
Practical Group Signatures without Random Oracles

Giuseppe Ateniese∗

ateniese@cs.jhu.edu

Jan Camenisch†

jca@zurich.ibm.com

Breno de Medeiros‡

breno@cs.fsu.edu

Susan Hohenberger§

srhohen@mit.edu

October 24, 2005

Abstract

We present the first practical group signature scheme which is provably secure in the standard
model. We provide a new ideal/real-world definition of security for group signatures, encapsu-
lating all the standard properties of unforgeability, anonymity, unlinkability, and exculpability.
Our scheme is provably secure under this definition assuming Strong LRSW, q-EDH, and Strong
SXDDH. Evidence for the security of any cryptographic assumption we introduce is provided
by proving it secure in the generic model. The Strong LRSW and Strong SXDDH assumptions
require a special property from bilinear groups (DDH hardness in both pairing groups) which is
conjectured to hold for certain MNT curve implementations.

Our signatures are very short (independent of the number of group members), costing roughly
35% more bits than the shortest known group signatures with random oracles due to Boneh,
Boyen, and Shacham. Our signatures support the standard open algorithm allowing group
managers to discover the identity of a signer in O(n) time, where n is the number of group
members. We show how to reduce this complexity to O(log n) by adding a small, constant
number of additional bits, and then achieve complexity O(1) under an additional assumption,
which also holds in the generic group model.

Keywords: Group signatures, random oracles, standard model, group signature security definition.

1 Introduction

We propose a new group signature scheme that is provably secure in the standard model. While
proof-of-concept constructions secure in the standard model have been described by Bellare et
al. [9, 11] and many practical group signature schemes secure in the random oracle model exist [23,
4, 13, 32], this is the first practical construction secure in the standard model.

∗Department of Computer Science; The Johns Hopkins University; 3400 N. Charles Street; Baltimore, MD 21218,
USA.

†IBM Research; Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland.
‡Department of Computer Science; Florida State University; 105-D James Love Bldg Tallahassee; FL 32306-4530

USA.
§CSAIL; MIT; 32 Vassar Street, Room G694, Cambridge, MA, 02139, USA. Susan’s work was performed at IBM

Zurich Research, CH-8803 Rüschlikon, Switzerland.

1

Group signatures are an important cryptographic primitive. Fast and secure implementations
of this primitive are especially important given their crucial privacy-preserving role in the current
Trusted Computing Group’s anonymous attestation efforts [16]. Thus, finding efficient schemes that
are provably-secure without relying on random oracles is a timely and well-motivated problem.

An Ideal/Real-World Security Definition. An independent and important contribution of
this paper is the security model under which our security proof is established. We extend existing
security models for group signatures [9, 32, 11] to the universally composable/reactive framework.
The UC framework, introduced in an early form in [8], and elaborated and refined in a series of
latter works [38, 22, 39], has the property that it enable proofs of security of protocols that are
valid not only when the protocol is executed in isolation, but also in the context of concurrent
execution and in composition with other arbitrary protocols. A particularly useful formulation of
the UC framework combines it with formal methods approach, called secure reactive systems, due
to Pfitzmann and Waidner [38, 39]. This formulation has the advantage of leading itself to higher-
level (and more understandable) proofs. We adopt their methodology in our proof of security.
Our scheme is secure under concurrent executions with the exception of the Join protocol, which
requires zero-knowledge proofs of knowledge.

As with other cryptographic primitives, general understanding of the security requirements for
group signatures schemes evolved over the years. For instance, some early schemes were defeated
by subtle attacks against the unforgeability of group membership certificates; only later it became
apparent that the coalition-resistance property (i.e., the requirement that group members not be
able to jointly generate valid member signing keys/certificates without interaction with the group
manager) requires that member certificates include signatures from the group manager [5]. Over
time, several security requirements were identified, such as unforgeability, anonymity, unlinkability,
traceability, coalition-resistance, and freedom from framing, which in combination were taken to
specify the security model of group signature schemes. Some significant practical constructions
were first proven secure in this semi-formal model, including [4]. What this semi-formal description
lacked was an explicit attack model, that went beyond “list of requirements approach” to a unified
view of group signature security.

Bellare, Micciancio and Warinschi [9] introduced a more modern security formalism for static
group signature schemes based on adversarial games. In practice, that formalization subsided
the several requirements of previous works into fewer ones (namely, traceability and anonymity).
However, the BMW model is incomplete, not capturing the exculpability requirement that was
postulated as early as in the original definition of group signatures by Chaum and van Heyst [23].

The BMW model has been subsequently extensively adapted (via incorporating non-framing
requirement, changing the proof model to the random oracle setting and/or to dynamic groups)
to allow for security proofs of recently proposed group signature schemes. For instance, the secu-
rity model of short group signatures, recently proposed by Boneh, Boyen, and Shacham [13] and
Camenisch and Lysyanskaya [19], includes substantial extensions and modifications of the original
BMW model.

The first formal model to apply to the case of dynamic groups was introduced by Kiayias et
al. [33, 32]. The formalization works in the random oracle model, not the standard model, but it
captures the security requirements of practical group signatures, and it can be readily applied to
formally prove the security of practical schemes. Indeed, [33] includes a security proof of a variant
of the scheme in [4]. More recently, Bellare, Shi, and Zhang [11] have furthered the BMW model

2

to cover the case of dynamic groups. However, the paper constructs only proof-of-concept schemes
based on black-box zero-knowledge primitives, and the existence of a practical group signature
scheme provably-secure in the standard model has remained an open problem.

In this paper, we borrow concepts from these previous works and introduce an alternative
security model based on the UC/Reactive models. The security properties of our proposed scheme
are therefore stronger than those proven under the other models, as they remain valid in settings
where the group signature scheme is composed arbitrarily with other cryptographic protocols in
concurrent execution (excluding the Join protocol).

Remark 1: We have not explored the issue of efficient revocation– i.e., removing members from
the group –in our security model or in our construction. This omission is a topic for future work.

Remark 2: Our group signature scheme involves a single group manager, and does not separate
the functions of enrollment and tracing. Group signature schemes are called separable (for instance,
see [9, 32, 11]) if they allow for such separation of roles. It is possible to convert our scheme into one
that provides separability: It only requires that users first register the tracing value, obtaining a
signed receipt from the tracing manager, that is then provided to the enrollment manager during the
execution of the Join protocol. The security proofs can then be adapted, and are somewhat longer
(by having to deal with more sub-cases), but not fundamentally different. We have succumbed to
minimalism by deciding not to incorporate separability directly within our security model: We do
not deny its value, only observe that our construction (and model) can support it with relatively
straightforward modifications.

Our Construction. We now provide intuition for understanding our construction. A basic
group signature scheme has a single group manager and many group members (users) who interact
through the standard protocols: Setup, Join, GroupSign, GroupVerify, and Open. All keys and global
parameters are established during Setup, then during Join the group manager gives a user a signing
certificate that allows that user to execute GroupSign on behalf of the group. Signatures generated
honestly will be anonymous to everyone except the group manager. If the true identity behind a
group signature ever need be known, the group manager can run Open to find the user’s identity
and prove this fact soundly to any third party.

Now, we explain how to build an efficient group signature scheme without random oracles. Let
S = (Gen,Sign, Verify) be an efficient, standard signature scheme secure in the standard model;
for example, [18, 13, 19]. Let the group manager have keypair (GPK ,GSK) and a user have
keypair (pk , sk) both generated according to Gen. Consider the following scheme. During the Join
protocol, the group manager gives the user a signature of her public key as the signing certificate:
SignGSK (pk). When the user wishes to sign a message m, the user creates her personal stamp on
m as Signsk (m) and then outputs the group signature: (SignGSK (pk), pk ,Signsk (m)).

Clearly this scheme is unforgeable, but not anonymous. One problem is that the first two
elements of this signature, the user’s signing certificate and the user’s public key, are always the
same for the same user. We solve this problem by having the group manager and the user use
different standard signature schemes, S1 and S2, to create the signing certificate and personal
stamp, respectively. The trick here is to find schemes S1 and S2 with special properties that allow
us to make the basic structure above anonymous.

First, we implement S1 with the bilinear-map-based signature scheme due to Camenisch and
Lysyanskaya [19] (CL). More specifically, we use the Ateniese et al. [3] extension of this scheme
(CL+) which operates as follows. Suppose e : G1 × G2 → GT is a bilinear map of prime or-

3

der p, where g generates G1 and g̃ generates G2. Select random s, t ∈ Zp and set sk = (s, t)
and pk = (g̃s, g̃t). To sign a message m ∈ Z∗

p, select random a ∈ G1 and output the tuple
(a, at, as+stm, am, amt). Verify signature (A,B,C,D,E) by checking that: (1) e(A, g̃t) = e(B, g̃),
(2) e(D, g̃t) = e(E, g̃), and (3) e(AE, g̃s) = e(C, g̃).

Now a user’s signing certificate is a CL+ signature from the group manager on the user’s secret
key sk . (Fortunately, the CL+ scheme inherits the efficient CL protocol for getting a signature on a
message without revealing the message to the signer. This prevents the group manager from later
framing that user.) In the group signature structure (Sign1

GSK (pk), pk ,Sign2
sk (m)), we replace

(Sign1
GSK (pk), pk) with CL+

GSK (sk) = (a, at, as+st(sk), ask , at(sk)), which is the group manager’s
signature on sk which can be thought of as including an obfuscated version of the user’s public key
(a, ask). As observed by Ateniese et al. [3], these signatures can be unlinkably, re-randomized by
choosing a random r ∈ Zp and computing (ar, (at)r, (as+st(sk))r, (ask)r, (at(sk))r), assuming DDH
is hard in G1. Thus, the user releases a random-looking copy of her signing certificate with each
group signature she signs. Now, it remains to find a scheme S2 that will verify with respect to
many obfuscated versions of the user’s public key.

We implement S2 with a new signature scheme secure in the standard model which is based on
the weak signatures of Boneh and Boyen [13] (BB). By weak, we mean the Boneh-Boyen signature
scheme proven adaptively-secure against chosen-message attack only for messages logarithmic in
the security parameter. The scheme works as follows. Again, we have e : G1 × G2 → GT . Select
a random sk ∈ Zp and a random generator g ∈ G1 and output pk = (g, gsk). To sign a message
m ∈ {0, 1}log |p|, output A = g̃1/(sk+m). Verify by checking that e(pkgm, A) = e(g, g̃).

Let us consider our group signature structure using the weak BB signatures implement S2 (ig-
nore for the moment their restricted message space). The construction is (CL+

GSK (sk);BBsk (m)) =
(a, at, as+st(sk), ask , at(sk); g̃1/sk+m) = (A,B,C,D,E;F), which can be verified by checking the CL+

signature as normal and then checking that e(DAm, F) = e(A, g̃). This is great, except that the
BB signatures are deterministic and thus it will be obvious when the same user signs the same
message twice. Our security definition requires that the user be guaranteed more privacy than this.
Thus, we need to tweak this construction, and along the way, enable longer messages.

In their paper [13], Boneh and Boyen present one method for adapting the weak scheme to
longer messages. In this paper, we present another method, which we denote BB+, that is more
suited to our purposes. To sign a message m ∈ Z∗

p, select a random v ∈ Zp and output the tuple
(gv, g̃1/(sk+v), g̃1/(v+m)). Verify signature (A,B,C) by checking that: (1) e(pkA,B) = e(g, g̃) and
(2) e(Agm, C) = e(g, g̃).

Now the construction is of the form (CL+
GSK (sk);BB+

sk (m)), but to tie things together, we use
the same (random) generator for the CL+ components and the first of the BB+ ones. This results
in the signature (a, at, as+st(sk), ask , at(sk); av, g̃1/sk+v, g̃1/(v+m)) for some message m ∈ Z∗

p, where
a ∈ G1 and v ∈ Zp are randomly chosen for each new signature. With this construction, we are
able to prove both anonymity and security for longer messages.

We have now described the entire construction, except the Open algorithm; that is, how the
group manager uncovers the user identity behind a signature. The simpliest method is for the user
to give the group manager a tracing value g̃sk during the Join protocol. Later, the group manager
can open a signature (a, at, as+st(sk), ask , at(sk); av, g̃1/sk+v, g̃1/(v+m)) = (A,B,C,D,E;F,G,H) by
testing if e(A, g̃sk) = e(D, g̃) for each user. This algorithm runs in O(n) time, where n is the
number of group members. This is not very satisfactory, so in Section 6, we describe two sublinear
Open algorithms. The first has complexity O(log n) under the same cryptographic assumptions as

4

this basic scheme; the second reaches complexity O(1) under an additional assumption.

Length of Signatures. The signatures produced by this scheme are very short. Assuming that
the bitlength of elements in G1 is 171, and that the curves implemented in the MIRACL library
are used [40], the basic scheme achieves roughly the same level of security as a 1024-bit RSA
signature [13]. For these curves, the bitlengths of elements in G2 are roughly three times that
of G1, and our scheme would then take approximately 2052 bits to represent each signing value,
which comprise of six elements in G1 and two elements in G2. If the newer curves of embedding
degree 12 [7] are used, one could employ 256-bit curves to achieve RSA security equivalent to 3072
bits. These new curves have better ratios, with log |G2|/ log |G1| = 2. In this case, our signatures
would take 2560 bits to represent, effectively shorter than a plain RSA signature with the same
security parameter. 1 In contrast, the short group signatures of Boneh, Boyen, and Shacham [13]
with random oracles– the shortest secure implementation known –would take 1533 bits for the RSA-
1024 security level (or 1022 implementing the simplification for XDDH groups), and approximately
2298 bits (or about 1532 bits with the XDDH simplification) for the RSA-3072 security level.

