A Computationally Sound Mechanized Prover for Security Protocols

Bruno Blanchet
February 2, 2007

Abstract tool produces proofs valid for a number of sessions polynomial

in the security parameter, in the presence of an active adversary.
We present a new mechanized prover for secrecy propertiesigése proofs are presented as sequences of games, as used by
security protocols. In contrast to most previous provers, our te@{ptographers [16,42,43]: the initial game represents the proto-
does not rely on the Dolev-Yao model, but on the computatioral to prove; the goal is to show that the probability of breaking
model. It produces proofs presented as sequences of gamesrtain security property (secrecy in this paper) is negligible in
these games are formalized in a probabilistic polynomial-tiniis game; intermediate games are obtained each from the pre-
process calculus. Our tool provides a generic method for spegbus one by transformations such that the difference of prob-
fying security properties of the cryptographic primitives, whichhility between consecutive games is negligible; the final game
can handle shared-key and public-key encryption, signatuigssuch that the desired probability is obviously negligible from

message authentication codes, and hash functions. Our tool ffi@form of the game. The desired probability is then negligible
duces proofs valid for a number of sessions polynomial in thethe initial game.

security parameter, in the presence of an active adversary. We represent games in a process calculus. This calculus is

have implemented our too! and tested it on a number of eX3f%pired by the pi-calculus, and by the calculi of [31, 32, 37]

ples of protocols from the literature. and of [30]. In this calculus, messages are bitstrings, and cryp-
tographic primitives are functions from bitstrings to bitstrings.

1 Introduction The calculqs hgs a probabil'istic semantics., apd all processes run
in polynomial time. The main tool for specifying security prop-

There exist two main approaches for analyzing security proﬁfﬂes is observational equivalena@:is observationa!ly_ equiv-
cols. In the computational model, messages are bitstrings, &t ©0Q', @ ~ @', when the adversary has a negligible prob-
the adversary is a probabilistic polynomial-time Turing machir@ility of distinguishing) from . With respect to previous
This model is close to the real execution of protocols, but thglculi mentioned above, our calculus introduces an important
proofs are usually manual and informal. In contrast, in the fg}oVelty which is key for the automatic proof of security proto-
mal, Dolev-Yao model, cryptographic primitives are consider&8!S: the values of all variables during the execution of a process
as perfect blackboxes, modeled by function symbols in an &j€ stored in arrays. For instanagi] is the value of: in the -
gebra of terms, possibly with equations. The adversary d8rFOPY of the process that defines Arrays replace lists often
compute using these blackboxes. This abstract model mak&gd by cryptographers in their manual proofs of protocols. For
it possible to build automatic verification tools, but the securi§@mPple, consider the definition of security of a message authen-
proofs are in general not sound with respect to the computatiohiz@ttion code (MAC). Informally, this definition says that the ad-
model. versary has a negligible probability of forging a MAC, that is,

Since the seminal paper by Abadi and Rogaway [3], there {3t all correct MACs have been computed by calling the MAC
been much interest in relating both frameworks (see for exa@fi@cle. So, in cryptographic proofs, one defines a list containing
ple [1,9, 12, 21, 25, 26, 35, 36]), to show the soundness of the arguments of calls to the MAC pracle, and when chegkmg a
Dolev-Yao model with respect to the computational model, afif*C of @ messagen, one can additionally check that is in
thus obtain automatic proofs of protocols in the computatiorfdis liSt, with a negligible change in probability. In our calculus,
model. However, this approach has limitations: since the colfie arguments of the MAC oracle are stored in arrays, and we
putational and Dolev-Yao models do not correspond exactly, 2§form & lookup in these arrays in order to find the message
ditional hypotheses are necessary in order to guarantee solfhd/\I/@ys make it easier to automate proofs since they are al-
ness. (For example, key cycles have to be excluded, or a spelifit¥S Present in the calculus: one does not need to add explicit
security definition of encryption is needed [5].) instructions to insert values in them, in contrast to the I|s_ts_ used

In this paper, we propose a different approach for automiy.manual proofs. T_herefore, many tnwglly sound but difficult
ically proving protocols in the computational model: we haJ@ at_Jtomate syntactic transformations dlsapp.ear. Furthermore,
built a mechanized prover that works directly in the computi!ations between elements of arrays can easily be expressed by
tional model, without considering the Dolev-Yao model. ogaualities, possibly involving computations on array indices.

" — , » _ Our prover relies on a collection of game transformations, in
E_mgi'ki:gﬂgﬂgésdi‘.’g;gf?\'RSECO'e Normale Suprieure, Paris, France orqer to transform the initial protocol into a game on which

TA short version of this paper appears at IEEE Symposium on Security Ah@ desired securit_y prOperW_ is ObViOU_S-_ _The most i_mportant
Privacy, Oakland, California, May 2006. kind of transformations exploits the definition of security cryp-

tographic primitives in order to obtain a simpler game. As dé{, N == terms

scribed in Section 3.2, these transformations can be specified replication index

in a generic way: we represent the definition of security of each z[M, ..., My] variable access
cryptographic primitive by an observational equivalefice R, f(My, ..., Mp) function application
where the processds and R encode functions: they input the)

arguments of the function and send its result back. Then, fé:= Input process

prover can automatically transform a procégghat calls the 0 . nil N
functions of L (more precisely, contains as subterms terms that QJ Q pargllel_composnmn
perform the same computations as functiongpinto a process = replicationn times
Q' that calls the functions aR instead. We have used this tech- newChannel ;@ _channel restriction
nique to specify several variants of shared-key and public-key ¢[Mu,-- -, MiJ(z1[i] : T, ... wpli] : Tw); P
encryption, signature, message authentication codes, and hash Input

functions, simply by giving the appropriate equivalerice: R B
to the prover. Other game transformations are syntactic trahsi= output process
formations, used in order to be able to apply the definition of (M1, .-, Mi}(N1,..., Ni); @ output

cryptographic primitives, or to simplify the game obtained after NeW [i1, ..., im] : T; P random number
applying these definitions. !et x[.ih ceyim] :T=Min P assignment

