
A Computationally Sound Mechanized Prover for Security Protocols

Bruno Blanchet

CNRS, École Normale Supérieure, Paris
blanchet@di.ens.fr

Abstract. We present a new mechanized prover for secrecy properties of cryptographic protocols.
In contrast to most previous provers, our tool does not rely on the Dolev-Yao model, but on the com-
putational model. It produces proofs presented as sequences of games; these games are formalized
in a probabilistic polynomial-time process calculus. Our tool provides a generic method for speci-
fying security properties of the cryptographic primitives, which can handle shared- and public-key
encryption, signatures, message authentication codes, and hash functions. Our tool produces proofs
valid for a number of sessions polynomial in the security parameter, in the presence of an active
adversary. We have implemented our tool and tested it on a number of examples of protocols from
the literature.

1 Introduction

There exist two main frameworks for studying cryptographic protocols. In the computational model,
messages are bitstrings, and the adversary is a probabilistic polynomial-time Turing machine. This model
is close to the real execution of protocols, but the proofs are usually manual and informal. In contrast,
in the formal, Dolev-Yao model, cryptographic primitives are considered as perfect blackboxes, modeled
by function symbols in an algebra of terms, possibly with equations. The adversary can compute using
these blackboxes. This abstract model makes it possible to build automatic verification tools, but the
security proofs are in general not sound with respect to the computational model.

Since the seminal paper by Abadi and Rogaway [3], there has been much interest in relating both
frameworks (see for example [1, 8, 11, 20, 24, 25, 34, 35]), to show the soundness of the Dolev-Yao model
with respect to the computational model, and thus obtain automatic proofs of protocols in the compu-
tational model. However, this approach has limitations: since the computational and Dolev-Yao models
do not correspond exactly, additional hypotheses are necessary in order to guarantee soundness. (For
example, key cycles have to be excluded, or a specific security definition of encryption is needed [5].)

In this paper, we propose a different approach for automatically proving protocols in the compu-
tational model: we have built a mechanized prover that works directly in the computational model,
without considering the Dolev-Yao model. Our tool produces proofs valid for a number of sessions poly-
nomial in the security parameter, in the presence of an active adversary. These proofs are presented
as sequences of games, as used by cryptographers [15, 41, 42]: the initial game represents the protocol
to prove; the goal is to show that the probability of breaking a certain security property (secrecy in
this paper) is negligible in this game; intermediate games are obtained each from the previous one by
transformations such that the difference of probability between consecutive games is negligible; the final
game is such that the desired probability is obviously negligible from the form of the game. The desired
probability is then negligible in the initial game.

We represent games in a process calculus. This calculus is inspired by the pi-calculus, and by the
calculi of [30, 31, 36] and of [29]. In this calculus, messages are bitstrings, and cryptographic primitives
are functions from bitstrings to bitstrings. The calculus has a probabilistic semantics, and all processes
run in polynomial time. The main tool for specifying security properties is observational equivalence:
Q is observationally equivalent to Q′, Q ≈ Q′, when the adversary has a negligible probability of
distinguishing Q from Q′. With respect to previous calculi mentioned above, our calculus introduces

2 Bruno Blanchet

an important novelty which is key for the automatic proof of cryptographic protocols: the values of all
variables during the execution of a process are stored in arrays. For instance, x[i] is the value of x in
the i-th copy of the process that defines x. Arrays replace lists often used by cryptographers in their
manual proofs of protocols. For example, consider the definition of security of a message authentication
code (mac). Informally, this definition says that the adversary has a negligible probability of forging a
mac, that is, that all correct macs have been computed by calling the mac oracle. So, in cryptographic
proofs, one defines a list containing the arguments of calls to the mac oracle, and when checking a mac
of a message m, one can additionally check that m is in this list, with a negligible change in probability.
In our calculus, the arguments of the mac oracle are stored in arrays, and we perform a lookup in
these arrays in order to find the message m. Arrays make it easier to automate proofs since they are
always present in the calculus: one does not need to add explicit instructions to insert values in them,
in contrast to the lists used in manual proofs. Therefore, many trivially sound but difficult to automate
syntactic transformations disappear.

Our prover relies on a collection of game transformations, in order to transform the initial protocol
into a game on which the desired security property is obvious. The most important kind of transfor-
mations comes from the definition of security of cryptographic primitives. As described in Section 3.3,
these transformations can be specified in a generic way: we represent the definition of security of each
cryptographic primitive by an observational equivalence L ≈ R, where the processes L and R encode
functions: they input the arguments of the function and send its result back. Then, the prover can
automatically transform a process Q that calls the functions of L (more precisely, contains as subterms
terms that perform the same computations as functions of L) into a process Q′ that calls the functions
of R instead. We have used this technique to specify several variants of shared- and public-key encryp-
tion, signature, message authentication codes, and hash functions, simply by giving the appropriate
equivalence L ≈ R to the prover. Other game transformations are syntactic transformations, used in
order to be able to apply the definition of cryptographic primitives, or to simplify the game obtained
after applying these definitions.

In order to prove protocols, these game transformations are organized using a proof strategy based
on advice: when a transformation fails, it suggests other transformations that should be applied before,
in order to enable the desired transformation. Thanks to this strategy, protocols can often be proved
in a fully automatic way. For delicate cases, our prover has an interactive mode, in which the user can
manually specify the transformations to apply. It is usually sufficient to specify a few transformations
coming from the security definitions of primitives, by indicating the concerned cryptographic primitive
and the concerned secret key if any; the prover infers the intermediate syntactic transformations by the
advice strategy. This mode is helpful for proving some public-key protocols, in which several security
definitions of primitives can be applied, but only one leads to a proof of the protocol. Importantly, our
prover is always sound: whatever indications the user gives, when the prover shows a security property of
the protocol, the property indeed holds assuming the given hypotheses on the cryptographic primitives.

Our prover has been implemented in Ocaml (9700 lines of code) and is available at http://www.

di.ens.fr/~blanchet/cryptoc-eng.html.

Related Work Results that show the soundness of the Dolev-Yao model with respect to the compu-
tational model, e.g. [20, 25, 35], make it possible to use Dolev-Yao provers in order to prove protocols in
the computational model. However, these results have limitations, in particular in terms of allowed cryp-
tographic primitives (they must satisfy strong security properties so that they correspond to Dolev-Yao
style primitives), and they require some restrictions on protocols (such as the absence of key cycles).

Several frameworks exist for formalizing proofs of protocols in the computational model. Backes,
Pfitzmann, and Waidner [6, 8, 9] have designed an abstract cryptographic library including symmetric
and public-key encryption, message authentication codes, signatures, and nonces and shown its sound-
ness with respect to computational primitives, under arbitrary active attacks. Backes and Pfitzmann [7]

A Computationally Sound Mechanized Prover for Security Protocols 3

relate the computational and formal notions of secrecy in the framework of this library. Recently,
this framework has been used for a computationally-sound machine-checked proof of the Needham-
Schroeder-Lowe protocol [43]. Canetti [18] introduced the notion of universal composability. With Her-
zog [19], they show how a Dolev-Yao-style symbolic analysis can be used to prove security properties
of protocols within the framework of universal composability, for a restricted class of protocols using
public-key encryption as only cryptographic primitive. Then, they use the automatic Dolev-Yao verifi-
cation tool Proverif [16] for verifying protocols in this framework. Lincoln, Mateus, Mitchell, Mitchell,
Ramanathan, Scedrov, and Teague [30, 31, 33, 36, 40] developed a probabilistic polynomial-time calculus
for the analysis of cryptographic protocols. They define a notion of process equivalence for this calcu-
lus, derive compositionality properties, and define an equational proof system for this calculus. Datta,
Derek, Mitchell, Shmatikov, and Turuani [21] have designed a computationally sound logic that enables
them to prove computational security properties using a logical deduction system. These frameworks
can be used to prove security properties of protocols in the computational sense, but except for [19]
which relies on a Dolev-Yao prover, they have not been mechanized up to now, as far as we know.

Laud [27] designed an automatic analysis for proving secrecy for protocols using shared-key encryp-
tion, with passive adversaries. He extended it [28] to active adversaries, but with only one session of the
protocol. This work is the closest to ours. We extend it considerably by handling more primitives, and
a polynomial number of sessions.

Recently, Laud [29] designed a type system for proving security protocols in the computational
model. This type system handles shared- and public-key encryption, with an unbounded number of
sessions. This system relies on the Backes-Pfitzmann-Waidner library. Type inference has not been
implemented yet, and we believe that it would not be obvious to automate.

Barthe, Cerderquist, and Tarento [10, 44] have formalized the generic model and the random oracle
model in the interactive theorem prover Coq, and proved signature schemes in this framework. In
contrast to our specialized prover, proofs in generic interactive theorem provers require a lot of human
effort, in order to build a detailed enough proof for the theorem prover to check it.

Halevi [23] explains that implementing an automatic prover based on sequences of games would be
useful, and suggests ideas in this direction, but does not actually implement one.

Outline The next section presents our process calculus for representing games. Section 3 describes
the game transformations that we use for proving protocols. Section 4 gives criteria for proving secrecy
properties of protocols. Section 5 explains how the prover chooses which transformation to apply at
each point. Section 6 presents our experimental results, and Section 7 concludes. The appendix contains
details on the modeling of some cryptographic primitives and proof sketches of our results.

Notations We recall the following standard notations. We denote by {M1/x1, . . . , Mm/xm} the sub-
stitution that replaces xj with Mj for each j ≤ m. The cardinal of a set or multiset S is denoted |S|. We
use] for multiset union. When S is a multiset, S(x) is the number of elements of S equal to x. When
S and S′ are multisets, max(S, S ′) is the multiset such that max(S, S ′)(x) = max(S(x), S ′(x)). If S is

a finite set, x
R
←S chooses a random element uniformly in S and assigns it to x. If A is a probabilistic

algorithm, x ← A(x1, . . . , xm) denotes the experiment of choosing random coins r and assigning to x
the result of running A(x1, . . . , xm) with coins r. Otherwise, x←M is a simple assignment statement.

2 A Calculus for Games

2.1 Syntax and Informal Semantics

The syntax of our calculus is summarized in Figure 1. We denote by η the security parameter, which
determines in particular the length of keys.

4 Bruno Blanchet

M,N ::= terms
i replication index
x[M1, . . . ,Mm] variable access
f(M1, . . . ,Mm) function application

Q ::= input process
0 nil
Q | Q′ parallel composition
!i≤nQ replication n times
newChannel c;Q restriction for channels
c[M1, . . . ,Ml](x1[i1, . . . , im] : T1, . . . , xk[i1, . . . , im] : Tk);P input

P ::= output process

c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q output
new x[i1, . . . , im] : T ;P random number generation (uniform)
let x[i1, . . . , im] : T = M in P assignment
if M then P else P ′ conditional

find (
⊕m

j=1 uj1 [̃i] ≤ nj1, . . . , ujmj
[̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj) ∧Mj then Pj) else P

array lookup

Fig. 1. Syntax of the process calculus

This calculus assumes a countable set of channel names, denoted by c. There is a mapping maxlenη

from channels to integers, such that maxlenη(c) is the maximum length of a message sent on channel c.
Longer messages are truncated. For all c, maxlenη(c) is polynomial in η. (This is key to guaranteeing
that all processes run in probabilistic polynomial time.)

Our calculus also assumes a set of parameters, denoted by n, which correspond to integer values
polynomial in the security parameter, so we define Iη(n) = q(η) where q is a polynomial, and Iη(n)
denotes the interpretation of n for a given value of the security parameter η.

Our calculus also assumes a set of types, denoted by T . For each value of the security parameter η,
each type corresponds to a subset Iη(T) of Bitstring ∪ {⊥} where Bitstring is the set of all bitstrings
and ⊥ is a special symbol. The set Iη(T) must be recognizable in polynomial time, that is, there
exists an algorithm that decides whether x ∈ Iη(T) in time polynomial in the length of x and the
value of η. Let fixed-length types be types T such that Iη(T) is the set of all bitstrings of a certain
length, this length being a function of η bounded by a polynomial. Let large types be types T such
that 1

|Iη(T)| is negligible. (f(η) is negligible when for all polynomials q, there exists ηo ∈ N such that

for all η > η0, f(η) ≤ 1
q(η) .) Particular types are predefined: bool , such that Iη(bool) = {0, 1}, where

0 means false and 1 means true; bitstring , such that Iη(bitstring) = Bitstring ; bitstring⊥ such that
Iη(bitstring⊥) = Bitstring ∪ {⊥}; [1, n] where n is a parameter, such that Iη([1, n]) = [1, Iη(n)]. (We
consider integers as bitstrings without leading zeroes.)

The calculus also assumes a finite set of function symbols f . Each function symbol comes with a type
declaration f : T1× . . .×Tm → T . For each value of η, each function symbol f corresponds to a function
Iη(f) from Iη(T1)× . . .×Iη(Tm) to Iη(T), such that Iη(f)(x1, . . . , xm) is computable in polynomial time
in the lengths of x1, . . . , xm and the value of η. Particular functions are predefined, and some of them
use the infix notation: M = N for the equality test, M 6= N for the inequality test (both taking two
values of the same type T and returning a value of type bool), M ∨ N for the boolean or, M ∧ N for
the boolean and, ¬M for the boolean negation (taking and returning values of type bool).

In this calculus, terms represent computations on bitstrings. The replication index i is an integer
which serves in distinguishing different copies of a replicated process !i≤n. (Replication indexes are
typically used as array indexes.) The variable access x[M1, . . . , Mm] returns the content of the cell of

A Computationally Sound Mechanized Prover for Security Protocols 5

indexes M1, . . . , Mm of the array variable x. We use x, y, z, u as variable names. The function application
f(M1, . . . , Mm) returns the result of applying function f to M1, . . . , Mm.

The calculus distinguishes two kinds of processes: input processes Q are ready to receive a message on
a channel; output processes P output a message on a channel after executing some internal computations.
The input process 0 does nothing; Q | Q′ is the parallel composition of Q and Q′; !i≤nQ represents
n copies of Q in parallel, each with a different value of i ∈ [1, n]; newChannel c; Q creates a new
private channel c and executes Q; the semantics of the input c[M1, . . . , Ml](x1[i1, . . . , im] : T1, . . . ,
xk[i1, . . . , im] : Tk); P will be explained below together with the semantics of the output.

The output process new x[i1, . . . , im] : T ; P chooses a new random number uniformly in Iη(T), stores
it in x[i1, . . . , im], and executes P . (T must be a fixed-length type, because probabilistic polynomial-time
Turing machines can choose random numbers uniformly only in such types.) Function symbols represent
deterministic functions, so all random numbers must be chosen by new x[i1, . . . , im] : T . Deterministic
functions make automatic syntactic manipulations easier: we can duplicate a term without changing its
value. The process let x[i1, . . . , im] : T = M in P stores the bitstring value of M (which must be in
Iη(T)) in x[i1, . . . , im], and executes P . The process if M then P else P ′ executes P if M evaluates to

1 and P ′ if M evaluates to 0. Next, we explain the process find (
⊕m

j=1 uj1 [̃i] ≤ nj1, . . . , ujmj
[̃i] ≤ njmj

suchthat defined(Mj1, . . . , Mjlj)∧Mj then Pj) else P , where ĩ denotes a tuple i1, . . . , im′ . The order and

array indexes on tuples are taken component-wise, so for instance, uj1 [̃i] ≤ nj1, . . . , ujmj
[̃i] ≤ njmj

can

be further abbreviated ũj [̃i] ≤ ñj . A simple example is the following: find u ≤ n suchthat defined(x[u])∧
x[u] = a then P ′ else P tries to find an index u such that x[u] is defined and x[u] = a, and when such a u
is found, it executes P ′ with that value of u; otherwise, it executes P . In other words, this find construct
looks for the value a in the array x, and when a is found, it stores in u an index such that x[u] = a.
Therefore, the find construct allows us to access arrays, which is key for our purpose. More generally,
find u1 [̃i] ≤ n1, . . . , um [̃i] ≤ nm suchthat defined(M1, . . . , Ml)∧M then P ′ else P tries to find values of
u1, . . . , um for which M1, . . . , Ml are defined and M is true. In case of success, it executes P ′. In case of
failure, it executes P . This is further generalized to m branches: find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj

[̃i] ≤
njmj

suchthat defined(Mj1, . . . , Mjlj) ∧Mj then Pj) else P tries to find a branch j in [1, m] such that
there are values of uj1, . . . , ujmj

for which Mj1, . . . , Mjlj are defined and Mj is true. In case of success, it
executes Pj . In case of failure for all branches, it executes P . More formally, it evaluates the conditions

defined(Mj1, . . . , Mjlj)∧Mj for each j and each value of uj1 [̃i], . . . , ujmj
[̃i] in [1, nj1]× . . .× [1, njmj

]. If
none of these conditions is 1, it executes P . Otherwise, it chooses randomly with uniform1 probability
one j and one value of uj1 [̃i], . . . , ujmj

[̃i] such that the corresponding condition is 1, and executes Pj .

Finally, let us explain the output c[M1, . . . , Ml]〈N1, . . . , Nk〉; Q. A channel c[M1, . . . , Ml] consists of
both a channel name c and a tuple of terms M1, . . . , Ml. Channel names c allow us to define private
channels to which the adversary can never have access, by newChannel c. (This is useful in the proofs,
although all channels of protocols are often public.) Terms M1, . . . , Ml are intuitively analogous to IP
addresses and ports which are numbers that the adversary may guess. Two channels are equal when they
have the same channel name and terms that evaluate to the same bitstrings. A semantic configuration
always consists of a single output process (the process currently being executed) and several input
processes. When the output process executes c[M1, . . . , Ml]〈N1, . . . , Nk〉; Q, one looks for an input on
the same channel and with the same arity in the available input processes. If no such input process
is found, the process blocks. Otherwise, one such input process c[M ′

1, . . . , M
′
l](x1[i1, . . . , im] : T1, . . . ,

1 A probabilistic polynomial-time Turing machine can choose a random number uniformly in a set of cardinal m only
when m is a power of 2. When m is not a power of 2, we in fact use an approximate algorithm, as follows. We choose
a random integer r uniformly among [0, 2k

− 1] for a certain k large enough. When r is in [0, (2k div m) × m − 1], r
mod m returns a random integer in [0, m − 1], with the same probability for all elements of [0, m − 1]. Otherwise, we
can do anything, for example blocking. The probability of being in this case is smaller than m/2k so it can be made as
small as we wish by choosing a large enough k.

6 Bruno Blanchet

xk[i1, . . . , im] : Tk); P is chosen randomly with uniform probability. The communication is then executed:
for each j ≤ k, the output message Nj is evaluated, its result is truncated to length maxlenη(c), the
obtained bitstring is stored in xj [i1, . . . , im] if it is in Iη(Tj) (otherwise the process blocks). Finally, the
output process P that follows the input is executed. The input process Q that follows the output is
stored in the available input processes for future execution. Note that the syntax requires an output to
be followed by an input process, as in [29]. If one needs to output several messages consecutively, one
can simply insert fictitious inputs between the outputs. The adversary can then schedule the outputs
by sending messages to these inputs. Also note that the internal computations of an output process
are executed sequentially without any interruption (the other processes in parallel do not run until a
communication is performed). This is important in our calculus to avoid race conditions, for example
when several processes would look for an u such that x[u] is defined and satisfies certain conditions, and
when it is not found, define a certain x[i].

Using different channels for each input and output allows the adversary to control the network. For
instance, we may write !i≤nc[i](x[i] : T) . . . c′[i]〈M〉 . . . The adversary can then decide which copy of the
replicated process receives its message, simply by sending it on c[i] for the appropriate value of i.

We write if M then P as an abbreviation for if M then P else yield〈〉, and similarly for a find
without else clause. (“else 0” would not be syntactically correct.) A trailing 0 after an output is omitted.

Variables can be defined by assignments, inputs, restrictions, and array lookups. The current repli-
cation indexes at a certain program point in a process are i1, . . . , im where the replications above the
considered program point are !i1≤n1 . . .!im≤nm . We often abbreviate x[i1, . . . , im] by x when i1, . . . , im are
the current replication indexes, but it should be kept in mind that this is only an abbreviation. Variables
defined under a replication must be arrays: for example !i1≤n1 . . .!im≤nm let x[i1, . . . , im] : T = M in . . .
More formally, we require the following invariant:

Invariant 1 (Single definition). The process Q0 satisfies Invariant 1 if and only if

1. in a definition of x[i1, . . . , im] in Q0, the indexes i1, . . . , im of x are the current replication indexes
at that definition, and

2. two different definitions of the same variable x in Q0 are in different branches of a if or a find .

Invariant 1 guarantees that each variable is assigned at most once for each value of its indexes. (Indeed,
item 2 shows that only one definition of each variable can be executed for given indexes in each trace).

Invariant 2 (Defined variables). The process Q0 satisfies Invariant 2 if and only if every occurrence
of a variable access x[M1, . . . , Mm] in Q0 is either

– syntactically under the definition of x[M1, . . . , Mm] (in which case M1, . . . , Mm are in fact the current
replication indexes at the definition of x);

– or in a defined condition in a find process;

– or in M ′
j or Pj in a process of the form find (

⊕m′′

j=1 ũj [̃i] ≤ ñj suchthat defined(M ′
j1, . . . , M

′
jlj

) ∧

M ′
j then Pj) else P where for some k ≤ lj , x[M1, . . . , Mm] is a subterm of M ′

jk.

Invariant 2 guarantees that variables can be accessed only when they have been initialized. It checks that
the definition of the variable access is either in scope (first item) or checked by a find (last item). Both
invariants are checked by the prover for the initial game, and preserved by all game transformations.

We say that a function f : T1 × . . . × Tm → T is poly-injective when it is injective and its inverses
can be computed in polynomial time, that is, there exist functions f−1

j : T → Tj (1 ≤ j ≤ m)

such that f−1
j (f(x1, . . . , xm)) = xj and f−1

j can be computed in polynomial time in the length of
f(x1, . . . , xm) and in the security parameter. When f is poly-injective, we define a pattern matching
construct let f(x1, . . . , xm) = M in P else Q as an abbreviation for let y : T = M in let x1 : T1 =

A Computationally Sound Mechanized Prover for Security Protocols 7

f−1
1 (y) in . . . let xm : Tm = f−1

m (y) in if f(x1, . . . , xm) = y then P else Q. We naturally generalize this
construct to let N = M in P else Q where N is built from poly-injective functions and variables.

Let us introduce two cryptographic primitives that we use in the following.

Definition 1. Let Tmr, Tmk, and Tms be types that correspond intuitively to random seeds, keys, and
message authentication codes, respectively; Tmr is a fixed-length type. A message authentication code [14]
consists of three function symbols:

– mkgen : Tmr → Tmk where Iη(mkgen) = mkgenη is the key generation algorithm taking as argument
a random bitstring, and returning a key. (Usually, mkgen is a randomized algorithm; here, since
we separate the choice of random numbers from computation, mkgen takes an additional argument
representing the random coins.)

– mac : bitstring × Tmk → Tms where Iη(mac) = macη is the mac algorithm taking as argument a
message and a key, and returning the corresponding tag. (We assume here that mac is deterministic;
we could easily encode a randomized mac by adding an additional argument as for mkgen.)

– check : bitstring × Tmk × Tms → bool where Iη(check) = checkη is a checking algorithm such
that checkη(m, k, t) = 1 if and only if t is a valid mac of message m under key k. (Since mac is
deterministic, checkη(m, k, t) is typically macη(m, k) = t.)

We have ∀m ∈ Bitstring , ∀r ∈ Iη(Tmr), checkη(m,mkgenη(r),macη(m,mkgenη(r))) = 1.

A mac is secure against existential forgery under chosen message attack if and only if for all poly-
nomials q,

max
A

Pr[r
R
← Iη(Tmr); k ← mkgenη(r); (m, t)← Amacη(.,k),checkη(.,k,.) : checkη(m, k, t)]

is negligible, where the adversary A is any probabilistic Turing machine, running in time q(η), with
oracle access to macη(., k) and checkη(., k, .), and A has not called macη(., k) on message m.

Definition 2. Let Tr and T ′r be fixed-length types; let Tk and Te be types. A symmetric encryption
scheme [12] (stream cipher) consists of three function symbols kgen : Tr → Tk, enc : bitstring×Tk×T ′r →
Te, and dec : Te × Tk → bitstring⊥, with Iη(kgen) = kgenη, Iη(enc) = encη, Iη(dec) = decη, such that
for all m ∈ Bitstring, r ∈ Iη(Tr), and r′ ∈ Iη(T

′
r), decη(encη(m, kgenη(r), r

′), kgenη(r)) = m.

Let LR(x, y, b) = x if b = 0 and LR(x, y, b) = y if b = 1, defined only when x and y are bitstrings
of the same length. A stream cipher is IND-CPA (satisfies indistinguishability under chosen plaintext
attacks) if and only if for all polynomials q,

max
A

2 Pr[b
R
←{0, 1}; r

R
← Iη(Tr); k ← kgenη(r); b

′ ← Ar′
R
← Iη(T ′

r);encη(LR(.,.,b),k,r′) : b′ = b]− 1

is negligible, where the adversary A is any probabilistic Turing machine, running in time q(η), with
oracle access to the left-right encryption algorithm which given two bitstrings a0 and a1 of the same

length, returns r′
R
← Iη(T

′
r); encη(LR(a0, a1, b), k, r′), that is, encrypts a0 when b = 0 and a1 when b = 1.

Example 1. Let us consider the following trivial protocol:

A→ B : e,mac(e, xmk) where e = enc(x′k, xk, x
′′
r) and x′′r , x

′
k are fresh random numbers

A and B are assumed to share a key xk for a stream cipher and a key xmk for a message authentication
code. A creates a fresh key x′k, and sends it encrypted under xk to B. A mac is appended to the message,

8 Bruno Blanchet

in order to guarantee integrity. The goal of the protocol is that x′k should be a secret key shared between
A and B. This protocol can be modeled in our calculus by the following process Q0:

Q0 = start();new xr : Tr; let xk : Tk = kgen(xr) in

new x′r : Tmr; let xmk : Tmk = mkgen(x′r) in c〈〉; (QA | QB)

QA = !i≤ncA[i]();new x′k : Tk;new x′′r : T ′r;

let xm : bitstring = enc(k2b(x′k), xk, x
′′
r) in cA[i]〈xm,mac(xm, xmk)〉

QB = !i
′≤ncB[i′](x′m, xma); if check(x′m, xmk, xma) then let i⊥(k2b(x′′k)) = dec(x′m, xk) in cB[i′]〈〉

When Q0 receives a message on channel start, it begins execution: it generates the keys xk and xmk

by choosing random coins xr and xr′ and applying the appropriate key generation algorithms. Then it
yields control to the context (the adversary), by outputting on channel c. After this output, n copies
of processes for A and B are ready to be executed, when the context outputs on channels cA[i] or cB[i]
respectively. In a session that runs as expected, the context first sends a message on cA[i]. Then QA

creates a fresh key x′k (Tk is assumed to be a fixed-length type), encrypts it under xk with random coins
x′′r , computes the mac of the encryption under xmk, and sends the ciphertext and the mac on cA[i]. The
function k2b : Tk → bitstring is the natural injection Iη(k2b)(x) = x; it is needed only for type conversion.
The context is then expected to forward this message on cB[i]. When QB receives this message, it checks
the mac, decrypts, and stores the obtained key in x′′k. (The function i⊥ : bitstring → bitstring⊥ is the
natural injection; it is useful to check that decryption succeeded.) This key x′′k should be secret.

The context is responsible for forwarding messages from A to B. It can send messages in unexpected
ways in order to mount an attack.

This trivial running example is sufficient to illustrate the main features of our prover. Section 6
presents results obtained on more realistic protocols.

We denote by var(P) the set of variables that occur in P , and by fc(P) the set of free channels of
P . (We use similar notations for input processes.)

