
Secure Group Key Establishment Revisited

Jens-Matthias Bohli1, Maŕıa Isabel González Vasco2, and Rainer Steinwandt3

1 Institut für Algorithmen und Kognitive Systeme, Universität Karlsruhe,
76128 Karlsruhe, Germany;

bohli@ira.uka.de
2 Área de Matemática Aplicada, Universidad Rey Juan Carlos, c/ Tulipán, s/n,

28933 Madrid, Spain;
migonzalez@escet.urjc.es

3 Dept. of Mathematical Sciences, Florida Atlantic University, 777 Glades Road,
Boca Raton, FL 33431, USA;

rsteinwa@fau.edu

Abstract. We examine the popular proof models for group key estab-
lishment of Bresson et al. [BCPQ01,BCP01] and point out missing se-
curity properties that are present in some models for two-party key es-
tablishment. These properties are actually of more importance in group
key establishments due to the possibility of malicious insiders. We show
that established group key establishment schemes from CRYPTO 2003
and ASIACRYPT 2004 do not fully meet these new requirements. Next
to giving a formal definition of these extended security properties, we
prove a variant of the explored proposal from ASIACRYPT 2004 secure
in this stricter sense.

Keywords: Group Key Establishment, Provable Security, Malicious Insiders

1 Introduction

Group key establishments allow n ≥ 2 principals to agree upon a common
secret key. It turns out that the design of such schemes faces some qualita-
tively new challenges which in this form do not arise in the two-party case. An
excellent introduction and survey of the subject is given by Boyd and Math-
uria [BM04]. To allow a rigorous security analysis, a framework for modelling
group key establishments has been developed [BCP01,BCPQ01,KY03] going
back on [BR93,BR95,BCK98,CK01,Sho99,BPR00]. A recent overview of those
indistinguishability-based models is given in [CBH05].

The models [BR93] and [CK01] use the notion of matching conversation re-
spectively matching session in order to reflect the situation in which two partic-
ipants have received each others messages. This allows to identify each protocol
session and make requirements on its integrity explicit. In contrast, the models
for group key establishment distinguish sessions by so called session identifiers,
what is more practical since in the group case all the parties involved do not
necessarily receive the same messages. However, integrity properties are hence

overseen, which is rather unfortunate considering malicious participants are more
probable and devastating as the number of participants grows.

The work of Tzeng [Tze00], for instance, shows that it is clearly feasible to
derive protocols with well-specified security guarantees even if a subset of the
protocol participants acts maliciously. Unfortunately, so far for the quite popular
security models [BCP01] and [BCPQ01] extensions to malicious participants
have hardly been explored and analyzed. In this type of model analyses typically
restrict to the case of honest participants (see, e. g., [BN03,KY03,CBHM05]).

Frameworks guaranteeing universal composability provide another approach
to model key establishment protocols [Ste02] where insider attacks or failures
are already considered [CS04,KS05]. However, no efficient two-round protocol as
[KLL04] is available in those models and also the formulation of key agreement
in those models is unclear [HMQS03]. Summarizing, more research on the suit-
ability of those models for the formulation of key establishment protocols has to
be done.

Our contribution. We examine two group key establishment protocols put for-
ward in [KY03,KLL04] and point out attacks that are not covered by the model
[BCPQ01] in which they are proven secure. We give a formal definition of some
security notions motivated by these attacks. To our knowledge, these new no-
tions round off the model [BCPQ01] and cover all known attacks that can be
carried out in the presence of malicious insiders. To give a flavor of how to design
secure protocols in this new strict sense, we prove a “hidden” security feature in
a proposal from [KY03]. Finally we present a modification of [KLL04] that we
can prove to be secure in our model—using the Computational Diffie Hellman
(CDH) assumption as well as the random oracle model.

2 Security Model and Security Goals

As indicated already, our basic security model is the proof model [BCPQ01] in
the way it is used by Katz and Yung in [KY03]. Before we motivate and describe
our extensions we give a short summary of the model:

Participants. We model the (potential) protocol participants as a finite set U
of fixed size with each Ui being a probabilistic polynomial time (ppt) Turing
machine. Each protocol participant Ui ∈ P may execute a polynomial number
of protocol instances in parallel. We will refer to instance si of principal Ui as
oracle Πsi

i (i ∈ N). Each such oracle may be taken for a process executed by
Ui and has assigned seven variables statesi

i , sidsi
i , pidsi

i , sksi
i , termsi

i , usedsi
i and

accsi
i :

usedsi
i indicates whether this oracle is or has been used for a protocol run. The

usedsi
i flag can only be set through a protocol message received by the oracle

due to a call to the Execute-oracle or a call to the Send-oracle (see below);
statesi

i keeps the state information during the protocol execution;

2

termsi
i shows if the execution has terminated;

sidsi
i denotes a (non-secret) session identifier that can serve as identifier for the
session key sksi

i ;
pidsi

i stores the set of identities of those principals that Πsi
i aims at establishing

a key with—including Ui himself;
accsi

i indicates if the protocol instance was successful, i. e. the principal accepted
the session key;

sksi
i stores the session key once it is accepted by the oracle Πsi

i . Before accep-
tance, it stores a distinguished null value.

For more details on the usage of the variables see [BPR00]. We suppose that an
oracle Πsi

i must accept the session key constructed at the end of the correspond-
ing protocol instance if no deviation from the protocol specification occurs.

Communication network. We assume arbitrary point-to-point connections among
the principals to be available. As connections are potentially under adversarial
control (cf. the adversarial model below) the network is non-private and fully
asynchronous.