In order to prove protocols, these game transformations are f defined(Mi, ..., M;) A M then P else P
organized using a proof strategy based on advice: when a trans- N conditional
formation fails, it suggests other transformations that should be find (©j2; ujili] < nj1, ..., wjm; [i] < njm,
applied before, in order to enable the desired transformation. ~ suchthat defined(M;1, ..., Mj;;) A M; then P;)
Thanks to this strategy, protocols can often be proved in a fully else P array lookup
automatic way. For delicate cases, our prover has an interac-
tive mode, in which the user can manually specify the trans- Figure 1: Syntax of the process calculus

formations to apply. It is usually sufficient to specify a few
transformations coming from the security definitions of primi-] o R
tives, by indicating the concerned cryptographic primitive afgnoted bylS|. If S is a finite set,z <5 chooses a random
the concerned secret key if any; the prover infers the intermeglgment uniformly inS' and assigns it ta. If A is a probabilis-
ate syntactic transformations by the advice strategy. This méigedlgorithm, z — A(zy, ..., z,,) denotes the experiment of
is helpful for proving some public-key protocols, in which se\:h00sing random coinsand assigning te the result of running
eral security definitions of primitives can be applied, but on#§}(%1; - - -, @m) With coinsr. Otherwise;: — M is a simple as-
one leads to a proof of the protocol. Importantly, our prov&fgnment statement.
is always sound: whatever indications the user gives, when the
prover shows a security property of the protocol, the property ig-
deed holds assuming the given hypotheses on the cryptographic A Calculus for Games
primitives. .

Our prover CryptoVerif has been implemented in Ocargtl Syntax and Informal Semantics
(17300 lines of code for version 1.03 of CryptoVerif) amilhe syntax of our calculus is summarized in Figure 1. This

IS a;/allable h:;\tr;ttp://www.d|.ens.frfblanchet/ calculus was inspired by the pi calculus and by the calculi
cryptoc-eng.htm of [31, 32, 37] and of [30]. We denote by the security pa-
rameter, which determines in particular the length of keys.
1.1 Outline This calculus assumes a countable set of channel names, de-
_ noted byc. There is a mappinghaxlen,, from channels to inte-
The next section presents our process calculus for represer@@g, such thahaxlenn (C) is the maximum |ength ofa message
games. Section 3 describes the game transformations thakwg on channet. Longer messages are truncated. Forcall
use for proving protocols. Section 4 gives criteria for proving Sgraxlen,(c) is polynomial in,. (This is key to guaranteeing
crecy properties of protocols. Section 5 explains how the proygt all processes run in probabilistic polynomial time.)
chooses which transformation to apply at each point. Section @ur calculus also uses parameters, denoted, lwhich cor-
presents our experimental results. Section 7 discusses relaigfond to integer values polynomial in the security parameter.
work and Section 8 concludes. The supplemental material c@g: denoting by, (n) the interpretation of for a given value
tains additional formal details, proof sketches, and details on Byghe security parameter, I,,(n) is a polynomially bounded,

modeling of some cryptographic primitives. efficiently computable function of.
Our calculus also uses types, denoted/byFor each value
1.2 Notations of the security parametey, each type corresponds to a subset

I,,(T) of Bitstring U { L} whereBitstring is the set of all bit-
We recall the following standard notations. We denote Ijrings andL is a special symbol. The sgf(7") must be recog-
{My/x1,..., My /z,} the substitution that replaces with nizable in polynomial time, that is, there exists an algorithm that
M, for eachj < m. The cardinal of a set or multis&t is decides whether € I, (T') in time polynomial in the length of

x and the value ofy. Letfixed-lengthtypes be type§’ such that for instanceu;,[:] < nji,... ,ujm].ﬁ] < njm,, can be further
I,,(T) is the set of all bitstrings of a certain length, this |engt§bbreviatedzfj[ﬂ < n;. A simple example is the following:
being a function of; bounded by a polynomial. Lédrgetypes find u < n suchthat defined(z[u]) A z[u] = a then P’ else P
be typesT such that—; is negligible. (n) is negligible tries to find an index: such thatz[u] is defined and:[u] = a,
when for all polynomials;, there exists), € N such that for and when such a is found, it executed®’ with that value of
alln > no, f(n) < Tln)') Particular types are predefinetitiol, u; otherwise, it execute®. In other words, thigind construct
such thatl,,(bool) = {true, false}, wherefalse is 0 andtrue is l00ks for the valuen in the arrayz, and whena is found, it
1; bitstring, such thatl, (bitstring) = Bitstring; bitstring, Stores inu an index such that[u] = a. Therefore, thdind con-
such thatl, (bitstring) = Bitstring U {L}; [1,n] wheren struct allows us to access arrays, which is key for our purpose.
is a parameter, such tha§([1,n]) = [1,1,(n)]. (We consider More generally,find ui[i] < ni,...,up[i] < n, suchthat
integers as bitstrings without leading zeroes.) defined(My, ..., M;) A M then P’ else P tries to find values of

The calculus also uses function symbgls Each function “1;- - -»Um forwhich My, ..., M, are defined and/ is true. In
symbol comes with a type declaratigh: 71 x ... x T,, — Case of success, it executes In case of failure, it executes.