2.2 Type System

We use a type system to check that bitstrings of the proper type are passed to each function, and that
array indexes are used correctly.

To be able to type variable accesses used not under their definition (such accesses are guarded by a
find construct), the type-checking algorithm proceeds in two passes. In the first pass, we build a type
environment E , which maps variable names x to types T1 × . . . × Tm → T , where T1, . . . , Tm are the
interval types of the indexes of x, and T is the type of x[i1, . . . , im]. This type environment is built as
follows:

– If x is defined by new x[i1, . . . , im] : T , let x[i1, . . . , im] : T = M , or c[M1, . . . , Ml](. . . , x[i1, . . . , im] :
T, . . .), and the replications above this subprocess are !i1≤n1 , . . . , !im≤nm , then E(x) = [1, n1]× . . .×
[1, nm]→ T .

– If u is defined by find . . .⊕ . . . u[i1, . . . , im] ≤ n . . . suchthat defined(. . .) ∧ . . . then . . .⊕ . . . and the
replications above this find are !i1≤n1 , . . . , !im≤nm , then E(u) = [1, n1]× . . .× [1, nm]→ [1, n].

We require that all definitions of the same variable x yield the same value of E(x), so that E is properly
defined.

A process can then be typechecked in the type environment E using the rules of Figure 2. This figure
defines three judgments:

– E `M : T means that term M has type T in environment E .

A Computationally Sound Mechanized Prover for Security Protocols 9

E(i) = T

E ` i : T
(TIndex)

E(x) = T1 × . . .× Tm → T ∀j ≤ m, E `Mj : Tj

E ` x[M1, . . . ,Mm] : T
(TVar)

f : T1 × . . .× Tm → T ∀j ≤ m, E `Mj : Tj

E ` f(M1, . . . ,Mm) : T
(TFun)

E ` 0 (TNil)
E ` Q E ` Q′

E ` Q | Q′
(TPar)

E [i 7→ [1, n]] ` Q

E `!i≤nQ
(TRepl)

E ` Q

E ` newChannel c;Q
(TNewChannel)

∀j ≤ l, E `Mj : T ′
j ∀j ≤ k, E ` xj [̃i] : Tj E ` P

E ` c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P
(TIn)

∀j ≤ l, E `Mj : T ′
j ∀j ≤ k, E ` Nj : Tj E ` Q

E ` c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q
(TOut)

T fixed-length type E ` x[̃i] : T E ` P

E ` new x[̃i] : T ;P
(TNew)

E `M : T E ` x[̃i] : T E ` P

E ` let x[̃i] : T = M in P
(TLet)

E `M : bool E ` P E ` P ′

E ` if M then P else P ′
(TIf)

∀j ≤ m,∀k ≤ mj , E ` ujk [̃i] : [1, njk]
∀j ≤ m,∀k ≤ lj , E `Mjk : Tjk ∀j ≤ m, E `Mj : bool ∀j ≤ m, E ` Pj E ` P

E ` find (
⊕m

j=1 uj1 [̃i] ≤ nj1, . . . , ujmj
[̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj) ∧Mj then Pj) else P

(TFind)

Fig. 2. Typing rules

– E ` P and E ` Q mean that the output process P and the input process Q are well-typed in
environment E , respectively.

In x[M1, . . . , Mm], M1, . . . , Mm must be of the suitable interval type. When f(M1, . . . , Mm) is called,
and f : T1 × . . . × Tm → T , Mj must be of type Tj , and f(M1, . . . , Mm) is then of type T . The type
system requires each subterm to be well-typed. Furthermore, in let x : T = M in P , M must be of type
T . In if M then P1 else P2, M must be of type bool . Similarly, for

find (
⊕m

j=1
uj1 [̃i] ≤ nj1, . . . , ujmj

[̃i] ≤ njmj
suchthat defined(Mj1, . . . , Mjlj) ∧Mj then Pj) else P

Mj is of type bool for all j ≤ m. In !i≤nQ, i is of type [1, n] in Q. For new x[̃i] : T , T must be a
fixed-length type.

Invariant 3 (Typing). The process Q0 satisfies Invariant 3 if and only the type environment E for Q0

is well-defined, and E ` Q0.

We require the adversary to be well-typed. This requirement does not restrict its computing power,
because it can always define type-cast functions f : T → T ′ to bypass the type system. Similarly, the
type system does not restrict the class of protocols that we consider, since the protocol may contain
type-cast functions. The type system just makes explicit which set of bitstrings may appear at each
point of the protocol.

10 Bruno Blanchet

We say that an occurrence of a term M in a process Q is of type T when E `M : T where E is the
type environment of Q extended with i 7→ [1, n] for each replication !i≤n above M in Q.

2.3 Formal Semantics

The formal semantics is presented in Figure 3. A semantic configuration is a quadruple E, P,Q, C,
where E is an environment mapping array cells to bitstrings or ⊥, P is the output process currently
scheduled, Q is the multiset of input processes running in parallel with P , C is the set of channels
already created. The semantics is defined by reduction rules of the form E, P,Q, C

p
−→η,t E′, P ′,Q′, C′

meaning that E, P,Q, C reduces to E ′, P ′,Q′, C′ with probability p, when the security parameter is η.
The value of the security parameter is often omitted to lighten the notation. The index t just serves in
distinguishing reductions that yield the same configuration with the same probability in different ways,
so that the probability of a certain reduction can be computed correctly:

Pr[E, P,Q, C →η E′, P ′,Q′, C′] =
∑

E,P,Q,C
p
−→η,tE′,P ′,Q′,C′

p

The probability of a trace is computed as follows:

Pr[E1, P1,Q1, C1 →η . . .→η E′m, P ′m,Q′m, C′m] =

m−1∏

j=1

Pr[Ej , Pj ,Qj , Cj →η E′j+1, P
′
j+1,Q

′
j+1, C

′
j+1]

We define an auxiliary relation for evaluating terms: E, M ⇓η a, or simply E, M ⇓ a, means that
the term M evaluates to the bitstring a in environment E. Rule (Cst) simply evaluates constants to
themselves. This rule serves for replication indexes, which are substituted with constant values when
reducing the replication. Rule (Var) looks for the value of the array variable in the environment. Rule
(Fun) evaluates the function call. Rules (Def1) and (Def2) evaluate conditions of find : When some Mk

is not defined, defined(M1, . . . , Ml) ∧M returns 0 (false) by (Def1). Otherwise, it returns the boolean
value of M by (Def2).

We use an auxiliary reduction relation Ãη, or simply Ã, for reducing input processes. This relation
transforms configurations of the form E,Q, C. Rule (Nil) removes nil processes. Rules (Par) and (Repl)
expand parallel compositions and replications, respectively. Rule (NewChannel) creates a new channel
and adds it to C. Semantic configurations are considered equivalent modulo renaming of channels in C,
so that a single semantic configuration is obtained after applying (NewChannel). Rule (Input) evaluates
the terms in the input channel. The input itself is not executed: the communication is done by the
(Output) rule. The relation Ã is convergent (confluent and terminating), so it has normal forms. Since
processes in Q in configurations E, P,Q, C are in normal form by Ã, they always start with an input.

Rules (New) to (Find2) simply reduce the scheduled process. As explained in the footnote page 5,
we use an approximately uniform probability distribution for choosing an element among a set S when
m = |S| is not a power of 2. Let k be the smallest integer such that 2k ≥ m. We choose a random integer
r uniformly among [0, 2k+f(η) − 1] for a certain function f . When r is in [0, (2k+f(η) div m×m)− 1], r
mod m returns a random integer in [0, m− 1], with the same probability for all elements of [0, m− 1].
When r is in [2k+f(η) div m×m, 2k+f(η)−1], we can do anything; we choose to block. The probability of
being in this case is (2k+f(η) mod m)/2k+f(η) ≤ m/2k+f(η) ≤ 1/2f(η), so it can be made as small as we
wish by choosing a large enough f(η). We choose f(η) ≥ αη for some α > 0, so that it is negligible. The

probability of choosing each element of S is then among(S) = 2k+f(η) div m
2k+f(η) . Then among(S) approximates

1/m. Rules (Find1) and (Find2) evaluate a find . They compute the value of all conditions Dj ∧Mj of

this find for all possible values ṽ of the indexes ũj [ã′]. When all these conditions are false, rule (Find2)
executes the else branch of the find . When at least one of these conditions is true, rule (Find1) chooses

A Computationally Sound Mechanized Prover for Security Protocols 11

Terms and find conditions:

E, a ⇓ a (Cst)
∀j ≤ m,E,Mj ⇓ aj x[a1, . . . , am] ∈ Dom(E)

E, x[M1, . . . ,Mm] ⇓ E(x[a1, . . . , am])
(Var)

∀j ≤ m,E,Mj ⇓ aj f : T1 × . . .× Tm → T ∀j ≤ m, aj ∈ Iη(Tj)

E, f(M1, . . . ,Mm) ⇓ Iη(f)(a1, . . . , am)
(Fun)

¬∀k ≤ l,∃ak, E,Mk ⇓ ak

E, defined(M1, . . . ,Ml) ∧M ⇓ 0
(Def1)

∀k ≤ l,∃ak, E,Mk ⇓ ak E,M ⇓ a a ∈ {0, 1}

E, defined(M1, . . . ,Ml) ∧M ⇓ a
(Def2)

Input processes:

E, {0}] Q, C Ã E,Q, C (Nil)

E, {Q1 | Q2}] Q, C Ã E, {Q1, Q2}] Q, C (Par)

E, {!i≤nQ}] Q, C Ã E, {Q{a/i} | a ∈ [1, Iη(n)]}] Q, C (Repl)

c′ /∈ C

E, {newChannel c;Q}] Q, C Ã E, {Q{c′/c}}] Q, C ∪ {c′}
(NewChannel)

∀j ≤ l, E,Mj ⇓ aj

E, {c[M1, . . . ,Ml](x1[ã′] : T1, . . . , xk[ã′] : Tk);P}] Q, C Ã E, {c[a1, . . . , al](x1[ã′] : T1, . . . , xk[ã′] : Tk);P}] Q, C
(Input)

reduce(E,Q, C) is the normal form of E,Q, C by Ã

Output processes:

T fixed-length type a ∈ Iη(T)

E,new x[ã′] : T ;P,Q, C
1

|Iη(T)|

−−−−→N(a) E[x[ã′] 7→ a], P,Q, C

(New)

E,M ⇓ a a ∈ Iη(T)

E, let x[ã′] : T = M in P,Q, C
1
−→L E[x[ã′] 7→ a], P,Q, C

(Let)

E,M ⇓ 1

E, if M then P1 else P2,Q, C
1
−→I1 E,P1,Q, C

(If1)

E,M ⇓ 0

E, if M then P1 else P2,Q, C
1
−→I2 E,P2,Q, C

(If2)

∀j ≤ m,∀ṽ ≤ ñj , E[ũj [ã′] 7→ ṽ], Dj ∧Mj ⇓ aj,ev

S = {j, ṽ | aj,ev = 1} aj0, ev0
= 1 Ej0, ev0

= E[ũj0 [ã
′] 7→ ṽ0]

E,find (
⊕m

j=1 ũj [ã′] ≤ ñj suchthat Dj ∧Mj then Pj) else P,Q, C
among(S)
−−−−−−→F1(j0, ev0) Ej0, ev0

, Pj0 ,Q, C
(Find1)

∀j ≤ m,∀ṽ ≤ ñj , E[ũj [ã′] 7→ ṽ], Dj ∧Mj ⇓ 0

E,find (
⊕m

j=1 ũj [ã′] ≤ ñj suchthat Dj ∧Mj then Pj) else P,Q, C
1
−→F2 E,P,Q, C

(Find2)

∀j ≤ l, E,Mj ⇓ aj ∀j ≤ k,E,Nj ⇓ bj E,Q′, C′ = reduce(E, {Q′′}, C)

S = {Q ∈ Q | Q = c[a1, . . . , al](x
′
1[ã

′′] : T ′
1, . . . , x

′
k[ã′′] : T ′

k).P ′ for some x′
1, . . . , x

′
k, ã′′, T ′

1, . . . , T
′
k, P ′}

Q0 = c[a1, . . . , al](x1[ã′] : T1, . . . , xk[ã′] : Tk).P ∈ S ∀j ≤ k, b′j = bj&(2maxlenη(c) − 1) ∈ Iη(Tj)

E, c[M1, . . . ,Ml]〈N1, . . . , Nk〉.Q′′,Q, C
S(Q0)×among(S)
−−−−−−−−−−−→O(Q0) E[x1[ã′] 7→ b′1, . . . , xk[ã′] 7→ b′k], P,Q]Q′ \ {Q0}, C′

(Output)

Fig. 3. Semantics

12 Bruno Blanchet

one such true case (for j = j0 and ṽ = ṽ0) with approximately uniform probability, and executes the
corresponding then branch of the find.

Rule (Output) performs communications: it evaluates the terms in the channel and the sent messages,
selects an input on the desired channel randomly, and immediately executes the communication. The
scheduled process after this rule is the receiving process. (The process blocks if no suitable input is
available.)

The initial configuration for running process Q0 is initConfig(Q0) = ∅, start〈〉,Q, C where ∅,Q, C =
reduce(∅, {Q0}, fc(Q0)).

We show the following properties:

P1. If Q0 satisfies Invariant 1, then each variable is defined at most once for each value of its array
indexes in a trace of Q0.

P2. If Q0 satisfies Invariant 2, then in traces of Q0, the test x[a1, . . . , am] ∈ Dom(E) in rule (Var) always
succeeds, except when the considered term occurs in a defined condition of a find .

P3. If Q0 satisfies Invariant 3, then in traces of Q0, the tests T fixed-length type in rule (New), a ∈ Iη(T)
in rule (Let), ∀j ≤ m, aj ∈ Iη(Tj) in rule (Fun), and the test a ∈ {0, 1} in rule (Def2) always succeed.

P4. For each process Q, there exists a probabilistic polynomial time Turing machine that simulates Q.
(Processes run in polynomial time since the number of processes created by a replication and the
length of messages sent on channels are bounded by polynomials.) Conversely, our calculus can
simulate a probabilistic polynomial-time Turing machine, simply by choosing coins by new and by
applying a function symbol defined to perform the same computations as the Turing machine.

2.4 Observational Equivalence

A context is a process containing a hole []. An evaluation context C is a context built from [],
newChannel c; C, Q | C, and C | Q. We use an evaluation context to represent the adversary. We
denote by C[Q] the process obtained by replacing the hole [] in the context C with the process Q.

Definition 3. Let c be a channel name and a be a bitstring. We say that E, P,Q, C executes c〈a〉
immediately when P = c〈M〉.Q and E, M ⇓ a for some Q and M .

The probability that Q executes c〈a〉 is denoted Pr[Q Ãη c〈a〉]. When c ∈ fc(Q), Pr[Q Ãη c〈a〉] =∑
T ∈T

Pr[T] where T is the set of traces initConfig(Q) →η . . . →η Em, Pm,Qm, Cm such that Em, Pm,
Qm, Cm executes c〈a〉 immediately and for all j < m, Ej , Pj ,Qj , Cj does not execute c〈a〉 immediately.
When c /∈ fc(Q), Pr[QÃη c〈a〉] = 0.

Definition 4 (Observational equivalence). Let Q and Q′ be two processes, and V a set of variables.
Assume that Q and Q′ satisfy invariants 1, 2, and 3 and the variables of V are defined in Q and Q′,
with the same types.

An evaluation context is said to be acceptable for Q, Q′, V if and only if var(C)∩(var(Q)∪var(Q′)) ⊆
V and C[Q] satisfies Invariants 1, 2, and 3. (Then C[Q′] also satisfies these invariants.)

We say that Q and Q′ are observationally equivalent with public variables V , written Q ≈V Q′, when
for all evaluation contexts C acceptable for Q, Q′, V , for all channels c and bitstrings a, |Pr[C[Q]Ãη

c〈a〉]− Pr[C[Q′]Ãη c〈a〉]| is negligible.

Our definition of observational equivalence is similar to that of [36]. Intuitively, the goal of the
adversary represented by context C is to distinguish Q from Q′. When it succeeds, it performs a
different output, for example c〈0〉 when it has recognized Q and c〈1〉 when it has recognized Q′. When
Q ≈V Q′, the context has negligible probability of distinguishing Q from Q′.

The unusual requirement on variables of C comes from the presence of arrays and of the associated
find construct which gives C direct access to variables of Q and Q′: the context C is allowed to access

A Computationally Sound Mechanized Prover for Security Protocols 13

variables of Q and Q′ only when they are in V . (In more standard settings, the calculus does not have
constructs that allow the context to access variables of Q and Q′.) The following result is not difficult
to prove:

Lemma 1. ≈V is an equivalence relation, and Q ≈V Q′ implies that C[Q] ≈V ′

C[Q′] for all evaluation
contexts C acceptable for Q, Q′, V and all V ′ ⊆ V ∪ (var(C) \ (var(Q) ∪ var(Q′)).

We denote by Q ≈V
0 Q′ the particular case in which for all evaluation contexts C acceptable for Q, Q′,

V , for all channels c and bitstrings a, Pr[C[Q] Ãη c〈a〉] = Pr[C[Q′] Ãη c〈a〉]. When V is empty, we
write Q ≈ Q′ instead of Q ≈V Q′ and Q ≈0 Q′ instead of Q ≈V

0 Q′.

3 Game Transformations

In this section, we describe the game transformations that allow us to transform the process that
represents the initial protocol into a process on which the desired security property can be proved
directly, by criteria given in Section 4. These transformations are parametrized by the set V of variables
that the context can access. As we shall see in Section 4, V contains variables that we would like to
prove secret. These transformations transform a process Q0 into a process Q′0 such that Q0 ≈

V Q′0.

3.1 Syntactic Transformations

RemoveAssign(x): When x is defined by an assignment let x[i1, . . . , il] : T = M in P , we replace x
with its value. Precisely, the transformation is performed only when x does not occur in M (non-cyclic
assignment). When x has several definitions, we simply replace x[i1, . . . , il] with M in P . (For accesses
to x guarded by find , we do not know which definition of x is actually used. In this case, applying
the transformation SArename(x) defined below before RemoveAssign(x) may allow us to remove
all assignments to x.) When x has a single definition, we replace everywhere in the game x[M1, . . . , Ml]
with M{M1/i1, . . . , Ml/il}.

We additionally update the defined conditions of find to preserve Invariant 2, and to maintain the
requirement that x[M1, . . . , Ml] is defined when it was required in the initial game. (Each defined con-
dition defined(N1, . . . , Nm) that contains x is changed as follows: Let N ′1, . . . , N

′
m′ be the subterms of

N1, . . . , Nm of root x. Let N ′′1 , . . . , N ′′m+m′ be obtained from N1, . . . , Nm and N ′1, . . . , N
′
m′ by substi-

tuting M{M1/i1, . . . , Ml/il} for x[M1, . . . , Ml] except at the root. The new defined condition contains
N ′′1 , . . . , N ′′m+m′ , as well as for each x[M1, . . . , Ml] in N ′′1 , . . . , N ′′m+m′ , the array accesses that occur in
M{M1/i1, . . . , Ml/il}.)

When x ∈ V , its definition is kept unchanged. Otherwise, when x is not referred to at all after the
transformation, we remove the definition of x. When x is referred to only at the root of defined tests,
we replace its definition with a constant. (The definition point of x is important, but not its value.)

Example 2. In the process of Example 1, RemoveAssign(xmk) substitutes mkgen(x′r) for xmk in
the whole process and removes the assignment let xmk : Tmk = mkgen(x′r). After this substitution,
mac(xm, xmk) becomes mac(xm,mkgen(x′r)) and check(x′m, xmk, xma) becomes check(x′m,mkgen(x′r),
xma), thus exhibiting terms required in Section 3.3. The situation is similar for RemoveAssign(k).

RemoveAssign(useless): As a particular case of the previous procedure, we remove useless assign-

ments, that is, assignments to x when x is unused and assignments let x[̃i] : T = y[M̃]. Since removing
such assignments may also remove uses of other variables, we repeat this removal until a fixpoint is
reached.

SArename(x): The transformation SArename (single assignment rename) aims at renaming vari-
ables so that each variable has a single definition in the game; this is useful for distinguishing cases

14 Bruno Blanchet

depending on which definition of x has set x[̃i]. This transformation can be applied only when x /∈ V .
When x has m > 1 definitions, we rename each definition of x to a different variable x1, . . . , xm.
Terms x[̃i] under a definition of xj [̃i] are then replaced with xj [̃i]. Each branch of find FB = ũ[̃i] ≤
ñ suchthat defined(M ′

1, . . . , M
′
l′)∧M then P where x[M1, . . . , Ml] is a subterm of some M ′

k for k ≤ l′ is
replaced with m branches FB{xj [M1, . . . , Ml]/x[M1, . . . , Ml]} for 1 ≤ j ≤ m.

Example 3. Consider the following process

start();new rA : Tr; let kA : Tk = kgen(rA) in new rB : Tr; let kB : Tk = kgen(rB) in yield〈〉; (QK | QS)

QK = !i≤nc[i](h : Th, k : Tk)if h = A then let k′ : Tk = kA in yield〈〉 else

if h = B then let k′ : Tk = kB in yield〈〉 else let k′ : Tk = k in yield〈〉

QS = !i
′≤n′

c′[i′](h′ : Th);find u ≤ n suchthat defined(h[u], k′[u]) ∧ h′ = h[u] then P1(k
′[u]) else P2

The process QK stores in (h, k′) a table of pairs (host name, key): the key for A is kA, for B kB, and
for any other h, the adversary can choose the key k. The process QS queries this table of keys to find
the key k′[u] of host h′, then executes P1(k

′[u]). If h′ is not found, it executes P2.
By the transformation SArename(k′), we can perform a case analysis, to distinguish the cases in

which k′ = kA, k′ = kB, or k′ = k. After transformation, we obtain the following processes:

Q′K = !i≤nc[i](h : Th, k : Tk)if h = A then let k′1 : Tk = kA in yield〈〉 else

if h = B then let k′2 : Tk = kB in yield〈〉 else let k′3 : Tk = k in yield〈〉

Q′S = !i
′≤n′

c′[i′](h′ : Th);find u ≤ n suchthat defined(h[u], k′1[u]) ∧ h′ = h[u] then P1(k
′
1[u])

⊕ u ≤ n suchthat defined(h[u], k′2[u]) ∧ h′ = h[u] then P1(k
′
2[u])

⊕ u ≤ n suchthat defined(h[u], k′3[u]) ∧ h′ = h[u] then P1(k
′
3[u]) else P2

After the simplification (described below), Q′S becomes:

Q′′S = !i
′≤n′

c′[i′](h′ : Th);find u ≤ n suchthat defined(h[u], k′1[u]) ∧ h′ = A then P1(kA)

⊕ u ≤ n suchthat defined(h[u], k′2[u]) ∧ h′ = B then P1(kB)

⊕ u ≤ n suchthat defined(h[u], k′3[u]) ∧ h′ = h[u] then P1(k[u]) else P2

since, when k′1[u] is defined, k′1[u] = kA and h[u] = A, and similarly for k′2[u] and k′3[u].

SArename(auto): As a particular case of the previous procedure, when x has m > 1 definitions and
all variable accesses to x are of the form x[i1, . . . , il] under a definition of x[i1, . . . , il], where i1, . . . , il
are the current replication indexes at this definition of x, we rename x to x1, . . . , xm with a different
name for each definition.

MoveNew We move restrictions downwards in the code as much as possible, when they have no
array accesses. A new x[̃i] : T cannot be moved under a replication, or under a parallel compo-
sition when both sides use x, or a test if M then . . . else . . ., let let y[̃i] : T = M in . . ., input
c[M1, . . . , Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk), output c[M1, . . . , Ml]〈N1, . . . , Nk〉 when x occurs in M, M1, . . . ,
Ml, N1, . . . , Nk, or a find when the conditions use x. It can be moved under the other constructs, du-
plicating it if necessary, when we move it under a if or a find that uses x in several branches. Note
that when the restriction new x[̃i] : T cannot be moved under an input, a parallel composition, or a
replication, it must be written above the output that is located above the considered input, parallel
composition or replication, so that the syntax of processes is not violated.

When this transformation duplicates a new x[̃i] : T by moving it under a if or a find that uses x
in several branches, a subsequent SArename(x) enables us to distinguish several cases depending in
which branch x is created, which is useful in some proofs.

A Computationally Sound Mechanized Prover for Security Protocols 15

Proposition 1. Let Q0 be a process that satisfies Invariants 1, 2, and 3, and Q′0 the process obtained
from Q0 by one of the transformations above. Then Q′0 satisfies Invariants 1, 2, and 3, and Q0 ≈

V Q′0.

3.2 Simplification and Elimination of Collisions

In this section, we define the transformation Simplify, which is used to simplify games.

User-defined Rewrite Rules The user can give two kinds of information:

– claims of the form ∀x1 : T1, . . . , ∀xm : Tm, M which mean that for all environments E, if for all
j ≤ m, E(xj) ∈ Iη(Tj), then E, M ⇓ 1.
For example, considering mac and stream ciphers as in Definitions 1 and 2 respectively, we have:

∀r : Tmr, ∀m : bitstring , check(m,mkgen(r),mac(m,mkgen(r))) = 1 (mac)

∀m : bitstring ; ∀r : Tr, ∀r
′ : T ′r, dec(enc(m, kgen(r), r′), kgen(r)) = i⊥(m) (enc)

We express the poly-injectivity of the function k2b of Example 1 by

∀x : Tk, ∀y : Tk, (k2b(x) = k2b(y)) = (x = y) ∀x : Tk, k2b−1(k2b(x)) = x (k2b)

where k2b−1 is a function symbol that denotes the inverse of k2b. We have similar formulas for i⊥.
Such claims must be well-typed, that is, {x1 7→ T1, . . . , xm 7→ Tm} `M : bool .
They are translated into rewrite rules as follows:
• If M is of the form M1 = M2 and var(M2) ⊆ var(M1), generate the rewrite rule ∀x1 :

T1, . . . , ∀xm : Tm, M1 →M2.
• If M is of the form M1 6= M2, generate the rewrite rules ∀x1 : T1, . . . , ∀xm : Tm, (M1 = M2)→ 0,
∀x1 : T1, . . . , ∀xm : Tm, (M1 6= M2) → 1. (Such rules are used for instance to express that
different constants are different.)

• Otherwise, generate the rewrite rule ∀x1 : T1, . . . , ∀xm : Tm, M → 1.
– claims of the form new y1 : T ′1, . . . ,new yl : T ′l , ∀x1 : T1, . . . , ∀xm : Tm, M1 ≈ M2 with var(M2) ⊆

var(M1). Informally, these claims mean that M1 and M2 evaluate to the same bitstring except in
cases of negligible probability, provided that y1, . . . , yl are chosen randomly with uniform probability
among T ′1, . . . , T

′
l respectively, and that x1, . . . , xm are of type T1, . . . , Tm. (x1, . . . , xm may depend

on y1, . . . , yl.) Formally, a first approach is to define these claims as

max
A

Pr[E(y1)
R
← Iη(T

′
1); . . . E(yl)

R
← Iη(T

′
l); (E(x1), . . . , E(xm))← A(E(y1), . . . , E(yl));

E, M1 ⇓ a; E, M2 ⇓ a′ : a 6= a′] ≤ p(η)

where A is a probabilistic Turing machine running in time q(η), q is a polynomial, and p(η) is
negligible. However, this phrasing requires checking that the restrictions that create y1, . . . , yl are
pairwise distinct, which is sometimes delicate. (It may depend on the value of array indexes.) So we
prefer the following definition, in which the substitution σ allows us to rename y1, . . . , yl to possibly
equal variables y′1, . . . , y

′
l′ :

The claim new y1 : T ′1, . . . ,new yl : T ′l , ∀x1 : T1, . . . , ∀xm : Tm, M1 ≈ M2 means that
for all substitutions σ that map y1, . . . , yl to variables y′1, . . . , y

′
l′ , such that σ{y1, . . . , yl} =

{y′1, . . . , y
′
l′} and for all j ≤ l, if σyj = y′j′ then T ′′j′ = T ′j , for all polynomials q,

max
A

Pr[E(y′1)
R
← Iη(T

′′
1); . . . E(y′l′)

R
← Iη(T

′′
l′); (E(x1), . . . , E(xm))← A(E(y′1), . . . , E(y′l′));

E, σM1 ⇓ a; E, σM2 ⇓ a′ : a 6= a′] ≤ p(η)

where A is a probabilistic Turing machine running in time q(η), and p(η) is negligible.