Adversarial model. For a passive adversary A all messages sent by protocol
participants are sent as specified in the protocol description, but may be eaves-
dropped by A. An active adversary A has full control of the communication
network and may delay, suppress and insert messages at will. To make the ad-
versary’s capabilities explicit, the subsequently listed oracles are used: An active
adversary is a ppt Turing machine which may execute any of these, whereas
a passive adversary is a ppt Turing machine which is only given access to the
Execute, Reveal and Test oracles.

Execute({U1, U2, . . . , Ur}) This executes the protocol among unused instances
Πsi

i of the specified parties and returns a transcript of the protocol run
(listing all messages sent during the protocol execution among the oracles
Πsi

i).
Send(Ui, si,M) This sends the message M to the instance Πsi

i and outputs
the reply generated by this instance. If the adversary calls this oracle with
an unused instance Πsi

i and M = {U1, . . . , Ur}, then Πsi
i ’s pidsi

i -value is
initialized to the value pidsi

i := M and the usedsi
i -flag is set. If the oracle

Πsi
i sends a message in the protocol right after receiving M , then Send

returns this message to the adversary.
Reveal(Ui, si) yields the session key sksi

i and the session identifier sidsi
i .

Corrupt(Ui) reveals the long term secret key SKi of Ui to the adversary. Given
a concrete protocol run, involving oracles Πsi

i of principals U1, . . . , Uk we
say that principal Ui0 ∈ {U1, . . . , Uk} is honest if and only if no query of the
form Corrupt(Ui0) has been made by the

Test(Ui, si) Only one query of this form is allowed for an active adversary
A. Provided that sksi

i is defined, (i. e. accsi
i = true and sksi

i 6= null), A
can execute this oracle query at any time when being activated. Then with
probability 1/2 the session key sksi

i and with probability 1/2 a uniformly
chosen random session key is returned.

3

Initialization. Before the actual key establishment protocol is executed for the
first time, an initialization phase takes place where for each principal Ui ∈ P a
public key/secret key pair (SKi, PKi) is generated1, SKi is revealed to Ui only,
and PKi is given to all principals.

Correctness. This property basically expresses that the protocol will establish a
good key without adversarial interference and allows us to exclude “useless” pro-
tocols. We take a group key establishment protocol for correct if in the presence
of a passive adversary indeed a common key along with a common identifier is
established:

Definition 1. A group key establishment protocol P is called correct if in the
presence of a passive adversary a single execution of the protocol for establishing
a key among U1, . . . , Ur involves r oracles Πs1

1 , . . . ,Πsr
r and ensures that with

overwhelming probability all oracles:

– accept, i. e., accs1
1 = · · · = accsr

r = true.
– obtain a common session identifier sids1

1 = · · · = sidsr
r which is globally

unique.
– have accepted the same session key sks1

1 = · · · = sksr
r 6=null associated with

the common session identifier sids1
1 .

– know their partners pids1
1 = pids2

2 = · · · = pidsr
r and it is pids1

1 = {U1, . . . Ur}.

Partnering. For detailing the security definition, we will have to specify under
which conditions a Test-query may be executed. To do so we fix the following
notion of partnering.

Definition 2. Two oracles Πsi
i , Π

sj

j are partnered if sidsi
i = sid

sj

j , accsi
i =

acc
sj

j = true and both Uj ∈ pidsi
i and Ui ∈ pid

sj

j .

Freshness. A Test-query should only be allowed to those oracles holding a key
that is not for trivial reasons known to the adversary. An instance Πsi

i is called
fresh if none of the following two conditions hold:

– For some Uj ∈ pidsi
i a Corrupt(Uj) query was executed before a query of the

form Send(Uk, sk, ∗) has taken place where Uk ∈ pidsi
i .

– A queried Reveal(Uj , sj) with Πsi
i and Π

sj

j being partnered.

The idea here is that revealing a session key from an oracle Πsi
i trivially yields

the session key of all oracles partnered with Πsi
i , and hence this kind of “attack”

will be excluded in the security definition.

1 For sake of simplicity we assume these key pairs to be generated by a trusted party,
i. e., we do not consider malicious parties who try to generate incorrect key pairs.

4

Security. The security definition of [BCPQ01] can be summarized as follows. As
a function of the security parameter k we define the advantage AdvA(k) of a ppt
adversary A in attacking protocol P as

AdvA := |2 · Succ− 1|

where Succ is the probability that the adversary queries Test on a fresh instance
Πsi

i and guesses correctly the bit b used by the Test oracle in a moment when
Πsi

i is still fresh.

Definition 3. We call the group key establishment protocol P secure if for any
ppt adversary A the function AdvA = AdvA(k) is negligible.

3 Extended Security Properties

Established protocols proven secure in the above model are however vulnerable
to simple attacks if one considers a slightly broader scenario. In this section
we explore the protocol of Katz and Yung [KY03] that goes back to Burmester
and Desmedt [BD95] and a very efficient protocol from Kim et al. [KLL04]. We
present new attacks on these protocols, but we stress that these attacks were not
considered in the security model where they are proven secure: Hence our discus-
sion does not invalidate the security proofs given by the authors. Nevertheless
we think such vulnerabilities are relevant and should indeed be prevented.