T. For each value of, each function symbof corresponds to This is further generalized ta branchesfind (Z, ;i [i] <
a function, (f) from I,(T1) x ... x I,(T) to I,(T), such nj1,..., wjm,[i] < njm; suchthat defined(Mjy, ..., Mj;,) A
thatl,(f)(z1,...,zn) is computable in polynomial time in theM; then P;) else P tries to find a branch in [1,m] such that
lengths ofzy, ..., z,, and the value of). Particular functions there are values afji, ..., u;,, for which M;,, ..., Mj; are
are predefined, and some of them use the infix notafién= N defined and); is true. In case of success, it execuf@s
for the equality test) # N for the inequality test (both takingIn case of failure for all branches, it execut®s More for-
two values of the same typgE and returning a value of typemally, it evaluates the conditiortfined (M, ..., My,) A M;
bool), M Vv N for the boolean orM A N for the boolean and, for each;j and each value oﬂjlm o ijm in [1,n;1] x
- M for the boolean negation (taking and returning values of x [1,njm,]. If none of these conditions isrue, it exe-
type bool). cutesP. Otherwise, it chooses randomly with uniformrob-

In this calculus, terms represent computations on bitstringbility one j and one value ofi;1[i], . . . , u;m, [¢] such that the
The replication index is an integer which serves in distincorresponding condition irue, and execute®’;. The condi-
guishing different copies of a replicated proc#sg'. (Repli- tionalif defined(Mi, ..., M;) A M then P else P’ executesP
cation indices are typically used as array indices.) The vdfi1,..., M; are defined and/ evaluates tarue. Otherwise,
able access[M;, ..., M,,] returns the content of the cell ofit executes’. This conditional is defined as syntactic sugar for
indices M, ..., M, of the m-dimensional array variable. find suchthat defined(Mi,..., M;) A M then P else P'. The
We usez,y, z,u as variable names. The function applicatioconjunctdefined(M;, ..., M;) can be omitted wheh= 0 and
f(My,..., My,,) returns the result of applying functiofi to M can be omitted when it igrue.

My, ..., My,. Finally, let us explain the output[Mi, ..., M;](Ny,...,

The calculus distinguishes two kinds of processes: input pfer); Q. A channelc[Mj, ..., M;] consists of both a chan-
cesseq) are ready to receive a message on a channel; outpeltnamec and a tuple of termd/,, ..., M;. Channel names
processe® output a message on a channel after executing somellow us to define private channels to which the adver-
internal computations. The input process 0 does notliing)’ sary can never have access, iwChannel c. (This is use-
is the parallel composition of) and Q’; !"<"(Q represents: ful in the proofs, although all channels of protocols are of-

copies of@ in parallel, each with a different value of [1,n]; ten public.) TermsiMy,..., M, are intuitively analogous to
newChannel ¢; creates a new private channeand executes IP addresses and ports which are numbers that the adversary
Q; the semantics of the inpu{M, ..., M;|(z.[i] : T1,..., may guess. A semantic configuration always consists of a
x[i] : Ti,); P will be explained below together with the semarfingle output process (the process currently being executed)
tics of the output. and several input processes. When the output process exe-

The output processew z[i1, ..., in] : T; P chooses a new Cutesc[My, ..., Mi}(Ny, ..., Ni); @, one looks for an input

; ; T) on channek[M] ... M]], whereM;,..., M/ evaluate to the

random number uniformly i, (T'), stores it inx[iy, ..., im), Lo D Ly-eon i

same bitstrings ad\/y,..., M;, and with the same arity,

and executes”. (The typeT must be a fixed-length type, X , ! .
%the available input processes. If no such input process is

because probabilistic polynomial-time Turing machines ¢ : .
choose random numbers uniformly only in such types.) Fuﬁeynd’ the process blocks. Otherwise, one such input process

/ !/ N . y . . I
tion symbols represent deterministic functions, so all rand&?1:--» Mil(z1li] = Th,...,xx[i] = Tj); P is chosen ran-
numbers must be chosen bgw z[i1,...,im] : T. Deter- omly with uniform probability. The communication is then ex-

ministic functions make automatic syntactic manipulations e&uted: for eaci < k, the output messagy; is evaluated, its

ier: we can duplicate a term without changing its value. TEgSUlt iS truncated to lengtiaxlen, (), the obtained bitstring

processlet z[iy,...,i,] : T = M in P stores the bitstring
value of M (which must be in[n(T)) in zfiy,...,im,], and ex- LA probabilistic polynomial-time Turing machine can choose a random num-
. . m ~ ber uniformly in a set of cardinak only whenm is a power of 2. Whemn is
ecutesP. Ne)it! we explain the procesid (-, uji[i] < 1ot a power of 2, there exist approximate algorithms: for example, in order to
P T 1 G ; PR o obtain a random integer ij), m — 1], we can choose a random integeuni-
"t > am; [Z] = Tm; sufhthat deflned(]V[.Jl, ’,Mjlj) " formly among]0, 2% — 1] f[g)r a cert;ink large enough and return mcg)g m.
M; then P;) else P, wherei denotes a tuple,, ..., im. The The distribution can be made as close as we wish to the uniform distribution by

order and array indices on tuples are taken component-wisegtgosingk large enough.

is stored inrJ[|ifitisin I, (7}) (otherwise the process blocks)(last item). Both invariants are checked by the prover for the
Finally, the output procesE> that follows the input is executed.initial game, and preserved by all game transformations.

The input procesg that follows the output is stored in the avail- We say that a functiorf : Ty x ... x T, — T is poly-
able input processes for future execution. Note that the synitgectivewhen it is injective and its inverses can be computed in
requires an output to be followed by an input process, as in [30lynomial time, that is, there exist functiogfyci1 T — T

If one needs to output several messages consecutively, ong€aq j < m) such thatf;” Yz, .. am)) = x; andf can
simply insert fictitious inputs between the outputs. The advele computed in ponnomlaI time in the length bz, . .., z,,)
sary can then schedule the outputs by sending messages to #hy@§ein the security parameter. Wheh is poly- mjective,
inputs. we define a pattern matching constret f(x1,...,x,) =

Using different channels for each input and output allows the in P else Q as an abbreviation foket y : T = M in
adversary to control the network. For instance, we may writ¢ », : 7, = ffl(y) in ...let z, : T = f'(y) in
lisnelil(zi] - T)...¢'[i}(M) ... The adversary can then decide f(x,,...,x,,) =y then P else Q. We naturally generalize
which copy of the replicated process receives its message, s construct tdet N = M in P else Q whereN is built from
ply by sending it orx[i] for the appropriate value af poly-injective functions and variables.

