waters signature scheme will give away
the identity of the signer. To protect his anonymity, a signer, in our scheme, will encrypt the
signature components of σ using the Boneh-Goh-Nissim [BGN05] encryption system. Additionally,
the signer will attach a NIZK proof that the encrypted signature is a signature on “X.M” for
1 ≤ X ≤ 2k, where 2k is the number of signers in the system. Adapting the recent techniques of
Groth, Ostrovsky, and Sahai we are able to get efficient NIZKs for our scheme scheme with O(k)
complexity in the signature size, signing time, and verification time, i.e., logarithmic in the number
of users. We achieve this efficiency by taking advantage of special properties of the NIZK scheme
of Groth, Ostrovsky, and Sahai and avoid the general method of circuit construction.

1.1 Related Work

Group signatures were first introduced by Chaum and Van Heyst [CvH91] as a way to provide
anonymity for signers within a group. The anonymity, however, could be revoked by a special third
party if necessary.

Until recently, the most efficient group signature constructions [ACJT00, ATS02, CL02] were
proved secure under the Strong-RSA assumption introduced by Baric and Pfitzman [BP97]. Boneh,
Boyen, and Shacham [BBS04] showed how to construct “short” group signatures using bilinear maps
under an assumption they introduced called the Strong Diffie-Hellman assumption. Concurrently,
Camenish and Lysyanskaya [CL04] gave another group signature scheme that used bilinear maps.
Their scheme was proven secure under the interactive LRSW [LRSW99] assumption. All of the
above schemes, however, were only proved secure in the random oracle model.

Bellare, Micciancio, and Warinschi [BMW03] gave the first construction that was provably se-
cure in the standard model. Additionally, they provided formal definitions of the security properties
of group signatures, which to that point were only informally understood. Since their methods use
general NIZK proof techniques, the resulting schemes are inherently too inefficient to be used in
practice.

1.2 Organization

In Section 2 we give background information pertinent to our constructions. In Section 3 we present
our group signature scheme that has cost logrithmic in the number of signers. Additionally, we
provide a proof of security in Section 4. Next, we describe some extensions to our signature scheme
in Section 5. Finally, we conclude in Section 6.

2 Background

We review a number of useful notions from the recent literature on pairing-based cryptography,
which we shall need in later sections. First, we briefly review the properties that constitute a group
signature scheme and define its security.

We take this opportunity to clarify once and for all that, in this paper, the word “group” by
default assumes its algebraic meaning, except in contexts such as “group signature” and “group
manager” where it designates a collection of users. There should be no ambiguity from context.
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2.1 Group Signatures

A group signature scheme consists of a pentuple of PPT algorithms:

• A group setup algorithm, Setup, that takes as input a security parameter 1λ (in unary) and
the number of signers in the group, for simplicity taken as a power of two, 2k, and outputs a
public key PK for verifying signatures, a master key MK for enrolling group members, and a
tracing key TK for identifying signers.

• An enrollment algorithm, Enroll, that takes the master key MK and an identity ID, and
outputs a unique identifier sID and a private signing key KID which is to be given to the user.

• A signing algorithm, Sign, that takes a group member’s private signing key KID and a message
M , and outputs a signature σ.

• A (usually deterministic) verification algorithm, Verify, that takes a message M , a signature
σ, and a group verification key PK, and outputs either valid or invalid.

• A (usually deterministic) tracing algorithm, Trace, that takes a valid signature σ and a tracing
key TK, and outputs an identifier sID or the failure symbol ⊥.

There are four types of entities one must consider:

• The group master, which sets up the group and issues private keys to the users. Often, the
group master is an ephemeral entity, and the master key MK is destroyed once the group is
set up. Alternatively, techniques from distributed cryptography can be used to realize the
group master functionality without any real party becoming in possession of the master key.

• The group manager, which is given the ability to identify signers using the tracing key TK,
but not to enroll users or create new signing keys for existing users.

• Regular member users, or signers, which are each given a distinct private signing key KID.

• Outsiders, or verifiers, who can only verify signatures using the public key PK.

We require the following correctness and security properties.

Consistency. The consistency requirements are such that, whenever, (for a group of 2k users),

(PK,MK,TK)← Setup(1λ, 2k), (sID,KID)← Enroll(MK, ID), σ ← Sign(KID,M),

we have, (except with negligible probability over the random bits used in Verify and Trace),

Verify(M,σ,PK) = valid, and Trace(σ,TK) = sID.

The unique identifier sID can be used to assist in determining the user ID from the transcript of
the Enroll algorithm; sID may but need not be disclosed to the user; it may be the same as ID.

3



Security. Bellare, Micciancio, and Warinschi [BMW03] characterize the fundamental properties
of group signatures in terms of two crucial security properties from which a number of other
properties follow. The two important properties are:

Full Anonymity which requires that no PPT adversary be able to decide (with non-negligible
probability in excess of one half) whether a challenge signature σ on a message M emanates
from user ID1 or ID2, where ID1, ID2, and M are chosen by the adversary. In the original
definition of [BMW03], the adversary is given access to a tracing oracle, which it may query
before and after being given the challenge σ, much in the fashion of IND-CCA2 security for
encryption.

Boneh, Boyen, and Shacham [BBS04] relax this definition by withholding access to the tracing
oracle, thus mirroring the notion of IND-CPA security for encryption. We follow [BBS04] and
speak of CCA2-full anonymity and CPA-full anonymity respectively.