3.1 Attacks on a Proposal of Katz and Yung

At CRYPTO 2003, Katz and Yung put forward a three round group key agree-
ment [KY03] building on the protocol of [BD95]. In an initialization phase a finite
cyclic group G of prime order q and a generator g of G is chosen such that the
Decisional Diffie Hellman (DDH) assumption holds. We summarize the funda-
mentals of the protocol for establishing a key among {U1, . . . , Un}, where indices
are to be taken in a cycle. An detailed overview of the exchanged messages is
given in Figure 1. Arbitrary point to point connections among participants are
available, and a broadcast is understood as simultaneous point to point delivery
of messages to all intended recipients. The participants exchange nonces in the
first round to get a unique session. In the following the participants broadcast
zi = gri and compute a Diffie-Hellman key with their neighbors. In the third
round, the participants compute the quotient of the key with the two neighbors
Xi = (zi+1/zi−1)ri and broadcast this value. It is now possible for all partici-
pants to compute the key sksi

i = (zi−1)nri ·Xn−1
i ·Xn−2

i+1 · · ·Xi+n−2.
Using a model close to the one outlined in Section 2, in [KY03] this protocol

is shown to be secure. At this, it is assumed that the signature scheme used is not
only secure against existential forgeries under adaptive chosen message attacks,
but with overwhelming probability also prevents an attacker from producing a
different signature for an already signed message.

5

Round 1:
Broadcast Each Ui chooses a random nonce ti ∈ {0, 1}k and broadcasts

(Ui‖0‖ti).
Computation Each Ui waits until messages (Uj‖0‖tj) for all Uj arrived and

sets t := t1‖ . . . ‖tn.
Round 2:

Computation Each Ui chooses a random ri ∈ Zq and computes zi = gri and
a signature σ1

i of (1‖zi‖pidsi
i ‖t).

Broadcast Each Ui broadcasts (Ui‖1‖zi‖σ1
i).

Check Each Ui waits for all incoming messages (Uj‖1‖zj‖σ1
j) and checks all

signatures σ1
j .

Round 3:
Computation Each Ui computes Xi = (zi+1/zi−1)

ri and a signature σ2
i of

(2‖Xi‖pidsi
i ‖t).

Broadcast Each Ui broadcasts (Ui‖2‖Xi‖σ2
i).

Check Each Ui waits for all incoming messages (Uj‖2‖Xj‖σ2
j) and checks all

signatures σ2
j and X1 · · ·Xn = 1.

Key computation: Each participant Ui computes the session key sksi
i =

(zi−1)
nri · Xn−1

i · Xn−2
i+1 · · ·Xi+n−2. The session identifier sidsi

i is the con-
catenation of all messages that were sent and received.

Fig. 1. A group key establishment protocol from CRYPTO 2003 [KY03].

Violating the integrity of a session. Let us assume the adversarial goal is now
to prevent a certain session unnoticeably from succeeding, forcing some involved
principals to obliviously compute a different session key with the same session
identifier.

Say n > 3 and ord(g) are coprime, then the adversary A can mount the
following attack:

1. A corrupts U1 and U3 (henceforth blocking any communication from and to
these parties).

2. A swaps the contributions of U1 and U3 to the 3rd protocol round, i. e., A
computes X1, X3 as specified, signs (U1‖2‖X3‖t) with U1’s signing key, signs
(U3‖2‖X1‖t)’s with U3’s signing key and then broadcasts (U1‖2‖X3‖σ2

1) and
(U3‖2‖X1‖σ2

3).

Now all protocol participants compute the same session identifier, all of them
receive the same messages, but with overwhelming probability the (honest) par-
ticipants U2 and U4 will have derived different session keys: With the notation
from Figure 1 a simple computation shows that the quotient of U2’s and U4’s
session keys is Xn

3 · (z2/z4)
r3n = 1G without and Xn

1 · (z2/z4)
r3n with U1 and U3

swapping their Xi-contributions in the 3rd protocol round. Thus, in the latter
case the keys derived by U2 and U4 coincide with negligible probability only.

Moreover it is now easy to see that in the above scheme not every participant
contributes to the session key. In fact, the key can be completely determined
by an adversary corrupting two neighboring principals Ui, Ui+1. In Section 4

6

we prove that corrupting only one principal does not suffice for successfully
attacking this scheme in a similar fashion.

3.2 Attacks on a Proposal of Kim, Lee and Lee

At ASIACRYPT 2004, Kim, Lee and Lee presented an efficient authenticated
group key agreement protocol [KLL04], which is claimed to take precautions
against “illegal members or system faults”. No formal definition or security proof
for this is provided, however, and below we will see that the protocol does not
meet strong security guarantees as one malicious participant is sufficient to vio-
late integrity and to mount an impersonation attack.

Figure 2 outlines Kim, Lee and Lee’s proposal for establishing a key among
{U1, . . . , Un}, where again indices are to be taken in a cycle. Similarly as in the
proposal of Katz and Yung, during an initialization phase a cyclic group G of
prime order q along with a generator g is chosen such that the CDH assumption
holds; the hash function H(·) is modelled as random oracle and again broadcast
is understood as simultaneous point to point delivery of messages. The protocol
begins with the participants broadcasting yi = gxi , again to establish Diffie-
Hellman keys tLi , tRi with their two neighbored participants. In the second round
the participants bradcast the XOR sum Ti = tLi ⊕ tRi of their two keys to allow
all participants to compute all shared keys. Moreover they broadcast a nonce ki

as contribution to the session key, though one participant broadcasts his nonce
encrypted kn⊕ tRn . Now all participants can compute the nonces and the session
key sksi

i = H(k1‖ . . . ‖kn‖0).

Round 1:
Computation Each Ui chooses ki ∈ {0, 1}k, xi ∈ Z∗q and computes yi = gxi ,

only Un computes additionally H(kn‖0). Each Ui except Un sets M1
i = yi

and Un sets M1
n = H(kn‖0)‖yn. Each Ui computes a signature σ1

i on
M1

i ‖pidsi
i ‖0.