Our Complexity Assumptions and the Generic Group Model. Our constructions are
provably secure under the Strong LRSW, q-EDH, and Strong SXDDH assumptions as defined in
Section 3. The security of the Strong LRSW and Strong SXDDH depend on having a bilinear map
e : G1 × G2 → GT where DDH is hard in both G1 and G2. Good candidates for such bilinear
mappings are certain MNT curve implementations where no efficient isomorphisms between G1

and G2 are known [6, 3, 30]. Our first assumption, Strong LRSW, was previously used along
with the assumption of a mapping with DDH hard in G1 and G2 by Ateniese, Camenisch, and de
Medeiros [3]. To these assumptions, we add two more.

The q-EDH assumption is an extension of the q-SDH assumption of Boneh and Boyen [13]. We
show in the proof of Theorem 7.1 that Boneh and Boyen’s result for q-SDH can be extended to
show that q-EDH is just as hard to solve in generic groups. The Strong SXDDH assumption states
that DDH remains hard in G1 and G2 even when some additional information about the DDH
instance is available. We show in the proof of Theorem 7.3 that this problem is also hard in the
generic group model. This generic group proof, however, is more involved than the q-EDH one,
and requires some new ideas.

2 Group Signature Security Definition

Notation: if P is a protocol between parties A and B, then P (A(x), B(y)) denotes that A’s input
is x and B’s input is y.

A group signature scheme consists of the usual types of players: a group manager GM and a user
Ui. These players can execute the algorithms: GroupSetup, UserKeyGen, Join, GroupSign, GroupVer-
ify, Open, and VerifyOpen. We now specify the input-output specifications for these algorithms as
well as providing some informal intuition for what they do.

1We remark that we are comparing the difficulty of solving the discrete logarithm and that of factoring. A
more concrete security assessment of our constructions would take into consideration the efficiency of the security
reductions, and the generic model estimates of the relative strengths of the underlying cryptographic assumptions
vis-a-vis algorithms for the discrete logarithm.

5

Let params be some global parameters generated during a setup phase; ideally params would
be empty.

– The GroupSetup(1k, params) algorithm is a key generation algorithm for the group manager
GM . It takes as input the security parameter 1k and outputs the key pair (pkGM , skGM).
(Assume that skGM contains the params, so we do not have to give params explicitly to the
group manager again.)

– The UserKeyGen(1k, params) algorithm is a key generation algorithm for a group member U ,
which outputs (pkU , skU). (Assume that skU contains the params, so we do not have to give
params explicitly to the user again.)

– In the Join(U(pkGM , skU),GM(pkU , skGM)) protocol, the user U joins the signatory group
managed by GM . The user’s output is a personalized group signing credential CU , or an
error message. GM ’s output is some information TU which will allow the group manager
to revoke the anonymity of any signatures produced by U . The group manager maintains a
database D for this revocation information, to which it adds the record (pkU , TU).

– The GroupSign(skU ,CU ,m) algorithm allows group members to sign messages. It takes as
input the user’s secret key skU , the user’s signing credential CU , and an arbitrary string m.
The output is a group signature σ.

– The GroupVerify(pkGM ,m, σ) algorithm allows to publicly verify that σ is a signature on
message m generated by some member of the group associated with group public key pkGM .

– The Open(skGM ,m, σ) algorithm allows the group manager, with skGM , to identify the group
member U who was responsible for creating the signature σ on message m. The output is a
member identity pkU or an error message.

– In the VerifyOpen(GM(skGM ,m, σ, pk , Q),V(pkGM ,m, σ, pk)) protocol, GM convinces a veri-
fier that the user with public key pk was responsible for creating the signature σ on message
m. The verifier outputs either 1 (accept) or 0 (reject).

In addition to supporting the above algorithms, a group signature scheme must also be correct
and secure. Correctness is fairly straightforward. Informally, if an honest user runs Join with an
honest group manager, then neither will output an error message. If an honest user runs GroupSign,
then the output will be accepted by an honest verifier running GroupVerify. If a signature passes
GroupVerify and a honest manager runs Open, then the result will be accepted by an honest verifier
running VerifyOpen.

2.1 The Group Signature Ideal Functionality, Fgs

We now define our security model for group signatures. We use the ideal/real world model as in the
models of multiparty computation [20, 21, 22] and reactive systems [38, 39]. Let us briefly recall
this model.

In the real world, there are a number of parties who together execute some cryptographic
protocol. Some number of these parties may be corrupted by the adversary A (all corrupted
parties are combined into this single adversary). Each party receives its input and reports its
output to the environment Z. The environment Z and the adversary A may arbitrarily interact.

6

In the ideal world, we have the same parties. As before, each party receives its input and reports
its output to the environment. However, instead of running a cryptographic protocol, the parties
provide their inputs and receive their outputs from a trusted party T . The specification for how T
behaves is formalized as an ideal functionality. In a moment, we will describe such a functionality
for group signatures Fgs.

We say that a cryptographic protocol securely implements an ideal functionality if for every
real-world adversary A and every environment Z, there exists a simulator S, which controls the
same parties in the ideal world as A does in the real world, such that Z cannot distinguish whether
it is interacting in the real world with A or in the ideal world with S.

We now describe Fgs. In addition to the environment Z, we have the following types of players:
a group manager GM and a user Ui. We work in the non-adaptive setting.

– Non-adaptive Setup: Each user Ui tells the functionality Fgs whether or not it is corrupted.
Optionally, in this stage the global parameters are broadcast to all parties.

We define the stateful, group signature functionality, Fgs, to behave as follows:

– GroupSetup: Upon receiving (GM, “group setup”) from GM , send (GM, “group setup”) to S.

– UserKeyGen: Similarly, upon receiving (Ui, “keygen”) from Ui, forward the request to S and
return its output.

– Join: Upon receiving (Ui, “enroll”) from Ui, ask the group manager GM if Ui may join the
group. The GM responds with res i ∈ {0, 1}. Record the pair (Ui, res i) in database D and
return res i to Ui. Additionally, if the group manager is corrupted, then register a special user
corrupt-GM .

– GroupSign: Upon receiving (Ui, “sign”,m), where m is an arbitrary string, check that Ui is a
valid member of the group by checking that the entry for Ui in D has res i = 1. If not, deny
the command. Otherwise, tell the simulator S that GroupSign has been envoked on message
m. If the GM is corrupted, also tell the simulator the identity Ui. Ask S for a signature index
id . Record the entry (Ui,m, id) in database L and return the value id to Ui.

– GroupVerify: Upon receiving (Ui, “verify”,m, id) from Ui (or GM), search database L for an
entry containing message m, and if one exists, return 1. Otherwise, return 0.

– Open: This ideal operation combines both the Open and VerifyOpen cryptographic protocols.
Upon receiving (Ui, “open”,m, id) from Ui, search database L for an entry (Uj ,m, id) for any
Uj . Ask GM if it will allow Fgs to open id for user Ui. If GM agrees and Uj 6= corrupt-GM ,
then output the identity Uj . Otherwise, output ⊥.

Designing an ideal functionality for group signatures Fgs was not a straightforward task. In
particular, we had to think about how Fgs should respond when asked to open a signature in
different scenarios. First, how should Fgs respond when asked to open a signature on a message that
many parties have signed? Second, how should it respond when asked to open a re-randomization
of a valid signature? Will Fgs even know who originally signed it?

Let us provide some intuition for understanding this model. Informally, the properties that we
capture are unforgeability, anonymity, and exculpability. First, it may not be obvious, but this
definition is general enough to capture unforgeability under adaptive chosen message attack [31]

7

without requiring schemes to be strongly unforgeable [2]. Recall that in strongly unforgeable schemes
a new signature on a previously signed message is considered a forgery; while in the standard notion,
and for most applications, it is not. At first glance, one might assume that this definition requires
strong unforgeability because GroupVerify only returns valid for signatures that Fgs saw being
created. Indeed, this would be an easier functionality to write. However, to broaden our scope, we
can mentally treat these id ’s as indices of signature equivalence classes, i.e., including a signature
and all valid re-randomizations of it.

The definition also captures exculpability (i.e., even a rogue group manager cannot frame an
honest user). Consider that the environment Z may instruct a user to sign any messages of its
choosing and may interact freely with the adversary A. Our model, however, enforces that unless
an honest user Ui requested a signature on m (i.e., sent (“sign”,m) to Fgs), then for all values of
id , the Open command on (Ui,m, id) will return ⊥.

Furthermore, there is a strong anonymity guarantee for a user: unless the group manager is
corrupted, the users remain anonymous. When the group manager is honest, the simulator must
create signatures for A knowing only the message contents, but not the identity of the honest user.

Finally, the definition ensures that, whenever the group manager is honest, he will be able to
open all group signatures. During the Open command, Fgs only asks S for permission to execute the
opening if the group manager is corrupted. Thus, if a user honestly runs the verification algorithm
and accepts a signature as valid, then this user may be confident that an honest GM will later be
able to open it, reveal the identity of the original signer, and prove this fact to the user.

3 Preliminaries and Complexity Assumptions

Notation: The notation G = 〈g〉 means that g generates the group G.

3.1 Bilinear Maps

Let BilinearSetup be an algorithm that, on input the security parameter 1k, outputs the parameters
for a bilinear mapping as γ = (p,G1,G2,GT , g, g̃), where G1 = 〈g〉 and G2 = 〈g̃〉. We follow the
notation of Boneh, Lynn, and Shacham [15]:

1. G1,G2, and GT are all (multiplicative) groups of prime order p = Θ(2k);
2. each element of G1, G2, and GT has a unique binary representation;
3. e is an efficiently computable bilinear map e : G1 ×G2 → GT such that:

• (Bilinear) for all g ∈ G1, g̃ ∈ G2, and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)ab;

• (Non-degenerate) if g is a generator of G1 and g̃ is a generator of G2, then e(g, g̃)
generates GT .

In addition to the standard bilinear map properties above, in this paper, we restrict our attention
to maps with the following additional condition.

The parameters required for any of these options (e.g., the hash function for option (c)) are
assumed to be global information outside the control of the group manager.

Assumption 1 (Symmetric External Decisional Diffie-Hellman (SXDDH) [6, 3, 30]) The
classic Decisional Diffie-Hellman (DDH) problem is hard in both G1 and G2. This implies that there
do not exist efficiently computable isomorphisms ψ : G1 → G2 or ψ′ : G2 → G1.

8

The asymmetric version of this assumption, simply called XDDH, only requires that DDH be
hard in G1 [29, 41, 35, 13, 6]. (This assumption was previously called XDH [6]; for clarity, we insert
the word “Decisional.”) The SXDDH assumption was recently introduced by Ballard et al. [6]. Let
us say a few words about this new assumption. Most of the initial cryptographic interest in bilinear
groups was because they allowed for a group G in which DDH was easy, and yet CDH was believed
to remain hard.

We stress that the pairing is not sufficient to decide the traditional DDH problem in either G1

or G2. Instead the latter property is obtained via isomorphisms ψ : G1 → G2 (also called distortion
maps). When such an isomorphism is available, a “distorted pairing” can be defined as e(g, ψ(g))
for g ∈ G1.

Efficient distortion maps always seem to exist for bilinear implementations over the popular
supersingular curves, however, they do not appear to be present for all pairing groups, in particular
those recently discovered over MNT curves [43, 28, 30]. When distortion maps are not available, it
is an open problem whether the groups G1, G2 are DDH-easy.

3.2 Complexity Assumptions

The security of our construction in Section 5 is based on the following assumptions about bilinear
groups. For the two assumptions that we introduce, we argue in Section 7 that these assumptions
are reasonable to make, by showing that they hold in the generic group model [36, 42].

Throughout this section, suppose that BilinearSetup(1k)→ (p,G1,G2,GT , g, g̃), where G1 = 〈g〉
and G2 = 〈g̃〉, is public information. Assume that (G1,G2) are SXDDH-hard groups.

Unforgeability Assumptions. The LRSW assumption is a computational discrete-logarithm
assumption originally introduced by Lysyanskaya et al. [34] and used in many subsequent works.
Recently, a stronger form of the LRSW assumption, called Strong LRSW, was introduced by Ate-
niese et al. [3]. Strong LRSW only holds in SXDDH-hard groups.

Assumption 2 (Strong LRSW [3]) Let X,Y ∈ G2, X = g̃x, Y = g̃y. Let OX,Y (·) be an oracle
that takes as input a value m ∈ Z∗

p, and outputs an LRSW-tuple (a, ax, ay+yxm) for a random
a ∈ G1. Then for all probabilistic polynomial-time adversaries A(·) and all m ∈ Z∗

p,

Pr[x R← Zp, y
R← Zp, X = g̃x, Y = g̃y, (a1, a2, a3, a4, a5)← AOX,Y (g, g̃,X, Y) :

m 6∈ Q ∧ a1 ∈ G1 ∧ a2 = ax
1 ∧ a3 = ay+yxm

1 ∧ a4 = am
1 ∧ a5 = amx

1] < 1/poly(k),

where Q is the set of queries A makes to OX,Y (·).

The q-Strong Diffie-Hellman (q-SDH) assumption, as introduced by Boneh and Boyen [12],
states that: for all probabilistic polynomial-time adversaries A, and all c ∈ Z∗

p:

Pr[x R← Zp : A(g, g̃, gx, . . . , g(xq), g̃x, . . . , g̃(xq)) = (c, g̃1/(x+c))] < 1/poly(k).