An else branch offind or if may be omitted when it is We denote byar(P) the set of variables that occur i, and
else yield(); 0. (Note that ®lse 0" would not be syntactically by fc(P) the set of free channels &f. (We use similar notations
correct.) A trailing 0 after an output may be omitted. for input processes.)

Variables can be defined by assignments, inputs, restrictions,
and array Iqokyps. Theurreqt rephgauon indiceat a _certlam 2.2 Example
program point in a process atg . . . , i,, Where the replications
above the considered program point #r&"1 .. 1im<nm \Ne Let us introduce two cryptographic primitives that we use in the
often abbreviate[iy, . .., ,,] by wheniy, ... i,, are the cur- following.
rent replication indices, but it should be kept in mind that this is
only an abbreviation. Variables defined under a replication mistfinition 1 Let T3, T}, andT,,,s be types that correspond
be arrays: for examplg:<"1 . 1im<tmiet 2[i1, ... i,,] : T = intuitively to random seeds, keys, and message authentication
M in ... More formally, we require the following invariant: codes, respectivelyf;,, is a fixed-length type. A message au-

thentication code [15] consists of three function symbols:

Invariant 1 (Single definition) The proces§), satisfies Invari-

ant 1 if and only if e mkgen : T,,, — T, Wherel,(mkgen) = mkgen, is

the key generation algorithm taking as argument a random
bitstring, and returning a key. (Usuallyykgen is a ran-
domized algorithm; here, since we separate the choice of
random numbers from computatiankgen takes an addi-
tional argument representing the random coins.)

1. in every definition ofz[iy,...,im,] in Qy, the indices
i1,-..,1, Of x are the current replication indices at that
definition, and

2. two different definitions of the same variabién @ are in

different branches of find (or if). e mac : bitstring X T, — Trms Wherel, (mac) = mac,

is the MAC algorithm taking as argument a message and
Invariant 1 guarantees that each variable is assigned at most once@ key, and returning the corresponding tag. (We assume
for each value of its indices. (Indeed, item 2 shows that only one here thatmac is deterministic; we could easily encode a
definition of each variable can be executed for given indices in randomizednac by adding an additional argument as for

each trace.) mkgen.)

_)) o o check : bitstring X T, X Trns — bool wherel, (check) =
Invariant 2 (Defined vgnables) The process)y Sat.ISerS In- check, is a checking algorithm such thateck, (m, k, t) =
variant 2 if and only if every occurrence of a variable access ,...ifand only if¢ is a valid MAC of message: under key
x[My, ..., Mpy]in Qo is either k. (Sincemac is deterministiccheck,, (m, k, t) is typically

e syntactically under the definition of[Mj, ..., M,,] (in macy(m, k) = t.)

which caselMy, ..., M, are in fact the current replicationwe have Vin € Bitstring,Vr € L, (Tpnr), check, (m

indices at the definition af); mkgen, (), mac, (m, mkgen, (r))) = true.

A MAC is UF-CMA (satisfies unforgeability under chosen

* orin adefined condition in afind process; message attacks) if and only if for all polynomials

e orin M; or P; in a process of the forrfind (@;"’:”1 ;i) <
n; suchthat defined(M},, ..., M},) A Mj then P;) else
P where for somé < [, z[Mj, ..., M,,] is a subterm of (m, t) « Amacn(k)checks (k) chock, (m, k,)]

M.

HljllX PI‘[T £ [77 (Tmr); k mkgenn (T)’

is negligible, where the adversaryis any probabilistic Turing
Invariant 2 guarantees that variables can be accessed only whaohine, running in time(r), with oracle access tmac,,(., k)
they have been initialized. It checks that the definition of tldcheck, (., &, .), and.A has not callednac,(., k) on message
variable access is either in scope (first item) or checkedftmda m.

Definition 2 Let T,- and T, be fixed-length types; Ief;, and MAC underzx.,;, of the ciphertext, and sends the ciphertext and
T. be types. A symmetric encryption scheme [13] consiststbe MAC onc4[i]. The functionk2b : T}, — bitstring is the
three function symbol&gen : 7, — T}, enc : bitstring x natural injectionl,,(k2b)(xz) = ; it is needed only for type
T, x T, — T, anddec : T, x Ty, — bitstring,, with conversion. The context is then expected to forward this mes-
I, (kgen) = kgen,, I,(enc) = enc,, I,(dec) = dec,, such sage orcgli]. When@Qp receives this message, it checks the
that for all m € Bitstring, r € I,(T,), andr’ € I,(T)), MAC, decrypts, and stores the obtained key:jh (The func-
dec, (enc, (m, kgen, (1),7'), kgen, (r)) = m. tioni, : bitstring — bitstring | is the natural injection; it is
Let LR(x,y,b) = zif b = 0andLR(x,y,b) = y if b =1, useful to check that decryption succeeded.) Thiskgéghould
defined only whern: andy are bitstrings of the same lengthbe secret.
A symmetric encryption scheme is IND-CPA (satisfies indistin- The context is responsible for forwarding messages froim
guishability under chosen plaintext attacks) if and only if for alB. It can send messages in unexpected ways in order to mount

polynomialsg, an attack.
Although we use a trivial running example due to length con-
op b£{07 1};r ki3 I, (T:); k — kgen, (r); straints, this example is sufficient to illustrate the main features
max r —

of our prover. Section 6 presents results obtained on more real-

Yo Ar'£I,,](T,,’,);enc,,(LR(.,A,b),k,T’) W =b
' istic protocols.

is negligible, where the adversaryl is any probabilis-

tic Turing machine, running in timeg(n), with oracle 2.3 Type System

access to the left-right encryption algorithm which given o

two bitstrings ay and a; of the same length, returns/Ve use a type system to check that bitstrings of the proper type
are passed to each function, and that array indices are used cor-

rectly.