16 Bruno Blanchet

The claims need to be adapted to this definition. For instance, we write new x : T ;new y :
T ; pkgen(x) = pkgen(y) ≈ x = y rather than new x : T ;new y : T ; pkgen(x) = pkgen(y) ≈ 0,
since we may have pkgen(x) = pkgen(y) with probability 1 when x and y are in fact the same
variable.
The above claim must be well-typed, that is, {x1 7→ T1, . . . , xm 7→ Tm, y1 7→ T ′1, . . . , yl 7→ T ′l } `
M1 = M2.
This claim is translated into the rewrite rule new y1 : T ′1, . . . ,new yl : T ′l , ∀x1 : T1, . . . , ∀xm :
Tm, M1 →M2.

The term M reduces into M ′ by the rewrite rule new y1 : T ′1, . . . ,new yl : T ′l , ∀x1 : T1, . . . , ∀xm :
Tm, M1 → M2 if and only if M = C[σM1], M ′ = C[σM2], where C is a term context and σ is a

substitution that maps xj to any term of type Tj for all j ≤ m, and yj to terms to the form x[M̃] where
x is defined by restrictions new x : T ′j for all j ≤ l.

The prover has built-in rewrite rules for defining boolean functions:

¬1→ 0 ¬0→ 1 ∀x : bool ,¬(¬x)→ x

∀x : T, ∀y : T,¬(x = y)→ x 6= y ∀x : T, ∀y : T,¬(x 6= y)→ x = y

∀x : T, x = x→ 1 ∀x : T, x 6= x→ 0

∀x : bool , ∀y : bool ,¬(x ∧ y)→ (¬x) ∨ (¬y) ∀x : bool , ∀y : bool ,¬(x ∨ y)→ (¬x) ∧ (¬y)

∀x : bool , x ∧ 1→ x ∀x : bool , x ∧ 0→ 0 ∀x : bool , x ∨ 1→ 1 ∀x : bool , x ∨ 0→ x

The prover also has support for commutative function symbols, that is, binary function symbols
f : T×T → T ′ such that for all x, y ∈ Iη(T), Iη(f)(x, y) = Iη(f)(y, x). For such symbols, all equality and
matching tests are performed modulo commutativity. The functions ∧, ∨, =, and 6= are commutative.
So, for instance, the last four rewrite rules above may also be used to rewrite 1∧M into M , 0∧M into
0, 1 ∨M into 1, and 0 ∨M into M . Used-defined functions may also be declared commutative; xor is
an example of such a commutative function.

Dependency Analysis We say that M characterizes y intuitively when αM = M implies (αy)[M̃ ′] =

y[M̃] for some M̃ and M̃ ′, where the renaming α maps each variable of M to a fresh variable, y[M̃] is

a subterm of M , and (αy)[M̃ ′] is a subterm of αM .
We use a simple rewriting prover to determine that. We consider the set of termsM0 = {αM = M},

and we rewrite elements of M0 using the first kind of user-defined rewrite rules mentioned above and
the rule {M1 ∧M2} ∪M

′ → {M1, M2} ∪M
′.

WhenM0 can be rewritten to a set that contains y[M̃] = (αy)[M̃ ′] or (αy)[M̃ ′] = y[M̃] for some M̃

and M̃ ′, we have that M characterizes y.
We say that only dep(x) = S when intuitively, only variables in S depend on x, and the adversary

cannot see the value of x. Formally, only dep(x) = S when S is the smallest set of variables containing
x such that

– S ∩ V = ∅.
– Variables of S do not occur in input or output channels or messages, that is, they do not occur

in M1, . . . , Mm, N1, . . . , Nk, x1, . . . , xk in the input c[M1, . . . , Mm](x1 [̃i] : T1, . . . , xk [̃i] : Tk) or in the
output c[M1, . . . , Mm]〈N1, . . . , Nk〉.

– If a variable y ∈ S occurs in M in let x : T = M in P , then M characterizes y and x ∈ S.
– Variables in S may occur in defined conditions of find but only at the root of them.
– All terms M in processes if M then P1 else P2 and all terms Mj in processes find (

⊕m
j=1 ũj [̃i] ≤

ñj suchthat defined(Mj1, . . . , Mjlj) ∧Mj then Pj) else P ′ are combinations by ∧, ∨, or ¬ of terms
that either do not contain variables in S or are of the form M1 = M2 or M1 6= M2 where there exists

A Computationally Sound Mechanized Prover for Security Protocols 17

y ∈ S such that M1 characterizes y and no variable of S occurs in M2, or the symmetric obtained
by swapping M1 and M2.

The last item implies that the result of tests does not depend on the values of variables in S, except in
cases of negligible probability. Indeed, the tests M1 = M2 with M1 characterizes y ∈ S and M2 does not
depend on variables in S are false except in cases of negligible probability. Similarly, the tests M1 6= M2

are true except in cases of negligible probability.
The set S, when it exists, is computed by a fixpoint iteration, starting from {x} and adding variables

defined by assignments that depend on variables already in S.

Collecting True Facts from a Game We use facts to represent properties that hold at certain
program points in processes. We consider two kinds of facts: defined(M) means that M is defined,
and a term M means that M is true (the boolean term M evaluates to 1). The function collectFacts
determines which facts hold at each program point of the game. More precisely, it computes a mapping
TrueFacts from each occurrence P of a subprocess of the game, to the set of facts that hold at that
occurrence. (It is important that P is an occurrence and not a process: processes at several occurrences
may be equal, and must be distinguished from one another here.) The function collectFacts also computes
a set TrueFactsdef containing pairs (x[̃i],F) where F is a set of facts that hold if x[̃i] has been defined
by a certain definition. (If there are several definitions of x, there is one such pair for each definition of
x.)

The function collectFacts is defined in Figure 4. It is initially called with an empty set of facts:
collectFacts(Q0, ∅). It takes into account that x[̃i] may be defined by an input, a restriction, a let, or
a find. Furthermore, when we execute let x[̃i] : T = M in P ′, x[̃i] = M holds in P ′ and holds when x
is defined by that definition. When we execute if M then P1 else P2, M holds in P1 and ¬M holds
in P2. When we execute find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj

[̃i] ≤ njmj
suchthat defined(Mj1, . . . , Mjlj) ∧

Mj then Pj) else P ′, Mj holds in Pj , Mj1, . . . , Mjlj , uj1 [̃i], . . . , ujmj
[̃i] are defined in Pj , and these facts

hold when x is defined by that definition.
After calling collectFacts(Q0, ∅), we complete the computed sets TrueFactsP by adding facts that

we can deduce from facts defined(M). Precisely, if defined(M) ∈ TrueFactsP , and x[M1, . . . , Mm] is a
subterm of M , we take into account facts that are known to be true at the definitions of x by adding
them to TrueFactsP as follows:

TrueFactsP ← TrueFactsP ∪ (∩(x[i1,...,im],F)∈TrueFactsdef
F{M1/i1, . . . , Mm/im})

This operation may add new defined facts to TrueFactsP , so it is executed until a fixpoint is reached,
except that, in order to avoid infinite loops, we do not execute this step for definitions defined(M) in
which M contains nested occurrences of the same symbol (such as x[. . . x[. . .] . . .]).

Equational Prover We use an algorithm inspired by the Knuth-Bendix completion algorithm [26],
with differences detailed below.

The prover manipulates pairs F ,R where F is a set of facts (M or defined(M)) and R is a set
of rewrite rules M1 → M2. We say that M reduces into M ′ by M1 → M2 when M = C[M1] and
M ′ = C[M2] for some term context C. (That is, all variables in rewrite rules of R are considered as
constants.) The prover starts with a certain set of facts F and R = ∅. Then the prover transforms the
pairs (F ,R) by the following rules (the rule F ,R

F ′,R′ means that F ,R is transformed into F ′,R′):

F ∪ {F},R

F ∪ {F ′},R
if F reduces into F ′ by a rule of R or a user-defined rewrite rule (1)

F ∪ {M1 ∧M2},R

F ∪ {M1, M2},R
(2)

18 Bruno Blanchet

collectFacts(Q,F) =

TrueFactsQ = F

if Q = Q1 | Q2 then collectFacts(Q1,F); collectFacts(Q2,F)

if Q = !i≤nQ′ then collectFacts(Q′,F)

if Q = newChannel c;Q′ then collectFacts(Q′,F)

if Q = c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P then

TrueFactsdef = TrueFactsdef ∪ {(xj [̃i],F) | j ≤ k};

collectFacts(P,F ∪ {defined(xj [̃i]) | j ≤ k})

collectFacts(P,F) =

TrueFactsP = F

if P = c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q then collectFacts(Q,F)

if P = new x[̃i] : T ;P ′ then

TrueFactsdef = TrueFactsdef ∪ {(x[̃i],F)}; collectFacts(P ′,F ∪ {defined(x[̃i])})

if P = let x[̃i] : T = M in P ′ then

F ′ = F ∪ {defined(x[̃i]), x[̃i] = M}; TrueFactsdef = TrueFactsdef ∪ {(x[̃i],F ′)}; collectFacts(P ′,F ′)

if P = if M then P1 else P2 then

collectFacts(P1,F ∪ {M}); collectFacts(P2,F ∪ {¬M})

if P = find (
⊕m

j=1
uj1 [̃i] ≤ nj1, . . . , ujmj

[̃i] ≤ njmj
suchthat defined(Mj1, . . . ,Mjlj) ∧Mj then Pj) else P ′

then

for each j ≤ m,

F ′ = F ∪ {defined(uj1[ĩ′]), . . . , defined(ujmj
[ĩ′]), defined(Mj1), . . . , defined(Mjlj),Mj}

TrueFactsdef = TrueFactsdef ∪ {(uj1[ĩ′],F
′), . . . , ujmj

[ĩ′],F ′)}

collectFacts(Pj ,F
′)

collectFacts(P ′,F)

Fig. 4. The function collectFacts

F ∪ {x[M1, . . . , Mm] = x[M ′
1, . . . , M

′
m]},R

F ∪ {M1 = M ′
1, . . . , Mm = M ′

m},R

when x is defined by restrictions new x : T
and T is a large type

(3)

F ∪ {M1 = M2},R

{0},R

when x occurs in M1, x is defined by restrictions new x : T , T is a large type,
M1 characterizes x, and either M2 is obtained by optionally applying function

symbols to terms of the form y[M̃] where y is defined by restrictions and y 6= x,
or only dep(x) = S and no variable of S occurs in M2.

(4)

F ∪ {M = M ′},R

F ,R∪ {M →M ′}
if M > M ′ (5)

F ,R∪ {M1 →M2}

F ∪ {M1 = M ′
2},R

if M2 reduces into M ′
2 by a rule of R or a user-defined rewrite rule (6)

F ,R∪ {M1 →M2}

F ∪ {M ′
1 = M2},R

if M1 reduces into M ′
1 by a rule of R (7)

We also use the symmetrics of Rules (4) and (5) obtained by swapping both sides of the equality.

A Computationally Sound Mechanized Prover for Security Protocols 19

Rule (1) simplifies facts using rewrite rules. Rule (2) decomposes conjunctions of facts. Rules (3)
and (4) exploit the elimination of collisions between random values. Rule (3) takes into account that,
when x is defined by a restriction of a large type, two different cells of x have a negligible probability
of containing the same value. So when two cells of x contain the same value, we can conclude up to
negligible probability that they are the same cell. Rule (4) expresses that M1 and M2 have a negligible
probability of being equal when x is defined by a restriction of a large type, M1 characterizes x, and
M2 does not depend of x.

Rule (5) is applied only when Rules (1) to (4) cannot be applied. Rule (5) transforms equations

into rewrite rules by orienting them. We say that M > M ′ when either M is the form x[M̃], x does
not occur in M ′, and x is not defined by a restriction, or M = x[M1, . . . , Mm], M ′ = x[M ′

1, . . . , M
′
m],

and for all j ≤ m, Mj > M ′
j . Intuitively, our goal is to replace M with M ′ when M ′ defines the

content of the variable M . (Notice that this is not an ordering; the Knuth-Bendix algorithm normally
uses a reduction ordering to orient equations. However, we tried some reduction orderings, namely
the lexicographic path ordering and the Knuth-Bendix ordering, and obtained disappointing results:
the prover fails to prove many equalities because too many equations are left unoriented. The simple
heuristic given above succeeds more often, at the expense of a greater risk of non-termination, but that
does not cause problems in practice on our examples. We believe that this comes from the particular
structure of equations, which come from let definitions and from tests, and tend to define variables from
other variables without creating dependency cycles.)

Rules (6) and (7) are systematically applied to simplify all rewrite rules of R after a new rewrite rule
has been added by Rule (5). Since all terms in rewrite rules of R are considered as constants, Rule (7)
in fact includes the deduction of equations from critical pairs done by the standard Knuth-Bendix
completion algorithm.

We say that F yields a contradiction when the prover starting from (F , ∅) derives 0.

Game Simplification

– Each term M in the game is replaced with a simplified term M ′ obtained by reducing M by user-
defined rewrite rules (first point of this section) and the rewrite rules obtained from TrueFactsPM

by the above equational prover where PM is the smallest process containing M . The replacement is
performed only when at least one user-defined rewrite rule has been used. (To avoid complicating
the game by substituting all variables with their value.)

– If P = if M then P1 else P2, and TrueFactsP2 = {¬M} ∪ TrueFactsP yields a contradiction, then
P is replaced with P1. (The probability that P2 is executed is negligible.)

– If P = if M then P1 else P2, and TrueFactsP1 = {M} ∪ TrueFactsP yields a contradiction, then P
is replaced with P2.

– If P = find (
⊕m

j=1 ũj [̃i] ≤ ñj suchthat defined(Mj1, . . . , Mjlj)∧Mj then Pj) else P ′ and TrueFactsPj

yields a contradiction, then the j-th branch of the find is removed.

– A find with no branches: find else P ′ is replaced with P ′.

– If P = find (
⊕m

j=1 ũj [̃i] ≤ ñj suchthat defined(Mj1, . . . , Mjlj)∧Mj then Pj) else P ′ and for some j,

for some Ñ , {defined(Mj1{Ñ/ũj}), . . . , defined(Mjlj{Ñ/ũj})} ⊆ TrueFactsP and {¬Mj{Ñ/ũj}} ∪

TrueFactsP yields a contradiction, then P ′ is replaced with yield〈〉. (The probability that P ′ is
executed is negligible. The terms Ñ are found by exploring the set of defined terms in TrueFactsP .)

– The defined conditions of find are updated so that Invariant 2 is satisfied. (When such a condition
guarantees that M is defined, defined(M) implies defined(M ′), and after simplification M ′ appears
in the scope of this condition, then M ′ has to be added to this condition if it is not already present.)

– If P = find (
⊕m

j=1 ũj [̃i] ≤ ñj suchthat defined(Mj1, . . . , Mjlj) ∧Mj then yield〈〉) else yield〈〉 and

the variables in ũj are not used outside P and are not in V , then P is replaced with yield〈〉.

20 Bruno Blanchet

[[(G1, . . . , Gm)]] = [[G1]]
1 | . . . | [[Gm]]m

[[!i≤nnew y1 : T1; . . . ;new yl : Tl; (G1, . . . , Gm)]]
ej
ei

=

!i≤ncej
[̃i, i]();new y1 : T1; . . . ;new yl : Tl; cej

[̃i, i]〈〉; ([[G1]]
ej,1
ei,i
| . . . | [[Gm]]

ej,m
ei,i

)

[[(x1 : T1, . . . , xl : Tl)→ FP]]
ej
ei

= cej
[̃i](x1 : T1, . . . , xl : Tl); [[FP]]

ej
ei

[[M]]
ej
ei

= cej
[̃i]〈M〉

[[new x[̃i] : T ;FP]]
ej
ei

= new x[̃i] : T ; [[FP]]
ej
ei

[[let x[̃i] : T = M in FP]]
ej
ei

= let x[̃i] : T = M in [[FP]]
ej
ei

[[if M then FP1 else FP2]]
ej
ei

= if M then [[FP1]]
ej
ei

else [[FP2]]
ej
ei

[[find (
⊕m

j=1
ũj [̃i] ≤ ñj suchthat defined(Mj1, . . . ,Mjlj) ∧Mj then FPj) else FP]]

ej
ei

=

find (
⊕m

j=1
ũj [̃i] ≤ ñj suchthat defined(Mj1, . . . ,Mjlj) ∧Mj then [[FPj]]

ej
ei
) else [[FP]]

ej
ei

where cej
are pairwise distinct channels, ĩ = i1, . . . , il′ , and j̃ = j0, . . . , jl′ .

Fig. 5. Translation from functional processes to processes

– If P = new x : T ; P ′ or let x : T = M in P ′ and x is not used in the game and is not in V , then P
is replaced with P ′.

– If P = if M then yield〈〉 else yield〈〉, then P is replaced with yield〈〉.

The following proposition shows the soundness of simplification. It is proved in Appendix B.3.

Proposition 2. Let Q0 be a process that satisfies Invariants 1, 2, and 3, and Q′0 the corresponding
process after simplification. Then Q′0 also satisfies Invariants 1, 2, and 3, and Q0 ≈

V Q′0.

3.3 Applying the Definition of Security of Primitives

The security of cryptographic primitives is defined using observational equivalences given as axioms.
Importantly, this formalism allows us to specify many different primitives in a generic way. Such equiva-
lences are then used by the prover in order to transform a game into another, observationally equivalent
game, as explained in the following of this section.

The primitives are specified using equivalences of the form (G1, . . . , Gm) ≈ (G′1, . . . , G
′
m) where G

is defined by the following grammar:

G ::= group of functions
!i≤nnew y1 : T1; . . . ;new yl : Tl; (G1, . . . , Gm) replication and restrictions (l ≥ 0, m ≥ 1)
(x1 : T1, . . . , xl : Tl)→ FP function (l ≥ 0)

FP ::= functional processes
M term

new x[̃i] : T ; FP random number generation (uniform)

let x[̃i] : T = M in FP assignment
if M then FP1 else FP2 test

find (
⊕m

j=1 ũj [̃i] ≤ ñj suchthat defined(Mj1, . . . , Mjlj) ∧Mj then FPj) else FP

array lookup

Intuitively, (x1 : T1, . . . , xl : Tl)→ FP represents a function that takes as argument values x1, . . . , xl

of types T1, . . . , Tl respectively, and returns a result computed by FP . The observational equivalence

A Computationally Sound Mechanized Prover for Security Protocols 21

(G1, . . . , Gm) ≈ (G′1, . . . , G
′
m) expresses that the adversary has a negligible probability of distinguishing

functions in the left-hand side from corresponding functions in the right-hand side. Formally, functions
can be encoded as processes that input their arguments and output their result on a channel, as shown
in Figure 5. The translation of !i≤nnew y1 : T1; . . . ;new yl : Tl; (G1, . . . , Gm) inputs and outputs on
channel cej

so that the context can trigger the generation of random numbers y1, . . . , yl. The translation

of (x1 : T1, . . . , xl : Tl) → FP inputs the arguments of the function on channel cej
and translates FP ,

which outputs the result of FP on cej
. (In the left-hand side, the result FP of functions must simply

be a term M .) The observational equivalence (G1, . . . , Gm) ≈ (G′1, . . . , G
′
m) is then an abbreviation for

[[(G1, . . . , Gm)]] ≈ [[(G′1, . . . , G
′
m)]].

For example, the security of a mac (Definition 1) is represented by the equivalence L ≈ R where:

L = !i
′′≤n′′

new r : Tmr; (!
i≤n(x : bitstring)→ mac(x,mkgen(r)),

!i
′≤n′

(m : bitstring , ma : Tms)→ check(m,mkgen(r), ma))

R = !i
′′≤n′′

new r : Tmr; (!
i≤n(x : bitstring)→ mac ′(x,mkgen ′(r)),

!i
′≤n′

(m : bitstring , ma : Tms)→ find u ≤ n suchthat defined(x[u])∧

(m = x[u]) ∧ check ′(m,mkgen ′(r), ma) then 1 else 0)

(maceq)

where mac′, check ′, and mkgen ′ are function symbols with the same types as mac, check , and mkgen
respectively. (We use different function symbols on the left- and right-hand sides, just to prevent a
repeated application of the transformation induced by this equivalence. Since we add these function
symbols, we also add the equation

∀r : Tmr, ∀m : bitstring , check ′(m,mkgen ′(r),mac′(m,mkgen ′(r))) = 1 (mac′)

which restates Equation (mac) for mac ′, check ′, and mkgen ′.) Intuitively, the equivalence L ≈ R leaves
mac computations unchanged (except for the use of primed function symbols in R), and allows one to
replace a mac checking check(m,mkgen(r), ma) with a lookup in the array x of messages whose mac
has been computed with key mkgen(r): if m is found in the array x and check(m,mkgen(r), ma), we
return 1; otherwise, the check fails (up to negligible probability), so we return 0. (If the check succeeded
with m not in the array x, the adversary would have forged a mac.) Obviously, the form of L requires
that r is used only to compute or check macs, for the equivalence to be correct. Formally, the following
result shows the correctness of our modeling. It is a fairly easy consequence of Definition 1.

Proposition 3. Assuming (mkgen,mac, c) is a message authentication code secure against existential
forgery under chosen message attack, Iη(mkgen ′) = Iη(mkgen), Iη(mac′) = Iη(mac), and Iη(check

′) =
Iη(check), then [[L]] ≈ [[R]].

Similarly, we represent the security of a IND-CPA stream cipher (Definition 2) by the equivalence:

!i
′≤n′

new r : Tr; !
i≤n(x : bitstring)→ new r′ : T ′r; enc(x, kgen(r), r′)

≈ !i
′≤n′

new r : Tr; !
i≤n(x : bitstring)→ new r′ : T ′r; enc′(Z(x), kgen ′(r), r′)

(enceq)

where enc′ and kgen ′ are function symbols with the same types as enc and kgen respectively, and
Z : bitstring → bitstring is the function that returns a bitstring of the same length as its argument,
consisting only of zeroes. Using equations such as ∀x : T, Z(T2b(x)) = ZT , we can prove that Z(T2b(x))
does not depend on x when x is of a fixed-length type and T2b : T → bitstring is the natural injection.
The representation of other primitives can be found in Appendix A.

We require the following conditions for the equivalences L ≈ R that model cryptographic primitives:

22 Bruno Blanchet

H0. [[L]] and [[R]] satisfy Invariants 1, 2, and 3. Furthermore, the result of each function in R has the
same type as the result of the corresponding function of L.

H1. In L, the functional processes FP are simply terms M ; all their array accesses use the current
replication indexes. (Allowing let or find in L is difficult, because we need to recognize the terms M
in a context and in a possibly syntactically modified form.)

H2. L and R have the same structure: same replications, same number of functions, same number of
arguments with the same types for each function.

H3. The variables yj defined by new and xj defined by function inputs in L and R are distinct from
other variables defined in R.

H4. Under !i≤n with no restriction in L, one can have only a single function (x1 : T1, . . . , xl : Tl)→ FP .

(One can transform !i≤n((x̃1 : T̃1) → FP1, . . . , (x̃m : T̃m) → FPm, !i1≤n1 . . . , . . . , !im′≤nm′ . . .) into

(!i≤n(x̃1 : T̃1) → FP1, . . . , !
i≤n(x̃m : T̃m) → FPm, !i1≤n′

1 . . . , . . . , !im′≤n′

m′ . . .) in order to eliminate
situations that do not satisfy this requirement.)

H5. Replications in L (resp. R) must have pairwise distinct bounds n. (This strengthens the typing: the
typing then guarantees that, when several variables are accessed with the same array indexes, then
these variables are defined under the same replication.)

H6. For all restrictions new y : T that occur above a term M in L, y occurs in M . (This guarantees
that, in Hypothesis H′3.1 below, zjk[Mj1, . . . , Mjqj

] is defined for all j ≤ l and k ≤ mj . With
hypothesis H4, this guarantees that indexj is well-defined in Hypothesis H′3.1 below.)

H7. Finds in R are of the form

find (
⊕m

j=1
ũj ≤ ñj suchthat defined(zj1[ũj1], . . . , zjlj [ũjlj]) ∧Mj then FPj) else FP ′

where ũjk is the concatenation of a prefix of the current replication indexes (the same prefix for
all k) and a non-empty prefix of ũj , and at least one ũjk for 1 ≤ k ≤ lj is the concatenation of a
prefix of the current replication indexes with the whole sequence ũj . Furthermore, there must exist
k ∈ {1, . . . , lj} such that for all k′ 6= k, zjk′ is defined syntactically above all definitions of zjk and
ũjk′ is a prefix of ũjk. (This implies that the same find cannot access variables defined in different
functions under the same replication in R.) Finally, variables zjk must not be defined by a find in
R. (Otherwise, the transformation would be considerably more complicated.)

Such equivalences L ≈ R are used by the prover by replacing a process Q0 observationally equivalent
to C[[[L]]] with a process Q′0 observationally equivalent to C[[[R]]], for some evaluation context C. We now
give sufficient conditions for a process to be equivalent to C[[[L]]]. These conditions essentially guarantee
that all uses of certain secret variables of Q0, in a set S, can be implemented by calling functions of L.

We first define the function extract used in order to extract information from the left- or right-hand
sides of the equivalence.

extract((x1 : T1, . . . , xl : Tl)→ M, ()) = (x1 : T1, . . . , xl : Tl)→ M

extract(!i≤nnew y1 : T1; . . . ;new yl : Tl; (G1, . . . , Gm), (j1, . . . , jk)) =

(y1 : T1, . . . , yl : Tl), extract(Gj1 , (j2, . . . , jk))

extract((G1, . . . , Gm), (j0, . . . , jk)) = extract(Gj1 , (j1, . . . , jk))

We rename the variables of Q0 such that variables of L and R do not occur in Q0. Assume that
there exist a set of variables S and a set M of occurrences of terms in Q0 such that:

H′1. S ∩ V = ∅.
H′2. No term inM occurs in the condition part of a find (defined(M1, . . . , Ml)∧M) or in the channel of

an input.

A Computationally Sound Mechanized Prover for Security Protocols 23

H′3. For each M ∈M, there exist a sequence BL(M) = (j0, . . . , jl) such that extract(L,BL(M)) = (y11 :
T11, . . . , y1m1 : T1m1), . . . , (yl1 : Tl1, . . . , ylml

: Tlml
), (x1 : T1, . . . , xm : Tm)→ N and a substitution σ

such that M = σN (σ applies to the abbreviated form of N in which we write x instead of x[̃i]) and

H′3.1. for all j ≤ l and k ≤ mj , σyjk is a variable access zjk[Mj1, . . . , Mjqj
], with zjk ∈ S. We define

zjk = varImL(yjk, M). All definitions of zjk in Q0 are of the form new zjk[. . .] : Tjk, and
for all k ≤ mj , they occur under the same replications (but they may occur under different
replications for different values of j). The sequence of array indexes Mj1, . . . , Mjqj

is the same
for all k ≤ mj (but may depend on j). We denote by indexj(M) a substitution that maps
the current replication indexes at the definition of zjk to Mj1, . . . , Mjqj

respectively. If ml = 0,
indexl(M) is not set by the previous definition, so we set indexl(M) to map the current replication
indexes at M to themselves. When j 6= j ′ or k 6= k′, zjk 6= zj′k′ . For each j < l, there exists a
substitution ρj(M) such that indexj(M) = indexj+1(M) ◦ ρj(M) and the image of ρj(M) does
not contain the current replication indexes at M . We denote by im indexj(M) the sequence
image by indexj(M) of the sequence of current replication indexes at the definition of zjk (so,
im indexj(M) = (Mj1, . . . , Mjqj

)). We define im ρj(M) similarly.
H′3.2. for all j ≤ m, σxj is a term of type Tj .
H′3.3. all occurrences in Q0 of a variable in S are either as zjk above or at the root of an argument of

a defined test in a find process.