Broadcast Each Ui broadcasts (M1
i ‖σ1

i).
Check Each Ui checks all signatures σ1

j of incoming messages (M1
j ‖σ1

j).

Round 2:
Computation Each Ui computes tL

i = H(yxi
i−1‖pidsi

i ‖0), tR
i =

H(yxi
i+1‖pidsi

i ‖0) and Ti = tL
i ⊕ tR

i , only Un computes additionally kn⊕ tR
n .

The participants U1, . . . , Un−1 set M2
i = ki‖Ti, Un sets M2

n = kn ⊕ tR
n ‖Tn

and each Ui computes a signature σ2
i of M2

i ‖pidsi
i ‖0.

Broadcast Each Ui broadcasts (M2
i ‖σ2

i).
Check Firstly, each Ui checks all signatures σ2

j of incoming messages. Then
each Ui checks if T1⊕· · ·⊕Tn = 0, decrypts kn and checks the commitment
H(kn||0) for kn.

Key computation: Each participant Ui computes the session key sksi
i =

H(k1‖ . . . ‖kn‖0).

Fig. 2. A group key establishment protocol from ASIACRYPT 2004 [KLL04].

7

Remark 1. In [KLL04] it is not specified how to generate the session identifier
sidsi

i , and it turns out that the standard method of concatenating all messages
an oracle sent and received is not enough to prove it secure: For n > 3, an active
adversary A could proceed as follows to provoke a situation where U1 and U3

end up with different session identifiers (hence not being partnered) but identical
session key sks1

1 = sks3
3 :

1. A executes a complete protocol run and eavesdrops the message M i
1‖σ1

i

broadcast by U1 in Round 1.
2. A initiates another protocol execution, but in Round 1 replaces the message

sent from U1 to U3 with the old M i
1‖σ1

i -value eavesdropped in the previous
protocol run.

Because of U3 not being a neighbor of U1, this message substitution does not
affect the computation of the session key, but with overwhelming probability U3

ends up with a session identifier different from the session identifier computed
by U1 and the respective oracles of U1 and U3 will not be partnered. Therefore,
the key of U1 can be revealed but U3 remains fresh.

To avoid this kind of “trivial” problems, subsequently we assume the session
identifier sidsi

i to be derived as

sidsi
i = H(k1‖ . . . ‖kn−1‖H(kn||0)),

so that identical session identifiers with overwhelming probability result in iden-
tical session keys.

Attacks on the integrity of a session. A protocol run ending up with different
session identifiers can be provoked by simply having a malicious participant U1

in Round 2 sending different k1-values to the other protocol participants (instead
of broadcasting one k1-value).

Also, it is possible to violate the integrity of a session by the following imper-
sonation attack. For n > 2 participants an active adversary A can impersonate
participants as follows:

1. First, she gets herself a protocol transcript of a successful key establishment
among principals U1, . . . , Un, e. g., by calling the Execute oracle. Next, A
reveals U1’s long term secret by querying Corrupt(U1).

2. A initializes unused oracles of U3, . . . , Un with pid
sj

j = {U1, . . . , Un}.
3. In Round 1 she replays the message that U2 sent in the previously eaves-

dropped key establishment and participates honestly for U1.
4. In Round 2, A again replays U2’s message from the eavesdropped protocol

run. On behalf of U1 the adversary computes

T1 := T2 ⊕ · · · ⊕ Tn

and broadcasts the signed message M2
1 := k1‖T1‖σ2

1 .

Now all participants can compute the session key and will accept it as common
secret key among U1, . . . , Un although the honest principal U2 never took part
in the session.

8

3.3 Definition of Extended Security Goals

The models [BR93] and [CK01] go further in their definition of security than
the model [BCPQ01]. The models know the notion of a matching session and
a protocol is called secure if besides the usual negligible advantage in guessing
the session key it also holds, that a matching session results in the participants
accepting the same key. In a group key establishment protocol it is more appro-
priate to identify matching sessions via a session identifier. However, the models
do not consider the influence corrupted principals now have on the uniqueness
or integrity of the session identifier, which is as we have shown quite a relevant
issue.

Granted, in the presence of malicious participants the adversary always learns
the key, for honest participants the situation can still differ. For some applications
it could even be more relevant to prevent the case in which honest principals
share mismatching keys or share the correct keys with unintended principals from
the group (for instance, if the keys serve as access control passwords for shared
data, then the above attacks result in situations in which principals assume
others to have access rights which they may actually not have). We therefore
propose the following notions to extend the security of group key establishments.

Session integrity. Motivated by the security definition of [BR93] and [CK01]
we introduce an integrity property also for group key establishments to prevent
sessions to mix up.

Besides the attacks we have seen in the last section, another example for
two protocol executions that mix up is the unknown key share attack where a
maliciously acting principal U1 makes a protocol participant U2 believe that U2

established a session key with U1, while indeed U2 shares the key with U3 6= U1.
This kind of problem has first been pointed out by Diffie et al. [DOW92]. As
explained in [BWJM97] the model of Bellare and Rogaway [BR93] prevents
unknown key share attacks due to their notion of matching conversations, but
unfortunately this is no longer true for the revised models [BPR00,BCPQ01]
that base partnering on session identifiers, which are more suited for the group
case.

Definition 4. We say a correct group key establishment protocol fulfills in-
tegrity if with overwhelming probability all oracles of honest principals that have
accepted with the same session identifier sid

sj

j

– hold identical session keys sk
sj

j , and
– hold a pid

sj

j -value encompassing the identities of all honest parties having
accepted with session identifier sid

sj

j .