Full Traceability which requires that no coalition of users be able to generate, in polynomial
time, a signature that passes the Verify algorithm but fails to trace to a member of the
coalition under the Trace algorithm. According to this notion, the adversary is allowed to
ask for the private keys of any user of its choice, adaptively, and is also given the secret key
TK meant for tracing—but of course not the enrollment master key MK.

It is noted in [BMW03] that this property implies that of exculpability [AT99], which is the
requirement that no party, not even the group manager, should be able to frame a honest
group member as the signer of a signature he did not make. However, the model of [BMW03]
does not consider the possibility of a (long-lived) group master, which could act as a potential
framer. To address this problem and achieve the notion of strong exculpability, introduced
in [ACJT00] and formalized in [KY04, BSZ04], one would need an interactive enrollment
protocol, call Join, at the end of which only the user himself knows his full private key. We
do not further consider exculpability issues in this paper.

We refer the reader mainly to [BMW03] for more precise definitions of these and related notions.

2.2 Bilinear Groups of Composite Order

We review some general notions about bilinear maps and groups, with an emphasis on groups of
composite order which will be used in most of our constructions. We follow [BGN05] in which
composite order bilinear groups were first introduced in cryptography.

Consider two finite cyclic groups G and GT of same order n, in which the respective group oper-
ation is efficiently computable and denoted multiplicatively. Assume the existence of an efficiently
computable function e : G×G→ GT , with the following properties:

• (Bilinearity) ∀u, v ∈ G, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab, where the product in the exponent is
defined modulo n;

• (Non-degeneracy) ∃g ∈ G such that e(g, g) has order n in GT . In other words, e(g, g) is a
generator of GT , whereas g generates G.

If such a function can be computed efficiently, it is called a (symmetric) bilinear map or pairing,
and the group G is called a bilinear group. We remark that the vast majority of cryptosystems
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based on pairings assume for simplicity that bilinear groups have prime order. In our case, it is
important that the pairing be defined over a group G containing |G| = n elements, where n = pq
has a (hidden) factorization in two large primes, p 6= q.

Complexity Assumptions. We shall make use of two complexity assumptions: the first, com-
putational in the prime order subgroup Gp, the second, decisional in the full group G.

The first one is the familiar Computational Diffie-Hellman assumption in bilinear groups, which
states that there is no probabilistic polynomial time (PPT) adversary that, given a triple (g, ga, gb) ∈
G3

p for random exponents a, b ∈ Zp, computes gab ∈ Gp with non-negligible probability (i.e., with
polynomial probability in the bit-size of the algorithm’s input). Notice that the CDH assumption
in bilinear groups is weaker than—i.e., it is implied by—the computational Bilinear Diffie-Hellman
assumption [BF03].

The second assumption we need is the subgroup decision assumption, introduced in [BGN05];
it is based on the hardness of factoring, and is recalled next.

2.3 Subgroup Decision Assumption

Informally, the subgroup decision assumption posits that for a bilinear group G of composite order
n = pq, the uniform distribution on G is computationally indistinguishable from the uniform
distribution on a subgroup of G (say, Gq, the subgroup of order q). The formal definition is based
on the subgroup decision problem, which is as follows [BGN05].

The Subgroup Decision Problem. Consider an “instance generator” algorithm GG that, on
input a security parameter 1λ, outputs a tuple (p, q,G,GT , e), in which p and q are independent uni-
form random λ-bit primes, G and GT are cyclic groups of order n = pq with efficiently computable
group operations (over their respective elements, which must have a polynomial size representation
in λ), and e : G × G → GT is a bilinear map. Let Gq ⊂ G denote the subgroup of G of order q.
The subgroup decision problem is as follows:

On input a tuple (n = pq, G, GT , e) derived from a random execution of GG(1λ), and an
element w selected at random either from G or from Gq, decide whether w ∈ Gq.

The advantage of an algorithm A solving the subgroup decision problem is defined as A’s excess
probability, beyond 1

2 , of outputting the correct solution. The probability is defined over the random
choice of instance and the random bits used by A.

2.4 The BGN Homomorphic Cryptosystem

Boneh, Goh, and Nissim [BGN05] recently proposed an efficient encryption system that is “slightly”
doubly homomorphic, in that it allows chains of computations on ciphertexts that involve arbitrary
additions and at most one multiplication along each path. The system uses bilinear maps and is
based on the subgroup decision assumption. The single-bit message cryptosystem is as follows:

KeyGen(1λ): to generate a public/private key pair given as input a security parameter 1λ, first
run the instance generator to get (p, q,G,GT , e) ← GG(1λ), let n = pq, pick two random
generators g, u ∈ G, and set h = up. Notice that g and h are uniform random generators of
G and Gq respectively. The public key is PK = (n, G,GT , e, g, h). The private key is SK = q.
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Encrypt(PK,M): to encrypt a single-bit message M ∈ {0, 1}, pick a random r ∈ Zn and output
the ciphertext c = gMhr.

Decrypt(SK, c): to decrypt a ciphertext c, calculate cq. If cq = g0, output 0; if cq = gq, output 1;
otherwise, output ⊥. Indeed, notice that cq = (gMhr)q = (gq)M since h has order q and thus
vanishes when raised to that power.