This formulation is no stronger (indeed, perhaps weaker) than the Boneh and Boyen presentation
of q-SDH [12], in which A is given input (g, g̃, g̃x, . . . , g̃(xq)) and one explicitly assumes that there
exists an efficiently computable distortion map ψ : G2 → G1. Here, we require that such a distortion
map does not exist and instead explicitly provide values in both G1 and G2. Now, suppose we

9

strengthen the above q-SDH assumption as follows: to win, the adversary need not explicitly
provide g̃1/(x+c), but can instead provide some related values.

Assumption 3 (q-Extended Diffie-Hellman (q-EDH)) For all probabilistic polynomial-time
adversaries A, all v, c ∈ Z∗

p, and all values h ∈ G1 such that h 6= 1,

Pr[x R← Zp : A(g, g̃, gx, . . . , g(xq), g̃x, . . . , g̃(xq)) = (c, h, hv, g̃1/(x+v), g̃1/(v+c))] < 1/poly(k).

In Theorem 7.1, we show that q-EDH is hard in generic groups; this result holds independently
of whether or not DDH is hard in either G1 or G2. Obviously, in any group where q-EDH holds,
q-SDH also holds.

Anonymity Assumption. The anonymity of our group signatures is based on a single assump-
tion: SXDDH holds even when the adversary is given access to oracles revealing some additional
information about the DDH instance.

Assumption 4 (Strong SXDDH) Let g ∈ G1, g̃ ∈ G2, and x ∈ Zp. Let Ox(·) be an oracle
that takes as input m ∈ Z∗

p and outputs (gv, g̃1/(x+v), g̃1/(v+m)) for a random v ∈ Z∗
p. Let Qy(·) be

an oracle that takes the same input type and outputs (gr, gry, grv, g̃1/(y+v), g̃1/(v+m)) for a random
r, v ∈ Z∗

p. Then for all probabilistic polynomial-time adversaries A(·), and for randomly chosen
g ∈ G1, g̃ ∈ G2, and x, y ∈ Zp,

|Pr[AOx,Qx(g, gx, g̃) = 1]− Pr[AOx,Qy(g, gx, g̃) = 1]| < 1/poly(k).

In Theorem 7.3, we show that Strong SXDDH is hard in generic groups. We observe, because
it will be useful later, that the Strong SXDDH assumption in (G1,G2) implies CDH in G1, as well
as CoCDH in (G1,G2); that is, given (g, g̃, gx, g̃y), it is hard to compute g̃xy.

This ends our description of the assumptions on which our scheme is based.

4 Key Building Blocks: CL and BB Signatures

As mentioned in Section 1, our group signature scheme is built out of the standard signature
schemes of Camenisch and Lysyanskaya [19] (CL) and Boneh and Boyen [12] (BB). Both of these
building blocks are efficient, bilinear map based schemes, secure in the plain model (i.e., without
random oracles.)

4.1 Camenisch-Lysyanskaya Signatures

Recall the Camenisch-Lysyanskaya (CL) signature scheme [19]. Let the security parameter be 1k.
The global parameters are the description of a bilinear mapping params = (p,G1,G2,GT , g, g̃),
where G1 = 〈g〉 and G2 = 〈g̃〉, obtained by running BilinearSetup(1k).

– Key generation: Choose random s, t ∈ Zp. Set pk = (g̃s, g̃t) and sk = (s, t).
– Signing: Choose random a ∈ G1, output σ = (a, at, as+stm) as the signature on m ∈ Z∗

p.
– Verification: On input a purported signature σ = (A,B,C) and a message m, accept if and

only if: (1) e(B, g̃) = e(A, g̃t) and (2) e(C, g̃) = e(A, g̃s)e(B, g̃s)m.

10

This scheme was proven unforgeable under adaptive chosen-message attack under the LRSW
assumption [19]. It was also shown to support a useful protocol, which we now describe.

Let us review the basic Pedersen commitment scheme [37], in which the public parameters are
a group G of prime order p, and two generators g, h of G. In order to commit to the value m ∈ Zp,
pick a random r ∈ Zp and set C = PedCom(m; r) = gmhr. When the randomness is not relevant,
we will sometimes omit it and write C = PedCom(m).

CL signatures support an efficient two-party protocol for obtaining a CL signature on the value
committed to in a Pedersen commitment. The common inputs are C = PedCom(m; r) and the
verification key of the signer GPK . The signer additionally knows the corresponding signing key
GSK , while the receiver additionally knows m and r. As a result of this protocol, the receiver
obtains the signature σGSK (m), while the signer does not learn anything about m. For our current
purposes, it will not matter how this protocol actually works.

Now, we make two extensions to the CL signatures. We denote this new scheme as CL+.

– Key generation: Same as before. We have GPK = (g̃s, g̃t) and GSK = (s, t).
– Signing: Choose random a ∈ G1, output σ = (a, at, as+stm, am, amt) as the signature on

hidden message m ∈ Z∗
p.

– Verification: On input a purported signature σ = (A,B,C,D,E) accept that σ authenti-
cates the message hidden as logA(D) if and only if:

e(B, g̃) = e(A, g̃t), e(D, g̃t) = e(E, g̃), e(C, g̃) = e(A, g̃s)e(E, g̃s).

– Re-Randomization: On input a signature σ = (A,B,C,D,E), choose a random r ∈ Z∗
p

and output (Ar, Br, Cr, Dr, Er).

Ateniese et al. [3] previously observed that when CL+ signatures are set in bilinear groups where
SXDDH holds in G1 and G2, this re-randomization is unlinkable. We will formally argue this later
in Lemma 5.3.

4.2 Boneh-Boyen Signatures

Recall the weak Boneh-Boyen (BB) signature scheme [12]. Let the security parameter be 1k. The
global parameters are the description of a bilinear mapping params = (p,G1,G2,GT) obtained by
running BilinearSetup(1k) (here, we ignore the generators output by BilinearSetup).

– Key generation: Select random generators g ∈ G1 and g̃ ∈ G2. Select random sk R← Z∗
p.

Set pk = (g, g̃, gsk).
– Signing: On input a secret key sk and a message m ∈ Z∗

p, output the signature g̃1/(sk+m).
– Verification: On input a public key (g, g̃, gsk), a message m, and a purported signature σ,

accept if it holds that e(σ, gskgm) = e(g, g̃), and reject otherwise.

In this presentation, we reverse the roles of G1 and G2 from the original description [12].
This scheme was proven unforgeable only against weak chosen-message attack under the q-SDH
assumption [12], where the adversary must submit all of his signature queries in advance of the
public key generation. Subsequently, Dodis and Yampolskiy [25] used the fact that this scheme
can handle adaptive queries by limiting the message space to strings of length O(log k), where k is
the security parameter; i.e., to a size where all possible messages may be enumerated in advance
by the reduction. In either case [12, 25], the authors reduced this scheme to an assumption which

11

they then argued was hard in the generic group model. In Theorem 7.1, we show that a simple
extension of this “weak” signature scheme [12] is actually existentially unforgeable under adaptive
chosen-message attack in the generic group model.

5 Our Basic Group Signature Construction

Notation: BB and CL+, respectively, denote Boneh-Boyen [12] signature scheme and our Sec-
tion 4 modifications of the Camenisch-Lysyanskaya [19] signature scheme. When we write s =
SignCL+

GSK (m; a), we mean that s is a CL+ signature under secret key GSK on message m using base
a; that is, s = (a, at, as+stm, am, amt) for GSK = (s, t). Similarly, when we write s = SignBB

sk (m; g̃),
we mean that s is a BB signature under secret key sk on message m; that is, s = g̃1/(sk+m).

• Global parameters: bilinear groups G1 = 〈a〉,G2 = 〈g̃〉 of order p, where e : G1×G2 → GT .

• Group Manager’s Keys: (GPK ,GSK), one CL+ signature key pair.

• User’s Keys: (pk , sk), where sk ∈ Z∗
p.

• Join: The user’s certificate is SignCL+
GSK (sk ; a), for a random a ∈ G1 chosen by the Group

Manager. This is obtained without the Group Manager learning sk .

• GroupSign: For a message m ∈ Z∗
p, the user chooses a random v, r ∈ Z∗

p, and outputs his
group signature (where ar = b):(

Rand(SignCL+
GSK (sk ; a), r), avr, SignBB

sk (v; g̃), SignBB
v (m; g̃)

)
=

(
b, bt, bs+st(sk), bsk , bt(sk), bv, g̃1/(sk+v), g̃1/(v+m)

)
• GroupVerify: Check that each of the three signature components are valid. The public keys

for the BB signatures are derived from the CL+ components.

Figure 1: An overview of our basic group signature construction; we show how to open signatures
in constant time in the next section.

We now describe the first practical group signature scheme without random oracles; for now,
we settle for an open algorithm with complexity linear in the number of group members. Let
params = (p,G1,G2,GT , g, g̃), where G1 = 〈g〉 and G2 = 〈g̃〉, be the output of BilinearSetup(1k).
Figure 1 contains a high-level overview.

GroupSetup(1k, params) The group manager establishes the public parameters for the Pedersen
commitment scheme [37] and adds those to params. Then, the group manager executes
GenCL+(1k, params) to obtain:

GPK = (params,S = g̃s, T = g̃t) , GSK = (s, t).

UserKeyGen(1k, params) Each user U selects random sk ∈ Z∗
p and random h ∈ G1, and outputs

the public key pk = (h, e(h, g̃)sk).

12

Join(Ui(GPK , sk i),GM(pk i,GSK)) In this interactive protocol, the user’s inputs are her secret key
sk i and the public key of the group manager GPK . Likewise, the group manager receives as
input GSK and pk i. They interact as follows:

1. Ui submits her public key pk i. The user provides a zero-knowledge proof of knowledge
of her corresponding secret key sk i using any proof technique that is extractable. We
discuss several techniques for extractable proofs later in this section.

2. Ui submits her tracing information Qi = g̃sk i to GM . Let pk i = (p1, p2). If e(p1, Qi) 6= p2

or sk i was already in D, GM aborts. Otherwise, GM enters Qi in database D.

3. The user sends a commitment A = PedCom(sk i) to GM . The user and GM run the CL
protocol for obtaining GM ’s signature on the committed value contained in commitment
A. GM picks a random r ∈ Z∗

p and sets f1 = gr. Then, GM computes SignCL+
GSK (sk i; f1) =

(f2, f3) and sends all three values to the user. If the CL signature (f1, f2, f3) does not
verify for message sk i, the user aborts.

4. Next, the user locally computes the values f4 = f sk i
1 and f5 = f sk i

2 .

5. At the end of this protocol, the user obtains the following membership certificate:

Ci = (f1, . . . , f5) = (a, at, as+st(sk i), ask i , a(sk i)t).

As an extra security precaution against an adversary choosing keys maliciously, we could
optionally have the GM re-randomize each user’s secret key during this protocol. Briefly, this
would work as follows: after Ui sends PedCom(sk i) to GM , GM sends random a, b ∈ Zp to
Ui along with a CL signature on the new secret key sk ′

i = a(sk i) + b mod p. Our scheme is
secure even for maliciously chosen key pairs, so this step is not actually required for the proof
of Theorem 5.1.

GroupSign(sk i, Ci,m) A user with secret key sk i and membership certificate Ci = (f1, . . . , f5) may
sign a message m ∈ Z∗

p as follows. (Technically, the message space does not include zero, but
this can be easily patched; for example, add a 1 to the end of each message.)

1. The user re-randomizes her certificate Ci using a random value r ∈ Zp. That is, she
computes (a1, . . . , a5) = (f r

1 , . . . , f
r
5).

2. Next, the user chooses a random v ∈ Z∗
p and sets a6 = av

1.

3. The user certifies v by generating a BB signature on v using his secret key sk i; this
signature is SignBB

sk i
(v; g̃) = g̃1/(sk i+v). We denote this value as a7.

4. Next, the user treats the value v as his “one-time” signing key and computes a BB
signature on m using key v; this signature is SignBB

v (m; g̃) = g̃1/(v+m). We denote this
value as a8.

5. Finally, the user outputs the group signature (a1, . . . , a8) on message m:

(b, bt, bs+st(sk i), bsk i , b(sk i)t, bv, g̃1/(sk i+v), g̃1/(v+m)),

where we denote b = ar.

GroupVerify(GPK ,m, σ) To verify that σ = (a1, . . . , a8) is a group signature on m, do:

13

1. Use helper a5, to test that (a1, a2, a3) is a valid CL+ signature for public key GPK where
the message is the exponent of a4 (base a1). That is, verify the following relations:

e(a1, T) = e(a2, g̃), e(a4, T) = e(a5, g̃), e(a1a5,S) = e(a3, g̃).

2. Check that a7 is a valid BB signature for public key (a1, g̃, a4) where the message is the
exponent of a6 (base a1). That is, verify the relation:

e(a4a6, a7) = e(a1, g̃).

3. Check that a8 is a valid BB signature for public key (a1, g̃, a6) on message m. That is,
verify the relation:

e(a6a
m
1 , a8) = e(a1, g̃).

4. If all checks pass, accept; otherwise, reject.

Open(GSK ,m, σ) On input any valid signature σ = (a1, . . . , a8) and tracing database D, GM may
run the following algorithm to identify the signer. For each entry Qi ∈ D, the group manager
checks whether e(a4, g̃) = e(a1, Qi). If a match is found, then GM outputs Ui as the identity
of the original signer.

Obviously, this algorithm takes time on the order of 2n pairings for groups with n members;
we will show how to significantly reduce this running time in Section 6.