To make it precise which term M each element refers to, we add M as a subscript, writing yjk,M for
yjk, zjk,M for zjk, Tjk,M for Tjk, xj,M for xj , Tj,M for Tj , NM for N , and σM for σ. We also define
nNewj,M = mj , nNewSeqM = l, and nInputM = m.

H′4. We say that two terms M, M ′ ∈ M share the first l′ sequences of random variables when yjk,M =
yjk,M ′ and zjk,M = zjk,M ′ for all j ≤ l′ and k ≤ nNewj,M = nNewj,M ′ 6= 0. Let l′ be the greatest
integer such that M and M ′ share the first l′ sequences of random variables. Then

H′4.1. the sets of variables {zjk,M | j > l′ and k ≤ nNewj,M} and {zjk,M ′ | j > l′ and k ≤ nNewj,M ′}
must be disjoint.

H′4.2. ρj(M) = ρj(M
′) for all j < l′.

H′4.3. if l′ = nNewSeqM and NM = NM ′ , then there exists M0 such that M = (indexl′(M))M0,
M ′ = (indexl′(M

′))M0, and M0 does not contain the current replication indexes at M or M ′.

Then there exists a context C such that Q0 ≈
V
0 C[[[L]]].

Terms in M must not occur in conditions of find (Hypothesis H′2) because such terms may refer
to variables defined by find , and by the transformation, these variables might be moved outside their
scope, thus violating Invariant 2. Terms inM must not occur in the channel of an input, because after
the transformation, the input process might need to perform computations by find or let , forbidden
by the syntax. (This requirement is not a limitation in practice, since terms in channels of inputs are
typically the current replication indexes, so they do not contain cryptographic primitives.)

In Hypothesis H′3, the sequence BL(M) indicates which branch of L corresponds to the term M .
Hypothesis H′3.2 checks that the values received by inputs in L are of the proper type. Hypoth-

esis H′3.1 checks that variables zjk,M that correspond to variables defined by new in L are of the
proper type. The variables yjk defined by new in L are used only in terms N in L. Correspondingly,
Hypothesis H′3.3 checks that the corresponding variables zjk,M ∈ S are not used elsewhere in Q0 and
Hypothesis H′1 checks that they cannot be used directly by the context.

In L, for distinct j, k, the variables yjk correspond to independent random numbers. Correspondingly,
Hypothesis H′3.1 requires that the variables zjk,M are created by different restrictions for distinct j, k.
In L, the variables yjk are accessed with the same indexes for any k (but a fixed j). Correspondingly,
Hypothesis H′3.1 requires that the variables zjk,M are accessed with the same indexes im indexj(M)
for any k. When instances of N and N ′ both refer to yjk with the same indexes, then they also refer
to yj′k′ with the same indexes when j ′ ≤ j. Correspondingly, if M and M ′ refer to the same zjk, by

24 Bruno Blanchet

Hypothesis H′4.1, they also refer to the same zj′k′ for j′ ≤ j. Moreover, if indexj(M) and indexj(M
′)

evaluate to the same bitstrings, then indexj′(M) and indexj′(M
′) also evaluate to the same bitstrings,

since indexj′(M) = indexj(M) ◦ ρj−1(M) ◦ . . . ◦ ρj′(M) by Hypothesis H′3.1 and ρk(M) = ρk(M
′) for

k < j by Hypothesis H′4.2.
Finally, a term N in L is evaluated at most once for each value of the indexes of yl1, . . . , ylml

, so
N is computed for a single value of the arguments x1, . . . , xm. Correspondingly, by Hypothesis H′4.3,
when M and M ′ share the l = nNewSeqM sequences of random variables and indexl(M) and indexl(M

′)
evaluate to the same bitstring, then M and M ′ evaluate to the same bitstring.

These conditions guarantee that we can establish a correspondence from the array cells of variables
of S in Q0 to the array cells of variables defined by new in L, and that this correspondence is an
injective function; moreover, they also establish a correspondence between the terms σMx where is a
function argument in L, and the cells of x. More precisely, let ĩ and ĩ′ be the sequences of current
replication indexes at NM in L and at M in Q0, respectively. There exists a function mapIdxM that
maps the array indexes at M in Q0 to the array indexes at NM in L: the evaluation of M when ĩ′ = ã
will correspond in C[[[L]]] to the evaluation of NM when ĩ = mapIdxM (ã). Thus, σM and mapIdxM

induce a correspondence between Q0 and L: for all M ∈M, for all x[ĩ′′] that occur in NM , (σMx){ã/ĩ′}
corresponds to x[ĩ′′]{mapIdxM (ã)/̃i}, that is, (σMx){ã/ĩ′} in a trace of Q0 has the same value as
x[ĩ′′]{mapIdxM (ã)/̃i} in the corresponding trace of C[[[L]]] (ĩ′′ is a prefix of ĩ).

For example, consider a process Q0 that contains M1 = enc(M ′
1, kgen(xr), x

′
r[i1]) and M2 = enc(M ′

2,
kgen(xr), x

′′
r [i2]) with i1 ≤ n1, i2 ≤ n2, and xr, x

′
r, x
′′
r bound by restrictions. Let S = {xr, x

′
r, x
′′
r}, M =

{M1, M2}, and NM1 = NM2 = enc(x[i′, i], kgen(r[i′]), r′[i′, i]). The functions mapIdxM1
and mapIdxM2

are defined by mapIdxM1
(a1) = (1, a1) for a1 ∈ [1, Iη(n1)] and mapIdxM2

(a2) = (1, a2 + Iη(n1)) for
a2 ∈ [1, Iη(n2)]. Then M ′

1{a1/i1} corresponds to x[1, a1], xr to r[1], x′r[a1] to r′[1, a1], M ′
2{a2/i2} to

x[1, a2 + Iη(n1)], and x′′r [a2] to r′[1, a2 + Iη(n1)]. The functions mapIdxM1
and mapIdxM2

are such that
xr′ [a1] and xr′′ [a2] never correspond to the same cell of r′; indeed, xr′ [a1] and xr′′ [a2] are independent
random numbers in Q0, so their images in C[[[L]]] must also be independent random numbers.

The above correspondence must satisfy the following soundness conditions: when x is a function
argument in L, the term that corresponds to x[ã′] must have the same type as x[ã′], and when two
terms correspond to the same x[ã′], they must evaluate to the same value (Hypothesis H′4.3); when x is
bound by new x : T in L, the term that corresponds to x[ã′] must be evaluate to z[ã′′] where z ∈ S and
z is bound by new z : T in Q0, and the relation that associates z[ã′′] to x[ã′] is an injective function.
(It is easy to check that, in the previous example, these conditions are satisfied.)

We now describe how we construct a process Q′0 such that Q′0 ≈
V
0 C[[[R]]].

– We first transform the right-hand side of the equivalence, R, as follows: for each j1, . . . , jl, if
extract(L, (j1, . . . , jl)) = (y11 : T11, . . . , y1m1 : T1m1), . . . , (yl1 : Tl1, . . . , ylml

: Tlml
), (x1 : T1, . . . , xm :

Tm) → N with ml 6= 0 and extract(R, (j1, . . . , jl)) = (y′11 : T ′11, . . . , y
′
1m′

1
: T ′1m′

1
), . . . , (y′l1 :

T ′l1, . . . , y
′
lm′

l
: T ′

lm′

l
), (x1 : T1, . . . , xm : Tm)→ FP , for each new z : T in FP ,

• we add z in the sequence of random variables y′l1 : T ′l1, . . . , y
′
lm′

l
: T ′

lm′

l
;

• if z does not occur in defined conditions of find in R, we remove new z : T from FP ;
• otherwise, we replace new z : T with let z′ : T = cst for some constant cst and add z′[M̃] to

each defined condition of R that contains z[M̃].
(In the right-hand side, a new random number must be chosen exactly for each different call to
the function (x1 : T1, . . . , xm : Tm)→ FP . This would not be guaranteed without that transforma-
tion, because when the left-hand side N is evaluated at several occurrences with the same random
numbers yl1 : Tl1, . . . , ylml

: Tlml
(ml 6= 0), these occurrences all correspond to a single call to

(x1 : T1, . . . , xm : Tm)→ N , so a single call to (x1 : T1, . . . , xm : Tm)→ FP , but we create a copy of
FP for each occurrence. After the transformation, FP contains no choice of random numbers, so we
can evaluate it several times without changing the result. When ml = 0, evaluations of N at several

A Computationally Sound Mechanized Prover for Security Protocols 25

occurrences can correspond to different calls to (x1 : T1, . . . , xm : Tm) → N , so the transformation
is not necessary.)

– For each M ∈ M, let extract(R,BL(M)) = (y′11,M : T ′11,M , . . . , y′1m′

1,M
: T ′1m′

1,M
), . . . , (y′l1,M :

T ′l1,M , . . . , y′
lm′

l
,M

: T ′
lm′

l
,M

), (x1,M : T1,M , . . . , xm,M : Tm,M) → FPM with l = nNewSeqM , m =

nInputM and we define nNew′j,M = m′j . We create fresh variables z′jk,M = varImR(y′jk,M , M) for each

j ≤ nNewSeqM , k ≤ nNew′j,M , and M ∈ M, such that if M and M ′ share the first l′ sequences of
random variables, then z′jk,M = z′jk,M ′ for j ≤ l′ and k ≤ nNew′j,M . All variables z′jk,M are otherwise
pairwise distinct.
We also create a fresh variable varImR(xj,M , M) for each j ≤ nInputM and each M ∈ M, and a
fresh variable varImR(z, M) for each variable z defined by let or new in FPM and each M ∈M.

– If a defined condition of a find contains zj1,M [M1, . . . , Ml′] for some M , we add defined(z′jk′,M [M1,

. . . , Ml′]) for all k′ ≤ nNew′j,M to this condition. (So that accesses to z′jk′,M [M1, . . . , Ml′] created
when transforming term M satisfy Invariant 2, since accesses to zj1,M [M1, . . . , Ml′] occur in M and
satisfy Invariant 2.)

– When x ∈ S occurs at the root of a term Mk in a condition defined(M1, . . . , Ml), we replace its
definition new x : T ; Q with let x : T = cst in Q for some constant cst; when it does not occur in
defined tests, we remove its definition. If x = zj1,M for some M , we add new z′jk,M : T ′jk,M for each

k ≤ nNew′j,M where new x : T was.
– For each term M ∈ M, let PM = CM [M] be the smallest process containing M . (Note that M

never occurs in an input, so PM is an output process.) Let l = nNewSeqM . We replace PM with
(new z′lk,M : T ′lk,M ;)k≤nNew′

l,M
P ′M if nNewl,M = 0 and nNew′l,M > 0, with P ′M otherwise, where

– P ′M = (let varImR(xk,M , M) : Tk,M = σMxk,M in)k≤nInputM
transfφ0,CM

(FPM).
– φ0 is defined as follows:

φ0(xj,M [i1, . . . , il]) = varImR(xj,M , M)[i′1, . . . , i
′
l′]

φ0(z[i1, . . . , il]) = varImR(z, M)[i′1, . . . , i
′
l′]

φ0(y
′
jk,M [i1, . . . , ij]) = varImR(y′jk,M , M)[im indexj(M)]

where i1, . . . , il are the current replication indexes at the definition of xj,M in R, i′1, . . . , i
′
l′ are the

current replication indexes at M in Q0, and z is a variable defined by let or new in FPM .
– A function φ from array accesses to array accesses is extended to terms as substitution, by φ(f(M1,
. . . , Mm)) = f(φ(M1), . . . , φ(Mm)).
– transfφ,CM

(FP) is defined recursively as follows:

transfφ,CM
(M ′) = CM [φ(M ′)]

transfφ,CM
(new z : T ; FP ′) = new varImR(z, M) : T ; transfφ,CM

(FP ′)

transfφ,CM
(let z : T = M ′ in FP ′) = let varImR(z, M) : T = φ(M ′) in transfφ,CM

(FP ′)

transfφ,CM
(if M1 then FP1 else FP2) = if φ(M1) then transfφ,CM

(FP1) else transfφ,CM
(FP2)

transfφ,CM
(find(

⊕m

j=1
FBj) else FP ′) = find(

⊕m

j=1
transfφ,CM

(FBj)) else transfφ,CM
(FP ′)

transfφ,CM
(ũ ≤ ñ suchthat defined(zk[Mk1, . . . , Mkl′

k
]1≤k≤l) ∧M1 then FP ′) =

⊕
M ′∈M′

ũ′ ≤ ñ′ suchthat defined(φ′(zk[Mk1, . . . , Mkl′
k
])1≤k≤l)∧

im indexj1(M
′){ũ′/ĩ′} = im indexj1(M) ∧ φ′(M1) then transfφ′,CM

(FP ′)

where j1 is the length of the prefix of the current replication indexes that occurs in Mk1, . . . , Mkl′
k

(by hypothesis H7); M′ is the set of M ′ ∈ M such that varImR(zk, M
′) is defined for k ≤ l and

M ′ and M share the first j1 sequences of random variables; ĩ′ is the sequence of current replication

26 Bruno Blanchet

indexes at M ′; ũ′ is a sequence formed with a fresh variable for each variable in ĩ′; ñ′ is the se-
quence of bounds of replications above M ′; φ′ is an extension of φ with φ′(zk[Mk1, . . . , Mkl′

k
]) =

varImR(zk, M
′)[im indexj(M

′){ũ′/ĩ′}] if zk = y′jk′,M ′ for some k′, and φ′(zk[Mk1, . . . , Mkl′
k
]) =

varImR(zk, M
′)[ũ′] if zk is defined by let or by a function input. Optimizations for the definition of

transfφ,CM
(FB) are presented in Appendix C.

The transformation essentially consists in two parts. First, add the restrictions to create random vari-
ables that correspond to random variables of R. We create the variables z ′jk,M at the place where zj1,M

was created in the initial game (We could have chosen zjk′,M for any k′.), or when there is no zj1,M , we
have j = nNewSeqM and we create z′jk,M just before evaluating M . Second, we transform the term M
itself into the corresponding functional process of R, FPM . The only delicate part for evaluating FPM

is the case of find : instead of looking up arrays of R, we look up the corresponding arrays of Q′0 given
by the mapping φ.

The following proposition shows the soundness of the transformation. It is proved in Appendix B.5.

Proposition 4. Let Q0 be a process that satisfies Invariants 1, 2, and 3, and Q′0 the process obtained
from Q0 by the above transformation. Then Q′0 satisfies Invariants 1, 2, and 3, and if [[L]] ≈ [[R]] for all
polynomials maxlenη(cj0,...,jl

) and Iη(n) where n is any replication bound of L or R, then Q0 ≈
V Q′0.

We compute the possible values of the sets S and M by fixpoint iteration. We start with M = ∅
and S containing a single variable of Q0 bound by a restriction. (We try all possible variables.) When
a term M of Q0 contains a variable in S, we try to find a function in L that corresponds to M , and
if we succeed, we add M to M, and add to S variables in M that correspond to variables bound by
restrictions in L. (If we fail, the transformation is not possible.) We continue until a fixpoint is reached,
in which case all occurrences of variables of S are in terms of M.

Example 4. In order to treat Example 1, the prover is given as input the indication that Tmr, Tr, T
′
r,

and Tk are fixed-length types; the type declarations for the functions mkgen,mkgen ′ : Tmr → Tmk,
mac,mac′ : bitstring × Tmk → Tms, check , check ′ : bitstring × Tmk × Tms → bool , kgen, kgen ′ : Tr → Tk,
enc, enc′ : bitstring × Tk × T ′r → Te, dec : Te × Tk → bitstring⊥, k2b : Tk → bitstring , i⊥ : bitstring →
bitstring⊥, Z : bitstring → bitstring , and the constant Zk : bitstring ; the equations (mac), (mac ′),
(enc), and ∀x : Tk, Z(k2b(x)) = Zk (which expresses that all keys have the same length); the indication
that k2b and i⊥ are poly-injective (which generates the equations (k2b) and similar equations for i⊥);
equivalences L ≈ R for mac (maceq) and encryption (enceq); and the process Q0 of Example 1.

The prover first applies RemoveAssign(xmk) to the process Q0 of Example 1, as described in
Example 2. The process can then be transformed using the security of the mac. We take S = {x′r}, M1 =
mac(xm[i],mkgen(x′r)), M2 = check(x′m[i′],mkgen(x′r), xma[i

′]), and M = {M1, M2}. We have NM1 =
mac(x[i′′, i],mkgen(r[i′′])), NM2 = check(m[i′′, i′],mkgen(r[i′′]), ma[i′′, i′]), mapIdxM1

(a1) = (1, a1), and
mapIdxM2

(a2) = (1, a2), so xm[a1] corresponds to x[1, a1], x′r to r[1], x′m[a2] to m[1, a2], and xma[a2] to
ma[1, a2].

After transformation, we obtain the following process Q′0:

Q′0 = start();new xr : Tr; let xk : Tk = kgen(xr) in new x′r : Tmr; c〈〉; (Q
′
A | Q

′
B)

Q′A = !i≤ncA[i]();new x′k : Tk;new x′′r : T ′r; let xm : bitstring = enc(k2b(x′k), xk, x
′′
r) in

cA[i]〈xm,mac′(xm,mkgen ′(x′r))〉

Q′B = !i
′≤ncB[i′](x′m, xma);find u ≤ n suchthat defined(xm[u]) ∧ x′m = xm[u] ∧

check ′(x′m,mkgen ′(x′r), xma) then (if 1 then let i⊥(k2b(x′′k)) = dec(x′m, xk) in cB[i′]〈〉)

else (if 0 then let i⊥(k2b(x′′k)) = dec(x′m, xk) in cB[i′]〈〉)

A Computationally Sound Mechanized Prover for Security Protocols 27

The initial definition of x′r is removed and replaced with a new definition, which we still call x′r. The
term mac(xm,mkgen(x′r)) is replaced with mac ′(xm,mkgen ′(x′r)). The term check(x′m,mkgen(x′r), xma)
becomes find u ≤ n suchthat defined(xm[u]) ∧ x′m = xm[u] ∧ check ′(x′m,mkgen ′(x′r), xma) then 1 else 0
which yields Q′B after transformation of functional processes into processes. The process looks up the
message x′m in the array xm, which contains the messages whose mac has been computed with key
mkgen(x′r). If the mac of x′m has never been computed, the check always fails (it returns 0) by the
definition of security of the mac. Otherwise, it returns 1 when check ′(x′m,mkgen ′(x′r), xma).

After applying Simplify, Q′A is unchanged and Q′B becomes

Q′B = !i
′≤ncB[i′](x′m, xma);find u ≤ n suchthat defined(xm[u], x′k[u]) ∧ x′m = xm[u] ∧

check ′(x′m,mkgen ′(x′r), xma) then let x′′k : Tk = x′k[u] in cB[i′]〈〉

First, the tests if 1 then and if 0 then are simplified. The term dec(x′m, xk) is simplified knowing x′m =
xm[u] by the find condition, xm[u] = enc(k2b(x′k[u]), xk, x

′′
r [u]) by the assignment that defines xm, xk =

kgen(xr) by the assignment that defines xk, and dec(enc(m, kgen(r), r′), kgen(r)) = i⊥(m) by (enc).
So we have dec(x′m, xk) = i⊥(k2b(x′k[u])). By injectivity of i⊥ and k2b, the assignment to x′′k simply
becomes x′′k = x′k[u], using the equations ∀x : bitstring , i−1

⊥ (i⊥(x)) = x. and ∀x : Tk, k2b−1(k2b(x)) = x.
After applying RemoveAssign(xk), one can apply the security of encryption: enc(k2b(x′k), kgen(xr),

x′′r) becomes enc′(Z(k2b(x′k)), kgen(xr), x
′′
r). After Simplify, it becomes enc ′(Zk, kgen(xr), x

′′
r), using

∀x : Tk, Z(k2b(x)) = Zk (which expresses that all keys have the same length).

Using lists instead of arrays simplifies this transformation: we do not need to add instructions that
insert values in the list, since all variables are always implicitly arrays. Moreover, if there are several
occurrences of mac(xi, k) with the same key in the initial process, each check(mj , k, maj) is replaced with
a find with one branch for each occurrence of mac. Therefore, the prover distinguishes automatically
the cases in which the checked mac maj comes from each occurrence of mac, that is, it distinguishes
cases depending on the value of i such that mj = xi. Typically, distinguishing these cases is useful in
the following of the proof. (A similar situation arises for other cryptographic primitives specified using
find .)

4 Criteria for Proving Secrecy Properties

Let us now define syntactic criteria that allow us to prove secrecy properties of protocols. We use
if defined(M) then P as syntactic sugar for find suchthat defined(M) ∧ 1 then P else yield〈〉.

Definition 5 (One-session secrecy). The process Q preserves the one-session secrecy of x when
Q | Qx ≈ Q | Q′x, where

Qx = c(u1 : [1, n1], . . . , um : [1, nm]); if defined(x[u1, . . . , um]) then c〈x[u1, . . . , um]〉

Q′x = c(u1 : [1, n1], . . . , um : [1, nm]); if defined(x[u1, . . . , um]) then new y : T ; c〈y〉

c /∈ fc(Q), u1, . . . , um /∈ var(Q), and E(x) = [1, n1]× . . .× [1, nm]→ T .

Intuitively, the adversary cannot distinguish a process that outputs the value of the secret from one
that outputs a random number. The adversary performs a single test query, modeled by Qx and Q′x.

Proposition 5 (One-session secrecy). Consider a process Q such that there exists a set of variables
S such that 1) the definitions of x are either restrictions new x[̃i] : T and x ∈ S, or assignments
let x[̃i] : T = z[M1, . . . , Ml] where z is defined by restrictions new z[i′1, . . . , i

′
l] : T , and z ∈ S, and 2)

all accesses to variables y ∈ S in Q are of the form “let y′ [̃i] : T ′ = y[M1, . . . , Ml]” with y′ ∈ S. Then
Q | Qx ≈0 Q | Q′x, hence Q preserves the one-session secrecy of x.

28 Bruno Blanchet

Intuitively, only the variables in S depend on the restriction that defines x; the sent messages and the
control flow of the process are independent of x, so the adversary obtains no information on x. In the
implementation, the set S is computed by fixpoint iteration, starting from x or z and adding variables
y′ defined by “let y′ [̃i] : T ′ = y[M1, . . . , Ml]” when y ∈ S.

Definition 6 (Secrecy). The process Q preserves the secrecy of x when Q | Rx ≈ Q | R′x, where

Rx = !i≤nc(u1 : [1, n1], . . . , um : [1, nm]); if defined(x[u1, . . . , um]) then c〈x[u1, . . . , um]〉

R′x = !i≤nc(u1 : [1, n1], . . . , um : [1, nm]); if defined(x[u1, . . . , um]) then find u′ ≤ n suchthat

defined(y[u′], u1[u
′], . . . , um[u′]) ∧ u1[u

′] = u1 ∧ . . . ∧ um[u′] = um then c〈y[u′]〉 else new y : T ; c〈y〉

c /∈ fc(Q), u1, . . . , um, u′ /∈ var(Q), E(x) = [1, n1]× . . .× [1, nm]→ T , and Iη(n) ≥ Iη(n1)× . . .× Iη(nm).

Intuitively, the adversary cannot distinguish a process that outputs the value of the secret for several
indexes from one that outputs independent random numbers. In this definition, the adversary can
perform several test queries, modeled by Rx and R′x. This corresponds to the “real-or-random” definition
of security [4]. (As shown in [4], this notion is stronger than the more standard approach in which the
adversary can perform a single test query and some reveal queries, which always reveal x[u1, . . . , um].)

Proposition 6 (Secrecy). Assume that Q satisfies the hypothesis of Proposition 5.
When T is a trace of C[Q] for some evaluation context C, we define defRestrT (x[ã]), the defining

restriction of x[ã] in trace T , as follows: if x[ã] is defined by new x[ã] : T in T , defRestrT (x[ã]) = x[ã];
if x[ã] is defined by let x[ã] : T = z[M1, . . . , Ml], defRestrT (x[ã]) = z[a′1, . . . , a

′
l] where E, Mk ⇓ a′k for

all k ≤ l and E is the environment in T at the definition of x[ã].
Assume that for all evaluation contexts C acceptable for Q, 0, {x}, the probability Pr[T ∧ ã 6=

ã′ ∧ defRestrT (x[ã]) = defRestrT (x[ã′])] is negligible. Then Q preserves the secrecy of x.

Intuitively, the required condition guarantees that if ã 6= ã′, then defRestrT (x[ã]) 6= defRestrT (x[ã′])
except in cases of negligible probability, so x[ã] and x[ã′] are defined by different restrictions so they are
independent random numbers.

In order to check this condition, we use the following algorithm. For each definition P of x, we define
defRestrP (x[i1, . . . , im]) as follows:

defRestrP (x[i1, . . . , im]) =

x[i1, . . . , im] if P = new x[i′1, . . . , i
′
m] : T ; P ′

z[M1, . . . , Ml]{i1/i
′
1, . . . , im/i′m}

if P = let x[i′1, . . . , i
′
m] : T = z[M1, . . . , Ml] in P ′

We also define TrueFactsP [i1, . . . , im] = TrueFactsP {i1/i
′
1, . . . , im/i′m} in both cases. For each pair

of definitions of x, P, P ′, let defRestrP (x[i1, . . . , im]) = z[M1, . . . , Ml] and defRestrP ′(x[i′1, . . . , i
′
m]) =

z′[M ′
1, . . . , M

′
l′]. We check that, if z = z′ then TrueFactsP [i1, . . . , im] ∪ TrueFactsP ′ [i′1, . . . , i

′
m] ∪ {i1 6=

i′1 ∨ . . . ∨ im 6= i′m, M1 = M ′
1, . . . , Ml = M ′

l} yields a contradiction by the equational prover de-
scribed in Section 3.2. When this check succeeds, the second condition holds. Indeed, this means that
defRestrP (x[i1, . . . , im]) = defRestrP ′(x[i′1, . . . , i

′
m]) and (i1, . . . , im) 6= (i′1, . . . , i

′
m) yield a contradiction

(taking into account the facts TrueFactsP [i1, . . . , im] TrueFactsP ′ [i′1, . . . , i
′
m] that are known to hold

when x is defined by the considered definitions). So when (i1, . . . , im) 6= (i′1, . . . , i
′
m), x[i1, . . . , im] and

x[i′1, . . . , i
′
m] are defined by different restrictions, as desired.

This notion of secrecy composed with correspondence assertions [45] can be used to prove security

of a key exchange. (Correspondence assertions are properties of the form “if some event e(M̃) has

been executed then some events ei(M̃i) for i ≤ m have been executed”.) We postpone this point to a
future paper, since we do not present the verification of correspondence assertions in this paper. (This
verification is currently being implemented.)

A Computationally Sound Mechanized Prover for Security Protocols 29

Lemma 2. If Q ≈{x} Q′ and Q preserves the one-session secrecy of x then Q′ preserves the one-session
secrecy of x. The same result holds for secrecy.

We can then apply the following technique. When we want to prove that Q0 preserves the (one-session)
secrecy of x, we transform Q0 by the transformations described in Section 3 with V = {x}. By Proposi-
tions 1, 2, and 4, we obtain a process Q′0 such that Q0 ≈

V Q′0. We use Propositions 5 or 6 to show that
Q′0 preserves the (one-session) secrecy of x, and finally conclude that Q0 also preserves the (one-session)
secrecy of x by Lemma 2.