Strong entity authentication. Entity authentication is a relevant issue for key
establishment even excluding the possibility of corrupted participants. It is con-
sidered in the model [BR93] and in the models for password-based key estab-
lishment following [BPR00].

9

An approach to define entity authentication formally was made in [JG04].
For our security model dealing with group key establishment we rephrase this
definition as follows.

Definition 5. Strong entity authentication to an oracle Πsi
i is provided if both

accsi
i = true and for all honest Uj ∈ pidsi

i with overwhelming probability there
exists an oracle Π

sj

j with sid
sj

j = sidsi
i and Ui ∈ pid

sj

j .

Key agreement. Clearly, key freshness can never be guaranteed in the pres-
ence of malicious participants if some incomplete subset of principals is able to
predetermine the key. However, if the key establishment is contributory, that is,
if all parties must be involved in the construction of the key, we can at least
provide some freshness guarantees. This kind of contributory key establishment
protocols is usually referred to as key agreement protocols; however, some cau-
tion has to be taken here, as different notions of key agreement exist and not
all of them suit our purposes. The notion of key agreement we use is motivated
by the discussion in [MWW98] and imposes a quantitative restriction on the
influence principals have on the derived session key.

Definition 6. Let t ∈ {1, . . . , |P|}, P a key establishment protocol, and for a
fixed pair of ppt algorithms (A1,A2) consider the following game:

1. The initialization phase of P establishing the longterm keys is executed.
2. Having access to the public keys, the Execute-, Send and Reveal-oracle and

being allowed up to t− 1 calls to the Corrupt oracle, A1 outputs a quadruple
(i, si, χκ, a) with state information a and such that
– Ui is honest with usedsi

i = false;
– χκ is a boolean-valued ppt algorithm with κ := {sk ∈ K : χκ(sk) = true}

such that |κ| is polynomial in the security parameter.
3. Upon input of the state information a, A2 tries to make Πsi

i accept a session
key sksi

i ∈ κ; for this, A2 has access to the Execute-, Send and Reveal-oracle,
but may call the Corrupt-oracle only with an argument 6= Ui and as long as
the total number of Corrupt-queries of A1 and A2 is ≤ t− 1.

If there is no such pair (A1,A2) with A2 succeeding with non-negligible probabil-
ity, then we refer to P as being t-contributory. Moreover, by a key agreement,
we mean a |P|-contributory key establishment.

Summarizing, we take a group key establishment protocol for secure if it is
correct, a proper subset of dishonest principals cannot predetermine the key, and
it provides the “usual” confidentiality guarantees, integrity, and strong entity
authentication:

Definition 7. We say a group key establishment protocol is secure against
t malicious participants if it is a correct (t + 1)-contributory protocol in the
sense of Definition 1 and Definition 6, secure in the sense of Definition 3, and
assuming at most t principals are dishonest, it offers integrity in the sense of
Definition 4 and provides strong entity authentication to all participating oracles
in the sense of Definition 5. A group key establishment secure against |P| − 1
malicious participants is referred to as a secure group key agreement.

10

4 Secure Authenticated Group Key Agreement

4.1 Looking back to Katz and Yung

To illustrate our extended model we show that the protocol of Katz and Yung is
partially secure in this sense. The generation of the session identifier has to be
modified, though. We moreover assume that all participants check for

∏
i Xi = 1

before accepting the key.

Proposition 1. Suppose that in the protocol of Katz and Yung described in
Figure 1 all participants check for

∏
i Xi = 1 before accepting the key. Then,

with session identifier sidsi
i = pidsi

i ||t (in this point diverging from [KY03]), we
obtain a key establishment protocol secure in our model when we restrict to one
Corrupt query.

Proof. For correctness and security according to Definition 3 the proof of [KY03]
applies. In the sequel, we assume only one participant in the key establishment
is allowed to act maliciously.

Integrity. Let us suppose an adversary A aims at violating integrity as defined
in Definition 4, however, she is only able to make a corrupt call to, say, principal
Ui. The adversarial goal is to make two honest principals that accept a fixed
session sid

sj

j have either different session keys or hold an incorrect pid
sj

j value.
Though, once the session is fixed its sid

sj

j contains pid
sj

j , shared thus to all honest
principals.

Let us see why she cannot either violate integrity by forcing honest principals
that have accepted to share different keys. Here are the concrete messages A can
alter:

(i) the messages in the first round, especially since they are not authentified.
Anyway sending an invalid message at this stage will result in blocking of a
particular connection, and not have influence on accepting principals.

(ii) the value zi that Ui broadcasts in the second round. The latter is actually
only used by Ui−1 and Ui+1. Obviously, the protocol is still correct if Ui

sends different values zi and z′i to its neighbors, sending the same one is
rather to save an exponentiation.

(iii) the value Xi that Ui broadcast in the third round. However the message
is implicitly fixed by the values Xj of the honest participants as Xi =
(
∏

j 6=i Xj)−1.

Entity authentication. The concatenation of the nonces t computed in the first
round is fresh as long as one honest oracle is involved. Since all participants
compute the signature over the message (1||zi||pidsi

i ||t), it is assured that at the
end of the second round all honest oracles have knowledge of the session identifier
if it is chosen as sidsi

i = pidsi
i ||t, and in particular they hold the same pidsi

i .