VerifyOpen(GM(GSK ,m, σ, pk i, Qi),V(GPK ,m, σ, pk i)) First, GM checks that σ is a valid group
signature; that is, GroupVerify(GPK , σ,m) = 1. Next, GM checks that Ui is responsible for
creating σ; that is, using tracing information Qi = g̃sk i from database D and pk i = (p1, p2),
test that e(p1, Qi) = p2. If both of these conditions hold, then GM proceeds to convince a
verifier that Ui was responsible for σ. There are at least two ways to conduct this proof:

1. Total Anonymity Revocation: As a first option, GM can simply publish the tracing
information Q. Then anyone can verify that the user with public key pk = (p1, p2) must
be responsible by checking that: (1) e(p1, Q) = p2, and (2) e(a1, Q) = e(a4, g̃).

2. Partial Anonymity Revocation: Alternatively, GM and a verifier can engage in a zero-
knowledge proof of knowledge protocol that GM knows a value Q such that above two
relations hold. Specifically, this is the following proof protocol: a proof of knowledge of
a value α ∈ G2 such that e(p1, α) = p2 and e(a1, α) = e(a4, g̃).
This ZK proof of knowledge can be done efficiently as follows [1]. Here, GM is the prover
and V is the verifier.

(a) V selects a random challenge c ∈ Zp and sends C = PedCom(c) to GM .
(b) GM selects a random r ∈ Zp and sends (t1, t2) = (e(pr

1, g̃), e(a
r
1, g̃)) to V.

(c) V sends c, along with the opening of commitment C.
(d) GM verifies that C opens to c and, if so, sends s = (g̃sk)cg̃r to V.
(e) V accepts if and only if: (1) e(p1, s) = (p2)ct1 and (2) e(a1, s) = e(a4, g̃)ct2.

This proof can be made non-interactive by using either the Fiat-Shamir [26] or Fischlin
transformations [27]. In our proof of Theorem 5.1, we will focus on the interactive version
of this protocol.

14

Towards a Concurrent Join Protocol. In the above description we have specified that the group
manager runs the Join protocol sequentially with the different users. The reason for this is technical,
i.e., to prove security we require that the users’ secrets keys sk i are extractable from them. To
this end we require the users to commit to their secret key and then prove knowledge of them. If
one uses the standard proof of knowledge protocol for the latter, extracting the users’ secret keys
requires rewinding of the users. It is well known that if these proofs of knowledge protocols are
run concurrently with many users, then extracting all the secret keys can take time exponential in
the number of users. So, one way to prevent this is to require that the group manager run all the
Join protocols sequentially. However, there are alternatives which allow for concurrent execution
of these proofs and thus also of the Join protocol.

First of all, one could require the group manager to run the protocol concurrently only with a
limited numbers of users, i.e., by defining time intervals within which the group manager runs the
protocol concurrently with a logarithmic number of users and enforcing a time-out if a protocol
does not finish within this time interval.

Second, one can apply one of the various construction that transform a standard proof of
knowledge protocol (or Σ-protocol) into one that can be executed concurrently.

1. Common random reference string. Assuming that the parties have a common random refer-
ence string available, one can interpret this as the key for an encryption scheme such that
the corresponding secret key is not know to any party. Alternatively, one could have a (dis-
tributed) trusted third party generate such a public key (cf. [24]). Then, the users would be
required to verifiably encrypt their secret key sk i under this reference public key (e.g., using
the techniques of Camenisch and Damg̊ard [17]). For extraction of the secret keys in the
security proof, the reference string would need to be patched such that the simulator knows
the reference decryption key and thus can extract the users’ secret keys by simple decryption.

2. Non-concurrent setup phase. When having a common random reference string or a trusted
third party is impractical, each user can instead generate their own public key and then prove
knowledge of the corresponding secret key in a setup phase where non-concurrent execution
can be guaranteed (e.g, because the user’s part is run by an isolated smart card). Then,
during the Join protocol, the user would verifiably encrypt her secret key sk i under her own
public key pk i.

3. Assuming random oracles for Join only. A third alternative that comes to mind, in the random
oracle model, is to apply Fischlin’s results [27]. Fischlin recently presented a transformation
for turning any standard proof of knowledge (or Σ-protocol) into a non-interactive proof in
the random oracle model that supports an online extractor (i.e., no rewinding).

Theorem 5.1 In the standard model, the above group signature scheme is correct and secure (i.e.,
it realizes Fgs from Section 2) under the Strong LRSW, the q-EDH, and the Strong SXDDH as-
sumptions.

Another way of interpreting Theorem 5.1 is to say that our scheme is secure for any SXDDH
groups where the best discrete-logarithm algorithms are generic, exponential-time algorithms. This
is the current situation for many elliptic curve implementations.

Proof. Our goal is to show that for every adversary A and environment Z, there exists a simulator
S such that Z cannot distinguish whether it is interacting in the real world with A or the ideal

15

world with S. The proof is structured in two parts. First, for arbitrary fixed A and Z, we describe
a simulator S. Then, we argue that S satisfies our goal.

Recall that the simulator interacts with the ideal functionality Fgs on behalf of all corrupted
parties in the ideal world, and also simulates the real-world adversary A towards the environment.
S is given black-box access to A. In our description, S will use A to simulate conversations with
Z. Specifically, S will directly forward all messages from A to Z and from Z to A.

The simulator will be responsible for handling several different operations within the group
signature system. The operations are triggered either by messages from Fgs to any of the corrupted
parties in the ideal system (and thus these messages are sent to S) or when A wants to send any
messages to honest parties. In our description, S will simulate the (real-world) honest parties
towards A. (Although, ideal honest parties actually exist outside of the control of S, our simulator
will intercept and change these messages before passing them onto the real-world adversary A.)

Finally, we assume that when a signature is created, it becomes public information. Likewise,
whenever a signature is opened, the corresponding identity is announced to all. (However, each
user may still require individual proof from the GM that this identity is correct.)

Notation: The simulator S may need to behave differently depending on which parties are
corrupted. There are two parties of interest: the group manager and a user. We adopt previous
notation [16] for this: a capital letter denotes that the corresponding party is not corrupted and a
small letter denotes that it is. For example, by “Case (Gu)” we refer to the case where the group
manager is honest, but the user is corrupted.

We will refer to a user as Ui and a user’s public key as pk i. We assume throughout that a party
in possession of one of these two identifiers is also in possession of the other.

We now describe how the simulator S behaves. Intuitively, when the group manager is corrupt,
S will sign messages for whatever user Fgs tells it. When the group manager is honest, however,
S will be asked to sign messages (and then later open them to) unknown users. In this case, S
will sign all messages using the same secret key, which we denote sk∗. Then, whenever S is told to
open this signature to a particular user later revealed by Fgs, it will fake the corresponding proof.

Non-Adaptive Setup: Each party that S corrupts reports to Fgs that it is corrupted. The global
parameters BilinearSetup(1k)→ (p,G1,G2,GT , g, g̃) = params, where G1 = 〈g〉 and G2 = 〈g̃〉,
are broadcast to all parties.

Simulation of the Real World’s Setup: The group manager has an associated key pair (GPK ,
GSK). Regardless of the honesty of the group manager, S sets up any public parameters
needed later for the registration of a user’s key in Join (e.g., the hash function used in the
Fischlin transformation).

Case (g): If the group manager is corrupted, then S receives the group key GPK from A.

Case (G): If the group manager is honest, then S runs the GroupSetup algorithm to generate
a group public key GPK which it then gives to A. Note that in this case S knows the
corresponding secrets and the relation of the Pedersen commitment bases. (Although, an
ideal group manager exists outside of S, the simulator will internally act as a real-world
manager toward A.)

Simulation of Honest Parties’ Setup: Each party must have an associated key pair (pk i, sk i).

Case (u): If user Ui is corrupted, then S receives the user’s public key pk i from A.

16

Case (U): If Ui is honest, then S runs the UserKeyGen algorithm to generate a public key pk i

which it then gives to A. (Although, ideal honest parties exist outside of S, the simulator
will internally create real-world public keys for them.)

Simulation of the Join Protocol: In this operation, a user asks the group manager, via Fgs, if
it can join the group and receives an answer bit.

Case (gu): If both the group manager and the user are corrupt, then S does nothing.

Case (Gu): The group manager is honest, but the user is corrupt. Then, A will start by
sending S the public key pk = (p1, p2) and tracing information Q associated with some
corrupt user Ui. S will verify the tracing information by checking that e(p1, Q) = p2. If this
check does not pass, S returns an error message to the corrupt user and ends the Join protocol.
Otherwise, S stores the pair (pk , Q) in a database D. Now S, acting as the honest group
manager with knowledge of GSK , executes the remainder of the real-world Join protocol with
A, exiting with an error message when necessary according to the protocol. If S does not
output an error message, then S submits (Ui,“enroll”) to Fgs.

Case (gU): The group manager is corrupt, but the user is honest. S will be triggered in this
case by Fgs asking if some honest user Ui may enroll. S will internally simulate a real-world
version of Ui towards A using the key pair S generated for Ui during the user setup phase. If
A stops before the end of the protocol, S returns the answer “no” to Fgs. If the CL+ signature
obtained by S during step 2 of the Join protocol verifies, then S records this certificate and
returns “yes” to Fgs. Otherwise, it returns “no”.

Case (GU): If both the group manager and the user are honest, then S does nothing.

Simulation of the GroupSign Operation: Let id be a counter initialized to zero. In this opera-
tion, a user anonymously obtains a signature on a message via Fgs. When an honest member
of the group requests to sign a message m, Fgs will forward (“sign”,m) to S. When A outputs
a real-world signature, S will be responsible for translating it into the ideal world.

Here, we denote by sk∗ the special signing key that S uses to sign all messages, for all honest
parties when the group manager is honest.

Case (u): The user is corrupt. When A outputs a valid signature σ = (a1, . . . , a8) on message
m, S tests if it is a (partial) re-randomization of any previous signature; that is, for all
signatures (b1, . . . , b8) on message m in L, test if a7 = b7 (this corresponds to the value
g̃1/(sk+v)). If any match is found, S takes no further action.

However, when no match is found, S must register the signature with Fgs. To do so, S must
first discover the signer of σ. For every registered user, S uses the tracing information in
database D to check if e(a1, Qi) = e(a4, g̃). Suppose a match is found for some Qi = g̃sk i .

1. If sk i = sk∗, then the simulation has failed. S aborts and outputs “Failure 2”.

2. If sk i 6= sk∗ and Ui is honest, the simulation has failed. S aborts and outputs “Failure
3”.

3. If Ui is corrupted, then S records (Ui, σ,m, id) in L, and sends (“sign”,m, id) on behalf
of corrupt Ui to Fgs. S increments the counter id .

If no match for any registered user was found, then:

17

– Subcase (gu): If the group manager is corrupt, S records (corrupt-GM,σ,m, id) in L,
and sends (“sign”,m, id) on behalf of corrupt-GM to Fgs. S increments the counter id .

– Subcase (Gu): If the group manager is honest, the simulation has failed. S aborts and
outputs “Failure 4”.

Case (gU): The group manager is corrupt, but the user is honest. Since the group manager
is corrupt, Fgs additionally tells S the identity Ui of the honest user requesting a signature.
Then S generates a real-world group signature σ for the simulated Ui, using that user’s
certificate (obtained during Join) and that user’s secret key (which S created during the
user setup phase). S records this entry (Ui, σ,m, id) in an internal database L. Finally, S
provides A with the real-world signature (σ,m), and returns the “ideal signature” id to Fgs

and increments id .

Case (GU): Both the group manager and the user are honest. As stated above, S is triggered
by a request (“sign”,m) from Fgs. This time the ideal-world identity of the honest user is
not known to S. However, S still needs to provide A with some group signature, thus it
proceeds as follows. S generates a real-world group signature σ using the secret key GSK
of the group manager (which S created during the group setup phase) and the secret key of
the first honest group member sk∗ that it simulates towards A (which S also created during
the user setup phase). Since all signatures are considered public information, S must forward
the values (σ,m) to A. As before, S records the entry (?, σ,m, id) in an internal database L.
Finally, S returns the “ideal signature” id to Fgs and increments id .

Simulation of the GroupVerify Operation: The simulator does not take any action on this op-
eration. A will be able to verify all real-world signatures within its view itself. Furthermore,
Fgs verifies signatures for honest users without informing S.

Simulation of the Open Operation: The simulator is triggered on this operation in a variety
of ways. There are two parties to consider: the group manager and the user requesting the
opening (i.e., the verifier).

On the request (“open”,σ,m) from a corrupted user, S first runs its GroupSign algorithm for
receiving (σ,m) from A.

Case (gu): Both the group manager and the verifier are corrupted. S does nothing.

Case (gU): The group manager is corrupted, but the verifier is honest. Fgs asks S (as the
corrupted group manager) if it may open the ideal-world tuple (Ui,m, id). (Recall that if
Ui = corrupt-GM , then Fgs refuses to open the signature.) S searches its database L for an
entry (Uj , σ,m, id), where σ is a real-world signature on m for some user Uj . Since the id ’s
are unique, only one such entry will exist. Next, S, acting as an honest, real-world verifier
toward A, engages A in the VerifyOpen protocol with common input (Ui,m, σ). Here we
choose the interactive, partial anonymity revocation VerifyOpen protocol. If S, as an honest
verifier, does not accept this proof, then S tells Fgs to refuse to open this signature. If S
accepts this verification from A and Ui = Uj , then S tells Fgs to open the signature. Finally,
if S accepts this verification and yet Ui 6= Uj , then our simulation has failed. S aborts and
outputs “Failure 1”.