Homomorphic Properties. The system is additively homomorphic since multiplication of ci-
phertexts corresponds to addition of messages. Furthermore, the product of two messages can
be obtained once by taking the pairing of the two ciphertexts, with suitable randomization, i.e.,
c′ = e(c1, c2) · e(g, h)t ∈ GT , for some randomly chosen t ∈ Zp. Notice that the constant e(g, h) has
order q in GT . Decryption of ciphertexts obtained this way works exactly as above, except that
since (c′)q is now in GT , it is compared to e(g, g)0 and to e(g, g)q in GT . Notice that any calcula-
tion circuit should be designed to ensure that the final output is in {0, 1}, which is sufficient for
evaluating 2-DNF formulæ in ciphertext space, as the primary application mentioned in [BGN05].

2.5 Non-Interactive Zero-Knowledge Proofs for NP

Groth, Ostrovsky, and Sahai [GOS05] very recently showed how to use the BGN system to construct
an efficient statistical zero knowledge proof system (or “argument system”, since it only provides
computational soundness) for any language in NP. A key component of their result is the observation
that the BGN system can be modified to provide perfectly hiding commitment instead of encryption,
while ostensibly retaining the homomorphic features that enabled the evaluation of 2-DNF formulæ,
without an outsider being able to realize that we made the switch.

Thus, to argue zero knowledge, it suffices to let h be a random generator of G instead of Gq.
This renders the “ciphertext” statistically independent of the message it contains, hence realizing
perfect (and thus, statistical) hiding. Then, by the subgroup decision assumption, one should be
able to restore h to being a generator of Gq without anyone being able to tell (computationally).

Relation to Group Signatures. We shall exploit the simple but powerful idea above to achieve
the full-anonymity requirement in our group signatures. This stems from the notion that a group
signature can be viewed as a zero-knowledge proof of authority to sign a message on behalf of the
group, which is an NP language. We note, however, that a zero-knowledge proof system is not
enough in itself, since in group signatures it is necessary to embed authoritative information that
will endow the group manager with the ability to trace. To meet both requirements, our strategy
makes use of an identity-based signature, or two-level hierarchical signature, in which the user
identity is concealed using the NIZK technique. Before delving into all that, however, we review
the notion of hierarchical signature.

2.6 Hierarchical Signatures

In an Λ-level hierarchical signature, a message is a tuple of 1 and Λ message components. The
crucial property is that a signature on a message, M1. · · · .Mi, can act as a restricted private key
that enables the signing of any extension, M1. · · · .Mi. · · · .Mj , of which the original message is a
prefix. In a Λ-level signature scheme, the messages must obey the requirement that 1 ≤ i ≤ j ≤ Λ.
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We note that this is essentially equivalent to the notion of (Λ − 1)-hierarchical identity-based
signature (HIBS), in which the first Λ − 1 levels are viewed as the components of a hierarchical
identity, and the last level (which in HIBS parlance is no longer deemed part of the hierarchy) is
for the message proper. Our basic group signature uses a two-level hierarchy, though in Section 5
we shall discuss how additional levels can be used to achieve delegation in group signatures.

3 Group Signature Scheme

In this section, we present our group signature scheme, which is based solely on the CDH and the
Subgroup Decision assumptions. It is built upon a two-level hierarchical signature scheme, which
we describe first.

3.1 Simple Two-Level Hierarchical Signatures

Waters [Wat05] recently offered an efficient identity-based encryption system provably secure under
“full” adaptive attacks. The system generalizes easily to a hierarchical IBE of depth O(log λ), and it
is a triviality to observe that any Λ-level HIBE scheme also gives an Λ-level hierarchical signature
functionality. We describe below the 2-level hierarchical signature scheme (or 1-level IBS) that
results from these transformations.

We assume that identities are strings of k bits, and messages strings of m bits. To fix ideas, for
group signatures one would have, k � m ≈ λ, where λ is the security parameter. The description
that follows assumes that g is a generator of Gp, so that all elements in G and GT are in fact in
the respective subgroups of prime order p.

Setup(1λ): To setup the system, first, a secret α ∈ Zp is chosen at random, from which the value
A = e(g, g)α is calculated. Next, two random integers y′ ∈ Zp and z′ ∈ Zp and two random
vectors ~y = (y1, . . . , yk) ∈ Zk

p and ~z = (z1, . . . , zm) ∈ Zm
p are selected. The public parameters

of the system and the master secret key are then given by,

PP =
(

g, u′ = gy′ , u1 = gy1 , . . . , uk = gyk ,

v′ = gz′ , v1 = gz1 , . . . , vm = gzm , A = e(g, g)α
)
∈ Gk+m+3 ×GT ,

MK = gα ∈ G.

The public parameters, PP, also implicitly include k, m, and a description of (p, G,GT , e).

Extract(PP,MK, ID): To create a private key for a user whose binary identity string is ID =
(κ1 . . . κk) ∈ {0, 1}k, first select a random r ∈ Zp, and return,

KID =
(

gα ·
(
u′

k∏
i=1

uκi
i

)r
, g−r

)
∈ G2.

Sign(PP,KID,M): To sign a message represented as a bit string M = (µ1 . . . µm) ∈ {0, 1}m, using
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a private key KID = (K1,K2) ∈ G2, select a random s ∈ Zp, and output,

S =
(

K1 ·
(
v′

m∏
j=1

v
µj

j

)s
, K2, g−s

)

=
(

gα ·
(
u′

k∏
i=1

uκi
i

)r(
v′

m∏
j=1

v
µj

j

)s
, g−r, g−s

)
∈ G3.