11

2-Contributory. Note that the adversary cannot influence the key by a dedicated
choice of one principal’s “random” choices in the first two rounds. Obviously, the
random nonce in the first round does not influence the key. In the second round
the adversary chooses values for a Diffie-Hellman key exchange. Assumed it is
not allowed to choose the exponent ri = 0 the probability that the resulting key
is included in the negligible fraction of the key space specified by the adversary
is negligible; this is also true, even allowing exponent 0, for n ≥ 3. ut

4.2 A Secure 2-Round Protocol

As shown above the proposal of Kim, Lee and Lee in Figure 2 does not offer
the discussed security guarantees. In Figure 3 we present—with the notation
from Section 3.2—a variant of the protocol that again consists of two rounds,
but in the presence of malicious participants offers the security guarantees from
Definition 7. We changed the protocol so that all participants Ui except Un send
their contribution ki to the session key already in the first round. Thus the
session key is fixed by the messages of the first round. This allows the partic-
ipants in the second round to send a confirmation of the key material, namely
H(pidsi

i ‖k1‖ . . . ‖kn−1‖H(kn)), to certify that all of them will compute the same
session key. Therewith, the attacks from Section 3.2 are effectively defeated.

Round 1:
Computation Each Ui chooses ki ∈ {0, 1}k, xi ∈ Z∗q and computes yi = gxi ,

Un computes additionally H(kn). Each Ui except Un sets M1
i = ki‖yi and

Un sets M1
n = H(kn)‖yn. Each Ui computes a signature σ1

i of M1
i .

Broadcast Each Ui broadcasts (M1
i ‖σ1

i).
Check Each Ui checks all signatures σ1

j of incoming messages (M1
j ‖σ1

j).

Round 2:
Computation Each Ui computes tL

i = H(yxi
i−1), tR

i = H(yxi
i+1), Ti = tL

i ⊕ tR
i

and sidsi
i = H(pidsi

i ‖k1‖ . . . ‖kn−1‖H(kn)), only Un computes additionally
kn ⊕ tR

n . The participants U1, . . . , Un−1 set M2
i = sidsi

i ‖Ti, Un sets M2
n =

kn ⊕ tR
n ‖sidsn

n ‖Tn and each Ui computes a signature σ2
i of M2

i .
Broadcast Each Ui broadcasts (M2

i ‖σ2
i).

Check Firstly, each Ui checks all signatures σ2
j of incoming messages. Then

each Ui checks if T1 ⊕ · · · ⊕ Tn = 0 and sidsi
i = sid

sj

j (j = 1, . . . , n).
Moreover, each Ui (i < n) checks the commitment H(kn) for kn.

Key computation: Each participant Ui computes the session key sksi
i =

H(pidsi
i ‖k1‖ . . . ‖kn).

Fig. 3. A secure group key agreement protocol.

One may argue that stronger security requirements on the key agreement
property of the protocol should be imposed, so that the adversary cannot pre-
determine any bit of the session key (cf. [MWW98]). Transforming the above

12

protocol accordingly is possible for the prize of slightly increasing the compu-
tational effort of the involved parties: Instead of broadcasting the ki-values in
Round 1, in the first round only commitments H(ki) are sent and the ki values
are transmitted in the second round.

Proposition 2. If the CDH assumption holds for (G, g) and H(·) is a random
oracle, then the protocol in Figure 3 is a secure group key agreement in the sense
of Definition 7.

Proof. Let qex, qs and qro be polynomial bounds for the number of the adver-
sary’s queries to the Execute, the Send respectively the random oracle and qp a
polynomial bound for the number of random oracle queries done by a principal.

Let Forge be the event that the adversary succeeds in forging an authenticated
message MU ||σU for one participant U without having queried Corrupt(U). An
adversary A that can reach Forge can be used for forging a signature for a given
key. This key is assigned to one of the n principals and thus A succeeds in the
intended forgery with probability ≥ 1

n ·P (Forge). Thus, using A as black box we
can derive an attacker defeating the existential unforgeability of the underlying
signature scheme S with probability

Advcma
S ≥ 1

n · P (Forge)
⇐⇒ P (Forge) ≤ n · Advcma

S .

Because of Advcma
S being negligible by assumption, the event Forge occurs with

negligible probability only. In summary, the events Collision, Repeat and Forge
all occur with a probability negligible in k.

Moreover, denote by Collision the event that the random oracle produces a
collision. As the total number of random oracle queries is bounded by n ·qp +qro,
the probability that a collision of the random oracle occurs is

P (Collision) ≤ (n · qp + qro)2

2k
.

Finally, let Repeat be the event that an uncorrupted participant chooses a
nonce ki that was previously used by an oracle of some principal. There are at
most n · qex + qs used oracles that may have chosen a nonce ki and thus Repeat
happens with a probability

P (Repeat) ≤ (n · qex + qs)2

2k
.

Security. To prove the security according to Definition 3 we consider a sequence
of games:

Game 0: In this game the protocol participants’ oracles are faithfully simulated
for the adversary, i. e., it behaves as in the real model.

Game 1: This game is aborted if the event Forge occurs. In this case the ad-
versary loses.

13

Game 1 behaves like the real model if the events Forge does not occurs. Thus,
for adversary A’s advantage we have

AdvA ≤ AdvGame1
A + P (Forge)

and it it sufficient to identify AdvGame1
A as being negligible. To this aim, we

introduce

Game 2: This game differs from Game 1 in the simulator’s response in Round 2.
If the simulator has to output the message of an oracle Πsi

i and none of the
neighbors Ui−1 or Ui+1 is corrupted, then the simulator chooses random val-
ues from {0, 1}k for tLi = tRi−1 and tRi = tLi+1 instead of querying the random
oracle. To keep consistent the same values have to be used in the neigh-
bored instances subsequently. Then the simulator answers with the message
including the value Ti = tLi ⊕ tRi . If the adversary queries the random oracle
with yxi

i−1 = y
xi−1
i , the game is aborted and the adversary loses.