Case (Gu): The group manager is honest, but the verifier is corrupted. Since the verifier is
corrupted, it may ask about the openings of any signatures it likes. (For example, it may

18

re-randomize a valid signature, etc.) Suppose A, acting as a corrupt verifier, requests an
opening on (m,σ). The first thing that S does is to check if σ is a valid group signature
(according to the real-world verification algorithm) on m under the group public key GPK .
If it is not, then S returns an error message, ⊥, to A. Otherwise, S proceeds.

Now, S must figure out which user, if any, is responsible for σ. First, S uses its tracing
database to test if any registered user is responsible for σ. Specifically for σ = (a1, . . . , a8)
and tracing information Qj , S checks if e(a1, Qj) = e(a4, g̃).

If σ opens to some registered user Uj , then there are three cases.

1. Uj is corrupted. This is not considered a forgery. S honestly runs the real-world Verify-
Open protocol with A on common inputs (Uj ,m, σ). This transaction can be completely
simulated by S without involving Fgs.

2. Uj is honest, and sk j = sk∗. Here, S needs to further differentiate if σ is a forgery
or merely a re-randomization of a previous signature. (Observe that the first part of
our signatures may be re-randomized.) To do this, S searches database L and complies
a list of all entries (?, σi,m, id i) containing message m. Next, S checks whether σ =
(a1, . . . , a8) is derived from any σi = (b1,i, . . . , b8,i) by checking if a7 = b7,i.

(a) If S finds a match for some entry i, then it sends the request (“open”, m, id i) to
Fgs. Suppose Fgs returns the identity Ux. Now, S must prove this opening to A.
S did not know who the ideal-world signer was at the time it created σ under sk∗

(recall that our simulator creates all signatures using sk∗), thus it must now fake a
real-world VerifyOpen opening towards A. That is, S must open σ = (a1, . . . , a8) to
user Ux with pkx = (hx, e(hx, g̃)skx).
S simulates the interactive, partial anonymity revocation VerifyOpen proof as fol-
lows [1]. Let pkx = (p1, p2). Recall that this is proof of knowledge of a value α ∈ G2

such that e(p1, α) = p2 and e(a1, α) = e(a4, g̃).
i. A selects a random challenge c ∈ Zp and sends C = PedCom(c) to S.
ii. S selects a random r ∈ Zp and sends (t1, t2) = (e(pr

1, g̃), e(a
r
1, g̃)) to A.

iii. A sends c along with the opening of commitment C.
iv. S verifies that C opens to c and, if so, sends s = (g̃skx)cg̃r to A.
v. A accepts if and only if: (1) e(p1, s) = (p2)ct1 and (2) e(a1, s) = e(a4, g̃)ct2.

(b) If S does not find a match for any entry i, then A has succeeded in a forgery against
user Uj with sk j = sk∗. The simulation fails. S aborts and outputs “Failure 2”.

3. Uj is honest, and sk j 6= sk∗. S immediately knows σ is a forgery, because S signs for all
honest users with the key sk∗. The simulation fails. S aborts and outputs “Failure 3”.

If σ does not open to any registered user, then A has succeeded in creating a valid group
signature for a non-registered user. That is, for all tracing information Qi known to S and
letting σ = (a1, . . . , a8), we have e(a1, Qi) 6= e(a4, g̃). In this case, S aborts and outputs
“Failure 4”.

Case (GU): Both the group manager and the verifier are honest. S does nothing. S will not
even know that this transaction has taken place.

19

This ends our description of simulator S. It remains to show that S works; that is, under
the Strong LRSW, the q-EDH, and the Strong SXDDH assumptions, the simulator will not abort,
except with negligible probability, and that the environment will not be able to distinguish between
the real and ideal worlds.

Claim 5.2 Conditioned on the fact that S never aborts, Z cannot distinguish between the real world
and the ideal world under the Strong LRSW, the q-EDH, and the Strong SXDDH assumptions.

Proof. To see this, let us explore each operation. First, we observe that in GroupSetup and
UserKeyGen, the simulator S performs all key generation operations as the respective players in the
real world would do. The simulator never deviates from the actions of any honest player during
Join and it need not take any action during GroupVerify. In the real world, anyone may verify a
signature autonomously. The remaining operations to consider are GroupSign and VerifyOpen.

Let us begin with GroupSign. In this operation, S only needs to take action when it must
translate an ideal-world signature into a real-world signature, and vice versa, for A. When the
user is corrupted, S submits “sign” requests for A whenever it outputs a new signature. There is
nothing here for A to observe.

When the user is honest, however, then S must generate real-world signatures towards A. When
the group manager is corrupted, then Fgs tells S which user is signing the message, and thus S
may perfectly generate a real-world signature for A. S is only forced to deviate in case (GU) when
it must simulate both the honest group manager and honest signer towards A. The problem is
that S does not know which user is requesting a signature on some message m; thus S always signs
with the same honest user key sk∗. By Lemma 5.3, we know that neither A nor Z can distinguish
between this homogeneous, ideal-world distribution of signatures and the heterogeneous, real-world
distribution.

Now, it remains to consider VerifyOpen. In this operation, S only takes action when one of the
two parties is corrupted. In the case (gU), S behaves exactly as an honest verifier would towards
A; that is, S finds the (single) σ associated with id , and acts as an honest verifier towards A. We
will later argue that it does not abort, due to Failure 1, in this step.

The case (Gu), however, is more complicated. Suppose S is being asked by A to open (m,σ). If
σ opens to a corrupted user or does not open to any registered user, then S behaves exactly as an
honest GM would. However, what happens when σ opens to an honest user? We will later argue
that S is not forced to abort due to Failures 2, 3, or 4. Even conditioned on this fact, S will almost
always be forced to deviate since it signed using key sk∗ for all honest users and now must open
the signatures to whichever honest party Fgs dictates. Suppose S is told to open σ = (a1, . . . , a8)
to some honest user Ui, where sk i 6= sk∗, then S must fake the (interactive, partial anonymity
revocation) VerifyOpen protocol toward A. S succeeds in doing this, in the usual way, by requiring
A to commit to his challenge and then resetting A after seeing the challenge. That is, after seeing
c ∈ Zp, S chooses a random value s ∈ G2 and computes t1 = e(p1, s)/pc

2 and t2 = e(a1, s)/e(a4, g̃)c,
where pk i = (p1, p2). Now S rewinds A to right after it sent a commitment to c, then sends (t1, t2),
receives c with a valid opening, and returns the response s. Indeed, S only fails in this step in
the unlikely event that A is able to break the binding property of the Pedersen commitments (i.e.,
CDH in G1).

2

This concludes our proof of Claim 5.2. It remains to show that, except with negligible proba-
bility, S will not abort. Recall that S may abort under the following conditions:

20

• Failure 1: A breaks exculpability. We argue that it is not possible for a dishonest group
manager to falsely open a signature; i.e., A is not able to successfully complete the Verify-
Open protocol with S on common input (Ui,m, σ) where Ui is not he real signer. Here, the
simulation fails, because Fgs will only open signatures honestly.

We now argue that, for a given VerifyOpen instance (Ui,m, σ), an adversary that can cause
Failure 1 with probability ε can be used to break the Co-CDH assumption with probability
≥ (ε − 1/p)2. (Recall from Section 3.2 that Co-CDH is implied by the Strong SXDDH
assumption.) On Co-CDH input (g, g̃, gx, g̃y), the goal is to compute g̃xy and the simulator
proceeds as follows.

1. Step 1: S initiates the VerifyOpen protocol with A on input (Ui,m, σ), setting pk i =
(gz, e(gzx, g̃y)), for random z ∈ Zp, and computing σ as a valid signature on m for the
user with sk∗.

2. Step 2: S commits to all zeros, as C = PedCom(0|p|).

3. Step 3: After receiving (t1, t2) from A, S using its knowledge of the relation of the
Pedersen public parameters to fake the openings as:

– selects a random challenge c1 ∈ Zp, opens C to c1, and obtains A’s response s1.
– rewinds A, selects a different random challenge c2 ∈ Zp, opens C to c2, and obtains
A’s response s2.

4. Step 4: S computes and outputs (s1/s2)1/(c1−c2) (which hopefully corresponds to g̃xy).

In Step 1, the adversary cannot tell that it was given a signature under sk∗ instead of sk i due
to Lemma 5.3. The fake openings in Step 4 are perfectly indistinguishable from an honest
opening due to the perfect hiding property of Pedersen commitments. If both ((t1, t2), c1, s1)
and ((t1, t2), c2, s2) are valid transcripts, then S outputs g̃xy in Step 4 with probability ≥
(ε−1/p)2. Our bound of (ε−1/p)2 comes from the well-known Reset Lemma [10], where the
advantage of A was given as ε and the size of the challenge set is p.

• Failure 2: A creates a forgery against the honest user with sk∗. Here, A produces a signature
σ = (a1, . . . , a8) and a message m such that GroupVerify(GPK , σ,m) = 1, σ opens to U∗

(i.e., e(a1, Q
∗) = e(a4, g̃)), and yet S never gave A this user’s signature on m. This scenario

occurs with only negligible probability under the q-EDH assumption, regardless of whether
the group manager is corrupted.

Recall that q-EDH takes as input (h, hx, . . . , hxq
, h̃, h̃x, . . . , h̃xq

), where 〈h〉 = G1 and 〈h̃〉 =
G2, and the goal is to produce a tuple (c, a, av, h̃1/(x+v), h̃1/(v+c)) for any a ∈ G1 and any
v, c ∈ Z∗

p. This reduction follows a similar technique of Boneh and Boyen [12].

Let τ be the number of honest users in the system. Let qS be the number of signature
queries that A requests. Finally, let i be a counter initialized to zero. When A succeeds with
probability ε, then B solves the q-EDH problem (where q = qS − 1) with probability ε/τ . B
proceeds as follows:

1. Setup: B must establish the global parameters and key generation.

(a) Select qS random elements vi ∈ Z∗
p; denote this set V = {v1, . . . , vqS}.

21

(b) Using the q-EDH input and the set V , compute:

g ←
q−1∏
i=0

Xγi

(1,i) = hf(x) , g̃ ←
q−1∏
i=0

Xγi

(2,i) = h̃f(x)

gx ←
q∏

i=1

X
γi−1

(1,i) = hxf(x) , g̃x ←
q∏

i=1

X
γi−1

(2,i) = h̃xf(x)

where X(1,i) = hxi ∈ G1, X(2,i) = h̃xi ∈ G2, and γ0, . . . , γq−1 ∈ Zp are the coefficients
of the polynomial f(x) =

∏q−1
i=1 (x + vi) =

∑q−1
i=0 γix

i. (We are safe to assume
f(x) 6= 0, since otherwise some vi ∈ V is −vi = x, and thus B can easily break
q-EDH.)

(c) Output (g, g̃) as the public parameters for the group signature scheme, and GPK =
(S̃, T̃) = (g̃s, g̃t) on behalf of the group manager. If GM is corrupt, GPK is given
to S by A. Setup all remaining keys and parameters as S would normally do

(d) Guess which of the τ honest users A will attack. Give this user U∗ the public key
pk∗ = (gr, e(gr, g̃x)), for random r ∈ Zp. (Logically this assigns the user’s secret key
as sk∗ = x.)

(e) Obtain group certificates for all honest users; B fakes the proof of knowledge of sk∗

using any of the techniques discussed in Section 5 (Join). Finally, B submits the
correct tracing information, Q∗ = g̃sk

∗
= g̃x, for this user.

2. Signing: When A requests a signature from a user not associated with sk∗ = x, sign
as normal. Now, when A asks for a group signature on m ∈ Z∗

p from the honest user
associated with secret key sk∗ = x and certificate (f1, . . . , f5), do:

(a) Using the q-EDH input and the next element vi ∈ V , compute:

σi ←
q−2∏
j=0

X
δj

(2,j) = h̃fi(x) = (h̃f(x))1/(x+vi) = g̃1/(x+vi)

where δ0, . . . , δq−2 are the coefficients of the polynomial fi(x) = f(x)/(x + vi) =∑q−2
j=0 δjx

j .
(b) Select a random r ∈ Zp. Output the group signature on m as

(f r
1 , f

r
2 , f

r
3 , f

r
4 , f

r
5 , (f1)rvi , σi, g̃

1/(vi+m)).

(c) Finally, update the counter as i = i+ 1.

3. Opening: B honestly executes the VerifyOpen protocol with A.

4. Output: Suppose A produces a valid signature σ′ = (a1, . . . , a8) for a new message
m′ ∈ Z∗

p for the user with key sk∗ = x. Then B outputs (m′, a1, a6, a7, a8) to solve the
q-EDH problem.

It is easy to observe that B perfectly simulates the group signature world for A. B has
probability 1/τ of choosing which honest user A will forge against. Thus, when A succeeds
with probability ε, then B solves the q-EDH problem with probability ε/τ .

22

• Failure 3: A creates a forgery against a user with sk j 6= sk∗. Proof that this failure occurs
with only negligible probability follows directly from that of Failure 2. Indeed, A has strictly
less information at its disposal; that is, A never sees real signatures under key sk j .

• Failure 4: A creates a valid signature for a non-registered user. In this case, A produces a
signature-message pair (σ,m) such that GroupVerify(GPK , σ,m) = 1 and yet it cannot be
opened by S to any registered user. We now argue that this is not possible under the Strong
LRSW assumption, except with negligible probability. Suppose we are given (g, g̃, g̃s, g̃t) as
the Strong LRSW input.