Verify(PP, ID,M, σ): To verify a signature S = (S1, S2, S3) ∈ G3 against an identity ID =
(κ1 . . . κk) ∈ {0, 1}k and a message M = (µ1 . . . µm) ∈ {0, 1}m, verify that,

e(S1, g) · e(S2, u
′

k∏
i=1

uκi
i ) · e(S3, v

′
m∏

j=1

v
µj

j ) ?= A.

If the equality holds, output valid; otherwise, output invalid.

Security from CDH. The scheme’s existential unforgeability against adaptive chosen message
attacks follows more or less directly from the adaptive-ID security of the Waters IBE, although it
relies on a weaker assumption. For completeness, we give a reduction from the CDH assumption
without random oracles in Appendix A. There is an unusual aspect to our proof of security,
however.

Paradoxically, we can achieve tighter overall security bounds by proving the signature in a hybrid
“selective-identity, adaptive-message” model, which combines aspects of the Boneh-Boyen [BB04]
IBE proof of security for the first level with the Waters [Wat05] proof for the second level, instead
of using the latter at both levels. The first-level proof is followed by an implicit application of the
(lossy) selective-ID to adaptive-ID transformation given in [BB04]. We benefit from this because
the Boneh-Boyen proof is tight in the selective-ID model, and the subsequent adaptive-ID lifting
degrades linearly with the number of possible identities, 2k, which for a group signature scheme
is much smaller and easier to control than the number of adversarial queries. We need the full
Waters proof at the second level since the number of possible messages, 2m, must be large enough
to accommodate the output of a hash function. (For very small messages, such as serial numbers,
one could use the Boneh-Boyen proof at both levels to achieve even tighter security.)

3.2 Logarithmic-Size Group Signature Scheme

We are now in a position to describe our actual group signature scheme. It is composed of the
following algorithms.

Setup(1λ): The input is a security parameter in unary, 1λ. Suppose we wish to support up to 2k

signers in the group, and sign messages in {0, 1}m, where k and m are some functions of λ.

The setup algorithm first chooses n = pq where p and q are random primes of bit size Θ(λ).
Let G be a bilinear group of order n and denote by Gp and Gq its subgroups of respective order
p and q. Next, the algorithm chooses generators g ∈ G, and h ∈ Gq. It chooses a random
exponent α ∈ Zn. Finally, it chooses generators u′, u1, . . . , uk ∈ G and v′, v1, . . . , vm ∈ G.
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The bilinear group, (n, G,GT , e), is published together with the public parameters,

PP =
(

g, h, u′, u1, . . . , uk, v′, v1, . . . , vm, A = e(g, g)α
)
∈ G×Gq ×Gk+m+2 ×GT .

The master key for user enrollment, MK, and the group manager’s tracing key, TK, are,

MK = gα ∈ G, TK = q ∈ Z.

Enroll(PP,MK, ID): Suppose we wish to create a group signature key for user ID where 0 ≤ ID <
2k. We denote by κi the i-th bit of ID. The algorithm chooses a random s ∈ Zn and creates
the key for user ID as,

KID = (K1,K2,K3) =

(
gα ·

(
u′

k∏
i=1

uκi
i

)s
, g−s, hs

)
∈ G3.

The key for user ID is essentially a private key for identity ID in the Waters IBS scheme,
except that we are working in a bilinear group G of composite order, and are adjoining the
additional element hs ∈ Gq.

Sign(PP, ID,KID,M): To sign a message M = (µ1 . . . µm) ∈ {0, 1}m, user ID first chooses random
exponents t1, . . . , tk ∈ Zn, and, for all i = 1, . . . , k, it creates,

ci = uκi
i · h

ti , πi = (u2κi−1
i · hti)ti .

The signer also defines t =
∑k

i=1 ti and c = u′∏k
i=1 ci = (u′∏k

i=1 uκi
i ) · ht. The set of values,

ci and πi, are proof that c is well formed. It also lets V = v′
∏m

i=1 vµi
i . Then, it picks two

random exponents s̃1, s2 ∈ Zn, and creates,

σ1 = K1 ·Kt
3 · cs̃1 · V s2 , σ2 = K2 · g−s̃1 , σ3 = g−s2 .

If we let s1 = s̃1 + s, with s as in the Enroll procedure, then we have,

σ1 = gα ·
(
u′

k∏
i=1

uκi
i

)s1

·
(
v′

m∏
i=1

vµi
i

)s2

· hs1t = gα · cs1 · V s2 , σ2 = g−s1 , σ3 = g−s2 .

The final signature is output as:

σ =
(

σ1, σ2, σ3, c1, . . . , ck, π1, . . . , πk

)
∈ G2k+3.

Verify(PP, ID,M, σ): The verification proceeds in two phases. In the first phase the verifier will
reconstruct c and check to make sure that it is well formed. To do this, it computes,

c = u′
k∏

i=1

ci, and checks that, ∀i = 1, . . . , k : e(ci, u
−1
i ci)

?= e(h, πi).

This proof shows that all ci = uκi
i hti for κi ∈ {0, 1}, and thus that c is well formed. Next,

the verifier focuses on the actual signature. To do so, it derives V = v′
∏m

i=1 vµi
i from the

message, and checks that,
e(σ1, g) · e(σ2, c) · e(σ3, V ) ?= A.
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This proof shows that (σ1, σ2, σ3) is a valid two-level hierarchical signature, after the blinding
factors hs1t and ht cancel each other out in the product after they are respectively paired
with g and g−s1 .

If all tests are successful, the verifier outputs valid; otherwise, it outputs invalid.