By the random oracle assumption, the adversary can only detect the differ-
ence by querying the random oracle for determining these hash values. We denote
by Random the event that A queries the random oracle with yxi

i−1 = y
xi−1
i and

it holds that Ui and Ui−1 are uncorrupted. Since the event Forge is already ex-
cluded the messages from the first round were generated by the oracles and the
exponents xi and xi−1 cannot be known to the adversary.

To know the value yxi
i−1 = y

xi−1
i shared between two oracles A needs to solve

a CDH instance to learn (yxi
i−1) = (yxi−1

i). More precisely, using A as blackbox
and guessing at random the oracles to which the CDH instance is assigned, from
A we can derive an attacker against the CDH problem with success probability

SuccCDH
(G,g) ≥

1
(qs + n · qex)2

· P (Random).

Thus, from the CDH assumption we conclude that P (Random) is negligible.
Further on, the adversary has success in Game 2 exactly in the cases in which
he succeeds in Game 1, unless the event Random occurs:

AdvGame 1
A ≤ AdvGame 2

A + P (Random).

In the adversary’s Test-session no protocol participant is allowed to be corrupted
in Round 1 (see Definition 3). Thereby, all oracles use random values in Round 2
and no information about kn is transmitted. So the adversary in Game 2 can
do no better than guessing the session key and has no advantage. Putting the
probabilities together we recognize the adversary’s advantage in the real model
as negligible:

AdvA ≤ P (Forge) + P (Random).

Integrity. Let NoIntegrity be the event that some oracle violates the condition
imposed in Definition 4. To determine the probability of NoIntegrity let Ui and
Uj be any two honest principals whose oracles Πsi

i and Π
sj

j accept (accs
i = true)

14

with a matching session identifier sid := sidsi
i = sid

sj

j . The session identifier sid is
unique if uncorrupted principals contributed fresh nonces ki (unless Repeat) and
the random oracle is collision free (unless Collision). Moreover the messages of
uncorrupted principals cannot be forged (unless Forge) by the adversary. Thus
Πsi

i and Π
sj

j must have received each other’s message sidsi
i ‖Ti‖σ2

i respectively
sid

sj

j ‖Tj‖σ2
j , where necessarily sid := sidsi

i = sid
sj

j matched due to the check
phase.

The construction of sid assures that Πsi
i and Π

sj

j hold the same pid :=
pidsi

i = pid
sj

j (obtained in the respective oracle’s initialization) and know the
same values k1, . . . , kn−1 and H(kn). Again by collision-freeness of the random
oracle Πsi

i and Π
sj

j have received the same kn and therewith compute the same
session key sksi

i = sk
sj

j . Thus, putting things together we obtain the desired
negligible upper bound

P (NoIntegrity) ≤ P (Collision) + P (Repeat) + P (Forge).

Entity authentication. Let EntAuthFail be the event that strong entity authenti-
cation fails. We consider entity authentication in Game 1. Let Ui be any principal
with an instance Πsi

i that has accepted. It is easy to see that entity authentica-
tion is provided to Πsi

i : Since Πsi
i has accepted, in Round 2 it received messages

including the session identifier sid from all principals U ∈ pidsi
i (unless Forge). As

above, in absence of Collision, Repeat and Forge, the session identifier is unique
and the message cannot be replayed from a past session. Thus every honest part-
ner holds the same session identifier sid and for the reasons stated above also
the partner identifiers pidsi

i and pid
sj

j match. Therewith entity authentication is
violated with a probability

P (EntAuthFail) ≤ P (Collision) + P (Repeat) + P (Forge).

Key Agreement. The values relevant for deriving the session key are only the
values ki that participant Ui chooses in the first round. An honest participant
chooses a fresh value with probability 1 − P (Repeat). Thus a corrupted partic-
ipant Un, who can know the inputs of U1, . . . , Un−1 can only choose between a
polynomial set of keys, bounded by the number of random oracle queries qro.

Finally, correctness of the protocol in Figure 3 is straightforward, and hence
the proposition follows.

ut

5 Conclusion

Building on established models for analyzing group key establishment protocols,
the tools suggested in this paper offer a possibility to explore security properties
of group key establishment protocols in the presence of malicious participants.
The introduced framework in particular allows to show that a protocol proposed
by Katz and Yung in [KY03] offers security guarantees against a single malicious

15

participant “for free”, whereas a proposal of Kim, Lee and Lee [KLL04] fails to do
so. However, as shown in the last section, security against malicious participants
is achievable in two rounds. Without sacrificing efficiency, the latter protocol
can be modified to offer rather strong security guarantees even in the presence
of malicious participants.

References

[BCK98] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A Modular Approach to
the Design and Analysis of Authentication and Key Exchange Protocols.
In Proceedings of STOC 98, pages 419–428. ACM, 1998.

[BCP01] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Provably
Authenticated Group Diffie-Hellman Key Exchange - The Dynamic Case.
In Colin Boyd, editor, Advances in Cryptology – ASIACRYPT 2001, volume
2248 of Lecture Notes in Computer Science, pages 290–309. Springer, 2001.

[BCPQ01] Emmanuel Bresson, Olivier Chevassut, David Pointcheval, and Jean-
Jacques Quisquater. Provably Authenticated Group Diffie-Hellman Key
Exchange. In Pierangela Samarati, editor, Proceedings of the 8th ACM
Conference on Computer and Communications Security (CCS-8), pages
255–264. ACM, 2001.