Instead of running GroupSetup, let the public parameters g, g̃ ∈ params and the public key
GPK = (S̃, T̃) = (g̃s, g̃t). During the UserKeyGen operation, for any honest users, S queries
the Strong LRSW oracle OS̃,T̃ on a random sk i ∈ Zp to obtain a membership certificate
(a, at, as+st(sk i)), for any a ∈ g. (This tuple is, in fact, a CL signature on sk i [19].) S now
uses sk i as the secret key for this honest user.

When S is asked to execute Join with an honest user, S simply finds the corresponding CL
signature and uses it to output the certificate (a, at, as+st(sk i), (a)sk i , (at)sk i). When S is asked
to execute Join with a corrupted user, S extracts the user’s secret key sk j using any of the
techniques discussed in Section 5 (Join), queries the Strong LRSW oracle on input sk j , and
uses the oracle’s output to create a valid certificate for this corrupt user. Now, the adversary
can sign any message for a corrupt user, and S can honestly respond to any GroupSign call
for an honest user.

Suppose that Failure 1 has occurred during VerifyOpen, meaning that A output a signature
σ = (a1, . . . , a8) such that the following relations hold:

e(a1, T̃) = e(a2, g̃), e(a4, T̃) = e(a5, g̃), e(a1a5, S̃) = e(a3, g̃)

and yet S did not query OS̃,T̃ on the corresponding secret key; that is, for all sk i known to

S, we have ask i
1 6= a4. Then, S may output (a1, a2, a3, a4, a5) to break the Strong LRSW

assumption.

Combining Claim 5.2 with the above arguments that S will not abort, except with negligible
probability, concludes our main proof.

2

We end by proving a Lemma used in the above proof. Intuitively, this Lemma captures the
anonymity of our signatures. In the below, the values u1, . . . , uτ may be thought of as the secret
keys of τ different honest users.

Lemma 5.3 (Anonymity of Signatures) Suppose we have the group signature parameters from
Section 5; that is, security parameter 1k, params, and GPK. Suppose u1, . . . , uτ are random
elements of Zp. Let Ou1,...,uτ (·, ·) be an oracle that takes as input a message m ∈ Z∗

p and an index
1 ≤ i ≤ τ , and outputs a group signature (a1, . . . , a8) on m with user secret key ui. Then, under
the Strong SXDDH assumptions, for all probabilistic polynomial-time adversaries A, the following
value is negligible in k:

|Pr[AOu1,u2,...,uτ (params,GPK , {pk i}i∈[1,τ]) = 1]− Pr[AOu1,u1,...,u1 (params,GPK , {pk i}i∈[1,τ]) = 1]|.

23

Proof. We argue in two stages. First, if A can distinguish between oracles Ou1,u2,...,uτ and
Ou1,u1,...,u1 , then we can create an adversary B that can distinguish between oracles Ou1,u2 and
Ou1,u1 . Next, we show that adversary B can be used to break the Strong SXDDH assumption.
Overall, if A succeeds with probability ε, then we can break Strong SXDDH with probability
≥ ε/τ .

Stage One. First, we make the simple hybrid argument that given A, which can distinguish the
signatures of τ distinct honest users from those of a single user, we can create an adversary B that
can distinguish the signatures of only 2 distinct users from those of a single user. Indeed, by the
hybrid argument, we know that if A distinguishes with probability ε, then for some 1 ≤ ` ≤ τ , A
can distinguish with probability ≥ ε/τ between the oracle instantiated with ` u1’s followed by τ − `
different seeds and the oracle instantiated with `+1 u1’s followed by τ − `−1 different values. The
obvious reduction follows; that is, the two oracles of B will be applied to this hybrid point for A.
B will then return whatever answer A does.

Stage Two. Now, we show that B can be used to create another adversary C that breaks Strong
SXDDH. On Strong SXDDH input (g, gx, g̃), the adversary C proceeds as follows:

1. Generate group public key GPK as (S̃, T̃) = (g̃s, g̃t) for random s, t ∈ Zp. Give GPK to B;
store GSK = (s, t). (Remember, anonymity only makes sense when the group manager is
honest, so the adversary does not get to set these keys.)

2. Query Qy on a random input, disregard all output except (h, hy) for some h ∈ G1.

3. Generate the two user keys as pk1 = (g, e(gx, g̃)) for user U1 and pk2 = (h, e(hy, g̃)) for
user U2. Give pk1, pk2 to B. (This first key could be re-randomized away from the public
parameters by choosing a random r ∈ Zp and setting pk1 = (gr, e(gx, g̃)r). This has no effect
on the remainder, and for clarity we omit it.)

4. When B requests a signature for index i ∈ {1, 2} on m ∈ Z∗
p, if i = 1, use Ox(·) to do:

(a) Query Ox(m) to obtain the output (gv, g̃1/(x+v), g̃1/(v+m)), where v ∈ Z∗
p is a fresh

random value chosen by the oracle. Denote this output as (f6, . . . , f8).
(b) Using GSK = (s, t), compute the remaining parts of the group signature: f2 = gt,

f3 = gs(gx)st, f4 = gx, and f5 = (gx)t.
(c) Select a random r ∈ Z∗

p, and return the signature (gr, f r
2 , f

r
3 , f

r
4 , f

r
5 , f

r
6 , f7, f8).

If i = 2, use oracle Oy(·) to do:

(a) QueryQy(m) to obtain the output (a, ay, av, g̃1/(y+v), g̃1/(v+m)), where a ∈ G1 and v ∈ Z∗
p

are fresh random values chosen by the oracle. Denote this output as (f1, f4, f6, . . . , f8).
(b) Using GSK = (s, t), compute the remaining parts of the group signature: f2 = at,

f3 = as(ax)st, and f5 = (ay)t.
(c) Return the signature (f1, . . . , f8).

5. Eventually, B will attempt to distinguish whether he’s been talking to oracle Ox,x or oracle
Ox,y. If B says that he’s been talking to oracle Ox,x, then output 1 corresponding to “x = y”.
Otherwise, output 0 corresponding to “x 6= y”.

24

It is easy to see that the stage 2 simulation is perfect; the output is always correct and perfectly
distributed. Indeed, C and B will succeed with identical probabilities. This concludes our proof.
We find that if any A can break the anonymity of our signatures with probability ε, then A can be
used to break Strong SXDDH with probability at least ε/τ , where τ is the number of honest users
in the system. 2

6 Opening Signatures in Sublinear Time

The Open algorithm for the previous scheme takes O(n) pairings for a signing group of n members.
Practically, this precludes this scheme from being used for many applications with large groups. We
now remedy this situation by explaining how to alter the basic scheme to allow for faster openings.

First, we present an Open algorithm with complexity logarithmic in the number of group mem-
bers. This improvement requires no new assumptions from the Section 5 scheme, but does add two
elements in G1 to the signature length. Next, we present a constant-time Open algorithm. The
cost for this is that: (1) the signature length increases by one element in G1 and two elements in
G2, and (2) a slightly stronger anonymity assumption is required.

As before, let (p,G1,G2,GT , g, g̃), where G1 = 〈g〉 and G2 = 〈g̃〉, be the global parameters for
the bilinear groups.

Open Algorithm with O(log n) Complexity from Trees. The intuition here is that group
members are logically divided into a 2-level tree; then to revoke the anonymity of a signature, the
group manager first locates the right branch and then the right leaf (user) for that branch. For
a balanced tree, this results in a search time of 2(log n). Now we present the details. During the
Join protocol, the group manager secretly assigns each user to one of (log n) logical branches. Each
branch is associated with a unique ID as a value ID ∈ Z∗

p. Now, the group manager and the user run
a protocol such that at the end the user obtains a CL+ signature on the pair of messages (sk , ID)
without learning its branch identity ID and the group manager does not learn the user’s secret key
sk . Following Camenisch and Lysyanskaya [19] this CL+ signature would be of the following form
for GPK = (g̃s, g̃t, g̃z, g̃tz), GSK = (s, t, z), and some a ∈ G1:

(a1, . . . , a7) = (a, at, as+st(sk)+stz(ID), ask , at(sk), aID , atz(ID))

This CL+ signature would be used as the user’s certificate. Let the user submit tracing information
Qj = g̃skj during the Join protocol as before. Then to open a group signature, the group manager
now does: For each branch identity ID i, check if e(a6, g̃) = e(a1, g̃

IDi); then for each member of
the matching branch, check if e(a4, g̃) = e(a1, Qj).

Under the DDH assumption in G1, a user’s branch identity remains remains hidden from every-
one except the group manager, so full anonymity is preserved. By the Strong LRSW assumption,
a user cannot change which branch he is associated with, and thus the group manager will be able
to find him (i.e., open the signature).

Theorem 6.1 In the plain model, the above extension to the Section 5 scheme is correct and secure
(i.e., it realizes Fgs from Section 2) assuming that the Strong LRSW, the q-EDH, and the Strong
SXDDH assumptions.

25

Open Algorithm with O(1) Complexity from Encryption. The intuition here is to have
the signer include an encryption of her identity under the group manager’s encryption key as part
of every signature. The trick is to do this in such a way that the correctness of the encryption is
publically-verifiable, and yet, the anonymity of the signer is preserved.

Let (eGPK , eGSK) be Elgamal encryption keys generated by the group manager, where eGSK ∈
Zp and eGPK = g̃eGSK . Then in addition to a regular signature from Section 5, a user would add
an Elgamal encryption of their identity as the last three items:(

Rand(SignCL+
GSK (sk ; a), r), avr,SignBB

sk (v; g̃),SignBB
v (m; g̃), acr,EncElgamal

eGPK (sk ; g̃, c)
)

=
(
b, bt, bs+st(sk), bsk , bt(sk), bv, g̃1/(sk+v), g̃1/(v+m), bc, g̃sk+c, (eGPK)c

)
.

where ar = b ∈ G1. Then during verification of the signature σ = (a1, . . . , a11), in addition to the
usual checks, a verifier must be sure that the ciphertext is correctly formed as:

e(a1, a10) = e(a4, g̃)e(a9, g̃) and e(a9, eGPK) = e(a1, a11).

Finally, the group manager may, at any time, open the signature by simply decrypting the last
portion as a10/(a11)1/eGSK = g̃sk , which reveals the user’s identity. Recall that the group manager
obtains this same “tracing information” from the user during the Join protocol.

Theorem 6.2 In the plain model, the above extension to the Section 5 scheme is correct and secure
(i.e., it realizes Fgs from Section 2) assuming that the Strong LRSW, the q-EDH, and (an extension
of) the Strong SXDDH assumption.

Under the SXDDH assumption, Elgamal encryption is secure in G2. The question here is
whether or not these signatures remain anonymous. The extension of the Strong SXDDH assump-
tion required for anonymity requires that the Strong SXDDH oracles O and Q, from Definition 4 in
Section 3, produce enough information to produce the encryption. Specifically, we change the ora-
cles as follows: Select a value eGPK ∈ G2 at random and give as input the adversary. Let O′

x(·) be
an oracle that takes as input m ∈ Z∗

p and outputs (gr, grx, grv, g̃1/(x+v), g̃1/(v+m), grc, g̃sk+c, eGPK c)
for a random r, v, c ∈ Z∗

p. Then, we say that on input (g, gx, g̃, eGPK), the adversary cannot
distinguish access to oracles (O′

x(·), O′
y(·)) from (O′

x(·), O′
x(·)).

The proof of Theorem 7.3 that Strong SXDDH is hard in generic groups can be modified to
cover this extended version as well.

An Alternative O(1) Implementation. Instead of using Elgamal encryption in the above, we
could cut the signature length by one element in G2 by employing the recent cryptosystem of Boneh,
Goh, and Nissim [14]. However, this would also require that we use composite bilinear groups where
the subgroup decision problem is hard [14]; this in addition to our other complexity assumptions.
Boneh et al. [14] use supersingular curves to implement their BGN cryptosystem, where SXDDH
is known to be easy, thus this would require implementing the BGN cryptosystem in a different
curve (which may be hard). A few other structural changes also come into play since the BGN
cryptosystem is only designed for very short messages.

26

7 Generic Security of the New Assumptions

To provide more confidence in our scheme and the assumptions we make, we prove lower bounds
on their complexity for generic groups in the sense of Shoup [36, 42].

Let us begin by recalling the basics. We follow the notation and general outline of Boneh
and Boyen [12]. In the generic group model, elements of the bilinear groups G1,G2, and GT are
encoded as unique random strings. Thus, the adversary cannot directly test any property other than
equality. Oracles are assumed to perform operations between group elements, such as performing
the group operations in G1,G2, and GT . The opaque encoding of the elements of G1 is defined
as the function ξ1 : Zp → {0, 1}∗, which maps all a ∈ Zp to the string representation ξ1(a) of
ga ∈ G1. Likewise, we have ξ2 : Zp → {0, 1}∗ for G2 and ξT : Zp → {0, 1}∗ for GT . The adversary
A communicates with the oracles using the ξ-representations of the group elements only.

We now address the q-EDH assumption. This is an extension of the q-SDH shown to be hard
in the generic group model by Boneh and Boyen [12]. We will closely follow their original proof.
In fact, we achieve the same asymptotic complexity bound for q-EDH as was shown for q-SDH.