To be able to type variable accesses used not under their defi-
nition (such accesses are guarded Iiyné construct), the type-
checking algorithm proceeds in two passes. In the first pass,
it builds a type environmenf, which maps variable names
to types[1,nq] x ... X [1,n,] — T, where the definition of
xfi1, ..., i,) Of type T occurs under replication§: =", ...,

i < - ;
A and B are assumed to share a keyfor a symmetric encryp- ! =t The tool checks that all deflnlt!ons of the same variable
yield the same value @ (x), so that€ is properly defined.

tion scheme and a key,,, for a message authentication cod¢’ ' -
A creates a fresh key,,, and sends it encrypted undey to B. In the second pass, the process is typechecked in the type en-
jfonment& by a simple type system. This type system is de-

A MAC is appended to the message, in order to guaranteef

tegrity. The goal of the protocol is thaf, should be a secret keytailed in Appendix A in the supplemental material. It defines the

shared betweer and B. This protocol can be modeled in oufUddmente - @ which means that the procegsis well-typed
calculus by the following procesg,: In environment.

& I, (T));enc, (LR(ag,a1,b),k,r"), that is, encryptsag
whenb = 0 anda; whenb = 1.

Example 1 Let us consider the following trivial protocol:

A — B:e,mac(e,r,,) Wheree = enc(x), zk,)
andz!, z;. are fresh random numbers

Qo = start();new z,. : T);let 2y, : T), = kgen(z,.) in Invariant 3 (Typing) The process), satisfies Invariant 3 if
new . : Ty let @mp, : T = mkgen(z) in and only if the type environmerdt for Q) is well-defined, and
r - Ltmr, mk - tmk r gl_QO

c(); (Qa | Qp)
Qa = "="ca[i](); new 2} : Ti; new o/ : TV We require Fhe_ adversary to be well-typed. T.hIS requirement
L , . does not restrict its computing power, because it can always de-
let &, : bitstring = enc(k2b(xy,), oy, zr) in fine type-cast functiong : T — T to bypass the type system.
cali]{2m, mac(Zo, Tmi)) Similarly, the type system does not restrict the class of protocols
Qp = 1"<ne [](2", Tma); that we consider, smce_the protocol may contain type-cast func-
B B mymaln tions. The type system just makes explicit which set of bitstrings

if check(27,,, Tk, Tma) then may appear at each point of the protocol.
let i (k2b(z})) = dec(z),, zx) in cpi']()

mo

. _ _ 2.4 Formal Semantics
WhenQ), receives a message on chanstel-t, it begins execu-

tion: it generates the keys. andzx,,,;, by choosing random coinsThe semantics is defined by a probabilistic reduction relation
x, andx,» and applying the appropriate key generation algtmrmally detailed in Appendix B in the supplemental material.
rithms. Then it yields control to the context (the adversary), e notationE, M |} a means that the term/ evaluates to the
outputting on channel. After this outputy copies of processesbitstring a in environmentE. We denote byPr[Q ~-, ¢(a)]

for A and B are ready to be executed, when the context outpthe probability that at least one of the outputs(pbn channel

on channels:4[i| or cp[i] respectively. In a session that runs sends the bitstring. (Whenc is not free inQ, Pr[Q ~,

as expected, the context first sends a message;ph Then ¢(a)] = 0.)

Q4 creates a fresh key,, (T} is assumed to be a fixed-length Our semantics is such that, for each proo@sshere exists
type), encrypts it undet;, with random coins:!/, computes the a probabilistic polynomial time Turing machine that simulates

Q. (Processes run in polynomial time since the number of pam! into a process on which the desired security property can be
cesses created by a replication and the length of messagesmentd directly, by criteria given in Section 4. These transforma-
on channels are bounded by polynomials.) Conversely, our ¢alns are parametrized by the détof variables that the context
culus can simulate a probabilistic polynomial-time Turing maan access. As we shall see in Sectiofv4contains variables
chine, simply by choosing coins gw and by applying a func- that we would like to prove secret. (The context will contain
tion symbol defined to perform the same computations as thst queries that access these variables.) These transformations
Turing machine. transform a procesg, into a process);, such tha), ~" QJ.

2.5 Observational Equivalence 3.1 Syntactic Transformations

A context is a process containing a hgle An evaluation con- RemoveAssigiz): When z is defined by an assignment
text C' is a context built fron{], newChannel ¢;C, @Q | C, and let z[i1,...,4] : T = M in P, we replacer with its value.
C' | Q. We use an evaluation context to represent the advers&ngcisely, the transformation is performed only whenloes
We denote byC|[Q)] the process obtained by replacing the hotet occur inM (non-cyclic assignment). When has sev-
[] in the contextC' with the processy. Our definition of ob- eral definitions, we simply replaceliy, ..., 4] with M in P.
servational equivalence is adapted from definitions for previglfr accesses te guarded byfind, we do not know which
calculi such as [37]. definition of z is actually used.) When has a single defini-
tion, we replace everywhere in the gamg\y, ..., M;] with

Definition 3 (Observational equivalence)Let @ and Q" be M{M,/iy,...,M;/i;}. We additionally update thelefined
two processes, anid a set of variables. Assume th@tand@’ conditions offind to preserve Invariant 2, and to make sure that,
satisfy Invariants 1, 2, and 3 and the variabled/céire defined if a condition offind guarantees that M, . . ., M;] is defined in
in @ and@’, with the same types. the initial game, then so does the corresponding conditidindf

An evaluation context is said to kzeceptablefor @, Q', V' in the transformed game. (Essentially, whgn/], ..., M/,] oc-
if and only if var(C) N (var(Q) U var(Q’)) € V andC[Q] cursinM, the transformation typically creates new occurrences
satisfies Invariants 1, 2, and 3. (TheliQ)'] also satisfies theseof y[A1{', ..., M//] for someM/', ..., M/, so the condition that
invariants.) y[M{', ..., M]/]is defined must sometimes be explicitly added

We say thatQ and @’ are observationally equivalenwvith to conditions offind in order to preserve Invariant 2.) When
public variablesV’, written @ ~" @', when for all evaluation » ¢ V, its definition is kept unchanged. Otherwise, when
contextsC' acceptable foR), Q’, V, for all channels: and bit- s not referred to at all after the transformation, we remove the
stringsa, | Pr[C[Q] ~,, ¢(a)] — Pr[C[Q'] ~, ¢(a)]| is negligi- definition of z. Whenz is referred to only at the root efefined
ble. tests, we replace its definition with a constant. (The definition

Intuitively, the goal of the adversary represented by conté)xcfmt of z is important, but not its value.)