Example 5. After the transformations of Example 4, the only variable access to x′k in the considered
process is let x′′k : Tk = x′k[u] and x′′k is not used in the considered process. So by Proposition 5, the
considered process preserves the one-session secrecy of x′′k (with S = {x′k, x

′′
k}). By Lemma 2, the process

of Example 1 also preserves the one-session secrecy of x′′k. However, this process does not preserve the
secrecy of x′′k, because the adversary can force several sessions of B to use the same key x′′k, by replaying
the message sent by A. (Accordingly, the hypothesis of Proposition 6 is not satisfied.)

The criteria given in this section might seem restrictive, but in fact, they should be sufficient for all
protocols, provided the previous transformation steps are powerful enough to transform the protocol
into a simpler protocol, on which these criteria can then be applied.

5 Proof Strategy

Up to now, we have described the available game transformations. Next, we explain how we organize
these transformations in order to prove protocols.

The prover uses a simplification procedure for games that applies the transformations Simplify,
MoveNew, RemoveAssign(useless), and SArename(auto). At the beginning of the proof, and
after each successful cryptographic transformation (that is, a transformation of Section 3.3), the prover
executes this simplification procedure, and tests whether the desired security properties are proved, as
described in Section 4. If so, it stops.

In order to perform the cryptographic transformations and the other syntactic transformations,
our proof strategy relies of the idea of advice. Precisely, the prover tries to execute each available
cryptographic transformation in turn. When such a cryptographic transformation fails, it returns some
syntactic transformations that could make the desired transformation work. (These are the advised
transformations.) Then the prover tries to perform these syntactic transformations. If they fail, they may
also suggest other advised transformations, which are then executed. When the syntactic transformations
finally succeed, we retry the desired cryptographic transformation, which may succeed or fail, perhaps
with new advised transformations, and so on.

The prover determines the advised transformations as follows:

– Assume that we try to execute a cryptographic transformation, and need to recognize a certain
term M of L, but we find in Q0 only part of M , the other parts being variable accesses x[. . .] while
we expect function applications. In this case, we advise RemoveAssign(x). For example, if Q0

contains enc(M ′, xk, x
′
r) and we look for enc(xm, kgen(xr), xr′), we advise RemoveAssign(xk). If Q0

contains let xk = mkgen(xr) and we look for mac(xm,mkgen(xr)), we advise RemoveAssign(xk).
(The transformation of Example 2 is advised for this reason.)

– When we try to execute RemoveAssign(x), x has several definitions, and there are accesses to
variable x guarded by find in Q0, we advise SArename(x).

– When we check whether x is secret or one-session secret, we have an assignment let x[̃i] : T =

y[M̃] in P , and there is at least one assignment defining y, we advise RemoveAssign(y).

30 Bruno Blanchet

When we check whether x is secret or one-session secret, we have an assignment let x[̃i] : T =

y[M̃] in P , y is defined by restrictions, y has several definitions, and some variable accesses to y are

not of the form let y′[ĩ′] : T = y[M̃ ′] in P ′, then we advise SArename(y).

These pieces of advice were sufficient in the examples we tried, but one may obviously extend them if
needed.

6 Experimental Results

We have successfully tested our prover on a number of protocols of literature. All these protocols have
been tested in a configuration in which the honest participants are willing to run sessions with the
adversary, and we prove secrecy of keys for sessions between honest participants. In these examples,
shared-key encryption is encoded using a stream cipher and a mac as in Example 1, public-key encryption
is assumed to be IND-CCA2 (indistinguishability under adaptive chosen-ciphertext attacks) [13], public-
key signature is assumed to be secure against existential forgery.

– Otway-Rees [39]: We automatically prove the secrecy of the exchanged key.

– Yahalom [17]: For the original version of the protocol, our prover cannot show one-session secrecy of
the exchanged key, because the protocol is not secure, at least using encrypt-then-mac as definition
of encryption. Indeed, there is a confirmation round {NB}K where K is the exchanged key. This
message may reveal some information on K. After removing this confirmation round, our prover
shows the one-session secrecy of K. However, it cannot show the secrecy of K, since in the absence
of a confirmation round, the adversary may force several sessions of Yahalom to use the same key.

– Needham-Schroeder shared-key [37]: Our prover shows one-session secrecy of the exchanged key. It
does not prove the secrecy of the exchanged key, since there is a well known attack [22] in which the
adversary forces several sessions of the protocol to use the same key. Our prover shows the secrecy
for the corrected version [38].

– Denning-Sacco public-key [22]: Our prover cannot show the one-session secrecy of the exchanged key,
since there is an attack against this protocol [2]. One-session secrecy of the exchanged key is proved
for the corrected version [2]. Secrecy is not proved since the adversary can force several sessions of
the protocol to use the same key. (We do not model timestamps in this protocol. In contrast to the
previous examples, we give the main proof steps to the prover manually, as follows:

SArename Rkey

crypto enc rkB

crypto sign rkS

crypto sign rkA

success

The variable Rkey defines a table of public keys, and is assigned at three places, corresponding to
principals A and B, and to other principals defined by the adversary. The instruction SArename

Rkey allows us to distinguish these three cases. The instruction crypto enc rkB means that the
prover should apply the definition of security of encryption (primitive enc), for the key generated
from random number rkB. The instruction success means that prover should check whether the
desired security properties are proved.

– Needham-Schroeder public-key [37]: This protocol is an authentication protocol. Since our prover
cannot check authentication yet, we transform it into a key exchange protocol in several ways, by
choosing for the key either one of the nonces NA and NB shared between A and B, or H(NA, NB)
where H is a hash function (in the random oracle model). When the key is H(NA, NB), one-session
secrecy of the key cannot be proved for the original protocol, due to the well-known attack [32].

A Computationally Sound Mechanized Prover for Security Protocols 31

For the corrected version [32], our prover shows secrecy of the key. For both versions, the prover
cannot prove one-session secrecy of NA or NB. For NB, the failure of the proof corresponds to an
attack: the adversary can check whether it is given NB or a random number by sending {N ′B}pkB

to
B as the last message of the protocol: B accepts if and only if N ′B = NB. For NA, the failure of the
proof comes from limitations of our prover: The prover cannot take into account that NA is accepted
only after all messages that contain NA have been sent, which prevents the previous attack. (This
is the only case in our examples where the failure of the proof comes from limitations of the prover.
This problem could probably be solved by improving the transformation Simplify.) Like for the
Denning-Sacco protocol, we provided the main proof steps to the prover manually, as follows when
the distributed key is NA or NB:

SArename Rkey

crypto sign rkS

crypto enc rkA

crypto enc rkB

success

When the distributed key is H(NA, NB), the proof is as follows:

SArename Rkey

crypto sign rkS

crypto enc rkA

crypto enc rkB

crypto hash

SArename Na_39

simplify

success

The total runtime for all these tests is 60 s on a Pentium M 1.8 GHz.

7 Conclusion

This paper presents a prover for cryptographic protocols sound in the computational model. This prover
works with no or very little help from the user, can handle a wide variety of cryptographic primitives
in a generic way, and produces proofs valid for a polynomial number of sessions in the presence of an
active adversary. Thus, it represents important progress with respect to previous work in this area.

We have recently extended our prover to provide exact security proofs (that is, proofs with an explicit
probability of an attack, instead of the asymptotic result that this probability is negligible) and to prove
correspondence assertions. We leave these extensions for a future paper. In the future, it would also be
interesting to handle even more cryptographic primitives, such as Diffie-Hellman key agreements. (In
order to handle them, the language of equivalences that we use to specify the security properties of
primitives will need to be extended.)

Acknowledgments I warmly thank David Pointcheval for his advice and explanations of the com-
putational proofs of protocols. This project would not have been possible without him. This work was
partly supported by ARA SSIA Formacrypt.

References

1. M. Abadi and J. Jürjens. Formal eavesdropping and its computational interpretation. In N. Kobayashi and
B. Pierce, editors, Theoretical Aspects of Computer Software (TACS’01), volume 2215 of Lecture Notes on
Computer Science, pages 82–94, Sendai, Japan, Oct. 2001. Springer.

32 Bruno Blanchet

2. M. Abadi and R. Needham. Prudent engineering practice for cryptographic protocols. IEEE Transactions
on Software Engineering, 22(1):6–15, Jan. 1996.

3. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational soundness of formal
encryption). Journal of Cryptology, 15(2):103–127, 2002.

4. M. Abdalla, P.-A. Fouque, and D. Pointcheval. Password-based authenticated key exchange in the three-party
setting. In S. Vaudenay, editor, Proceedings of the 2005 International Workshop on Practice and Theory in
Public Key Cryptography (PKC’05), volume 3386 of Lecture Notes on Computer Science, pages 65–84, Les
Diablerets, Switzerland, Jan. 2005. Springer.

5. P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness of formal encryption in the presence of key-cycles.
In S. de Capitani di Vimercati, P. Syverson, and D. Gollmann, editors, Proceedings of the 10th European
Symposium On Research In Computer Security (ESORICS 2005), volume 3679 of Lecture Notes on Computer
Science, pages 374–396, Milan, Italy, Sept. 2005. Springer.

6. M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style cryptographic library.
In 17th IEEE Computer Security Foundations Workshop, Pacific Grove, CA, June 2004. IEEE.

7. M. Backes and B. Pfitzmann. Relating symbolic and cryptographic secrecy. In 26th IEEE Symposium on
Security and Privacy, pages 171–182, Oakland, CA, May 2005. IEEE.

8. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested operations. In
10th ACM conference on Computer and communication security (CCS’03), pages 220–230, Washington D.C.,
Oct. 2003. ACM.

9. M. Backes, B. Pfitzmann, and M. Waidner. Symmetric authentication within a simulatable cryptographic
library. In E. Snekkenes and D. Gollman, editors, Computer Security - ESORICS 2003, 8th European Sympo-
sium on Research in Computer Security, volume 2808 of Lecture Notes on Computer Science, pages 271–290,
Gjøovik, Norway, Oct. 2003. Springer.

10. G. Barthe, J. Cederquist, and S. Tarento. A machine-checked formalization of the generic model and the
random oracle model. In D. Basin and M. Rusinowitch, editors, Second International Joint Conference on
Automated Reasoning (IJCAR’04), volume 3097 of Lecture Notes on Computer Science, pages 385–399, Cork,
Ireland, July 2004. Springer.

11. M. Baudet, V. Cortier, and S. Kremer. Computationally sound implementations of equational theories against
passive adversaries. In L. Caires and L. Monteiro, editors, Proceedings of the 32nd International Colloquium
on Automata, Languages and Programming (ICALP’05), volume 3580 of Lecture Notes on Computer Science,
pages 652–663, Lisboa, Portugal, July 2005. Springer.

12. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption. In
Proceedings of the 38th Symposium on Foundations of Computer Science (FOCS’97), pages 394–403, Miami
Beach, Florida, Oct. 1997. IEEE. Full paper available at http://www-cse.ucsd.edu/users/mihir/papers/
sym-enc.html.

13. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-key
encryption schemes. In H. Krawczyk, editor, Advances in Cryptology - CRYPTO ’98, volume 1462 of Lecture
Notes on Computer Science, pages 26–45, Santa Barbara, California, USA, Aug. 1998. Springer.

14. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining message authentication code.
Journal of Computer and System Sciences, 61(3):362–399, Dec. 2000.

15. M. Bellare and P. Rogaway. The game-playing technique. Cryptology ePrint Archive, Report 2004/331, Dec.
2004. Available at http://eprint.iacr.org/2004/331.

16. B. Blanchet. Automatic proof of strong secrecy for security protocols. In IEEE Symposium on Security and
Privacy, pages 86–100, Oakland, California, May 2004.

17. M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Proceedings of the Royal Society of
London A, 426:233–271, 1989. A preliminary version appeared as Digital Equipment Corporation Systems
Research Center report No. 39, February 1989.

18. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In Proceedings
of the 42nd Symposium on Foundations of Computer Science (FOCS), pages 136–145, Las Vegas, Nevada,
Oct. 2001. IEEE. An updated version is available at Cryptology ePrint Archive, http://eprint.iacr.org/
2000/067.

19. R. Canetti and J. Herzog. Universally composable symbolic analysis of cryptographic protocols (the case of
encryption-based mutual authentication and key exchange). Cryptology ePrint Archive, Report 2004/334,
2004. Available at http://eprint.iacr.org/2004/334.

A Computationally Sound Mechanized Prover for Security Protocols 33

20. V. Cortier and B. Warinschi. Computationally sound, automated proofs for security protocols. In M. Sa-
giv, editor, Proc. 14th European Symposium on Programming (ESOP’05), volume 3444 of Lecture Notes on
Computer Science, pages 157–171, Edimbourg, U.K., Apr. 2005. Springer.

21. A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and M. Turuani. Probabilistic polynomial-time semantics
for a protocol security logic. In L. Caires and L. Monteiro, editors, ICALP 2005: the 32nd International
Colloquium on Automata, Languages and Programming, volume 3580 of Lecture Notes on Computer Science,
pages 16–29, Lisboa, Portugal, July 2005. Springer.

22. D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols. Commun. ACM, 24(8):533–536,
Aug. 1981.

23. S. Halevi. A plausible approach to computer-aided cryptographic proofs. Cryptology ePrint Archive, Report
2005/181, June 2005. Available at http://eprint.iacr.org/2005/181.

24. J. Herzog. A computational interpretation of Dolev-Yao adversaries. In R. Gorrieri, editor, WITS’03 -
Workshop on Issues in the Theory of Security, pages 146–155, Warsaw, Poland, Apr. 2003.

25. R. Janvier, Y. Lakhnech, and L. Mazaré. Completing the picture: Soundness of formal encryption in the pres-
ence of active adversaries. In M. Sagiv, editor, Proc. 14th European Symposium on Programming (ESOP’05),
volume 3444 of Lecture Notes on Computer Science, pages 172–185, Edimbourg, U.K., Apr. 2005. Springer.

26. D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In J. Leech, editor, Computational
Problems in Abstract Algebra, pages 263–297. Pergamon Press, Oxford, U.K., 1970.

27. P. Laud. Handling encryption in an analysis for secure information flow. In P. Degano, editor, Programming
Languages and Systems, 12th European Symposium on Programming, ESOP’03, volume 2618 of Lecture Notes
on Computer Science, pages 159–173, Warsaw, Poland, Apr. 2003. Springer.

28. P. Laud. Symmetric encryption in automatic analyses for confidentiality against active adversaries. In IEEE
Symposium on Security and Privacy, pages 71–85, Oakland, California, May 2004.

29. P. Laud. Secrecy types for a simulatable cryptographic library. In 12th ACM Conference on Computer and
Communications Security (CCS’05), pages 26–35, Alexandria, VA, Nov. 2005. ACM.

30. P. D. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework for protocol
analysis. In ACM Computer and Communication Security (CCS-5), pages 112–121, San Francisco, California,
Nov. 1998.

31. P. D. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. Probabilistic polynomial-time equivalence and
security protocols. In J. Wing, J. Woodcock, and J. Davies, editors, FM’99 World Congress On Formal
Methods in the Development of Computing Systems, volume 1708 of Lecture Notes on Computer Science,
pages 776–793, Toulouse, France, Sept. 1999. Springer.

32. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In Tools and Algorithms
for the Construction and Analysis of Systems, volume 1055 of Lecture Notes on Computer Science, pages 147–
166. Springer, 1996.

33. P. Mateus, J. Mitchell, and A. Scedrov. Composition of cryptographic protocols in a probabilistic polynomial-
time process calculus. In R. Amadio and D. Lugiez, editors, CONCUR 2003 - Concurrency Theory, 14-th
International Conference, volume 2761 of Lecture Notes on Computer Science, pages 327–349, Marseille,
France, Sept. 2003. Springer.

34. D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-Rogaway logic of encrypted expres-
sions. Journal of Computer Security, 12(1):99–129, 2004.

35. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active adversaries. In
M. Naor, editor, Theory of Cryptography Conference (TCC’04), volume 2951 of Lecture Notes on Computer
Science, pages 133–151, Cambridge, MA, USA, Feb. 2004. Springer.

36. J. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilistic polynomial-time calculus for the
analysis of cryptographic protocols. Submitted. Available at http://theory.stanford.edu/people/jcm/

publications.htm, 2004.
37. R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks of computers.

Commun. ACM, 21(12):993–999, Dec. 1978.
38. R. M. Needham and M. D. Schroeder. Authentication revisited. Operating Systems Review, 21(1):7, 1987.
39. D. Otway and O. Rees. Efficient and timely mutual authentication. Operating Systems Review, 21(1):8–10,

1987.
40. A. Ramanathan, J. Mitchell, A. Scedrov, and V. Teague. Probabilistic bisimulation and equivalence for

security analysis of network protocols. In I. Walukiewicz, editor, FOSSACS 2004 - Foundations of Software
Science and Computation Structures, volume 2987 of Lecture Notes on Computer Science, pages 468–483,
Barcelona, Spain, Mar. 2004. Springer.

34 Bruno Blanchet

41. V. Shoup. A proposal for an ISO standard for public-key encryption, Dec. 2001. ISO/IEC JTC 1/SC27.
42. V. Shoup. OAEP reconsidered. Journal of Cryptology, 15(4):223–249, Sept. 2002.
43. C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and M. Waidner. Cryptographically sound theorem proving.

Unpublished manuscript, Feb. 2006.
44. S. Tarento. Machine-checked security proofs of cryptographic signature schemes. In S. de Capitani di Vimer-

cati, P. Syverson, and D. Gollmann, editors, Proceedings of the 10th European Symposium On Research In
Computer Security (ESORICS 2005), volume 3679 of Lecture Notes on Computer Science, pages 140–158,
Milan, Italy, Sept. 2005. Springer.

45. T. Y. C. Woo and S. S. Lam. A semantic model for authentication protocols. In Proceedings IEEE Symposium
on Research in Security and Privacy, pages 178–194, Oakland, California, May 1993.

Appendix

A Modeling other Primitives

This appendix gives the definition of a number of cryptographic primitives in our prover.

A.1 Extensions

Guiding the Application of Equivalences We introduce a small extension to the equivalences
(G1, . . . , Gm) ≈ (G′1, . . . , G

′
m) described in Section 3.3. These equivalences become (G1 mode1, . . . ,

Gm modem) ≈ (G′1, . . . , G
′
m), where modej is either empty or [all]. The mode [all] is an indication for the

prover, to guide the application of the equivalence without changing its semantics. When modej = [all],
M must contain all occurrences in the initial game Q of the root function symbols of terms M inside
Gj . When modej is empty, at least one variable defined by new in Gj must correspond to a variable in
S.

The following hypotheses guarantee the good usage of modes:

H8. At most one modej can be empty. (Otherwise, when several sets of random variables can be chosen
for each Gj , there are many possible combinations for applying the transformation.)

H9. If Gj is of the form !i≤n(x1 : T1, . . . , xl : Tl) → FP without any restriction, then modej = [all]. (A
restriction is needed in the definition of empty mode.)

Relaxing Hypothesis H6 Hypothesis H6 requires that for all restrictions new y : T that occur above
a term N in the left-hand side of an equivalence, y occurs in N . We can relax this hypothesis, by allowing
that some random variables y do not occur in N , provided that the missing variables can be determined
using Hypothesis H′4.1: when some term M shares some variable y in the l′-th sequence of random
variables with some other term M ′, we know that it must also share with M ′ all random variables in
sequences above and including the l′-th sequence; so, knowing the random variables associated to M ′,
we can determine some of those associated to M . The transformation simply fails when the algorithm
described above cannot fully determine the random variables associated to some term M .

Relaxing Hypothesis H′2 Hypothesis H′2 requires that no term N transformed by the equivalence
occurs in the condition part of a find (defined(M1, . . . , Ml) ∧ M). We can relax this hypothesis by
allowing N to occur in M (but not in the defined test), provided the variables ũ bound by this find do
not occur in the following terms in the transformed expression of N :

– N ′ in processes of the form let x : T = N ′ in . . . or if N ′ then . . . else . . .;
– N ′jk and N ′j in processes of the form find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj

[̃i] ≤ njmj
suchthat defined(N ′j1,

. . . , N ′jlj) ∧N ′j then . . .) else

(If the variables ũ bound by find occurred in such terms, the transformation would move them outside
the scope of their definition.)

A Computationally Sound Mechanized Prover for Security Protocols 35

A.2 Public-key cryptography

Signature

Tr large, fixed length; T ′r fixed length

s, s′ : T × Tsk × T ′r → Ts

c, c′ : T × Tpk × Ts → bool

skgen, skgen ′ : Tr → Tsk

pkgen, pkgen ′ : Tr → Tpk

∀m : T, ∀r : Tr, ∀r
′ : T ′r, c(m, pkgen(r), s(m, skgen(r), r′)) = 1

∀m : T, ∀r : Tr, ∀r
′ : T ′r, c

′(m, pkgen ′(r), s′(m, skgen ′(r), r′)) = 1

new x : Tr;new y : Tr; f(x) = f(y) ≈ x = y for f ∈ {pkgen, skgen, pkgen ′, skgen ′}

!i
′′′≤n′′′

new r : Tr; (

!i≤n()→ pkgen(r),

!i
′≤n′

new r′ : T ′r; (x : T)→ s(x, skgen(r), r′)),

!i
′′≤n′′

(m : T, y : Tpk, si : Ts)→ c(m, y, si) [all]

≈

1. !i
′′′≤n′′′

new r : Tr; (

2. !i≤n()→ pkgen ′(r),

3. !i
′≤n′

new r′ : T ′r; (x : T)→ s′(x, skgen ′(r), r′)),

4. !i
′′≤n′′

(m : T, y : Tpk, si : Ts)→

5. find u ≤ n′′′, u′ ≤ n′ suchthat defined(r[u], x[u, u′])∧

6. y = pkgen ′(r[u]) ∧m = x[u, u′] ∧ c′(m, y, si) then 1 else

7. find u ≤ n′′′ suchthat defined(r[u]) ∧ y = pkgen ′(r[u]) then 0 else

8. c(m, y, si)

The first three lines of each side of the equivalence express that the generation of public keys and the
computation of the signature are left unchanged in the transformation. The verification of a signature
c(m, y, si) is replaced with a lookup in the previously computed signatures: if the signature is checked
using one of the keys pkgen ′(r[u]) (that is, if y = pkgen ′(r[u])), then it can be valid only when it has
been computed by the signature oracle s′(x, skgen ′(r[u]), r′), that is, when m = x[u, u′] for some u′.
Lines 5-6 of the right-hand side of the equivalence try to find such a u′ and return 1 when they succeed.
Line 7 of the right-hand side returns 0 when no such u′ is found in lines 5-6, but y = pkgen ′(r[u]) for
some u. The last line handles the case when the key y is not pkgen ′(r[u]). In this case, we check the
signature as before. (Using c and not c′ in the last line of the transformation allows to reapply this
transformation with another value of r.)

We can model deterministic signatures in a similar way, by removing the third argument of s.

IND-CCA2 Public-Key Encryption

Tr large, fixed length; T ′r fixed length

enc, enc′ : T × Tpk × T ′r → Te

dec, dec′ : Te × Tsk → T⊥

36 Bruno Blanchet

skgen, skgen ′ : Tr → Tsk

pkgen, pkgen ′ : Tr → Tpk

i⊥ : T → T⊥ (poly-injective)

∀m : T, ∀r : Tr, ∀r
′ : T ′r, dec(enc(m, pkgen(r), r′), skgen(r)) = i⊥(m)

∀m : T, ∀r : Tr, ∀r
′ : T ′r, dec

′(enc′(m, pkgen ′(r), r′), skgen ′(r)) = i⊥(m)

new x : Tr;new y : Tr; f(x) = f(y) ≈ x = y for f ∈ {pkgen, pkgen ′, skgen, skgen ′}

!i
′′′≤n′′′

new r : Tr; (

!i≤n()→ pkgen(r),

!i
′≤n′

(m : Te)→ dec(m, skgen(r))),

!i
′′≤n′′

new r′ : T ′r; (x : T, y : Tpk)→ enc(x, y, r′) [all]

≈

!i
′′′≤n′′′

new r : Tr; (

!i≤n()→ pkgen ′(r),

!i
′≤n′

(m : Te)→ find u ≤ n′′ suchthat defined(m′[u], x[u], y[u]) ∧ y[u] = pkgen ′(r) ∧m = m′[u] then

i⊥(x[u]) else dec′(m, skgen ′(r))),

!i
′′≤n′′

(x : T, y : Tpk)→

find u′ ≤ n′′′ suchthat defined(r[u′]) ∧ y = pkgen ′(r[u′]) then

let m′ : Te = new r′ : T ′r; enc′(ZT , pkgen ′(r[u′]), r′) in m′

else new r′′ : T ′r; enc(x, y, r′′)

When no decryption is present, this transformation reduces to IND-CPA public key encryption below.

IND-CPA Public-Key Encryption

Tr large, fixed length; T ′r fixed length

enc, enc′ : T × Tpk × T ′r → Te

dec : Te × Tsk → T⊥

skgen : Tr → Tsk

pkgen, pkgen ′ : Tr → Tpk

i⊥ : T → T⊥ (poly-injective)

∀m : T, ∀r : Tr, ∀r
′ : T ′r, dec(enc(m, pkgen(r), r′), skgen(r)) = i⊥(m)

new x : Tr;new y : Tr; f(x) = f(y) ≈ x = y for f ∈ {pkgen, skgen, skgen ′}

!i≤nnew r : Tr; ()→ pkgen(r),

!i
′≤n′

new r′ : T ′r; (x : T, y : Tpk)→ enc(x, y, r′) [all]

≈

!i≤nnew r : Tr; ()→ pkgen ′(r),

!i
′≤n′

(x : T, y : Tpk)→ find u ≤ n suchthat defined(r[u]) ∧ y = pkgen ′(r[u]) then

new r′ : T ′r; enc′(ZT , pkgen ′(r[u]), r′) else new r′′ : T ′r; enc(x, y, r′′)

A Computationally Sound Mechanized Prover for Security Protocols 37

A.3 Hash functions

Collision Resistant Hash Function

Tk fixed length

h : Tk × bitstring → T

new k : Tk; ∀x : bitstring , y : bitstring , h(k, x) = h(k, y) ≈ x = y

Hash Function in the Random Oracle Model

T fixed length

h : bitstring → T

!i≤n(x : bitstring)→ h(x) [all]

≈0

!i≤n(x : bitstring)→ find u ≤ n suchthat defined(x[u], r[u]) ∧ x = x[u] then r[u] else new r : T ; r

Note that the game must include, in parallel with the protocol to verify, the process !i≤nc(x : bitstring);
c〈h(x)〉. Otherwise, the prover would incorrectly assume that the adversary cannot compute the hash
function. This particularity is related to the fact that a random oracle is unimplementable: otherwise,
the adversary could implement it without being explicitly given access to it.

A.4 Xor

xor : T × T → T (commutative)

∀x : T, y : T, xor(x, xor(x, y)) = y.

!i≤nnew k : T ; (x : T)→ xor(x, k)

≈0

!i≤nnew k : T ; (x : T)→ k

B Proofs

B.1 Proofs for Section 2.3

Property P1: Each Variable is Defined at Most Once We define the multiset of variable accesses
that may be defined by a process as follows:

Defined(0) = ∅

Defined(Q1 | Q2) = Defined(Q1)]Defined(Q2)

Defined(!i≤nQ) =]a∈[1,Iη(n)]Defined(Q{a/i})

Defined(newChannel c; Q) = Defined(Q)

Defined(c[M1, . . . , Ml](x1[ã] : T1, . . . , xk[ã] : Tk); P) = {xj [ã] | j ≤ k}]Defined(P)

Defined(c[M1, . . . , Ml]〈N1, . . . , Nk〉; Q) = Defined(Q)

Defined(new x[ã] : T ; P) = {x[ã]}]Defined(P)

Defined(let x[ã] : T = M in P) = {x[ã]}]Defined(P)

Defined(if M then P else P ′) = max(Defined(P),Defined(P ′))

38 Bruno Blanchet

Defined(find (
⊕m

j=1
ũj [ã] ≤ ñj suchthat defined(Mj1, . . . , Mjlj) ∧Mj then Pj) else P) =

max(
m

max
j=1

Defined(Pj),Defined(P))

We define Defined(E) = Dom(E), Defined(E, P,Q, C) = Defined(E)]Defined(P)]]Q∈QDefined(Q).