Theorem 7.1 (q-EDH is Hard in Generic Groups) Let A be an algorithm that solves the q-
EDH problem in the generic group model, making a total of qG queries to the oracles computing the
group action in G1,G2,GT , and the oracle computing the bilinear pairing e. If x ∈ Z∗

p and ξ1, ξ2, ξT
are chosen at random, then the probability ε that A(p, ξ1(1), ξ1(x), . . . , ξ1(xq), ξ2(1), ξ2(x), . . . , ξ2(xq))
outputs (c, ξ1(y), ξ1(y · v), ξ2(1

x+v), ξ2(1
v+c)) with c ∈ Z∗

p, is bounded by

ε ≤ (qG + 2q + 2)2q
p

= O

(
(qG)2q + q3

p

)
.

Proof. Consider an algorithm B that interacts with A in the following game.
B maintains three lists of pairs L1 = {(F1,i, ξ1,i) : i = 0, . . . , τ1 − 1}, L2 = {(F2,i, ξ2,i) : i =

0, . . . , τ2 − 1}, LT = {(FT,i, ξT,i) : i = 0, . . . , τT − 1}, such that, at step τ in the game, we have
τ1 + τ2 + τT = τ + 2q + 2. The F1,i and F2,i are polynomials of degree ≤ q in Zp[x], and FT,i are
polynomials of degree ≤ 2q in Zp[x]. The ξ1,i, ξ2,i, and ξT,i are set to unique random strings in
{0, 1}∗. Of course, we start the q-EDH game at step τ = 0 with τ1 = q+ 1, τ2 = q+ 1, and τT = 0.
These correspond to the polynomials F1,0 = F2,0 = 1 and F1,i = F2,i = xi for i = 1 to q, and the
random strings ξ1,0, . . . , ξ1,q and ξ2,0, . . . , ξ2,q.
B begins the game with A by providing it with the 2q + 2 strings ξ1,0, . . . , ξ1,q, ξ2,0, . . . , ξ2,q.

Now, we describe the oracles A may query.

Group action: A inputs two group elements ξ1,i and ξ1,j , where 0 ≤ i, j ≤ τ1, and a request to
multiply/divide. B sets F1,τ1 ← F1,i ± F1,j . If F1,τ1 = F1,u for some u ∈ {0, . . . , τ1 − 1}, then
B sets ξ1,τ1 = ξ1,u; otherwise, it sets ξ1,τ1 to a random string in {0, 1}∗ \ {ξ1,0, . . . , ξ1,τ1−1}.
Finally, B returns ξ1,τ1 to A, adds (F1,τ1 , ξ1,τ1) to L1, and increments τ1. Group actions for
G2 and GT are handled the same way.

Pairing: A inputs two group elements ξ1,i and ξ2,j , where 0 ≤ i ≤ τ1 and 0 ≤ j ≤ τ2. B sets
FT,τT

← F1,i · F2,j . If FT,τT
= FT,u for some u ∈ {0, . . . , τT − 1}, then B sets ξT,τT

= ξT,u;
otherwise, it sets ξT,τT

to a random string in {0, 1}∗ \ {ξT,0, . . . , ξT,τT−1}. Finally, B returns
ξT,τT

to A, adds (FT,τT
, ξT,τT

) to LT , and increments τT .

27

We assume SXDDH holds in (G1,G2,GT) and therefore no ismorphism oracles exist. However,
our subsequent analysis would be the same even if such oracles were present.

Eventually A stops and outputs a tuple of elements (c, ξ1,a, ξ1,b, ξ2,d, ξ2,f), where 0 ≤ a, b ≤ τ1
and 0 ≤ d, f ≤ τ2. To later test the correctness of A’s output within the framework of this game,
B computes the polynomials:

FT,∗ =
(
F1,b

F1,a
+ x

)
· F2,d − 1.

FT,◦ =
(
F1,b

F1,a
+ c

)
· F2,f − 1.

Intuitively, this correspond to the equalities “e(hxhv, g̃1/(x+v)) = e(h, g̃) = e(hvhc, g̃1/(v+c))”,
where h denotes the element of G1 represented by ξ1,a, hv denotes the element of G1 represented
by ξ1,b, g̃1/(x+v) denotes the element of G2 represented by ξ2,d, and g̃1/(v+c) denotes the element of
G2 represented by ξ2,f .

Analysis of A’s Output. For A’s response to always be correct, then FT,∗(x) = FT,◦(x) = 0
for any value of x. We now argue that it is impossible for A to achieve this. By solving polynomials
FT,∗ = 0 and FT,◦ = 0 in terms of F1,b/F1,a, we have the equation:

1
F2,d

+ x =
1
F2,f

+ c (1)

We multiply out the denominators and re-arrange equation (1) to obtain:

F2,d · F2,f · x− F2,d · F2,f · c+ F2,d − F2,f = 0 (2)

Now, the polynomials F2,d and F2,f must be some linear combination of polynomials corresponding
to A’s input, such as:

F2,d = d0 + d1x+ d2x
2 + · · ·+ dqx

q

F2,f = f0 + f1x+ f2x
2 + · · ·+ fqx

q

First, we claim that for equation (2) to hold, it must be the case that d1 = d2 = · · · = dq = 0 and
f1 = f2 = · · · = fq = 0, otherwise the first term will not be able to be canceled. This leaves us to
consider d0 and f0. We immediately see that one of these must be zero to cancel the first term;
next it is apparent that if d0 = 0, then it must be the case that f0 = 0 and vice versa. However,
the only way for A to return a correct tuple with F2,d = F2,f = 0 is for c = x (i.e., 1/(x + v) = 0
and 1/(v + c) = 0); since c is a constant, obviously this cannot hold for every value of x. Thus, we
conclude that A’s success depends solely on his luck when x is instantiated.

Analysis of B’s Simulation. At this point B chooses a random x∗ ∈ Z∗
p. B now tests (in

equations 3,4,5) if its simulation was perfect; that is, if the instantiation of x by x∗ does not create
any equality relation among the polynomials that was not revealed by the random strings provided
to A. B also tests (in equations 6, 7) whether or not A’s output was correct. Thus, A’s overall
success is bounded by the probability that any of the following holds:

F1,i(x∗)− F1,j(x∗) = 0, for some i, j such that F1,i 6= F1,j , (3)
F2,i(x∗)− F2,j(x∗) = 0, for some i, j such that F2,i 6= F2,j , (4)
FT,i(x∗)− FT,j(x∗) = 0, for some i, j such that FT,i 6= FT,j , (5)

FT,∗(x∗) = 0, (6)
FT,◦(x∗) = 0. (7)

28

We observe that FT,∗ and FT,◦ are non-trivial polynomials of degree at most ≤ 2q + 1. Each
polynomial F1,i and F2,i has degree at most q. Thus, the polynomial (F1,h · x) has degree at most
(q+ 1). The polynomial (F1,h · x · F2,j) has degree at most (2q+ 1), which is the dominating term.

For fixed i and j, the first two cases occur with probability ≤ q/p; and the third occurs with
probability ≤ 2q/p. (Indeed, F1,i − F1,j and F2,i − F2,j are polynomials of degree at most q,
while FT,i − FT,j may have degree up to 2q.) Finally, the fourth and fifth cases happen with
probability ≤ (2q + 1)/p. Now summing over all (i, j) pairs in each case, we bound A’s overall
success probability ε ≤

(
τ1
2

) q
p +

(
τ2
2

) q
p +

(
τT
2

)2q
p + 2(2q+1)

p . Since τ1 + τ2 + τT ≤ qG + 2q + 2, we end
with ε ≤ (qG + 2q + 2)2(q/p) = O((q2G + q2)(q/p)). 2

The following corollary is immediate.

Corollary 7.2 Any adversary that breaks the q-EDH assumption with constant probability ε > 0
in generic groups of order p such that q < o(3

√
p) requires Ω(

√
εp/q) generic group operations.

We now turn our attention from a computational to a decisional problem. Recall from Section 2
that the Strong SXDDH assumption involves oracle Ox(·) that take as input a value m ∈ Z∗

p and
returns (gv, g̃1/(x+v), g̃1/(v+m)) for v ∈ Z∗

p randomly chosen by the oracle, and an oracle Qy(·) that
takes the same type of input and returns (a, ay, av, g̃1/(y+v), g̃1/(v+m)), for a ∈ G1 and v ∈ Z∗

p chosen
randomly by the oracle. These random values are freshly chosen at each invocation of the oracle.

Theorem 7.3 (Strong SXDDH is Hard in Generic Groups) Let x ∈ Z∗
p, b ∈ {0, 1}, and

ξ1, ξ2, ξT be chosen at random. Also, if b = 1, set y = x, but if b = 0, then set y to be a value
selected randomly from Z∗

p \ x. Let A be an algorithm that solves the Strong SXDDH problem in
the generic group model, making a total of qG queries to the oracles computing the group action
in G1,G2,GT , the oracle computing the bilinear pairing e, and the two oracles Ox(·) and Qy(·) as
described above. Then the probability ε that A(p, ξ1(1), ξ1(x), ξ2(1)) = b is bounded by

ε ≤ 1
2

+
(qG + 3)2(3qG)

p
=

1
2

+O

(
q3G
p

)
.

Proof. B maintains the lists L1, L2, and LT as in the proof of Theorem 7.1. The only twist now is
that we will let the F1,i, F2,i and FT,i’s be rational functions (i.e, fractions whose numerators and
denominators are polynomials); and all polynomials are multivariate polynomials in Zp[x, y, . . .]
where additional variables will be dynamically added. (Consider the bit b as not yet set.) At step
τ in the game, we now have τ1 + τ2 + τT = τ +3, where at τ = 0, we set τ1 = 2, τ2 = 1, and τT = 0.
These correspond to the polynomials F1,0 = F2,0 = 1 and F1,1 = x. B also selects unique, random
strings ξ1,0, ξ1,1, and ξ2,0.
B begins the game with A by providing it with the strings ξ1,0, ξ1,1, and ξ2,0. A may, at any

time, make the group action or pairing queries as in the proof of Theorem 7.1. A may additionally
query the following two oracles. Let τv = 1 and τw = 1 be counters.

Oracle Ox(·): A inputs m in Z∗
p. B chooses a new variable vτv and sets F1,τ1 ← vτv . If F1,τ1 = F1,u

for some u ∈ {0, . . . , τ1−1}, then B sets ξ1,τ1 = ξ1,u; otherwise, it sets ξ1,τ1 to a random string
in {0, 1}∗ \ {ξ1,0, . . . , ξ1,τ1−1}. B sends ξ1,τ1 to A and adds (F1,τ1 , ξ1,τ1) to L1.

Next, B set F2,τ2 ← 1/(x+vτv) and F2,τ2+1 ← 1/(vτv +m). For j ∈ {0, 1}, if F2,τ2+j = F2,u for
some u ∈ {0, . . . , τ2 − 1 + j}, then B sets ξ2,τ2+j = ξ2,u; otherwise, it sets ξ2,τ2+j to a random

29

string in {0, 1}∗ \ {ξ2,0, . . . , ξ2,τ2−1+j}. B sends (ξ2,τ2 , ξ2,τ2+1) to A, and adds (F2,τ2 , ξ2,τ2) and
(F2,τ2+1, ξ2,τ2+1) to L2.

Finally, B adds one to τ1, two to τ2, and one to τv.

Oracle Qy(·): B responds similarly to the former, except it chooses new variables rτw and wτw ,
and sets F1,τ1 ← rτw , F1,τ1+1 ← rτw · y, F1,τ1+2 ← rτw · wτw , F2,τ2 ← 1/(y + wτw), and
F2,τ2+1 ← 1/(wτw +m). At the end, B adds three to τ1, two to τ2, and one to τw.

Eventually A stops and outputs a guess b′ ∈ {0, 1}.
Analysis of A’s Output. First, we argue that, provided B’s simulation is perfect, the bit b′

is independent of b; that is, A cannot output a string such that the corresponding polynomial is
always equal when x = y (b = 1) and non-zero otherwise (b = 0). We show this for each group G1,
G2, and GT . Showing this for GT is the hardest case. Here, we sum over all expressions containing
i or j.

Group G1: The polynomials corresponding to elements in G1 that the adversary can compute as
a linear combination of elements in its view are:

F1,a = a0 + a1 · x+ a2,i · vi + a3,j · rj + a4,j · rj · y + a5,j · rj · wj (8)

where i = 1 to τv and j = 1 to τw. For F1,a = 0, both a1 and a4,j must be zero whether y is
replaced by x or not; otherwise those terms cannot be canceled. The remaining polynomial
does not contain the variables x or y.

Group G2: The polynomials corresponding to elements in G2 that the adversary can compute as
a linear combination of elements in its view are:

F2,b = b0 +
b1,i

x+ vi
+

b2,i

vi +mi
+

b3,j

y + wj
+

b4,j

wj +mj
(9)

where i = 1 to τv, j = 1 to τw, and each mi,mj ∈ Z∗
p was chosen by the adversary. Suppose

F2,b = 0. We multiply out the denominators in equation (9) to obtain:

F ′
2,b = b0(x+ vi)(vi +mi)(y + wj)(wj +mj) + b1,i(vi +mi)(y + wj)(wj +mj)+

b2,i(x+ vi)(y + wj)(wj +mj) + b3,j(x+ vi)(vi +mi)(wj +mj)+
b4,j(x+ vi)(vi +mi)(y + wj)

(10)

Now, for F ′
b,2 = 0, regardless of whether we substitute x for y, we see that b0 = 0, otherwise

the term xviywj (or x2viwj) cannot be canceled. Similarly, b1,i = 0 because of the unique
summand xviy (or x2vi), which makes b2,i = 0 because of the summand v2

iwj . Then, b3,j = 0
because of the summand xywj (or x2wj), which makes b4,j = 0 because of the summand viw

2
j .