Trace(PP,TK, σ): Suppose the tracing algorithm wishes to trace a signature σ, assumed to pass
the verification test for some message M that is not needed here. Let κi denote the i-th
bit of the signer’s identity ID that is to be determined. To recover the bits of ID, for each
i = 1, . . . , k, the tracer sets,

κi =

{
0 if (ci)q = g0,

1 otherwise.

The reconstituted signer identity is output as ID = (κ1 . . . κk) ∈ {0, 1}k.

4 Proofs of Security

We now prove the main security properties of our group signature scheme.

4.1 Full Anonymity (under CPA attack)

We prove the security of our scheme in the anonymity game against chosen plaintext attacks. We
refer to [BMW03] for the game description, which should also be clear from the proof.

Intuitively, our proof follows from two simple arguments. First, we show that an adversary
cannot tell whether h is a random generator of Gq or G by reduction from the subgroup decision
problem. Next, we show that if h is chosen from G then the identity of a signer is perfectly hidden.

Theorem 4.1. Suppose no t-time adversary can solve the subgroup decison problem with advantage
at least εsd. Then for every t′-time adversary A where t′ ≈ t we have that AdvA < 2εsd.

We first introduce a hybrid game H1 in which the public parameters are the same as in the
original game except that h is chosen randomly from G instead of Gq. We denote the adversary’s
advantage in this game as AdvA,H1 .

Lemma 4.2. For all t′-time adversaries as above, AdvA −AdvA,H1 < 2 εsd.

Proof. Consider an algorithm B that plays the subgroup decision problem. Upon receiving a sub-
group decision challenge (n, G,GT , e, w) the algorithm B first creates public parameters for our
scheme by setting h = w and choosing all other parameters as the scheme does. It then sends the
parameters to A and plays the anonymity game with it. If w is randomly chosen from Gq then
the adversary is playing the normal anonymity game, otherwise, is w is chosen randomly from G
then it plays the hybrid game H1. The algorithm B will be able to answer all chosen plaintext
queries—namely, issue private signing keys for, and sign any message by, any user—, since it knows
the master key.

At some point the adversary will choose a message M and two identities ID1 and ID2 it wishes
to be challenged on (under the usual constraints that it had not previously made a signing key
query on IDx or a signature query on IDx.M). The simulator B will create a challenge signature
on M , and A will guess the identity of the signer. If A answers correctly, then B outputs b = 1,
guessing w ∈ Gq; otherwise it outputs b = 0, guessing w ∈ G.
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Denote by AdvB the advantage of the simulator B in the subgroup decision game. As we know
that Pr[w ∈ G] = Pr[w ∈ Gq] = 1

2 , we deduce that,

AdvA −AdvA,H1 = Pr[b = 1|w ∈ Gq]− Pr[b = 1|w ∈ G]
= 2Pr[b = 1, w ∈ Gq]− 2 Pr[b = 1, w ∈ G] = 2 AdvB < 2 εsd,

since by our hardness assumption AdvB must be lesser than εsd, given that B runs in time t ≈ t′.

Lemma 4.3. For any algorithm A, we have that AdvA,H1 = 0.

Proof. We must argue that when h is chosen uniformly at random from G, instead of Gq in the
real scheme, then the challenge signature is statistically independent of the signer identity, ID, in
the adversary’s view (which might comprise answers to earlier signature queries on ID). Consider
the challenge signature,

σ =
(

σ1, σ2, σ3, c1, . . . , ck, π1, . . . , πk

)
,

and let us determine what such an adversary might deduce from σ.
First, observe that σ2 and σ3 by themselves do not depend on (any of the bits κi comprising) the

signer identity ID. However, since the adversary is computationally unbounded, we must assume
that they reveal s1 and s2.

Next, consider ci = uκi
i hti and the corresponding πi = (u2κi−1

i hti)ti = (uκi
i uκi−1

i hti)ti for each i.
There are two competing hypotheses that may be formulated by the adversary: κi = 0 ∨ κi = 1.
For either hypothesis, there is a solution for the ephemeral exponent ti that explains the observed
value of ci. In other words, in the adversary’s view,

∀i ∈ {1, . . . , k} : ∃τ0, τ1 ∈ Zn s.t. (κi, ti) = (0, τ0) ∨ (κi, ti) = (1, τ1) and ci = hτ0 = uih
τ1 .

Using the last equality we find that the observed value of πi is compatible with both hypotheses:(
πi

∣∣
κi=0

)
= (u−1

i hτ0)τ0 = (u−1
i uih

τ1)τ0 = hτ0τ1 = (hτ0)τ1 = (uih
τ1)τ1 =

(
πi

∣∣
κi=1

)
.

This all means that, the knowledge of ci and πi does not disambiguate the relevant bit κi ∈ {0, 1}.
Taken together, all the ci and πi do not reveal anything about ID.

Last, we consider σ1 = gα ·cs1 ·V s2 . But this value is just redundant in the eyes of the adversary,
since he already knows all the values that determine it, including α = loge(g,g) A.

Therefore, ID is statistically independent of the entire signature σ, which proves the lemma.

4.2 Full Traceability

We show how to reduce the full traceability of our scheme to the two-level signature scheme de-
scribed in Section 3.1. We create a simulator that will interact with a challenger for the security
game of the Waters signature scheme. If the adversary asks for the secret key of user ID, the
simulator will simply ask for a first-level signature on ID and give this to the adversary. If the
adversary asks for a signature of message M by user ID the simulator will ask the challenger for a
second-level signature on ID.M and then blind the signature itself.