Invariant 4 (Single definition, for executing games). The semantic configuration E, P,Q, C sat-
isfies Invariant 4 if and only if Defined(E, P,Q, C) does not contain duplicate elements.

Lemma 3. If Q0 satisfies Invariant 1, then initConfig(Q0) satisfies Invariant 4.

Lemma 4. If E, P,Q, C
p
−→t E′, P ′,Q′, C′ with p > 0 and E, P,Q, C satisfies Invariant 4, then so does

E′, P ′,Q′, C′.

Proof sketch. We show by cases following the definition of
p
−→t that if E, P,Q, C

p
−→t E′, P ′,Q′, C′ then

Defined(E, P,Q, C) ⊆ Defined(E ′, P ′,Q′, C′). The result follows. 2

Property P1 follows easily. Indeed, by Invariant 4, just before executing a definition of x[ã],
Defined(E, P,Q, C) does not contain duplicate elements, so x[ã] /∈ Dom(E) since x[ã] ∈ Defined(P)]
Defined(Q). So each variable is defined at most once for each value of its array indexes in a trace of Q0.

Property P2: Variables are Defined Before Being Used

Invariant 5 (Defined variables, for executing games). The semantic configuration E, P,Q, C
satisfies Invariant 5 if and only if each occurrence of a variable access x[M1, . . . , Mm] in P or Q is either

– present in Dom(E): for all j ≤ m, E, Mj ⇓ aj and x[a1, . . . , am] ∈ Dom(E);
– or syntactically under the definition of x[M1, . . . , Mm] (in which case for all j ≤ m, Mj is a constant

or variable replication index);
– or in a defined condition in a find process;
– or in M ′

j or Pj in a process of the form find (
⊕m′′

j=1 ũj [̃i] ≤ ñj suchthat defined(M ′
j1, . . . , M

′
jlj

) ∧

M ′
j then Pj) else P where for some k ≤ lj , x[M1, . . . , Mm] is a subterm of M ′

jk.

Lemma 5. If Q0 satisfies Invariant 2, then initConfig(Q0) satisfies Invariant 5.

Lemma 6. If E, P,Q, C
p
−→t E′, P ′,Q′, C′ with p > 0 and E, P,Q, C satisfies Invariant 5, then so does

E′, P ′,Q′, C′.

Proof sketch. If x[M1, . . . , Mm] is in the second case, and we execute the definition of x[M1, . . . , Mm],
then for all j ≤ m, Mj is a constant replication index and x[M1, . . . , Mm] is added to Dom(E) by rules
(New), (Let), (Find1), or (Output), so it moves to the first case.

If x[M1, . . . , Mm] is in the third case, and we execute the corresponding find , this access to x simply
disappears.

If x[M1, . . . , Mm] is in the last case, and we execute the find selecting branch j, then x[M1, . . . , Mm]
is a subterm of M ′

jk for k ≤ lj . We easily show by induction on M that, if E, M ⇓ a, then for all
subterms x[M1, . . . , Mm] of M , for all j′ ≤ m, E, M ′

j′ ⇓ aj′ and x[a1, . . . , am] is in Dom(E). Therefore,
by hypothesis of the semantic rule for find , for all j ′ ≤ m, E, Mj′ ⇓ aj′ and x[a1, . . . , am] is in Dom(E).
So x[M1, . . . , Mm] also moves to the first case.

In all other cases, the situation remains unchanged. 2

Property P2 follows easily. Indeed, consider an application of rule (Var), where the array access
x[M1, . . . , Mm] is not in a defined condition of a find . Then, this array access is not under any vari-
able definition or find , so for all j ≤ m, E, Mj ⇓ aj and x[a1, . . . , am] ∈ Dom(E). Hence, the test
x[a1, . . . , am] ∈ Dom(E) succeeds.

A Computationally Sound Mechanized Prover for Security Protocols 39

Property P3: Typing We say that E `η E if and only if E(x[a1, . . . , am]) = a implies E(x) =
T1× . . .×Tm → T with for all j ≤ m, aj ∈ Iη(Tj) and a ∈ Iη(T). We define E `η P as E ` P , E `η Q as
E ` Q, and E `η M : T as E `M : T , with the additional rule E `η a : T if and only if a ∈ Iη(T). (This
rule is useful to type constant replication indexes. In the formulas giving the typing rules, replication
indexes i may then also be constants a.) We say that E `η E, P,Q, C if and only if E `η E, E `η P , and
for all Q ∈ Q, E `η Q. Similarly, E `η E,Q, C if and only if E `η E and for all Q ∈ Q, E `η Q.

Lemma 7. If E `η E, E `η M : T , and E, M ⇓ a, then E `η a : T

Proof sketch. By induction on the derivation of E, M ⇓ a. 2

Lemma 8. If E `η E,Q, C and E,Q, C Ã E ′,Q′, C′, then E `η E′,Q′, C′.
So, if E `η E,Q, C, then E `η reduce(E,Q, C).

Proof sketch. By cases on the derivation of E,Q, C Ã E ′,Q′, C′. In the case of the replication, we use
a substitution lemma, noticing that a ∈ Iη([1, n]), so E `η a : [1, n]. In the case of the input, we use
Lemma 7. 2

Lemma 9. If E ` Q0, then E `η initConfig(Q0).

Proof sketch. By Lemma 8 and the previous definitions. 2

Lemma 10 (Subject reduction). If E `η E, P,Q, C and E, P,Q, C
p
−→t E′, P ′,Q′, C′ with p > 0, then

E `η E′, P ′,Q′, C′.

Proof sketch. By cases on the derivation of E, P,Q, C
p
−→t E′, P ′,Q′, C′, using Lemmas 7 and 8. 2

Property P3 is an immediate consequence of Lemmas 10 and 7.

Property P4: Runtime We give a very brief sketch of this proof here. We refer the reader to [36] for
a more detailed proof for a different calculus; their proof could be adapted to our calculus.

The length of all bitstrings manipulated by processes is polynomial in the security parameter η.
Indeed, by hypothesis, the length of received messages is limited by maxlenη, so polynomial in the
security parameter η. The length of random bitstrings is also polynomial in the security parameter by
hypothesis on the types. Function symbols correspond to functions that run in polynomial time, so
they output bitstrings of size polynomial in the size of their inputs, so also polynomial in the security
parameter.

Since the number of copies generated by each replication is polynomial in the security parameter,
the total number of executed instructions is polynomial in the security parameter, and it is easy to
see that each instruction runs in polynomial time since bitstrings are of polynomial length. Therefore,
processes run in polynomial time.

B.2 Proof of Proposition 1

Proof sketch of Proposition 1 The proof that Q′0 satisfies Invariants 1, 2, and 3 is in general easy,
and the proof of Q0 ≈

V
0 Q′0 relies on a correspondence between traces of C[Q0] and traces of C[Q′0], with

the same probability and such that a configuration of the trace of C[Q0] executes c〈a〉 immediately if and
only if the corresponding configuration of the corresponding trace of C[Q′0] executes c〈a〉 immediately.
This correspondence is obtained by replacing some internal actions of Q0 with corresponding internal
actions of Q′0. We sketch the proof only for the case of SArename(x) and leave the other cases to the
reader.

40 Bruno Blanchet

The process Q′0 satisfies Invariant 1 because definitions of variables duplicated by SArename all
occur in a different branch of a find .

For Invariant 2, each variable access xj [M1, . . . , Mm] in Q′0 comes from a variable access
x[M1, . . . , Mm] in Q0. Since Q0 satisfies Invariant 2, either this access is under its definition, in which
case SArename(x) has replaced this definition of x with a definition of xj , so xj [M1, . . . , Mm] is under
its definition in Q′0; or this access is in a defined test, in which case it is also in a defined test in Q′0;
or this access is in a branch of find with a condition defined(N1, . . . , Nl) such that x[M1, . . . , Mm] is a
subterm of Nj for some j ≤ l, in which case x[M1, . . . , Mm] has been substituted with xj [M1, . . . , Mm]
in this branch of find , so xj [M1, . . . , Mm] is under a suitable defined condition. Therefore Q′0 satisfies
Invariant 2.

For Invariant 3, the type environment E ′ for Q′0 is obtained from the type environment E for Q0,
by setting E ′(x1) = . . . = E ′(xm) = E(x) and E ′(x) is not defined. (Indeed, all definitions of x in Q0

have the same type E(x), which is therefore the type of the definitions of xj , j ≤ m in Q′0.) The proof
of E ′ ` Q′0 is obtained from the proof of E ` Q0, by replacing requests to E(x) with requests to E(xj)
for some j ≤ m, and duplicating parts of the proof of E ` Q0 that correspond to duplicated branches
of find .

Finally, let us prove that Q0 ≈
V
0 Q′0. We denote by SArename(x, Q) the process obtained by applying

SArename(x) to Q. Let j be a partial function from l-tuples of indexes a1, . . . , al to subscripts of
variable x. Informally, j is such that x[a1, . . . , al] in a trace of Q0 corresponds to xj(a1,...,al)[a1, . . . , al]
in the corresponding trace of Q′0. We define a function SArenamej that relates configurations in a trace
of Q0 to configurations in a trace of the renamed process Q′0.

– We define SArenamej for processes as follows: SArenamej(x, E, Q1) first computes SArename(x,
Q1) = Q2. More precisely, it renames each definition of x to the name used when renaming the
whole process Q0; it replaces variable accesses to x with variable accesses to xj when the defini-
tion of x that caused this replacement in Q0 also occurs in Q1; it duplicates branches of find as
SArename(x, Q0), renaming variable accesses to x into variable accesses to xj when the find that
caused this replacement in Q0 also occurs in Q1. (When a variable access to x is under both a
definition of x and find , or under several nested finds that guarantee that it is defined, it is impor-
tant to follow exactly the renaming procedure that happened in Q0. Formally, this can be done by
annotating each construct in processes with a distinct occurrence symbol and by reducing annotated
processes. When we perform SArename(x, Q0), we can then remember the occurrence symbols of
the constructs that cause each variable renaming.) Finally, SArename j replaces all remaining oc-
currences of x[M1, . . . , Ml] in Q2 such that E, Mk ⇓ ak for k ≤ l and x[a1, . . . , al] ∈ Dom(E), with
xj(a1,...,al)[M1, . . . , Ml]. SArenamej is defined similarly for terms (SArename has no effect in this
case) and for processes.

– We also define SArenamej for environments: E ′ = SArenamej(x, E) if and only if E ′(xj(a1,...,al)[a1,
. . . , al]) = E(x[a1, . . . , al]) when x[a1, . . . , al] ∈ Dom(E), E′(y[a1, . . . , al]) = E(y[a1, . . . , al]) when
y 6= x and y[a1, . . . , al] ∈ Dom(E), E′ is undefined in all other cases.

– We extend SArenamej to semantic configurations: SArenamej(x, (E, P,Q, C)) = (SArenamej(x, E),
SArenamej(x, E, P), {SArenamej(x, E, Q1) | Q1 ∈ Q}, C). We also define SArenamej(x, (E,Q, C))
in the same way.

We first show that if E, M ⇓ a, then SArenamej(x, E),SArenamej(x, E, M) ⇓ a. The proof
proceeds by induction on M . The only interesting case is M = x[M1, . . . , Ml]. Since E, M ⇓ a has
been derived by (Var), E, Mk ⇓ ak for all k ≤ l and a = E(x[a1, . . . , al]). By induction hypothesis,
SArenamej(x, E),SArenamej(x, E, Mk) ⇓ ak for all k ≤ l. Moreover, SArenamej(x, E, x[M1, . . . , Ml]) =
xj(a1,...,al)[SArenamej(x, E, M1), . . . ,SArenamej(x, E, Ml)] and SArenamej(x, E)(xj(a1,...,al)[a1, . . . ,
al]) = E(x[a1, . . . , al]) = a, so SArenamej(x, E),SArenamej(x, E, M) ⇓ a.

A Computationally Sound Mechanized Prover for Security Protocols 41

Next, we can easily show by cases on the reduction E,Q, C Ã E ′,Q′, C′ that, if E,Q, C Ã E′,Q′, C′,
then SArenamej(x, (E,Q, C)) Ã SArenamej(x, (E′,Q′, C′)). Hence SArenamej(x, reduce(E,Q, C)) =
reduce(SArenamej(x, (E,Q, C))).

Let C be any evaluation context acceptable for Q0, Q′0, V . We show that for each trace
initConfig(C[Q0]) →η . . . →η Em, Pm,Qm, Cm, there exists a trace initConfig(C[Q′0]) →η . . . →η

E′m, P ′m,Q′m, Cm with the same probability, and a function jm such that E′m, P ′mQ
′
m, Cm =

SArenamejm(x, (Em, Pm,Qm, Cm)). The proof proceeds by induction on the length m of the trace.
For the induction step, we distinguish cases depending on the last reduction step of the trace.

– Initial case m = 0: fc(C[Q0]) = fc(C[Q′0]) since the transformation SArename does not modify
channels. Let j0 be the function defined nowhere. We have, C[Q′0] = SArenamej0(x, ∅, C[Q0]).
Indeed, since x /∈ V , x /∈ var(C), so SArenamej0(x, ∅, C[Q0]) = SArename(x, C[Q0]) =
C[SArename(x, Q0)] = C[Q′0]. Therefore, SArenamej0(x, (∅, {C[Q0]}, fc(C[Q0]))) = (∅, {C[Q′0]},
fc(C[Q′0])). Hence we have SArenamej0(x, reduce(∅, {C[Q0]}, fc(C[Q0]))) = reduce(∅, {C[Q′0]},
fc(C[Q′0])). Thus, SArenamej0(x, initConfig(C[Q0])) = initConfig(C[Q′0]).

– The last step of the trace is a definition of x[a1, . . . , al]: By induction hypothesis, we have a
trace of length m − 1, with an associated function jm−1. Since C[Q0] satisfies Invariant 1, the
configuration Em−1, Pm−1,Qm−1, Cm−1 satisfies Invariant 4, so x[a1, . . . , al] /∈ Dom(Em−1). Since
P ′m−1 = SArenamejm−1(x, Em−1, Pm−1), the first instruction of P ′m−1 is a definition of xk[a1, . . . , al]
for some k (using the property shown above to prove that the indexes of x, resp. xk, are the same in
the execution of Pm−1 and of P ′m−1). We define jm = jm−1[(a1, . . . , al) 7→ k], and easily show that
we obtain a suitable trace of length m with this function jm.

– The last step of the trace is a find whose defined condition refers to x: By induction hypothesis,
we have a trace of length m − 1, with an associated function jm−1. If a branch FB of the find in
Pm−1 succeeds for certain values of ĩ, exactly one of its copies succeeds in P ′m−1, the copy whose
defined condition refers to xjm−1(a1,...,al)[a1, . . . , al] when the defined condition of the branch FB
in Pm−1 refers to x[a1, . . . , al]. If a branch of the find fails in Pm−1, all its copies fail in P ′m−1.
Therefore, the number |S| of successful choices of the find is the same in Pm−1 and in P ′m−1. Hence,
the probability that each successful branch is taken is the same. When Pm−1 executes a successful
branch, we build the corresponding trace of P ′m−1 by executing the successful copy of this branch.
When Pm−1 executes the else branch, P ′m−1 also executes the else branch. So it is easy to see that
we obtain a suitable trace of length m with associated function jm = jm−1 (except when the find
also defines x[a′1, . . . , a

′
l], in which case the previous item of the proof must also be applied).

– All other cases are easy: they execute in the same way in Pm−1 and in P ′m−1.

We also show the converse property, that for each trace initConfig(C[Q′0])→η . . .→η E′m, P ′m,Q′m, Cm,
there exists a trace initConfig(C[Q0]) →η . . . →η Em, Pm,Qm, Cm with the same probability and
E′m, P ′mQ

′
m, Cm = SArenamejm(x, (Em, Pm,Qm, Cm)). The proof is similar to the proof above.

If E′m, P ′mQ
′
m, Cm = SArenamejm(x, (Em, Pm,Qm, Cm)), then for all channels c and bitstrings a,

Em, Pm,Qm, Cm executes c〈a〉 immediately if and only if E ′m, P ′m,Q′m, Cm executes c〈a〉 immediately. So
Pr[C[Q0]Ãη c〈a〉] = Pr[C[Q′0]Ãη c〈a〉]. Therefore Q0 ≈

V
0 Q′0. 2

B.3 Proof of Proposition 2

Proof sketch of Proposition 2 The proof of Invariants 1, 2, and 3 is relatively easy, so we focus
on the proof of Q0 ≈

V Q′0.
Let C be any evaluation context acceptable for Q0, Q′0, V . Let q(η) be the maximum runtime of

C[Q0], where q is a polynomial.
We define pmax(η) = max({ 1

|Iη(T)| | T is a large type}∪{p(η) associated to user-defined rewrite rules,

for an adversary of runtime q(η)}). pmax(η) is negligible, since it is the maximum of a constant number

42 Bruno Blanchet

of negligible functions. We shall prove in the following that the probability that a desired fact does not
hold is at most q′(η)pmax(η), where q′ is a polynomial, so it is negligible.

We consider a slightly modified semantics for our calculus, in which each process is accompanied
with a substitution that defines the values of the replication indexes in that process. For example, the
rule (Repl) becomes in this semantics:

E, {(σ, !i≤nQ)}] Q, C Ã E, {(σ[i 7→ a], Q) | a ∈ [1, Iη(n)]}] Q, C

When evaluating a term M in a process with substitution (σ, Q) or (σ, P), we now use E, σ, M ⇓ a
instead of E, M ⇓ a, with the rule E, σ, i ⇓ σi instead of (Cst), and the other rules modified accordingly.

The judgment E, σ ` F means that a fact F holds in environment E and substitution σ. It is defined
by E, σ `M if and only if E, σ, M ⇓ 1 and E, σ ` defined(M) if and only if E, σ, M ⇓ a for some a. We
extend this definition to sets of facts naturally.

Let us consider the sets of facts TrueFactsQ, TrueFactsP after calling collectFacts but before adding
consequences of defined facts. For occurrences of processes P , Q in C, we let TrueFactsP = TrueFactsQ =
∅.

We first prove that if E,Q, C Ã E ′,Q′, C′ and for all (σ, Q) ∈ Q, E, σ ` TrueFactsQ, then for all
(σ, Q) ∈ Q′, E′, σ ` TrueFactsQ. The proof is easy by cases on the derivation of E,Q, C Ã E ′,Q′, C′.
Therefore, if E ′,Q′, C′ = reduce(E,Q, C) and for all (σ, Q) ∈ Q, E, σ ` TrueFactsQ, then for all (σ, Q) ∈
Q′, E′, σ ` TrueFactsQ.

Next, we show that if initConfig(C[Q0])
p
−→t . . .

p′

−→t′ E, (σ, P),Q, C then for all (σ′, P ′) ∈ {(σ, P)}∪Q,
E, σ′ ` TrueFactsP ′ . The proof proceeds by induction on the length of the trace. For the initial
configuration, the property follows immediately from the previous property of reduce. For the in-
ductive step, if the reduced process is in C, the result is obvious since TrueFactsP ′ = ∅. Oth-
erwise, we proceed by cases on the last reduction of the trace. For example, in the case (If1),

E, σ, M ⇓ 1 and E, (σ, if M then P1 else P2),Q, C
1
−→I1 E, (σ, P1),Q, C. We have TrueFactsP1 =

{M} ∪TrueFactsif M then P1 else P2 . By induction hypothesis, E, σ ` TrueFactsif M then P1 else P2 . Since
E, σ, M ⇓ 1, E, σ ` M , so E, σ ` TrueFactsP1 . We have E, σ′ ` TrueFactsP ′ for (σ′, P ′) ∈ Q imme-
diately by induction hypothesis. We proceed in a similar way for the other cases (using the property
proved above for reduce in the (Output) case).

Let us now consider the sets of facts TrueFactsQ, TrueFactsP after adding consequences of defined

facts. We show that we still have if initConfig(C[Q0])
p
−→t . . .

p′

−→t′ E, (σ, P),Q, C then for all (σ′, P ′) ∈
{(σ, P)} ∪ Q, E, σ′ ` TrueFactsP ′ . The proof follows the addition of consequences of defined facts.
Assume that defined(M) ∈ TrueFactsP ′ , x[M1, . . . , Mm] is a subterm of M , and we update TrueFactsP ′

into
TrueFacts′P ′ = TrueFactsP ′ ∪ (∩(x[i1,...,im],F)∈TrueFactsdef

F{M1/i1, . . . , Mm/im})

We assume that E, σ′ ` TrueFactsP ′ and show that E, σ′ ` TrueFacts′P ′ . Since E, σ′ ` defined(M),
E, σ′, Mj ⇓ aj for all j ≤ m and x[a1, . . . , am] ∈ Dom(E). Therefore, some definition of x[a1, . . . , am]
has been executed in the considered trace. We show that, for some (x[i1, . . . , im],F) ∈ TrueFactsdef ,
we have E, σ1 ` F where σ1(i1) = a1, . . . , σ1(im) = am. The desired result then follows easily. Let

E1, (σ1, P1),Q1, C1
p
−→t E2, (σ1, P2),Q2, C2 be the reduction that defines x[a1, . . . , am] in the considered

trace. By the previous property, E2, σ1 ` TrueFactsP2 . (We consider here the value of TrueFactsP2 just
after collectFacts.) We have (x[i1, . . . , im],F) ∈ TrueFactsdef where F ⊆ TrueFactsP2 , so E, σ1 ` F
since E is an extension of E2 so all facts that hold in E2 also hold in E.

Let us now show the correctness of the equational prover. We say that E, σ ` (F ,R) when E, σ `
F and for all (M1 → M2) ∈ R, E, σ ` M1 = M2. We show that Pr[initConfig(C[Q0]) → . . . →

E, (σ, P),Q, C ∧ (F0,R0) = (TrueFactsP , ∅) ∧ ∀j ≤ m′,
Fj−1,Rj−1

Fj ,Rj
∧ E, σ 6` (Fm′ ,Rm′)] ≤ q′(η)pmax(η)

for some polynomial q′. The proof proceeds by induction on m′. For m′ = 0, this is an immediate

A Computationally Sound Mechanized Prover for Security Protocols 43

consequence of the previous result, with q′(η) = 0. For the inductive step, we proceed by cases on the

derivation of
Fm′

−1,Rm′
−1

Fm′ ,Rm′

.

– The cases (2), (5), (7), as well as the cases (1) and (6) when the reduction uses a rule of R, are
obvious and there is no loss of probability (that is, q′(η) is unchanged).

– Cases (1) and (6) when the reduction uses a user-defined rewrite rule new y1 : T ′1, . . . ,new yl :
T ′l , ∀x1 : T1, . . . , ∀xm : Tm, M1 → M2, with associated probability p(η): Assuming this user-defined
claim is correct, the desired result holds with a loss of probability p(η) times the number of pos-
sible values for the indexes of restrictions that correspond to y1, . . . , yl, which is polynomial in η.
Indeed, when E, σ ` (Fm′−1,Rm′−1) but E, σ 6` (Fm′ ,Rm′), for at least one value of the indexes
of restrictions that correspond to y1, . . . , yl, the process C[Q0] provides an adversary that satisfies
the conditions of the definition of the corresponding user claim. (The proof of Proposition 3 below
details a similar argument in a more complicated case.)

– Case (3): Assume that E, σ ` (Fm′−1,Rm′−1) but E, σ 6` (Fm′ ,Rm′) So for all j ≤ m, E, σ, Mj ⇓ aj ,
E, σ, M ′

j ⇓ a′j , (a1, . . . , am) 6= (a′1, . . . , a
′
m), and E(x[a1, . . . , am]) = E(x[a1, . . . , am]). Since for each

a1, . . . , am, x[a1, . . . , am] is chosen randomly among |Iη(T)| values, the probability that this happens

is smaller than q′′(η)(q′′(η)−1)
2|Iη(T)| where q′′(η) is the number of possible values of a1, . . . , am, which is a

polynomial in η.

– Case (4): We first show that, if M characterizes y, then there exists M̃ such that for each a, there

exists b such that for all E and σ, E, σ, M ⇓ a implies E, σ, y[M̃] ⇓ b. Indeed, M0 = {αM = M} is

rewritten into a set that contains (αy)[M̃ ′] = y[M̃]. Due to the form of rewrite rules, (αy)[M̃ ′] is a

subterm of αM and y[M̃] is a subterm of M .

• If a is such that there exist E ′ and σ′ such that E′, σ′, αM ⇓ a and E′, σ′ define variables of αM ,
let b such that E ′, σ′, (αy)[M̃ ′] ⇓ b. Then for all E, σ such that E, σ, M ⇓ a, we can define the
E′′, σ′′ that map variables of M as E, σ and variables of αM as E ′, σ′. Then E′′, σ′′, αM = M ⇓ 1,
so by rewriting E ′′, σ′′, (αy)[M̃ ′] = y[M̃] ⇓ 1, so E, σ, y[M̃] ⇓ b.

• Otherwise, there is no E, σ such that E, σ, M ⇓ a, so the result holds trivially.

Let us now consider the two cases of Rule (4).

• First case: x occurs in M1, x is defined by restrictions new x : T , T is a large type, M1 char-
acterizes x, and M2 is obtained by optionally applying function symbols to terms of the form
y[M̃ ′] where y is defined by restrictions and y 6= x.

Since M1 characterizes x, there exist M̃ and a function f from bitstrings to bitstrings such that
for all E, σ, and a, E, σ, M1 ⇓ a implies E, σ, x[M̃] ⇓ f(a). The set S2 of values of M2 for all values
of indexes of variables y has cardinal polynomial in η, q2(η). Moreover, this set is independent
of the values of x (although the values of indexes of y may depend on x). The probability that
the value of M1 is in S2 is therefore at most the probability that x[̃b] is in f(S2) for some b̃, so

at most q1(η)q2(η)
|Iη(T)| where q1(η) is the number of possible values of the indexes b̃ of x, which is

polynomial in η.

When the value of M1 is not in S2, E, σ, M1 = M2 ⇓ 0, so E, σ 6` (Fm′−1,Rm′−1) so the result
follows by induction hypothesis.

• Second case: x occurs in M1, x is defined by restrictions new x : T , T is a large type, M1

characterizes x, only dep(x) = S, and no variable of S occurs in M2.

We consider traces of C[Q0] that differ by the choices of values of x. Since only dep(x) = S,
these traces differ only by the values of variables in S, after excluding exceptional traces in
which we have E, M1 = M2 ⇓ 1 for M1, M2 considered in Rule (4) or for some test M1 = M2 or
M1 6= M2 in Q0 such that there exists y ∈ S such that M1 characterizes y, and no variable in
S occurs in M2. Due to the form of let assignments required by only dep and the properties of
“characterize”, there exist M̃ and functions f1, . . . , fm from bitstrings to bitstrings such that for

44 Bruno Blanchet

all E and a, E, M1 ⇓ a implies E, x[M̃] ⇓ fj(a) for some j ≤ m. (We may need several functions
because variables in S may have several definitions.) In the considered traces, the value of M2 is
the same a, and the probability that E, M1 ⇓ a is at most the probability that E(x[̃b]) = fj(a)

for some b̃ and some j ≤ m, so at most q1(η)
|Iη(T)| where q1(η) is the number of possible values of

the indexes b̃ of x, which is polynomial in η. Therefore, the probability of excluded traces is at
most q1(η)q2(η)

|Iη(T)| where the number of executions of such tests M1 = M2 or M1 6= M2 is at most

q2(η), polynomial in η.
For traces that have not been excluded, E, M1 = M2 ⇓ 0, so E, σ 6` (Fm′−1,Rm′−1) so the result
follows by induction hypothesis.