C'is to distinguish® from @’. When it succeeds, it performs %xample 2In the process of Example 1, the transforma-
different output, for example(0) when it has recognize@ and tion RemoveAssigiiz, ;) SubstitutESmkgen(;v’) for z,,; in
e(1) when it has recognize@’. When@ ~" (', the context the whole process gnd removes the assiénrrllentxmk
has negligible probability of distinguishing from @’. T,p — mkeen(z'). After this substitution, magé’x'm

The unusual requirement on variables(@fcomes from the i) becomeSma(T:(xm mkgen(z.)) and check(z! xmk’
presence of arrays and of_the associdied construct Whi_ch ma) becomescheck (s, ” mkgen(xZ),xma), thus e;nk;ibitinjg
givesC direct access_to variables gfand@)": the context?* 'S terms required in Section 3.2. The situation is similar for
allowed to access variables@fand@’ only when they are i RemoveAssigiiay,).
(In more standard settings, the calculus does not have constructs '
that allow the context to access variables(@fand Q’.) The SArenamegz): The transformatiorBArename (single assign-
following result is not difficult to prove: ment rename) aims at renaming variables so that each vari-

able has a single definition in the game; this is useful for dis-
Lemma 1 ~" is an equivalence relation, ar@d ~" Q' implies tinguishing cases depending on which definitionzohas set
that C[Q] =" C[Q'] for all evaluation context§” acceptable z[i]. This transformation can be applied only wheng V.
for@, @, VandallV’ C VU (var(C) \ (var(Q) Uvar(Q'))). Whenz hasm > 1 definitions, we rename each definition of
We denote byQ =~} Q' the particular case in which for all” toa diffgrent variablery, .. > Lm- T(irme[i] under a defir]i-
evaluation context€ acceptable for, ¢’, V/, for all channels 10N Of @i@] are then replaced with; [z]. Each branch of find
¢ and bitstringsa, Pr[C’[Q] e E(a)] _ PI‘[O[Q/] o E(a}]. FB =afi] <n such‘_chat defined (M7, .. .,]\{l/,) NM thgn P
WhenV is empty, we writeQ ~ Q' instead ofQ ~" ¢’ and wherex[Ml, ..., M;j] is a subterm of som&/; for k <!’ is re-
Q ~o Q' instead oY ~¥ Q' placed V,V'thm branchesF'B{z;[M;, ..., M;]/x[M;, ..., M}
fori1 <j <m.

3 Game Transformations Example 3 Consider the following process

In this section, we describe the game transformations that ait@t()inew 74 : Trslet ka : Tj = kgen(ra) in

low us to transform the process that represents the initial protaew rp : T,;let kg : T, = kgen(rp) in yield(); (Qx | Qs)

Qr ="="cli](h: Th, k : Ty) Vm : bitstring; Vr : T,.,¥r' . T,

S . (enc)
if h = Athen let k' : Ty = ka in yield() else dec(enc(m, kgen(r), "), kgen(r)) = iL(m)
if h = B then let k" : T}, = kp in yield() else We express the poly-injectivity of the functidb of Ex-
let k' : T), = k in yield() ample 1 by
Qs = !i/gn’c [i’](h’ . Th);find u < n suchthat Vo : Ty, Yy : T, (ka(l‘) _ ka(y)) — (l‘ _ y)
defined(h[u], k'[u]) A b/ = h[u] then Py (K'[u]) else Py Va T, k2b~ (K2b(x)) = « (k2b)

The procesg)k stores in(h, k') a table of pairs (host name,
key): the key forA is k 4, for B kp, and for any otheh, the ad-
versary can choose the k&y The process)s queries this table

of keys to find the key:'[u] of host/’, then execute® (K'[ul). , Equations that come from the process. For example, in the

e :
If 7" is not found, it executes,. processf M then P else P/, we haveM = true in P and
By the transformatiosArename(k’), we can performacase . _ 1o in P/

analysis, to distinguish the cases in which= k4, k' = kg,
or k' = k. After transformation, we obtain the following pro- e The low probability of collision between random values.
cesses: For example, whemn is defined bynew z : T andT is
i<n s large typex[My,. .., M,,] = z[M{,...,M],] implies
U 'LSrL . . a) 9 m 1.7 :) m ~
Q ="="cli](h: T, k - Th) M, = M{, ..., M,, = M/, up to negligible probability.
if h = Athenlet k] : Tx = k4 in yield() else

wherek2b~! is a function symbol that denotes the inverse
of k2b. We have similar formulas far, .

Similarly, when 1)z is defined bynew = : T andT is a

if h = B thenlet k) : Ty, = kp in yield() else large type, 2) for each value dff,, there is at most one
let K, : Ty = k in yield() value ofx (or of a part ofx of a large type) that can yield
o that value ofM;, and 3) M, does not depend on, then
Qs = "= (B : Tn); M, # M, up to negligible probability. The fact that,
find u < n suchthat defined(h[u], k] [u]) does not depend anis proved using a dependency analy-
A h' = h[u] then Py (K} [u]) SIS.
@ u < n suchthat defined(h[u], k3[u]) The prover combines these properties to simplify terms, and uses
AR = hlu] then Py (k[u]) simplified forms of terms to simplify processes. For example, if
@ u < n suchthat defined(h[u], &} [u]) M simplifies totrue, thenif M then P else P’ simplifies to

P. Similarly, a branch ofind is removed when the associated

r ’
AW = hlu] then Py (k3[u]) else P condition simplifies tdfalse.