The adversary will finally output a signature σ∗ on some message M∗. In order for the adversary
to be successful the signature will need to verify. By the perfect binding properties of the underlying
NIZK techniques, a signature can be traced to some user ID∗ and we can recover from it a Waters
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two-level signature on ID∗.M∗; the simulator will submit this as its forgery in its own attack against
the underlying signature scheme. The adversary will only be considered successful if he had not
asked for the private key of user ID∗ and had not queried for a signature on M∗ from user ID∗.
However, these are precisely the conditions that the simulator needs to abide by to be sucessful in
its own game.

One tricky point in our reduction is that the simulator will play the signature game in the
subgroup Gp, however the parameters for the group signature scheme are to be given in the group
G, and so will be the forgery produced by the adversary. In addition, we note that the adversary
is effectively given the factorization n = pq, as required by the full anonymity security definition
which demands that the tracing key TK = q be disclosed for this attack. Our formal reduction
follows.

Theorem 4.4. If there exists a (t, ε) adversary for the full tracing game then there exists a (t̃, ε)
UF-CMA adversary against the two-level signature scheme, where t ≈ t̃.

Proof. Suppose there exists an algorithm A that is succesful in the tracing game of our group signa-
ture scheme with advantage ε. Then we can create a simulator B that existentially forges signatures
in an adaptive chosen message attack against the two-level signature scheme, with advantage ε.

The simulator will be given the factorization n = pq of the group order |G| = n. As usual,
denote by Gp and Gq the subgroups of G of respective order p and q, and by analogy let GTp and
GTq be the subgroups of GT of order p and q. The simulator begins by receiving from its challenger
the public parameters of the signature game, all in subgroups of order p,

P̃P =
(

g̃ , ũ′ = g̃y′ , ũ1 = g̃y1 , . . . , ũk = g̃yk ,

ṽ′ = g̃z′ , ṽ1 = g̃z1 , . . . , ṽm = g̃zm , Ã = e(g̃, g̃)α
)
∈ Gk+m+3

p ×GTp.

The simulator then picks random generators (f, h, γ′, γ1, . . . , γk, ν
′, ν1, . . . , νm) ∈ Gk+m+4

q and a
random exponent β ∈ Zq. The simulator publishes the group signature public parameters as,

PP =
(

g = g̃ f , h , u′ = ũ′ γ′ , u1 = ũ1 γ1 , . . . , uk = ũk γk ,

v′ = ṽ′ ν ′ , v1 = ṽ1 ν1 , . . . , vm = ṽk νm , A = Ã · e(f, f)β
)
.

The distribution of the public key is the same is in the real scheme. The simulator also gives the
tracing key TK = q to the adversary.

Suppose the adversary asks for the private key of user ID. To answer the query, the simulator first
asks the challenger for a first-level signature on message ID, and receives back K̃ID = (K̃1, K̃2) ∈ G2

p.
As before, κi denotes the i-th bit of ID. The simulator then chooses a random r ∈ Zq and creates
the requested key as,

KID =
(

K1 = K̃1 · fβ · (γ′
k∏

i=1

γκi
i )r , K2 = K̃2 · f−r , K3 = h−r

)
.

This is a well formed private key in our scheme.
Suppose the simulator is asked for a signature on message M = (µ1 . . . µm) ∈ {0, 1}m by

user ID = (κ1 . . . κk) ∈ {0, 1}k. The simulator starts as in the real scheme, by choosing random
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t1, . . . , tk ∈ Zn, defining t =
∑k

i=1 ti, and creating the values ci = uκi
i ·hti and πi = (u2κi−1

i ·hti)ti for
all i = 1, . . . , k. Next, the simulator requests a two-level signature on ID.M and receives in return
S = (S1, S2, S3) ∈ G3

p. It then chooses random r1, r2 ∈ Zq and creates the remaining components,

σ1 = S1 · fβ · (γ′
k∏

i=1

γκi
i )r1 · (ν ′

m∏
i=1

νµi
i )r2 · hr1t, σ2 = S2 · f−r1 , σ3 = S3 · f−r2 .

The simulator gives the full signature σ = (σ1, σ2, σ3, c1, . . . , ck, π1, . . . , πk) to the adversary. Again,
this is a well-formed signature in our scheme.

Finally, the adversary gives the simulator a forgery σ∗ = (σ1, σ2, σ3, c1, . . . , ck, π1, . . . , πk) on
message M∗ = (µ1 . . . µm). The simulator first checks that the signature verifies, otherwise the
adversary is not successful and the simulator can abort. Next, it sets out to trace the identity,
ID∗, of the forgery. Let κi denote the i-th bit of the string ID∗ that is to be determined. For
each i = 1, . . . , k, the tracer sets κi = 0 if (ci)q = g0, and κi = 1 otherwise. It then reconstitutes
ID∗ = (κ1 . . . κk). If either the key for ID∗ or a signature on M∗ by ID∗ was previously requested
by the adversary, the simulator can safely abort since the adversary was not successful. Otherwise
the adversary was successful and the simulator must produce its own forgery.

To see how, recall that for all i we have that e(ci, u
−1
i ci) = e(h, πi), which has order q in GT .