It is then easy to show the correctness of game simplification. For simplicity, we consider one transforma-
tion at a time, and use transitivity of ≈ to conclude when several transformations are applied. For each
trace initConfig(C[Q0])→ . . .→ Em, Pm,Qm, Cm, except in cases of negligible probability, we show that
there exists a corresponding trace initConfig(C[Q′0]) → . . . → E′m′ , P ′m′ ,Q′m′ , C′m′ with E′m′ = Em, P ′m′

is obtained from Pm by the same transformation as Q′0 from Q0, Q
′
m′ is obtained from Qm by the same

transformation as Q′0 from Q0, C
′
m′ = Cm, with the same probability. The proof proceeds by induction

on m. The case m = 0 is obvious, since the game simplifications do not change input processes. For the
inductive step, we reason by cases on the last reduction step of the trace of C[Q0]. We consider only
the cases in which the transition may be altered by the game simplification.

– Case 1: M reduces into M ′ by a user-defined rewrite rule, and we replace M with M ′ in the smallest
process PM = CM [M] that contains M . If E, σ, M ⇓ a then E, σ, M ′ ⇓ a′ (since the variable accesses
in M ′ are included in those of M and M and M ′ are well-typed). When a 6= a′, the game provides
an adversary that satisfies the conditions of the definition of the corresponding user claim (as in the
item “Cases (1) and (6) when the reduction uses a user-defined rewrite rule” above) so this situation
has negligible probability and can be excluded. Otherwise, a = a′, and CM [M ′] reduces in the same
way as PM = CM [M].

– Case 2: M reduces into M ′ by a rule of R, and we replace M with M ′ in the smallest process PM =
CM [M] that contains M , where R is the set of rewrite rules obtained by the equational prover from

TrueFactsPM
. We exclude traces such that (F0,R0) = (TrueFactsPM

, ∅)∧∀j ≤ m′,
Fj−1,Rj−1

Fj ,Rj
∧E, σ 6`

(Fm′ ,Rm′). (They have negligible probability by the correctness of the equational prover.) In the
remaining traces, for all (M1 → M2) ∈ R = Rm′ , E, σ ` M1 = M2. So E, σ, M ⇓ a if and only if
E, σ, M ′ ⇓ a, and CM [M ′] reduces in the same way as PM = CM [M].

– Case 3: P = if M then P1 else P2, TrueFactsP2 yields a contradiction, and we replace P with
P1. We exclude traces that reduce P by (If2), yielding P2. Indeed, Pr[initConfig(C[Q0]) → . . . →
E, (σ, P2),Q, C] = Pr[initConfig(C[Q0])→ . . .→ E, (σ, P2),Q, C∧(F0,R0) = (TrueFactsP2 , ∅)∧∀j ≤

m′,
Fj−1,Rj−1

Fj ,Rj
∧E, σ 6` (Fm′ ,Rm′)] since E, σ 6` (Fm′ ,Rm′) is always true since TrueFactsP2 yields a

contradiction. So the excluded traces have negligible probability by the correctness of the equational
prover. In the remaining traces, P reduces to P1 by (If1), so replacing P with P1 just removes one
reduction step without otherwise changing the trace.

– The other cases can be handled in a similar way.

We also show the converse property: for each trace of C[Q′0], except in cases of negligible probability,
there exists a corresponding trace of C[Q0] with the same probability. Moreover, for all channels c and
bitstrings a, Em, Pm,Qm, Cm executes c〈a〉 immediately if and only if E ′m′ , P ′m′ ,Q′m′ , C′m′ executes c〈a〉
immediately, so Pr[C[Q0]Ãη c〈a〉] = Pr[C[Q′0]Ãη c〈a〉], which yields the desired equivalence. 2

B.4 Proof of Proposition 3

Proof of Proposition 3 Let C be an evaluation context acceptable for [[L]], [[R]], ∅.

A Computationally Sound Mechanized Prover for Security Protocols 45

We define a probabilistic polynomial Turing machine Aa, for a ∈ [1, Iη(n
′′)], as follows. Aa uses

oracles mac(., k) and check(., k, .). Aa simulates C[[[L]]] except that:

– for a′ < a, in copies corresponding to i′′ = a′ of L, Aa computes find u ≤ n suchthat defined(x[u])∧
(m = x[u]) ∧ check(m,mkgen(r), ma) then 1 else 0 instead of check(m,mkgen(r), ma), and

– in the copy corresponding to i′′ = a, Aa does not choose a random number r[a], it calls
the oracle mac(., k) on x instead of computing mac(x,mkgen(r)), and instead of computing
check(m,mkgen(r), ma), it computes b1 = check(m, k, ma) using the oracle check(., k, .) and
b2 = find u ≤ n suchthat defined(x[j]) ∧ (m = x[u]) ∧ b1 then 1 else 0; if b1 6= b2, the execution
of the Turing machine stops, with result (m, ma); otherwise, the execution continues using value
b1 = b2.

When Aa has not stopped due to the last item above, it returns ⊥ when the simulation of C[[[L]]]
terminates.

When Aa returns (m, t), b1 6= b2. Moreover, if b1 = 0, then b2 = 0 by definition of b2. So b1 = 1 and
b2 = 0. Therefore, there is no j such that m = x[j], hence Aa has not called the oracle mac(., k) on
m. Moreover, there exists a polynomial q such that for all a, Aa runs in time q(η). So by Definition 1,
maxa pa(η) is negligible, where

pa(η) = Pr[r
R
← Iη(Tmr); k ← mkgenη(r); (m, t)← Aa : checkη(m, k, t)]

Since Iη(n
′′) is polynomial in η,

∑
a∈[1,Iη(n′′)] pa(η) ≤ maxa pa(η)× Iη(n

′′) is also negligible.

On the other hand, let c be a channel and a′ be a bitstring. We need to evaluate |Pr[C[[[L]]] Ãη

c〈a′〉]−Pr[C[[[R]]]Ãη c〈a′〉]|. We consider three categories of pairs of traces (T , T ′) where T and T ′ are
traces of C[[[L]] and C[[[R]]] respectively:

1. Traces T and T ′ have the same configurations except for the replacement of L with R in processes,
they terminate, and none of their configurations executes c〈a′〉 immediately.

2. Traces T and T ′ have the same configurations except for the replacement of L with R in processes
up to a point at which their corresponding configurations both execute c〈a′〉 immediately.

3. Traces T and T ′ have the same configurations except for the replacement of L with R in processes
up to a point at which their configurations differ because for some a ∈ [1, Iη(n

′′)], for some messages
m, ma received on channel c2[a] (where c2 is the channel used in [[L]] and [[R]] for the second parallel
process of L and R), the result returned by [[L]] differs from the one returned by [[R]]. In this case,

the simulating Turing machine that runs r
R
← Iη(Tmr); k ← mkgenη(r) and executes Aa will return

(m, ma), by construction.

All traces of C[[[L]]] fall in one of the above categories, and similarly for traces of C[[[R]]]. Traces of the first
category have no contribution to Pr[C[[[L]]] Ãη c〈a′〉] and to Pr[C[[[R]]] Ãη c〈a′〉]; traces of the second
category cancel out when computing Pr[C[[[L]]] Ãη c〈a′〉] − Pr[C[[[R]]] Ãη c〈a′〉]. So |Pr[C[[[L]]] Ãη

c〈a′〉] − Pr[C[[[R]]] Ãη c〈a′〉]| ≤ Pr[(T , T ′) is in the third category] ≤
∑

a∈[1,Iη(n′′)] Pr[r
R
← Iη(Tmr); k ←

mkgenη(r); (m, t)← Aa] =
∑

a∈[1,Iη(n′′)] pa(η).

Hence |Pr[C[[[L]]]Ãη c〈a′〉]− Pr[C[[[R]]]Ãη c〈a′〉]| is negligible, so [[L]] ≈ [[R]]. 2

B.5 Proof of Proposition 4

Let us first introduce some notations. We denote by Lj0,...,jk
the subtrees of L defined as follows:

L = (L1, . . . , Lm′)

Lj0,...,jk
= !i≤nnew y1 : T1; . . . ;new ym : Tm; (Lj0,...,jk,1, . . . , Lj0,...,jk,m′)

46 Bruno Blanchet

Then we define ij0,...,jk
= i, nj0,...,jk

= n, y(j0,...,jk),k′ = yk′ , and nNewj0,...,jk
= m. When Lj0,...,jl

=
(x1 : T1, . . . , xm : Tm) → FP , we say that Lj0,...,jl

is a leaf of L, and we define x(j0,...,jl),k′ = xk′ ,
T(j0,...,jl),k′ = Tk′ , and nInputj0,...,jl

= m.

In order to prove Proposition 4, we define a context C such that Q0 ≈
V
0 C[[[L]]] and C[[[R]]] ≈V

0 Q′0.
We first define a process relay(L) as follows:

relay((G1, . . . , Gm)) = relay(G1)
1 | . . . | relay(Gm)m

relay(!i≤nnew y1 : T1; . . . ;new yl : Tl; (G1, . . . , Gm))
ej
ei

=

!i≤ndej
[̃i, i](); cej

[̃i, i]〈〉; cej
[̃i, i](); dej

[̃i, i]〈〉; (relay(G1)
ej,1
ei,i
| . . . | relay(Gm)

ej,m
ei,i
|!i

′≤n′

dej
[̃i, i](); dej

[̃i, i]〈〉)

relay((x1 : T1, . . . , xl : Tl)→ FP)
ej
ei

= dej
[̃i](x1 : T1, . . . , xl : Tl); cej

[̃i]〈x1, . . . , xl〉; cej
[̃i](r : bitstring);

dej
[̃i]〈r〉; !i

′≤n′

dej
[̃i](x1 : T1, . . . , xl : Tl); dej

[̃i]〈r〉

where ĩ = i1, . . . , il′ and j̃ = j0, . . . , jl′ . This relay process relays messages sent on channel dej
to channel

cej
so that the corresponding random numbers y1, . . . , yl are chosen. When those random numbers have

already been chosen, the process accepts messages on dej
but yields control back to the sending process

without executing anything by outputting on dej
. The relay process also allows calling several times the

same functional process FP with the same values of j̃ and ĩ, in which case it always returns the same
result r. (We make sure in the following that when a functional process is called several times, the calls
all use the same arguments.) Since L and R are required to have the same structure by Hypothesis H2,
relay(L) = relay(R).

We introduce the following auxiliary definitions, which allow us to define the correspondence
mapIdxM from replication indexes at M in Q0 to replication indexes at NM in L:

– For each M ∈ M and k ≤ nNewSeqM , we define countη(k, M) as follows. Let n1, . . . , nl be the
sequence of bounds of replications above the definition of zkk′,M for any k′. Let l′ be the length of
the longest common prefix of im indexk(M) and im indexk0(M) for k0 < k. We define countη(k, M) =
Iη(nl′+1)× . . .× Iη(nl).
We define parameters countk,M such that Iη(countk,M) = countη(k, M).
We define function symbols numk,M : [1, n1]× . . .× [1, nl]→ [1, countk,M] such that Iη(numk,M)(a1,
. . . , al) = 1+(al′+1−1)+Iη(nl′+1)×((al′+2−1)+Iη(nl′+2)× . . .+Iη(nl−1)×(al−1)). Then numk,M

establishes a bijection between the last l − l′ components of its argument and its result.
– We define tot countη(j0, . . . , jk) as the sum of countη(k + 1, M ′′) for all M ′′ such that the first k + 1

elements of BL(M ′′) are equal to j0, . . . , jk, counting only once terms M ′′ that share the first k + 1
sequences of random variables.
We set Iη(nj0,...,jk

) = tot countη(j0, . . . , jk), where nj0,...,jk
is the bound of some replication in L.

Iη(nj0,...,jk
) is then large enough so that there is always an available copy of the desired replicated

process when we need to execute one.
The replication at the root of relay(Lj0,...,jk

)j0,...,jk

i1,...,ik
is also bounded by nj0,...,jk

. The other replication

of relay(Lj0,...,jk
)j0,...,jk

i1,...,ik
is bounded by n′, where Iη(n

′) is the sum for all M ∈M of Iη(n1)×. . .×Iη(nl)
where n1, . . . , nl is the sequence of bounds of replications above M in Q0.

– We order the term occurrences in M arbitrarily, with a total ordering. Let startη(k, M) be defined
as follows. Let M ′ the smallest term occurrence of M that shares the first k sequences of random
variables with M . Then startη(k, M) is the sum of countη(k, M ′′) for all M ′′ smaller than M ′ such
that the first k elements of BL(M ′′) are equal to the first k elements of BL(M ′), counting only once
terms M ′′ that share the first k sequences of random variables.
We define function symbols addstartk,M : [1, countk,M] → [1, nj0,...,jk

] where BL(M) = (j0, . . . , jk,
. . .), such that Iη(addstartk,M)(a) = startη(k, M) + a.

A Computationally Sound Mechanized Prover for Security Protocols 47

– We define the sequence of terms convindex(k, M) = (addstart1,M (num1,M (im index1(M))), . . . ,
addstartk,M (numk,M (im indexk(M)))).
This sequence of terms implements the function mapIdxM mentioned in the explanation of the
transformation, in Section 3.3. More precisely, mapIdxM (ã) = convindex(l, M){ã/̃i}, where ĩ is the
sequence of current replication indexes at M and l = nNewSeqM .

Then we define C = (newChannel cej
;newChannel dej

;)ej
([] | relay(L) | Q′′0) where the process Q′′0 is

defined from Q0 as follows:

– When x ∈ S, we replace its definition new x : T ; Q with let x : T = cst in Q for some constant cst.
– For each M ∈ M, let PM = CM [M] be the smallest subprocess of Q0 containing M . Let l =

nNewSeqM and m = nInputM . Let BL(M) = (j0, . . . , jl). Let dM = dj0,...,jl
[convindex(l, M)] and for

all k ≤ l, dM,k = dj0,...,jk−1
[convindex(k, M)]. We replace PM with dM,1〈〉; dM,1(); . . . dM,l〈〉; dM,l();

dM 〈σMx1,M , . . . , σMxm,M 〉; dM (y : bitstring); CM [y] where y is a fresh variable.

Lemma 11. Q0 ≈
V
0 C[[[L]]]

Proof. The bounds of replications of [[L]] and relay(L) have been defined above. As outlined in the proof
of Property P4, the length of all bitstrings manipulated by Q0 is polynomial in η. We can therefore
define maxlenη(cej

) to be a polynomial large enough so that messages sent on cej
by C[[[L]]] are never

truncated. We define maxlenη(dej
) = maxlenη(cej

), then messages on dej
are never truncated.

Let C ′ be any evaluation context acceptable for Q0, C[[[L]]], V . We relate traces of C ′[Q0] and of
C ′[C[[[L]]]] as follows.

We assume that the channels cej
and dej

do not occur in C ′ and Q0, and that during reductions

(NewChannel), these channels are substituted by themselves. (This is easy to guarantee by renaming;
this assumption simplifies notations in the proof.)

We write M =E M ′ when E, M ⇓ a and E, M ′ ⇓ a for some bitstring a. We denote by k-th(̃i) the
k-th component of the tuple ĩ, and by |̃i| the number of elements of the tuple ĩ.

We define a relation between variables of S in Q0 and variables y defined by new in [[L]]: we say that
y[a1, . . . , aj]

var
−−→E varImL(y, M)[ã′] when for all k′ ≤ j, E, addstartk′,M (numk′,M (im (ρj−1(M) ◦ . . . ◦

ρk′(M)){ã′/̃i})) ⇓ ak′ , where ĩ ≤ ñ are the current replication indexes at the definition of varImL(y, M)
with their associated bounds, and for all l ≤ |̃i|, l-th(ã′) ∈ [1, Iη(l-th(ñ))]. (Note that

var
−−→ depends on

η.)
We show that the relation

var
−−→E is a (partial) function, that is, if y[a1, . . . , aj]

var
−−→E MV and

y[a1, . . . , aj]
var
−−→E M ′

V then MV = M ′
V . Assume that y[a1, . . . , aj]

var
−−→E z′[ã′] and y[a1, . . . , aj]

var
−−→E

z′′[ã′′]. Then

– z′ = varImL(y, M ′), E, addstartk′,M ′(numk′,M ′(im (ρj−1(M
′) ◦ . . . ◦ ρk′(M ′)){ã′/ĩ′})) ⇓ ak′ for all

k′ ≤ j, where ĩ′ ≤ ñ′ are the current replication indexes at the definition of z ′ with their associated
bounds, and for all l ≤ |ĩ′|, l-th(ã′) ∈ [1, Iη(l-th(ñ′))],

– z′′ = varImL(y, M ′′), E, addstartk′,M ′′(numk′,M ′′(im (ρj−1(M
′′)◦. . .◦ρk′(M ′′)){ã′′/ĩ′′})) ⇓ ak′ for all

k′ ≤ j, where ĩ′′ ≤ ñ′′ are the current replication indexes at the definition of z ′′ with their associated
bounds, and for all l ≤ |ĩ′′|, l-th(ã′′) ∈ [1, Iη(l-th(ñ′′))].

For all terms M ′′, we have either startη(k
′, M ′′) ≤ startη(k

′, M ′) or startη(k
′, M ′′) ≥ startη(k

′, M ′) +
countη(k

′, M ′) since startη(k
′, M ′′) is computed by adding countη(k

′, M3) for some terms M3 in a fixed
order. Moreover, numk′,M ′(. . .) evaluates to a bitstring in [1, countη(k

′, M ′)]. Therefore, startη(k
′, M ′′) ≤

startη(k
′, M ′). By symmetry, startη(k

′, M ′′) ≥ startη(k
′, M ′). So we have for all k′ ≤ j, startη(k

′, M ′) =

startη(k
′, M ′′) and numk′,M ′(im (ρj−1(M

′) ◦ . . . ◦ ρk′(M ′)){ã′/ĩ′}) =E numk′,M ′′(im (ρj−1(M
′′) ◦ . . . ◦

ρk′(M ′′)){ã′′/ĩ′′}). Since startη(j, M
′) = startη(j, M

′′), by definition of startη, M ′ shares the first j

48 Bruno Blanchet

sequences of random variables with M ′′. Since y has j indexes, y is defined under j replications in L, so
varImL(y, M ′) = varImL(y, M ′′), that is, z′ = z′′. So j′ = j′′. By Hypothesis H′4.2, ρk′(M ′) = ρk′(M ′′)
for all k′ < j. By definition of num, Iη(numk′,M ′) = Iη(numk′,M ′′) for all k′ ≤ j.

We show by induction on k′ that if for all k′′ ≤ k′, numk′′,M ′(im (ρk′−1(M
′)◦. . .◦ρk′′(M ′)){ã′/ĩ′}) =E

numk′′,M ′(im (ρk′−1(M
′)◦ . . .◦ρk′′(M ′)){ã′′/ĩ′}), where ĩ′ ≤ ñ′ are the current replication indexes at the

definition of zk′ ,M ′ with their associated bounds, and l-th(ã′), l-th(ã′′) ∈ [1, Iη(l-th(ñ′))], then ã′ = ã′′.

– For k′ = 1, we assume num1,M ′(ã′) =E num1,M ′(ã′′). The longest common prefix of index1(M
′) and

indexj′′(M
′) for j′′ < 1 is empty, since indexj′′(M

′) is defined only for j ′′ ≥ 1. So num1,M ′ establishes

a bijection between the tuples ã′ smaller than the current replication bounds at definition of z1 ,M ′

and the interval [1, countη(1, M
′)]. So ã′ = ã′′.

– Assume that numk′′,M ′(im (ρk′−1(M
′) ◦ . . . ◦ ρk′′(M ′)){ã′/ĩ′}) =E numk′′,M ′(im (ρk′−1(M

′) ◦ . . . ◦

ρk′′(M ′)){ã′′/ĩ′}) for all k′′ ≤ k′. Let k′ind < k′. Let E, im (ρk′−1(M
′) ◦ . . . ◦ ρk′

ind
(M ′)){ã′/ĩ′} ⇓

ã′ind and E, im (ρk′−1(M
′) ◦ . . . ◦ ρk′

ind
(M ′)){ã′′/ĩ′} ⇓ ã′′ind. By hypothesis, we have for all k′′ ≤

k′ind, numk′′,M ′(im (ρk′

ind−1(M
′) ◦ . . . ◦ ρk′′(M ′)){ã′ind/ĩ′ind}) =E numk′′,M ′(im (ρk′

ind−1(M
′) ◦ . . . ◦

ρk′′(M ′)){ã′′ind/ĩ′ind}) where ĩ′ind ≤ ñ′ind are the current replication indexes at the definition of
zk′

ind ,M ′ with their associated bounds. By induction hypothesis, ã′ind = ã′′ind, so for all k′′ < k′,

im (ρk′−1(M
′) ◦ . . . ◦ ρk′′(M ′)){ã′/ĩ′} =E im (ρk′−1(M

′) ◦ . . . ◦ ρk′′(M ′)){ã′′/ĩ′}. For k′′ = k′, we have
numk′,M ′(ã′) =E numk′,M ′(ã′′).
Let l be the length of the longest common prefix of im indexk′(M ′) and im indexk′′

0
(M ′) for k′′0 < k′.

Since indexk′′

0
(M ′) = indexk′(M ′)◦ρk′−1(M

′)◦. . .◦ρk′′

0
(M ′), the first l components of im (ρk′−1(M

′)◦

. . . ◦ ρk′′

0
(M ′)) are then the first l components of ĩ′, so the first l components of ã′ and ã′′ are equal.

Moreover numk′,M ′ establishes a bijection between the last |ã′| − l components of its argument and

the interval [1, countη(k
′, M ′)]. So the last |ã′| − l components of ã′ and ã′′ are equal. Hence ã′ = ã′′.

Therefore, we conclude that ã′ = ã′′, so z′[ã′] = z′′[ã′′].
Next, we show that the function

var
−−→E is injective. If y′[a′1, . . . , a

′
j′]

var
−−→E z[a1, . . . , aj] and y′′[a′′1, . . . ,

a′′j′′]
var
−−→E z[a1, . . . , aj], then z = varImL(y′, M ′) and z = varImL(y′′, M ′′). By Hypothesis H′4.1,

M ′ and M ′′ share at least the first j ′ = j′′ sequences of random variables and y′ = y′′. By Hy-
pothesis H′4.2, ρk′(M ′) = ρk′(M ′′) for all k′ < j′ = j′′. By definition of addstart and num,
startη(k

′, M ′) = startη(k
′, M ′′) and Iη(numk′,M ′) = Iη(numk′,M ′′) for all k′ ≤ j′ = j′′. Hence a′k′ = a′′k′

for all k′ ≤ j′ = j′′. So y′[a′1, . . . , a
′
j′] = y′′[a′′1, . . . , a

′′
j′′].

For each trace initConfig(C ′[Q0]) → . . . → Em, Pm,Qm, Cm of C ′[Q0] of probability pm, we show
that there exists a trace initConfig(C ′[C[[[L]]]])→ . . .→ E′m′ , P ′m′ ,Q′m′ , C′m′ of C ′[C[[[L]]]] of probability
p′m′ such that

– For all z /∈ S, E ′m′(z[a′1, . . . , a
′
j′]) = Em(z[a′1, . . . , a

′
j′]); for all z ∈ S, z[a′1, . . . , a

′
j′] is in Dom(Em)

if and only if it is in Dom(E ′m′); if y is defined by new in L and y[a1, . . . , aj] ∈ Dom(E′m′) then

there exists MV such that y[a1, . . . , ak]
var
−−→Em MV and MV ∈ Dom(Em) and for all such MV ,

E′m′(y[a1, . . . , aj]) = Em(MV).
– P ′m′ is obtained from Pm as Q′′0 from Q0 (transforming only the occurrences that appear in Pm),
Q′m′ = Q1

m′] Q2
m′] Q3

m′ , where Q1
m′ is obtained from Qm as Q′′0 from Q0 (transforming only

the occurrences that appear in Qm), Q2
m′ is what remains of relay(L) after partial execution,

and Q3
m′ is what remains of [[L]] after partial execution. More precisely, let relay(La1,...,ak

j0,...,jk
) =

relay(Lj0,...,jk
)j0,...,jk

i1,...,ik
{a1/i1, . . . , ak/ik} and [[La1,...,ak

j0,...,jk
]] = [[Lj0,...,jk

]]j0,...,jk

i1,...,ik
{a1/i1, . . . , ak/ik} where i1,

. . . , ik are the replications indexes of L above Lj0,...,jk
. These processes correspond respectively to

the relay process and to the translation of the subtree Lj0,...,jk
of L, for the value of the replication

indexes a1, . . . , ak. Let redRepl(a, !i≤nP) = P{a/i}. Then Q2
m′ and Q3

m′ are formed as follows:

A Computationally Sound Mechanized Prover for Security Protocols 49

• for each j0, . . . , jk−1, a1, . . . , ak such that y(j0,...,jk−1),k′ [a1, . . . , ak] ∈ Dom(E′m′), Q2
m′ contains

dj0,...,jk−1
[a1, . . . , ak](); dj0,...,jk−1

[a1, . . . , ak]〈〉, possibly several times.

• for each j0, . . . , jk−1, a1, . . . , ak such that y(j0,...,jk−2),k′′ [a1, . . . , ak−1] ∈ Dom(E′m′) and

y(j0,...,jk−1),k′ [a1, . . . , ak] /∈ Dom(E′m′), Q2
m′ contains redRepl(ak, relay(L

a1,...,ak−1

j0,...,jk−1
)) and Q3

m′ con-

tains redRepl(ak, [[L
a1,...,ak−1

j0,...,jk−1
]]).

• for each j0, . . . , jl, a1, . . . , al such that y(j0,...,jl−1),k′ [a1, . . . , al] ∈ Dom(E′m′) and Lj0,...,jl
is

a leaf of L, either Q2
m′ contains relay(La1,...,al

j0,...,jl
) and Q3

m′ contains [[La1,...,al

j0,...,jl
]], or Q2

m′ con-

tains dj0,...,jl
[a1, . . . , al](x(j0,...,jl),1 : T(j0,...,jl),1, . . . , x(j0,...,jl),l′ : T(j0,...,jl),l′); dj0,...,jl

[a1, . . . , al]〈r〉

with l′ = nInputj0,...,jl
, possibly several times, and there exist M ′ ∈ M and ã′ such that

Em, M ′{ã′/ĩ′} ⇓ r, Em, convindex(l, M ′){ã′/ĩ′} ⇓ a1, . . . , al, and BL(M ′) = (j0, . . . , jl), where ĩ′

is the sequence of replication indexes at M ′.

where for each k, ak is a bitstring in [1, tot countη(j0, . . . , jk−1)].

– C′m′ = Cm ∪ {cej
, dej
| j̃}.

– p′m′ = pm ×
∏

z,a′

1,...,a′

j′
|Iη(T)| where T is the type of z and z ∈ S, a′1, . . . , a

′
j′ are such that

z[a′1, . . . , a
′
j′] ∈ Dom(Em) and there exists no y[a1, . . . , aj] ∈ Dom(E′m′) such that y[a1, . . . , aj]

var
−−→Em

z[a′1, . . . , a
′
j′].

Note that the same trace of C ′[C[[[L]]]] corresponds to
∏

z,a′

1,...,a′

j′
|Iη(T)| traces of C ′[Q0] that differ only

by the values of Em(z[a′1, . . . , a
′
j′]) for z ∈ S, a′1, . . . , a

′
j′ as defined in the last item above.

The proof proceeds by induction on the length m of the trace of C ′[Q0]. For the induction step, we
distinguish cases depending on the last reduction step of the trace.