After the simplification (sketched below}); becomes: Details on the simplification procedure can be found in Ap-
L pendix C and the proof of the following proposition in Ap-
L= (W T, pendix E.1 in the supplemental material.
find u < n suchthat defined(h[u], k] [u])
AR = Athen Py (k) Proposition 1 Let Qg be a process that satisfies Invariants 1,

2, and 3, andQ) the process obtained frol}, by one of the

H /
® u < n suchthat defined(h[u], k3[u]) transformations above. Thepy, satisfies Invariants 1, 2, and 3,

A K = Bthen Py (kp) andQo =~V Q).
@ u < n suchthat defined(h[u], k% [u])
A B = h[u] then Py (k[u]) else P» 3.2 Applying the Definition of Security of Primi-
tives

since, whenk/ [u] is defined,k|[u] = k4 andh[u] = A, and
similarly for k5 [u] andkj[u]. The security of cryptographic primitives is defined using obser-

Simplify: The prover uses a simplification algorithm, based e{ﬁmonal equivalences given as axioms. Im_po_rt_antly, this fo”“?‘"
m allows us to specify many different primitives in a generic

an equational prover, using an algorithm similar to the Knutfy:) .
Bendix completion [27]. This equational prover uses: way. Such equivalences are then used by the prover in order to

transform a game into another, observationally equivalent game,
e User-defined equations, of the fovi; : T1,...,Vx,, : as explained in the following of this section.
T, M which mean that for all environments, if for all ~ The primitives are specified using equivalences of the form
j < m, E(xy) € I,(T)), thenE, M | true. For exam- (Gy,...,G,,) ~ (G4,...,G") whereG is defined by the fol-
ple, considering MAC and encryption shemes as in Defimbwing grammar, witd > 0 andm > 1:
tions 1 and 2 respectively, we have:

o G:= group of functions
Vr 2 T, Y - bitstring, li<nnew yy : Ty;...;new yp : T35 (G, ..o, Go)
check(m, mkgen(r), mac(m, mkgen(r))) = true replication, restrictions
(mac) (Il : 7717 RN A ﬂ) — FP function

FP ::= functional processes with a lookup in the array of messages whosaac has been
M term computed with keynkgen(r): if m is found in the array: and
new z[i] : T; FP random number check(m, mkgen(r), ma), we returntrue; otherwise, the check
let x[{] T = Min FP assignment fails (up to negligible probability), so we retufialse. (If the

find (D], 4;[i] < nj suchthat
defined(Mj1, ..., Mj;;) A M; then FP;) else FP
array lookup

check succeeded witth not in the arrayz, the adversary would
have forged a MAC.) Obviously, the form df requires that

is used only to compute or check MACs, for the equivalence to
be correct. Formally, the following result shows the correctness
Intuitively, (1 : Ty,...,2;: T;) — FP represents a functionof our modeling. It is a fairly easy consequence of Definition 1,
that takes as argument values . . ., z; of typesTi,...,T; re- and is proved in Appendix E.3 in the supplemental material.
spectively, and returns a result computed §. The obser-

vational equivalenceGy, ..., Gm) ~ (G, ..., G,,) EXpresses proposition 2 If (mkgen, mac, check) is a UF-CMA message
that the adversary has a negligible probability of distinguishgthentication code], (mkgen') = I, (mkgen), I, (mac’)
ing functions in the left-hand side from corresponding functioqg(mac), and 1, (check’) = I, (check), then[L] ~ [R].

in the right-hand side. Formally, functions can be encoded as

processes that input their arguments and output their result o8imilarly, we represent the security of an IND-CPA symmet-

a channel, as shown in Figure 2FP]J denotes the transla-fic encryption scheme (Definition 2) by the equivalence:

tion of the functional procesgP into an output procesﬂG}]Z
denotes the translation of the group of functi@rsnto an in-
put process. The translation BE"new y; : Ti;...;new y; :
T};(G4,...,Gy,) inputs and outputs on channel so that the ~ 1“<" new r : T,.; '<"(x : bitstring) —
context can trigger the generation of random numpers. . , ;.
The translation ofz; : T3, ...,2; : T;) — FP inputs the argu-
ments of the function on channe} and translateg'P, which
outputs the result of'P on c5. (In the left-hand side of equiv-
alences, the resulfP of functions must simply be a teri/.)

./ ’ . ; y
1S new 1 Ts VVS" (1 + bitstring) —

new 7’ : TT/; enc(x, kgen(r), 7"/)

(enceg)
new 1’ : T/ enc’ (Z(x), kgen' (1), r")

whereenc’ andkgen’ are function symbols with the same types
asenc andkgen respectively, and., : bitstring — bitstring
) ' is the function that returns a bitstring of the same length as
The observational equivalen¢es, ..., Gin) ~ (G,...,Gl) s argument, consisting only of zeroes. Using equations such
is then an abbreviation fd(G1, ..., Gn)] = [(G1, ..., Gl asve - T,7(T2b(z)) = Zp, we can prove thaZ(T2b(z))

For example, th_e security of a MAC (Definition 1) is reprejges not depend om when z is of a fixed-length type and
sented by the equivalende~ R where: T2b : T — bitstring is the natural injection. The represen-

L=1"<n" newr: T - (tation of other primitives can be found in Appendix D.3 in the
. o supplemental material. The equivalences that formalize the se-
'="(z : bitstring) — mac(z, mkgen(r)), curity assumptions of all primitives are designed and proved cor-
i’ <n’ (m : bitstring, ma : Tps) — rect by hand, as in the MAC example. Importantly, these manual

proofs are done only once for each primitive, and the obtained
equivalence can be reused for proving many different protocols
automatically.

check(m, mkgen(r), ma))

i//<n//
R=" =" newr: T (

<Mz ¢ bitstring) — mac’(x, mkgen'(r)), We use such equivalencds ~ R in order to transform a
e o process), observationally equivalent t6'[[L]] into a process
["="(m : bitstring, ma : Tps) — Q{, observationally equivalent t&'[[R]], for some evaluation

find u < n suchthat defined(z[u]) A (m = z[u]) contextC'. In order to check tha®, ~" C[[L]], the prover uses
sufficient conditions, which essentially guarantee that all uses of

o) certain secret variables ¢fy, in a setS, can be implemented by
calling functions ofL.. Let M be a set of occurrences of terms,

wheremac’, check’, andmkgen’ are function symbols with the corresponding to uses of variables&f Informally, the prover

same types amac, check, andmkgen respectively. (We use shows the following properties.

different function symbols on the left- and right-hand sides, just) o

to prevent a repeated application of the transformation induce@ For eachM e M, there exist a termV,,, which is the

by this equivalence. Since we add these function symbols, we result of a function off,, and a substitutiom, such that
also add the equation M = oy Ny (Preciselyo,, applies to the abbreviated

form of N,; in which we writez instead ofx[ﬂ.) Intu-
itively, the evaluation of\/ in QQ will correspond to a call

to the function with resultv,, in C[[L]].