[BD95] Mike Burmester and Yvo Desmedt. A Secure and Efficient Conference Key
Distribution System. In Alfredo De Santis, editor, Advances in Cryptology
— EUROCRYPT’94, volume 950 of Lecture Notes in Computer Science,
pages 275–286. Springer, 1995.

[BM04] Colin Boyd and Anish Mathuria. Protocols for Authentication and Key
Establishment. Springer, 2004.

[BN03] Colin Boyd and Juan Manuel González Nieto. Round-optimal Contributory
Conference Key Agreement. In Yvo Desmedt, editor, Proceedings of PKC
2003, volume 2567 of Lecture Notes in Computer Science, pages 161–174.
Springer, 2003.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated Key
Exchange Secure Against Dictionary Attacks. In Bart Preneel, editor, Ad-
vances in Cryptology — EUROCRYPT’00, volume 1807 of Lecture Notes
in Computer Science, pages 139–155. Springer, 2000.

[BR93] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribu-
tion. In Douglas R. Stinson, editor, Advances in Cryptology—CRYPTO ’93,
volume 773 of Lecture Notes in Computer Science, pages 232–249. Springer,
1993.

[BR95] Mihir Bellare and Phillip Rogaway. Provably secure session key
distribution— the three party case. In Proceedings of the 27th Annual
ACM Symposium on Theory of Computing, STOC’95, pages 57–66. ACM
Press, 1995.

[BWJM97] Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key agreement
protocols and their security analysis. In Proceedings of the 6th IMA Inter-
national Conference on Cryptography and Coding, pages 30–45. Springer,
1997.

[CBH05] Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock. Ex-
amining Indistinguishability-Based Proof Models for Key Establishment
Protocols. In Bimal Roy, editor, Advances in Cryptology – ASIACRYPT

16

2005, volume 3788 of Lecture Notes in Computer Science, pages 585–604.
Springer, 2005.

[CBHM05] Kim-Kwang Raymond Choo, Colin Boyd, Yvonne Hitchcock, and Greg
Maitland. On Session Identifiers in Provably Secure Protocols: The Bellare-
Rogaway Three-Party Key Distribution Protocol Revisited. In Carlo
Blundo and Stelvio Cimato, editors, Fourth Conference on Security in Com-
munication Networks - SCN 2004 Proceedings, volume 3352 of Lecture Notes
in Computer Science, pages 351–366. Springer, 2005.

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of Key-Exchange Protocols and
Their Use for Building Secure Channels. In Birgit Pfitzmann, editor, Ad-
vances in Cryptology – EUROCRYPT 2001, volume 2045 of Lecture Notes
in Computer Science, pages 453–474. Springer, 2001.

[CS04] Christian Cachin and Reto Strobl. Asynchronous Group Key Exchange
with Failures. In Proceedings of the 23rd ACM Symposium on Principles of
Distributed Computing (PODC 2004), pages 357–366. ACM Press, 2004.

[DOW92] Whitfield Diffie, Paul C. Van Oorschot, and Michael J. Wiener. Authenti-
cation and authenticated key exchanges. Designs, Codes and Cryptography,
2(2):107–125, 1992.

[HMQS03] Dennis Hofheinz, Jörn Müller-Quade, and Rainer Steinwandt. Initiator-
Resilient Universally Composable Key Exchange. In Einar Snekkenes and
Dieter Gollmann, editors, Computer Security, Proceedings of ESORICS
2003, volume 2808 of Lecture Notes in Computer Science, pages 61–84.
Springer, 2003.

[JG04] Shaoquan Jiang and Guang Gong. Password Based Key Exchange with
Mutual Authentication. In Helena Handschuh and M. Anwar Hasan, ed-
itors, Selected Areas in Cryptography: 11th International Workshop, SAC
2004, volume 3357 of Lecture Notes in Computer Science, pages 267–279.
Springer, 2004.

[KLL04] Hyun-Jeong Kim, Su-Mi Lee, and Dong Hoon Lee. Constant-Round Au-
thenticated Group Key Exchange for Dynamic Groups. In Pil Joong Lee,
editor, Advances in Cryptology — ASIACRYPT’04, volume 3329 of Lecture
Notes in Computer Science, pages 245–259. Springer, 2004.

[KS05] Jonathan Katz and Ji Sun Shin. Modeling Insider Attacks on Group Key-
Exchange Protocols, 2005. 12th ACM Conference on Computer and Com-
munications Security.

[KY03] Jonathan Katz and Moti Yung. Scalable Protocols for Authenticated
Group Key Exchange. In Dan Boneh, editor, Advances in Cryptology —
CRYPTO’03, volume 2729 of Lecture Notes in Computer Science, pages
110–125. Springer, 2003.

[MWW98] Chris J. Mitchell, Mike Ward, and Piers Wilson. Key control in key agree-
ment protocols. IEE Electronics Letters, 34(10):980–981, 1998.

[Sho99] Victor Shoup. On Formal Models for Secure Key Exchange. Cryptology
ePrint Archive: Report 1999/012, 1999. At the time of writing available
electronically at http://eprint.iacr.org/1999/012.

[Ste02] Michael Steiner. Secure Group Key Agreement. PhD thesis, Universität des
Saarlandes, 2002. At the time of writing available at http://www.semper.
org/sirene/publ/Stei_02.thesis-final.pdf.

[Tze00] Wen-Guey Tzeng. A Practical and Secure Fault-Tolerant Conference-Key
Agreement Protocol. In Hideki Imai and Yuliang Zheng, editors, Third

17

International Workshop on Practice and Theory in Public Key Cryptosys-
tems, PKC 2000, volume 1751 of Lecture Notes in Computer Science, pages
1–13. Springer, 2000.

18