Therefore, either ci ∈ Gq or ci u
−1
i ∈ Gq. It follows that ci = uκi

i f r′i for the previously determined
κi ∈ {0, 1} for some unknown r′i, and therefore, that c = u′∏k

i=1 ci = (ũ′∏k
i=1 ũκi

i )f r′ for some r′.
Let then δ ∈ Zn be an integer which is 0 (mod q) and 1 (mod p). The verification equation entails,

e(σδ
1, g̃) · e(σδ

2, ũ
′

k∏
i=1

ũκi
i ) · e(σδ

3, ṽ
′

m∏
j=1

ṽ
µj

j ) = Aδ = e(g̃, g̃)αδ e(f, f)βδ = e(g̃, g̃)α = Ã.

This, however, leaves S∗ = (σδ
1, σ

δ
2, σ

δ
3) ∈ G3

p as the sought forgery on ID∗.M∗ in the underlying
hierarchical signature scheme, which the simulator gives to the challenger. Therefore, our simulator
will be successful whenever the adversary is.

5 Extensions

Our framework of creating group signature schemes from hierarchical signature schemes allows us
to extend our basic scheme in some interesting ways. We outline a few of these applications in the
present section.

5.1 Fast Verification

Perhaps the main drawback of our scheme in terms of practicality, is that, taken at face value,
signature verification requires 2k + 3 pairing computations. However, in all known realizations of
the pairing, it turns out that computing a product of pairings is almost as fast as computing a single
pairing, thanks to a device akin to multi-exponentiation. Thus, the three pairings in the product
in the last verification equation count as one. Furthermore, it is possible to batch the k remaining
equations into a single “multi-pairing”, using randomization, at the cost of k exponentiations in G:
to check that ∀i = 1, . . . , k : e(ci, u

−1
i ci) = e(h, πi), the verifier would pick r1, . . . , rk ∈ Zn, and test,

k∏
i=1

(
e(cri

i , u−1
i ci) · e(h−ri , πi)

)
?= 1.
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Probabilistic signature verification can thus be performed with a total of 2 multi-pairings and k
exponentiations for the cri . Notice that since h is constant across all signers for the life of the system,
the h−ri can be computed comparatively very quickly using a few amortized pre-computations.

5.2 Long Messages

Once we have a signature scheme that can sign messages in {0, 1}m for large enough m = Θ(λ), it
is easy to sign arbitrary messages with the help of a Universal One-Way Hash Function (UOWHF)
family H, a description of which is added to the public key. To sign M ∈ {0, 1}∗, first pick a
random index h into the family, which determines a function Hh ∈ H. Next, let M ′ = h‖Hh(M),
and compute σ′ = Sign(PP, ID,KID,M ′), a signature on M ′ in the initial scheme. The signature on
M is then given by σ = (h, σ′).

Since |h| and |Hh(M)| both grow linearly in the security parameter, it suffices to let m = Θ(λ)
with a constant factor large enough to accommodate the two. A standard argument shows that
the new scheme is existentially unforgeable under adaptive chosen message attacks whenever the
old one was. Also, it is easy to see that this transformation does not affect anonymity or tracing,
since it operates only on the message, and does so in a “public” way.

5.3 Delegation

Using a hierarchical signature scheme we can allow for a group signature scheme where a signer can
delegate its authority down in a hierarchical manner. Suppose we have an (Λ+1)-level hierarchical
signature scheme where at each level identities can be at most d bits long (except the last level,
which must support messages of sufficient size m, as discussed above). Then we can extend the
techniques from our basic scheme to create a new group signature scheme that allows for hierarchical
identities of up to Λ levels, where someone with an identity at level l can delegate down to a new
user at level l + 1.

To do this we simply extend our scheme to hide identities at all levels. However, this will come
with an O(Λ d + m) cost in signing time, verification time, and signature size.

5.4 Revocation

Keys can be revoked in any group signature scheme in a very generic manner, in which the group
master sends a revocation message linear in the number of remaining signers. Upon enrollment, each
user is assigned an additional, unique, long-lived decryption key. Then, to revoke a user, the group
master would re-key the group signature sub-system, and form a public revocation message that
contains the new public key as well as the signing key of each remaining user encrypted under that
user’s long-term key. (Alternatively, the group master could broadcast a constant size revocation
message containing only the new PK, and privately communicate a new key to each signer.)

Using an extension of our methods we can have a constant size revocation message along with an
O(r) overhead for our group signature scheme, where r is the number of revoked users. Essentially,
the idea is for the signers to attach an additional proof for each revoked user that they are not that
user.

These two techniques can be used in conjunction. Most revocation messages can be kept short
using the second technique. However, when the number of revoked users becomes too large, the
group master issues out a long revocation message to re-key the system.
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6 Conclusion

In this paper we presented the first efficient group signature scheme that is provably secure without
random oracles, based on bilinear maps. We built our group signature scheme from the Waters
two-level hierarchical signatures scheme, where the first level is the identity of the signer and the
second level is the signed message. Additionally, we applied the recent NIZK proof techniques of
Groth, Ostrovsky, and Sahai in a novel manner to hide the identity of the signer.

We proved the security of our scheme using the subgroup decision and the computational Diffie-
Hellman assumptions. Its signing time, verification time, and signature size are all logarithmic in
the number of signers.

Our method of using a hierarchical signature scheme allowed us to create clean, modular proofs
of security. Additionally, it had the added benefit of allowing for a hierarchical identity structure.
We expect our new framework of creating group signatures to enable many other extensions in the
future.
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A Simple Hierarchical Signatures: Reduction from CDH

We reduce the CDH problem to the existential forgery of the signature scheme of Section 3.1.
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Theorem A.1. Consider an adversary A that existentially forges the simple two-level signature
scheme in an adaptive chosen message attack. Assume that A makes no more that `� p signature
queries and produces a successful forgery with probability ε in time t. Then there exists an algorithm
B that solves the CDH problem in Gp with probability ε̃ ≥ ε/(2k+2m`) in time t̃ ≈ t.