We are left with the constant zero.

Group GT : The polynomials corresponding to elements in GT that the adversary can compute as
a linear combination of elements in its view are:

FT,c =
∑

F1,a · F2,b. (11)

30

Now, a simple expansion of FT,c has thirty terms. Suppose we clear the denominators in
FT,c = 0 by multiplying out by (x+ vi)(vi +mi)(y + wj)(wj +mj), then we have

F ′
T,c =

∑
F1,a · F ′

2,b. (12)

Now, each of the terms in F1,a is unique and F ′
2,b contains the following unique summands

(xviywj , xviy, v
2
iwj , xywj , viw

2
j). (Here, the summands v2

iwj and viw
2
j are actually not unique,

but since they also do not contain x or y, it will not matter.) Multiplying these key compo-
nents out and dropping the subscript for clarity, we obtain:

F ′′
T,c = c0(vwxy) + c1(vxy) + c2(v2w) + c3(wxy) + c4(vw2)

+ c5(vwx2y) + c6(vx2y) + c7(v2wx) + c8(wx2y) + c9(vw2x)
+ c10(v2wxy) + c11(v2x2y) + c12(v3w) + c13(vwxy) + c14(v2w2)
+ c15(vwxyz) + c16(vxyz) + c17(v2wz) + c18(wxyz) + c19(vw2z)
+ c20(vwxy2z) + c21(vxy2z) + c22(v2wyz) + c23(wxy2z) + c24(vw2yz)
+ c25(vw2xyz) + c26(vwxyz) + c27(v2w2z) + c28(w2xyz) + c29(vw3z)

(13)

Now, we are only interested in differences in the polynomial F ′′
T,c when y is replaced by x or

not. For clarity, we drop all terms containing neither x nor y, resulting in c2 = c4 = c12 =
c14 = c17 = c19 = c27 = c29 = 0. We substitute x = y to obtain.

F ′′′
T,c = c0(vwx2) + c1(vx2) + + c3(wx2) +

+ c5(vwx3) + c6(vx3) + c7(v2wx) + c8(wx3) + c9(vw2x)
+ c10(v2wx2) + c11(v2x3) + + c13(vwx2) +
+ c15(vwx2z) + c16(vx2z) + + c18(wx2z) +
+ c20(vwx3z) + c21(vx3z) + c22(v2wxz) + c23(wx3z) + c24(vw2xz)
+ c25(vw2x2z) + c26(vwx2z) + + c28(w2x2z)

(14)

We want to know if there are any two terms that are symbolically equal when x = y and not
otherwise. Scanning the above, we see that the only non-unique terms are in positions 0 and
13, and in positions 15 and 26. Looking back to equation (13), we see that both positions
0 and 13 correspond to term vwxy, and that both positions 15 and 26 correspond to term
vwxyz. Obviously, these terms will be the same regardless of the substitution of x for y. Since
all other terms are unique, we conclude that the adversary’s only chance of distinguishing
comes from a lucky instantiation of these variables.

Analysis of B’s Simulation. At this point B chooses random values x∗, y∗, {v∗d}d∈[1,τv],
{w∗

d}d∈[1,τw], {r∗d}d∈[1,τw] ∈ Z∗
p. B’s simulation is perfect, and therefore reveals nothing to A about

b, provided that none of the following non-trivial equality relations hold:

F1,i(x∗, y∗, {v∗d}, {w∗
d}, {r∗d})− F1,j(x∗, y∗, {v∗d}, {w∗

d}, {r∗d}) = 0, for some i, j s.t. F1,i 6= F1,j , (15)
F1,i(x∗, x∗, {v∗d}, {w∗

d}, {r∗d})− F1,j(x∗, x∗, {v∗d}, {w∗
d}, {r∗d}) = 0 for some i, j s.t. F1,i 6= F1,j , (16)

F2,i(x∗, y∗, {v∗d}, {w∗
d}, {r∗d})− F2,j(x∗, y∗, {v∗d}, {w∗

d}, {r∗d}) = 0, for some i, j s.t. F2,i 6= F2,j , (17)
F2,i(x∗, x∗, {v∗d}, {w∗

d}, {r∗d})− F2,j(x∗, x∗, {v∗d}, {w∗
d}, {r∗d}) = 0, for some i, j s.t. F2,i 6= F2,j , (18)

FT,i(x∗, y∗, {v∗d}, {w∗
d}, {r∗d})− FT,j(x∗, y∗, {v∗d}, {w∗

d}, {r∗d}) = 0, for some i, j s.t. FT,i 6= FT,j , (19)
FT,i(x∗, x∗, {v∗d}, {w∗

d}, {r∗d})− FT,j(x∗, x∗, {v∗d}, {w∗
d}, {r∗d}) = 0, for some i, j s.t. FT,i 6= FT,j . (20)

31

For fixed i and j, the probability of the first and second cases occurring are no more than 2/p,
where this results from the maximum degree of equation (8). For fixed i and j, the probability of
the third and fourth cases occurring are no more than τ2/p, where this results from the maximum
degree of equation (10). Finally, for the fifth and sixth cases, the probability is at most 2τ2/p,
where this results from the maximum degree of equation (12).

Therefore, by summing over all (i, j) pairs in each case, we bound A’s overall success probability
ε ≤ 2

(
τ1
2

)
2
p+2

(
τ2
2

)
τ2
p +2

(
τT
2

)
2τ2
p . Since τ1+τ2+τT ≤ qG+3, we end with ε ≤ (qG+3)2(2+qG+2qG)/p =

O(q3G/p). 2

The following corollary is immediate. Here γ = ε − 1
2 ; that is, γ is the adversary’s advantage

beyond guessing.

Corollary 7.4 Any adversary that breaks the Strong SXDDH assumption with constant probability
γ > 0 in generic groups of order p requires Ω(3

√
γp) generic group operations.

References

[1] Ben Adida, Susan Hohenberger, and Ronald L. Rivest. Ad-Hoc-Group Signatures from
Hijacked Keypairs, 2005. Preliminary version in the DIMACS Workshop on Theft in E-
Commerce. Available at http://theory.lcs.mit.edu/~rivest/publications.

[2] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature and encryption.
In Lars Knudsen, editor, Advances in Cryptology — EUROCRYPT ’02, volume 2332 of LNCS,
pages 83–107, 2002.

[3] Giuseppe Ateniese, Jan Camenisch, and Breno de Medeiros. Untraceable RFID tags via in-
subvertible encryption. In ACM Conference on Computer and Communications Security (to
appear), 2005.

[4] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In Advances in Cryptology — CRYPTO
2000, volume 1880 of LNCS, pages 255–270, 2000.

[5] Giuseppe Ateniese and Gene Tsudik. Some open issues and new directions in group signa-
tures. In Matthew K. Franklin, editor, Financial Cryptography, Third International Conference
(FC’99), volume 1648 of LNCS, pages 196–211, 1999.

[6] Lucas Ballard, Matthew Green, Breno de Medeiros, and Fabian Monrose. Correlation-resistant
storage. Technical Report TR-SP-BGMM-050705, Johns Hopkins University, Computer Sci-
ence Department, 2005. http://spar.isi.jhu.edu/~mgreen/correlation.pdf.

[7] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order.
Technical Report 2005/133, International Association for Cryptologic Research, 2005. http:
//eprint.iacr.org/2005/133.

[8] D. Beaver. Secure multi-party protocols and zero-knowledge proof systems tolerating a faulty
minority. Journal of Cryptology, 4:75–122, 1991.

32

[9] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures:
Formal definition, simplified requirements and a construction based on general assumptions. In
Advances in Cryptology — EUROCRYPT 2003, volume 2656 of LNCS, pages 614–629, 2003.

[10] Mihir Bellare and Adriana Palacio. GQ and Schnorr Identification Schemes: Proofs of Security
against Impersonation under Active and Concurrent Attacks. In Moti Yung, editor, Advances
in Cryptology — CRYPTO 2002, volume 2442 of LNCS, pages 162–177. Springer Verlag, 2002.

[11] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The case
of dynamic groups. In Topics in Cryptology: Proc. of the RSA Conference, Cryptographer’s
Track—CT-RSA 2005, volume 3376 of LNCS, pages 136–ff. Springer-Verlag, 2005.

[12] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Advances in
Cryptology — EUROCRYPT 2004, volume 3027 of LNCS, pages 56–73. Springer-Verlag, 2004.

[13] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Advances in
Cryptology – CRYPTO ’04, volume 3152 of LNCS, pages 41–55, 2004.

[14] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF Formulas on Ciphertexts.
In Joe Kilian, editor, Theory of Cryptography (TCC), volume 3378 of LNCS, pages 325–341,
2005.

[15] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In
C. Boyd, editor, Advances in Cryptology – ASIACRYPT ’01, volume 2248 of LNCS, pages
514–532, 2001.

[16] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation. In ACM
Conference on Computer and Communications Security, pages 132–145, 2004.

[17] Jan Camenisch and Ivan Damg̊ard. Verifiable encryption, group encryption, and their ap-
plications to group signatures and signature sharing schemes. In Tatsuaki Okamoto, editor,
Advances in Cryptology — ASIACRYPT ’00, volume 1976 of LNCS, pages 331–345, 2000.

[18] Jan Camenisch and Anna Lysyanskaya. A Signature Scheme with Efficient Protocols. In
Security in Communication Networks, volume 2576 of LNCS, pages 268–289, 2002.

[19] Jan Camenisch and Anna Lysyanskaya. Signature Schemes and Anonymous Credentials from
Bilinear Maps. In Advances in Cryptology — CRYPTO 2004, volume 3152 of LNCS, pages
56–72, 2004.

[20] Ran Canetti. Studies in Secure Multiparty Computation and Applications. PhD thesis, Weiz-
mann Institute of Science, Rehovot 76100, Israel, June 1995.

[21] Ran Canetti. Security and composition of multi-party cryptographic protocols. Journal of
Cryptology, 13(1):143–202, 2000.

[22] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Proc. of Foundations of Computer Science (FOCS ’01), pages 136–145, 2001.

[23] David Chaum and Eugene van Heyst. Group Signatures. In Advances in Cryptology – EURO-
CRYPT ’91, volume of LNCS, pages 257–265, 1991.

33

[24] Ivan Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. In Bart
Preneel, editor, Advances in Cryptology – EUROCRYPT ’00, volume 1807 of LNCS, pages
418–430, 2000.

[25] Yevgeniy Dodis and Aleksandr Yampolskiy. A Verifiable Random Function with Short Proofs
an Keys. In Public Key Cryptography, volume 3386 of LNCS, pages 416–431, 2005.

[26] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Advances in Cryptology – CRYPTO ’86, volume 263 of LNCS, pages
186–194, 1986.

[27] Marc Fischlin. Communication-Efficient Non-Interactive Proofs of Knowledge with Online
Extractors. In Matt Franklin, editor, To appear in Advances in Cryptology – CRYPTO ’05,
2005.

[28] S. D. Galbraith and V. Rotger. Easy decision Diffie-Hellman groups. Journal of Computation
and Mathematics, 7:201–218, 2004.

[29] Steven D. Galbraith. Supersingular curves in cryptography. In Colin Boyd, editor, Advances
in Cryptology – ASIACRYPT ’01, volume 2248 of LNCS, pages 495–513, 2001.

[30] Steven D. Galbraith. Personal communication, August, 2005.

[31] Shafi Goldwasser, Silvio Micali, and Ronald Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal of Computing, 17(2):281–308, April 1988.

[32] Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable signatures. In Advances in
Cryptology — EUROCRYPT 2004, volume 3027 of LNCS, pages 571–589, 2004.

[33] Aggelos Kiayias and Moti Yung. Group signatures: Provable security, efficient constructions
and anonymity from trapdoor-holders. Technical Report 2004/076, International Association
for Cryptologic Research, 2004. http://eprint.iacr.org/2004/076.

[34] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym systems. In
Proc. of the 6th Annual Intern. Workshop on Selected Areas in Cryptography — SAC 1999,
volume 1758 of LNCS, pages 184–199, 1999.

[35] Noel McCullagh and Paulo S. L. M. Barreto. A new two-party identity-based authenticated
key agreement. In Alfred Menezes, editor, Topics in Cryptology – CT-RSA, volume 3376 of
LNCS, pages 262–274, 2004.

[36] V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Mathematical
Notes, 55:165–172, 1994.

[37] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO ’91, volume 576 of
LNCS, pages 129–140, 1991.

[38] Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of secure
reactive systems. In Proc. of Computer and Communications Security (ACM CCS 2000),
pages 245–254. ACM Press, 2000.

34

[39] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive systems and its
application to secure message transmission. In Proceedings of the IEEE Symposium on Research
in Security and Privacy, pages 184–200. IEEE Computer Society Press, 2001.

[40] Michael Scott. MIRACL library. Indigo Software. http://indigo.ie/∼mscott/#download.

[41] Mike Scott. Authenticated ID-based key exchange and remote log-in with simple token and
PIN number. Technical Report 2002/164, International Association for Cryptologic Research,
2002. http://eprint.iacr.org/2002/164.

[42] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Advances
in Cryptology – EUROCRYPT ’97, LNCS, pages 256–266, 1997. Revised version: http:
//www.shoup.net/papers/.

[43] Eric R. Verheul. Evidence that XTR is more secure than supersingular elliptic curve cryp-
tosystems. In Advances in Cryptology — EUROCRYPT ’01, volume 2045 of LNCS, pages
195–210. Springer-Verlag, 2001.

35