– For the initial case, we show by induction on C ′′ that for all C ′′,Q, C, σ such that σ substitutes
channel names for channel names without touching cej

and dej
, there exist Q′, C′, σ′ such that σ′

substitutes channel names for channel names without touching cej
and dej

, ∅, {C ′′[σQ0]}] Q, C Ã∗

∅, {σ′Q0}]Q
′, C′, and ∅, {C ′′[σC[[[L]]]]}]Q, C Ã∗ ∅, {σ′C[[[L]]]}]Q′, C′. This is obvious when C ′′ = [],

with σ′ = σ, Q′ = Q, and C′ = C. We show this result by applying (Par) when C ′′ = C1 | Q1 or
C ′′ = Q1 | C1, and (NewChannel) when C ′′ = newChannel c; C1.

So we can apply this result to C ′′ = C ′, σ = Id, Q = ∅, and C = fc(C ′[Q0]). We have fc(C ′[Q0]) =
fc(C ′[C[[[L]]]]), since fc(Q0) = fc(Q′′0) = fc(C[[[L]]]). Therefore, there exist Q, C, σ such that σ
substitutes channel names for channel names without touching cej

and dej
, ∅, {C ′[Q0]}, fc(C

′[Q0])Ã
∗

∅, {σQ0}] Q, C, and

∅, {C ′[C[[[L]]]]}, fc(C ′[C[[[L]]]])Ã∗ ∅, {σC[[[L]]]}] Q, C

Ã
∗ ∅, {σQ′′0, relay(L), [[L]]}] Q, C ∪ {cej

, dej
| j̃} by (NewChannel) and (Par)

Ã
∗ ∅, {σQ′′0}] Q

2
0]Q

3
0] Q, C ∪ {cej

, dej
| j̃} by (Par) and (Repl)

where Q2
0 = {redRepl(a, relay(Lj0)

j0) | j0, a ∈ [1, tot countη(j0)]} is what remains from relay(L)
after expansion of parallel compositions and replications and Q3

0 = {redRepl(a, [[Lj0]]
j0) | j0, a ∈ [1,

tot countη(j0)]} is what remains of [[L]] after expansion of parallel compositions and replications.

Moreover, σQ′′0 is obtained from σQ0 as Q′′0 from Q0, and Q does not contain any occurrence modified
when transforming Q0 into Q′′0, so {σQ′′0}] Q is obtained from {σQ0}] Q as Q′′0 from Q0.

Reducing {σQ′′0}]Q and {σQ0}]Q by Ã until they are in normal form, we obtain that reduce(∅,
{C ′[Q0]}, fc(C

′[Q0])) = (∅,Q0, C
′) and reduce(∅, {C ′[C[[[L]]]]}, fc(C ′[C[[[L]]]])) = (∅,Q1

0]Q
2
0]Q

3
0, C
′∪

{cej
, dej
| j̃}), where Q1

0 is obtained from Q0 as Q′′0 from Q0.

Therefore initConfig(C ′[Q0]) and initConfig(C ′[C[[[L]]]]) satisfy the desired invariant.

50 Bruno Blanchet

– When the trace of C ′[Q0] executes new x[a1, . . . , al] : T by (New) for x ∈ S at step m, the correspond-
ing trace of C ′[C[[[L]]]] executes let x[a1, . . . , al] : T = cst in by (Let) at step m′. This yields |Iη(T)|
traces of C ′[Q0], one for each value of Em(x[a1, . . . , al]), each with probability pm = pm−1/|Iη(T)|.
In contrast, this yields a single trace of C ′[C[[[L]]]], with probability p′m′ = p′m′−1.

Moreover, there exists no y[a′1, . . . , a
′
l′] ∈ Dom(E′m′) such that y[a′1, . . . , a

′
l′]

var
−−→Em x[a1, . . . , al].

Otherwise, by the first point of the invariant, before the definition of x[a1, . . . , al], there would exist
MV such that y[a′1, . . . , a

′
l′]

var
−−→Em−1 MV and MV ∈ Dom(Em−1). Since Em is an extension of Em−1,

y[a′1, . . . , a
′
l′]

var
−−→Em MV . Since

var
−−→Em is injective, MV = x[a1, . . . , al]. This yields a contradiction,

since MV ∈ Dom(Em−1) but x[a1, . . . , al] /∈ Dom(Em−1) by Invariant 4. (x[a1, . . . , al] cannot be
defined several times in a trace.)
It is then easy to see that the invariant is satisfied.

– When the trace of C ′[Q0] executes σiPM for M ∈M, the corresponding trace of C ′[C[[[L]]]] executes
σi(dM,1〈〉; dM,1(); . . . dM,l〈〉; dM,l(); dM 〈σMx1,M , . . . , σMxm,M 〉; dM (y : bitstring); CM [y]) where σi =

{ã/̃i}, ĩ is the sequence of current replication indexes at PM , and BL(M) = (j0, . . . , jl).
For k ≤ l, let ak be such that Em, addstartk,M (numk,M (σi(im indexk(M))))) ⇓ ak and let b̃k be such

that Em, σi(im indexk(M)) ⇓ b̃k.
Let m′k be the step of the trace of C ′[C[[[L]]]] after executing σidM,k〈〉; σidM,k(), where dM,k =
dj0,...,jk−1

[convindex(k, M)]. We show by induction on k that for all k′, y(j0,...,jk−1),k′ [a1, . . . , ak] ∈

Dom(E′
m′

k
) and that the invariant is satisfied at step m′k except that σi(dM,1〈〉; dM,1(); . . . ; dM,k〈〉;

dM,k()) has been removed from P ′
m′

k
. Let zkk′ = varImL(y((j0,...,jk−1),k′ , M). We have y(j0,...,jk−1),k′ [a1,

. . . , ak]
var
−−→Em zkk′ [b̃k]. Moreover, zkk′ [b̃k] ∈ Dom(Em) since zkk′ [σi(im indexk(M))] occurs in σiM ,

and σiM is successfully evaluated in the trace of C ′[Q0]. We distinguish two cases:
• First case: y((j0,...,jk−1),k′ [a1, . . . , ak] ∈ Dom(E′

m′

k−1
). By the invariant at step m′k−1, we have

dj0,...,jk−1
[a1, . . . , ak](); dj0,...,jk−1

[a1, . . . , ak]〈〉 ∈ Q2
m′

k−1
. So we can execute σidM,k〈〉; σidM,k() by

two (Output) steps, without changing the environment, so y(j0,...,jk−1),k′ [a1, . . . , ak] ∈ Dom(E′
m′

k
)

and the invariant is satisfied at step m′k except that σi(dM,1〈〉; dM,1(); . . . dM,k〈〉; dM,k()) is re-
moved from P ′

m′

k
.

• Second case: y(j0,...,jk−1),k′ [a1, . . . , ak] /∈ Dom(E′
m′

k−1
). By induction hypothesis, y(j0,...,jk−2),k′ [a1,

. . . , ak−1] ∈ Dom(E′
m′

k−1
). By the invariant at step m′k−1, redRepl(ak, relay(L

a1,...,ak−1

j0,...,jk−1
)) ∈ Q2

m′

k−1

and redRepl(ak, [[L
a1,...,ak−1

j0,...,jk−1
]]) ∈ Q3

m′

k−1
. By (Output) twice, we send an empty message on

dj0,...,jk−1
[a1, . . . , ak] and on cj0,...,jk−1

[a1, . . . , ak]. By (New), we define y(j0,...,jk−1),k′ [a1, . . . , ak]

for each k′. We choose Em(zkk′ [b̃k]) as value of y(j0,...,jk−1),k′ [a1, . . . , ak] (with probability 1
|Iη(T)|

where T is the type of y(j0,...,jk−1),k′). Finally, by (Output) twice, we send an empty message
on cj0,...,jk−1

[a1, . . . , ak] and on dj0,...,jk−1
[a1, . . . , ak]. Then the invariant is satisfied at step m′k

except that σi(dM,1〈〉; dM,1(); . . . dM,k〈〉; dM,k()) is removed from P ′
m′

k
. (Note that the probability

of the trace of C ′[C[[[L]]]] is divided by
∏

k′ |Iη(T(j0,...,jk−1),k′)| where T(j0,...,jk−1),k′ is the type of
y(j0,...,jk−1),k′ [a1, . . . , ak]. This is what is required by the invariant since y(j0,...,jk−1),k′ [a1, . . . , ak]
is defined at step m′k but was not at step m′k−1.)

So y(j0,...,jk−1),k′ [a1, . . . , ak] ∈ Dom(E′
m′

l
) for all k ≤ l and k′, and the invariant is satisfied at step m′l

except that σi(dM,1〈〉; dM,1(); . . . dM,l〈〉; dM,l()) is removed from P ′
m′

l
. Let a be such that Em, σiM ⇓

a. Let m′′ be the step of the trace of C ′[C[[[L]]]] after executing σi(dM 〈σMx1,M , . . . , σMxl′,M 〉;
dM (y : bitstring)) with l′ = nInputM . By the invariant, we have two cases:
• First case: we have relay(La1,...,al

j0,...,jl
) ∈ Q2

m′

l
and [[La1,...,al

j0,...,jl
]] ∈ Q3

m′

l
.

After two applications of (Output), the value of E ′m′′(x(j0,...,jl),k′ [a1, . . . , al]) is set to the value

sent by the process σidM 〈σMx1,M , . . . , σMxl′,M 〉, that is, σiσMxk′,M , so we have Em, σiσMxk′,M ⇓

A Computationally Sound Mechanized Prover for Security Protocols 51

E′m′′(x(j0,...,jl),k′ [a1, . . . , al]) for each k′. Since M = σMNM and E′
m′

l
(y(j0,...,jk−1),k′ [a1, . . . , ak]) =

Em(zkk′ [b̃k]) for all k ≤ l and k′, we have E′m′′ , NM ⇓ a, hence E′m′′(y[ã]) = a.
• Second case: we have dj0,...,jl

[a1, . . . , al](x(j0,...,jl),1 : T(j0,...,jl),1, . . . , x(j0,...,jl),l′ : T(j0,...,jl),l′);

dj0,...,jl
[a1, . . . , al]〈r〉 ∈ Q

2
m′

l
and there exist M ′ ∈ M and ã′ such that Em, M ′{ã′/ĩ′} ⇓ r,

Em, convindex(l, M ′){ã′/ĩ′} ⇓ a1, . . . , al, and BL(M ′) = (j0, . . . , jl), where ĩ′ is the sequence
of current replication indexes at M ′.
In this case, convindex(l, M ′){ã′/ĩ′} =Em convindex(l, M){ã/̃i}, so, as shown in the proof that
var
−−→E is a function, indexl(M

′){ã′/ĩ′} =Em indexl(M){ã/̃i} =Em b̃l and M ′ and M share the
first l sequences of random variables, that is, all sequences of random variables, or ml = 0 and
M = M ′. Moreover, BL(M) = BL(M ′) = (j0, . . . , jl), so NM = NM ′ .
If ml = 0 and M = M ′, ã′ = ã, so Em, σiM ⇓ r, so r = a.
Otherwise, by Hypothesis H′4.3, there exists a term M0 such that M = (indexl(M))M0, M ′ =
(indexl(M

′))M0, and M0 does not contain the current replication indexes at M or M ′. Then
a =Em M{ã/̃i} =Em M0{b̃l/ĩ′′} =Em M ′{ã′/ĩ′} =Em r where ĩ′′ is the sequence of current
replication indexes at definition of zlk′,M for any k′.

In all cases, we obtain therefore E ′m′′(y[ã]) = a, so σiCM [y] in the trace of C ′[C[[[L]]]] executes in the
same way as σiCM [M] in the trace of C ′[Q0], which yields the desired invariant.

– The other cases are easy: both sides reduce in the same way.

Conversely, we show that all traces of C ′[C[[[L]]]] correspond to a trace of C ′[Q0] with the same relation
as above. The proof follows a technique similar to the previous proof.

So
∏

z,a′

1,...,a′

j′
|Iη(T)| traces of C ′[Q0], each of probability pm, correspond to one trace of C ′[C[[[L]]]]

with probability p′m′ = pm ×
∏

z,a′

1,...,a′

j′
|Iη(T)|. Moreover, for all channels c and bitstrings a,

Em, Pm,Qm, Cm executes c〈a〉 immediately if and only if E ′m′ , P ′m′ ,Q′m′ , C′m′ executes c〈a〉 immediately.
So Pr[C ′[Q0]Ãη c〈a〉] = Pr[C ′[C[[[L]]]]Ãη c〈a〉]. Hence Q0 ≈

V
0 C[[[L]]]. 2

Lemma 12. Q′0 ≈
V
0 C[[[R]]]

Proof sketch. The proof uses the same technique as the proof of Lemma 11. The main addition is that,
in contrast to L, R may contain functional processes that are more complex than just terms. In order to
handle them, we need to define a relation between variables of Q′0 and variables of R defined by let or

new in functional processes: when y is such a variable, y[a1, . . . , al]
var
−−→E varImR(y, M)[ã′] where for all

k ≤ l, E, addstartk,M (numk,M (im indexk(M){ã′/̃i})) ⇓ ak and ĩ is the sequence of current replication

indexes at M . The relation
var
−−→E is not a function for these variables, but we can show that when

y[a1, . . . , al] is related to several variables, these variables hold the same value at runtime.
The most delicate case is that of find functional processes

FP = find (
⊕m

j=1
ũj ≤ ñj suchthat defined(zj1[ũj1], . . . , zjlj [ũjlj]) ∧Mj then FPj) else FP ′

where for each k, ũjk is the concatenation of the prefix of the current replication indexes of length l′0 and
of a non-empty prefix of ũj . When executing such a find process, [[R]] tests the value of zjk[a1, . . . , al′1

] for
all indexes of a1, . . . , al′1

such that a1, . . . , al′0
correspond to a prefix of the current replication indexes.

Correspondingly, transfφ,CM
(FP) tests the values of all variables that are related to zjk[a1, . . . , al′1

] by
var
−−→. 2

Lemma 13. Process Q′0 satisfies Invariant 1.

Proof. Process Q′0 satisfies Invariant 1 since all newly created definitions concern fresh variables; for
variables of Q′0 that correspond to variables defined by new or by an input in R, there is a single

52 Bruno Blanchet

definition for each of them in Q′0; for variables of Q′0 that correspond to variables defined by let in R,
there are several definitions only when there are several definitions of these variables in R, and since
[[R]] satisfies Invariant 1, these definitions are in different branches of if or find in R, so also in Q′0. 2

Lemma 14. Process Q′0 satisfies Invariant 2.

Proof. The only variable accesses created in Q′0 come from transfφ0,CM
(FP). We easily show by induc-

tion on FP that the only variable accesses created by transfφ,CM
(FP) and not guarded by a corre-

sponding find are in im φ. (We do not consider variable accesses in CM , which already existed in Q0.)
So the only variable accesses created by transfφ0,CM

(FPM) and not guarded by a corresponding find
are in im φ0. Moreover, variable accesses in im φ0 are of three kinds:

1. varImR(xj,M , M)[i′1, . . . , i
′
l′] which are defined in P ′M , just above transfφ0,CM

(FPM).

2. varImR(y′jk,M , M)[im indexj(M)] where

(a) either nNewj,M > 0 and zj1,M [im indexj(M)] is guaranteed to be defined, since it occurs at this
point in the initial process Q0 which satisfies Invariant 2. By the addition of defined conditions
in find and the fact that z′jk,M = varImR(y′jk,M , M) is defined in Q′0 where zj1,M was defined in
Q0, this implies that varImR(y′jk,M , M)[im indexj(M)] is also defined.

(b) or nNewj,M = 0, then im indexj(M) is the sequence of current replication indexes at M , and
varImR(y′jk,M , M)[im indexj(M)] is defined just above P ′M .

3. varImR(z, M)[i′1, . . . , i
′
l′] where z is defined by let in FPM . Since [[R]] satisfies Invariant 2, ac-

cesses to z[i1, . . . , il] in FPM occur under the definition of z[i1, . . . , il] in FPM , so accesses to
varImR(z, M)[i′1, . . . , i

′
l′] = φ0(z[i1, . . . , il]) also occur under their definition in transfφ0,CM

(FPM).

Therefore, Q′0 satisfies Invariant 2. 2

Lemma 15. Process Q′0 satisfies Invariant 3.

Proof. The only newly added variable definitions are let varImR(xj,M , M) : Tj,M = σMxj,M and
new z′jk,M : T ′jk,M . Each variable varImR(xj,M , M) has at most one definition in Q′0. For variables
z′jk,M , when several of these definitions are added for the same variable z ′jk,M , they are added in place
of the definition(s) of zj1,M , so by hypothesis H′3.1, they occur under the same replications, so they all
have the same type. Therefore, the type environment for Q′0 is well-defined.

Assume that M ∈ M and PM = CM [M] is the smallest process containing M . Let EL be the type
environment at PM = CM [M] in Q0; let ER be the type environment at P ′M in Q′0; let E ′L be the type
environment at NM in L; let E ′R be the type environment at FPM in R. We know that EL ` PM , and show
that ER ` P ′M . It is then easy to see that Q′0 is well-typed knowing that Q0 is well-typed. We note that ER
is an extension of EL with types for variables varImR(y′jk,M ′ , M ′), varImR(xj,M ′ , M ′), and varImR(z, M ′)
when z is defined by let in FPM ′ , for each M ′ ∈ M. By Hypothesis H′3.2, EL ` σMxj,M : Tj,M , so
ER ` σMxj,M : Tj,M , since ER is an extension of EL. Then, in order to show ER ` P ′M , it is enough to
show ER ` transfφ0,CM

(FPM).

We say that φ is well-typed when z[M̃] ∈ Dom(φ) and E ′R ` z[M̃] : T ′ implies ER ` φ(z[M̃]) : T ′.

First, it is easy to show by induction on M ′ that for all well-typed φ, for all M ′ such that E ′R `M ′ : T ,
we have ER ` φ(M ′) : T .

Next, we show that for all well-typed φ, if E ′R ` [[FP ′]]
ej
ei

and the type of the result of FP ′ is the type

of NM , then ER ` transfφ,CM
(FP ′), by induction on FP ′.

– If FP ′ = M ′, we have to show that ER ` CM [φ(M ′)]. Let T such that EL `M : T .

We have M = σMNM , so if NM contains a function symbol, E ′L ` NM : T . If NM = xj,M , M =
σMxj,M is of type Tj,M by Hypothesis H′3.2, so T = Tj,M , hence we also have E ′L ` NM : T .

A Computationally Sound Mechanized Prover for Security Protocols 53

If NM = yjk,M , M = σMyjk,M = zjk,M [im indexj(M)] is of type Tjk,M by Hypothesis H′3.1, so
T = Tjk,M and we also have E ′L ` NM : T .
By hypothesis, we have then E ′R ` M ′ : T , so ER ` φ(M ′) : T . Since EL ` CM [M] with EL ` M : T ,
by a substitution lemma, we conclude that ER ` CM [φ(M ′)].

– The inductive cases follow easily using E ′R ` [[FP ′]]
ej
ei

and the property proved above to type terms.

In the case of find , we extend φ into φ′ as follows. Let ĩ′ be the sequence of current replication
indexes at M ′ and ũ′ be a sequence formed with a fresh variable for each variable in ĩ′.

• If zk = y′jk′,M ′ for some k′, φ′(zk[Mk1, . . . , Mkl′
k
]) = varImR(zk, M

′)[im indexj(M
′){ũ′/ĩ′}]. Since

varImR(zk, M
′) is defined where zj1,M ′ is defined, the indexes of varImR(zk, M

′) are the indexes

of zj1,M ′ , so im indexj(M
′) is of the suitable type. Moreover, ũ′ and ĩ′ have the same types, so

by a substitution lemma, im indexj(M
′){ũ′/ĩ′} is of the suitable type. Moreover zk in R and

varImR(zk, M
′) in Q′0 are both declared of type T ′jk′,M ′ , so E ′R ` zk[Mk1, . . . , Mkl′

k
] : T ′jk′,M ′ and

ER ` varImR(zk, M
′)[im indexj(M

′){ũ′/ĩ′}] : T ′jk′,M ′ .

• If zk is defined by let or by a function input, φ′(zk[Mk1, . . . , Mkl′
k
]) = varImR(zk, M

′)[ũ′].

varImR(zk, M
′) is declared under the same replications as M ′, so ũ′ is of the suitable type.

The variables zk in R and varImR(zk, M
′) in Q′0 are declared of the same type, so if E ′R `

zk[Mk1, . . . , Mkl′
k
] : T ′ then ER ` varImR(zk, M

′)[ũ′] : T ′.

So φ′ is well-typed.
Moreover, we show that ER ` im indexj1(M

′){ũ′/ĩ′} = im indexj1(M) : bool . We have zj1k,M =
zj1k,M ′ since M and M ′ share the j1 first sequences of random variables, so im indexj1(M

′) and

im indexj1(M) are of the same type, since they are both used as indexes of zj1k,M . Since ũ′ and ĩ′

are of the same type, by a substitution lemma, im indexj1(M
′){ũ′/ĩ′} and im indexj1(M) are of the

same type, which yields the desired result.

It is easy to see that φ0 is well-typed. Moreover E ′R ` [[FPM]]
ej
ei

and the type of the result of FPM is the

type of NM by Hypothesis H0, so ER ` transfφ0,CM
(FPM). 2

Proof of Proposition 4 Invariants 1, 2, and 3 have been proved in Lemmas 13, 14, and 15 re-
spectively. Finally, we show that Q0 ≈

V Q′0. After renaming variables so that V and C do not contain
variables of L and R, by Lemmas 1, 11, and 12, Q0 ≈

V
0 C[[[L]]] ≈V C[[[R]]] ≈V

0 Q′0, so by transitivity
Q0 ≈

V Q′0. 2

B.6 Proofs for Section 4

Proof of Proposition 5 Let C be an acceptable context for Q | Qx, Q | Q′x, ∅. We relate the traces
of C[Q | Qx] and C[Q | Q′x] as follows:

– If a trace of C[Q | Qx] never executes c〈x[i1, . . . , im]〉, then we obtain a trace of C[Q | Q′x] with
the same probability, by just replacing Qx with Q′x and subprocesses of Qx with the corresponding
subprocess of Q′x.

– Otherwise, the considered trace of C[Q | Qx] executes c〈x[i1, . . . , im]〉 exactly once, with E(i1) =
a1, . . . , E(im) = am, and E(x[a1, . . . , am]) = a, where E is the environment when c〈x[i1, . . . , im]〉 is
executed. By hypothesis, the definition of x[a1, . . . , am] in this trace is either a restriction new x[a1,
. . . , am] : T , or an assignment let x[a1, . . . , am] : T = z[M1, . . . , Ml] with E, Mk ⇓ a′k for all k ≤ l,
and the definition of z[a′1, . . . , a

′
l] in this trace is new z[a′1, . . . , a

′
l] : T .

We build |Iη(T)| traces of C[Q | Q′x] from this trace, by choosing any value of Iη(T) for the restriction
new x[a1, . . . , am] : T or new z[a′1, . . . , a

′
l] : T defined above, and the value a for the restriction

new y : T of Q′x. By definition of S, these traces are the same as the trace of C[Q | Qx] except

54 Bruno Blanchet

perhaps for values of variables in S, and for the process Q′x instead of Qx. The probability of each
of these traces is 1/|Iη(T)| times the probability of the considered trace of C[Q | Qx], since these
traces choose one more random number in Iη(T) than the trace of C[Q | Qx].

Moreover, all traces of C[Q | Q′x] are obtained by the previous construction. (To show that, we rebuild
a trace of C[Q | Qx] from the trace of C[Q | Q′x] by the reverse construction of the one detailed above.)

For each configuration Em, Pm,Qm, Cm of the trace of C[Q | Qx], and corresponding configuration
E′m′ , P ′m′ ,Q′m′ , C′m′ of the trace of C[Q | Q′x], for all channels c and bitstrings a, Em, Pm,Qm, Cm executes
c〈a〉 immediately if and only if E ′m′ , P ′m′ ,Q′m′ , C′m′ executes c〈a〉 immediately.

Therefore Pr[C[Q | Qx]Ãη c〈a〉] = Pr[C[Q | Q′x]Ãη c〈a〉], so Q | Qx ≈0 Q | Q′x. 2

Proof of Proposition 6 Let C be an acceptable context for Q | Qx, Q | Q′x, ∅.

We first exclude traces T such that defRestrT (x[ã]) = defRestrT (x[ã′]) and ã 6= ã′. These traces
have negligible probability by hypothesis, since C[| Qx] is an acceptable context for Q, 0, {x}. So this
removal does not change the result.

For the remaining traces, when ã 6= ã′, defRestrT (x[ã]) 6= defRestrT (x[ã′]), so the definitions of x[ã]
and x[ã′] do not come from a single execution of the same restriction. (So x[ã] and x[ã′] are independent
random numbers.) Then we can apply a proof similar to that of Proposition 5, except that we replace
each tested value of x[ã′] with independent random numbers instead of single one. 2

Proof of Lemma 2 Let us prove the result for one-session secrecy. (The proof is essentially the same
for secrecy.) [] | Qx and [] | Q′x are acceptable contexts for Q, Q′, {x} (after renaming i, i1, . . . , im so
that they do not occur in Q and Q′). So by Lemma 1, Q | Qx ≈

{x} Q′ | Qx and Q | Q′x ≈
{x} Q′ | Q′x. A

fortiori, Q | Qx ≈ Q′ | Qx and Q | Q′x ≈ Q′ | Q′x. So by transitivity of ≈, Q′ | Qx ≈ Q′ | Q′x. 2

C Optimizations for transfφ,CM
(FB)

We can apply two optimizations to the definition of transfφ,CM
(FB):

– When im indexj1(M
′) is a prefix of ĩ′, im indexj1(M

′){ũ′/ĩ′} is a prefix of ũ′, so the equality

im indexj1(M
′){ũ′/ĩ′} = im indexj1(M) defines the value of a prefix of ũ′. We simply substitute

the fixed elements of ũ′ with their value, and remove them from the sequence of variables to be
looked up by find .

– When all variables zk are yjk′,M ′ for some j, k′, and M ′, with max j = j0, we use the following
definition instead:

transfφ,CM
(̃i ≤ ñ suchthat defined(zk[Mk1, . . . , Mkl′

k
]1≤k≤l) ∧M1 then FP ′) =

⊕
M ′∈M′

ũ′ ≤ ñ′ suchthat defined(φ′(zk[Mk1, . . . , Mkl′
k
])1≤k≤l)∧

im (ρj0−1(M
′) ◦ . . . ◦ ρj1(M

′)){ũ′/ĩ′} = im indexj1(M) ∧ φ′(M1) then transfφ′,CM
(FP ′)

where j1 is the length of the prefix of the current replication indexes that occurs in Mk1, . . . , Mkl′
k

(by hypothesis H7); M′ is the set of M ′ ∈ M such that varImR(zk, M
′) is defined for k ≤ l and

M ′ and M share the j1 first sequences of random variables; ĩ′ is the sequence of current replication
indexes at the definition of zj0k,M ′ ; ũ′ is a sequence formed with a fresh variable for each variable in

ĩ′; ñ′ is the sequence of bounds of replications above the definition of zj0k,M ′ ; φ′ is an extension of

φ with φ′(zk[Mk1, . . . , Mkl′
k
]) = varImR(zk, M

′)[im (ρj0−1(M
′) ◦ . . . ◦ ρj(M

′)){ũ′/ĩ′}] if zk = y′jk,M ′ .

The composition ρj0−1(M
′)◦ . . .◦ρj(M

′) computes the indexes of z′jk′,M ′ for any k′ from the indexes
of z′j0k′′,M ′ for any k′′.

A Computationally Sound Mechanized Prover for Security Protocols 55

When several terms M ′ ∈ M share the first j0 sequences of random variables, they generate the
same φ′, so only one find branch needs to be added for all of them, which can reduce considerably
the number of find branches to add.
An optimization similar to the first one above also applies to this case, when im (ρj0−1(M

′) ◦ . . . ◦

ρj1(M
′)) is a prefix of ĩ′.