Proof. The simulator B is given an instance (g, ga, gb) ∈ G3
p of the CDH problem, and must produce

gab. To prepare the simulation, B first selects a random identity ID∗ = (κ∗
1 . . . κ∗

k) ∈ {0, 1}k, and
picks random exponents y′, y1, . . . , yk ∈ Zp under the constraint that y′ +

∑k
i=1 κ∗

i yi ≡ 0 (mod p).
Next, B chooses a random k ∈ {0, . . . ,m}, and random numbers x′, x1, . . . , xm in the interval
{0, . . . , 2` − 1}. It also chooses additional random exponents z′, z1, . . . , zm ∈ Zp. Last, it picks
t ∈ Zp and lets g1 = ga and g2 = gb. The simulator gives to A the public key,

PP =
(

g, u′ = gy′

2 gt,
(
ui = gyi

2

)
i=1,...,k

, v′ = gx′−2k`
2 gz′ ,

(
vj = g

xj

2 gzj
)
j=1,...,m

, A = e(ga, gb)
)
.

The corresponding master key, MK = gab, is unknown to B.
To answer a signature query on ID or ID.M , the simulator B proceeds as follows. Let ID =

(κ1 . . . κk) and H = y′ +
∑k

i=1 κiyi. We have that H ≡ 0 (mod p) iff ID = ID∗, except with
negligible probability over the choice of y′ and yi.

If H 6≡ 0 (mod p), and thus, ID 6= ID∗, the simulator picks a random r ∈ Zp and computes the
user’s private key as,

KID = (K1,K2) =
(

g
−t/H
1 (u′

k∏
i=1

uκi
i )r, g

1/H
1 g−r

)
.

For r̃ = r − a/H, we have that K1 = g
−t/H
1 (gtgH

2 )r = g
−t/H
1 gat/Hga

2(gtgH
2 )r̃ = gab(u′∏k

i=1 uκi
i )r̃,

and also K2 = g
1/H
1 ga/Hg−r̃ = g−r̃, which shows that KID has the correct distribution. To respond

to the query, if the signature request was on ID, the simulator simply outputs KID; otherwise, B
uses KID to create a signature on M exactly as in the actual scheme, and outputs the result.

If H ≡ 0 (mod p), and the request was on ID∗ only, B is unable to compute KID and must
abort the simulation. If instead the request was on ID∗.M for some M = (µ1 . . . µm), we define
F = −2k` + x′ +

∑m
j=1 xjµj and J = z′ +

∑m
j=1 zjµj . If F ≡ 0 (mod p), then B cannot produce

the requested signature and must also abort in this case. Otherwise, B picks random r, s ∈ Zp, and
returns the signature,

S = (S1, S2, S3) =
(

g
−J/F
1 gtr(v′

m∏
j=1

u
µj

j )s, g−r, g
1/F
1 g−s

)
.

For s̃ = s−a/F , we have that S1 = g
−J/F
1 gtr(gJgF

2 )s = g
−J/F
1 gtrgaJ/F ga

2(gJgF
2 )s̃ = gabgtr(gJgF

2 )s̃ =
gab(u′∏k

i=1 uκi
i )r(v′

∏m
j=1 u

µj

j )s̃, and similarly, S3 = g
1/F
1 ga/F g−s̃ = g−s̃, which shows that S has

the correct distribution.
Eventually, the adversary outputs a valid forgery S∗ = (S∗

1 , S∗
2 , S∗

3) on ID.M∗ where M∗ =
(µ∗

1 . . . µ∗
m) ∈ {0, 1}m. Let F ∗ = −2k` + x′ +

∑m
j=1 xjµ

∗
j and J∗ = z′ +

∑m
j=1 zjµ

∗
j . If ID 6= ID∗

or if F ∗ 6≡ 0 (mod p), the simulator aborts. Otherwise, the forgery must be of the form, for some
r∗, s∗ ∈ Zp,

S∗ =
(

gab(u′
k∏

i=1

u
κ∗

i
i )r∗(v′

m∏
j=1

u
µ∗

j

j )s∗ , g−r∗ , g−s∗
)

=
(
gab+tr∗+J∗s∗ , g−r∗ , g−s∗

)
= (S∗

1 , S∗
2 , S∗

3).
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To solve the CDH instance, algorithm B outputs (S∗
1) · (S∗

2)t · (S∗
3)J∗

= gab.
To conclude, we bound the probability that B completes the simulation without aborting. First,

the guess on the target identity ID∗ must be correct, which has probability 2−k. Notice that if B
guessed ID∗ correctly, it will never have to abort on a first-level signature query on ID∗. Second,
for each second-level query where ID = ID∗, the conditional probability that F 6≡ 0 (mod p) given
that we have made it so far is at least 1 − 1/(2`); and since there are at most ` such queries, the
total probability of not aborting through all of them is greater than 1/2. Last, the conditional
probability that F ∗ ≡ 0 (mod p) in the challenge stage is at least 1/(2m`). Since A succeeds with
probability ε when the simulation is allowed to finish, and since this probability is independent of
the random choices made by B, we conclude that B succeeds with probability ε̃ ≥ ε/(2k+2m`).
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