A check’(m, mkgen’(r), ma) then true else false)
(mac

Vr : T, Y 2 bitstring,
/ / / !/ (macl)
check’(m, mkgen’(r), mac’(m, mkgen’(r))) = true

which restatestfac) for mac’, check’, andmkgen’.) Intuitively, .
the equivalencd, ~ R leaves MAC computations unchanged
(except for the use of primed function symbolsA), and al-
lows one to replace a MAC checkirgjeck(m, mkgen(r), ma)

The variables of' do not occur inl/, are bound by restric-
tions inQy, and occur only interm3/ = o)/ Nyy € M

in Qq, at occurrences that are imagesdyy of variables
bound by restrictions id.. (To be precise, the variables of

[(Grye s Gl = [GA] |- [[G]™
[1"<"new y; : T1;...;new y; 3T15(G17--~7Gm)]]§ =
BSn i) (smew g < T new gy s T 53,4005 (IGA 2] |- | [Gol2T™)
[(#1:Th,....20: Th) — FPE = 5fil(e1 : T, .2 : Th); [FP
[ME = c[i)(M)
[new z[i] : T; FP]]% = new x[1] : T} [[FP]]%
llet ofi] : T = M in FPL = let «fi] : T = M in [FP
[find (D], a;[i] < my suchthat defined(M;u,..., Mj,) A M; then FP;) else FP]]% =

(@

J

wherec; are pairwise distinct channels= U,y and} = J0,.-.

Figure 2: Translation from fu

S are also allowed to occur at the root ddfined condi-
tions; in that case, their value does not matter, just the f
that they are defined.)

Let7 andi’ be the sequences of current replication indic

atN,, in L and atM in Q, respectively. The prover shows ®

that there exists a functiomapldx,, that maps the array
indices atM in Qo to the array indices aVy, in L: the
evaluation ofAf wheni’ = @ will correspond inC[[L]]
to the evaluation ofV,; when: = mapldx,,(@). Thus,

""" ;][] < nj suchthat defined (M

1., Mji,) A Mj then [FP;[) else [FPJZ

7jl"

nctional processes to processes

e whenz is a function argument id, the term that corre-
act sponds tac[a’] must have the same typeafa’], and when
two terms correspond to the samfg’], they must evaluate

to the same value;
es
whenz is bound bynew 2z : T in L, the term that corre-
sponds tac[a’] must evaluate te[a”"] wherez € S andz is
bound bynew z : T in @y, and the relation that associates
z[a'"] to z[a’] is an injective function (so that independent

random numbers i, correspond to independent random

oy andmapldx,, induce a correspondence between terms numbers inQ).

and variables of), and variables of: for all M € M,
for all z[¢"] that occur inNyy, (oarx){a/i’} corresponds
to z[i"]{mapldx,,(a)/i}, that is, (o) {a/i'} in a trace
of Qo has the same value a&”]{mapldx,,(a)/i} in the

Itis easy to check that, in the previous example, these conditions
are satisfied.

The transformation of), into Q{, consists in two steps. First,
we replace the restrictions that define variablesSofvith re-

corresponding trace @f[[L]] (i is a prefix ofi). We detail strictions that define fresh variables corresponding to variables
below conditions that this correspondence has to satisfyhound bynew in R. The correspondence between variables of

For example, consider a proce€k that containsi; =
enc(M;, kgen(z,.), x"[i1]) under a replicatiotf<"1 and M, =
enc(M}, kgen(z,.), z!'[iz]) under a replication’2<"z where
xr, x,., i/ are bound by restrictions. L&t = {x.,z., 2},
M = {M;, My}, andNy;, = Ny, = enc(z[i’, 7], kgen(r[i']),
r'[i’,i]). The functionsmapldx,, andmapldx,,, are defined

by

mapldx,, (a1) = (1,a1) fora; € [1, I, (n1)]
mapldx,,, (a2) = (1, a2 + I;(n1)) for az € [1, I,,(n2)]

Then Mj{a;/i1} corresponds ta[l,aq], x, to r[1], x,[a;]

Qo and variable€[[L]] is extended to include these fresh vari-
ables. Second, we reorganigk so that each evaluation of a
termM € M first stores the values of the arguments. . . , z.,

of the function(zy : T, ...,z : T,y) — Ny in fresh vari-
ables, then compute¥,, and stores its result in a fresh variable,
and uses this variable insteaddf; then we simply replace the
computation ofN,; with the corresponding functional process
of R, taking into account the correspondence of variables.

The full formal description of this transformation is given Ap-
pendix D.1 in the supplemental material. The following propo-
sition shows the soundness of the transformation and is proved
in Appendix E.4.

to v'[1,a1], M3{az/iz} tO z[1,a9 + I,(n1)], and x]/[az] tO Proposition 3 Let Qy be a process that satisfies Invariants 1,
r'[1,a2 + I,(n1)]. The functionsmapldx,, andmapldx,,, 2, and 3, andQ), the process obtained froi, by the above
are such that,[a,] andz, [az] never correspond to the sam&ansformation. Ther), satisfies Invariants 1, 2, and 3, and
cell of r’; indeed,z,[a,] andz,~[a,] are independent randomif [L] ~ [R] for all polynomialsmaxlen,,(c;,,. ;) and I, (n)
numbers inQ, so their images i’[[L]] must also be indepen-wheren is any replication bound of. or R, thenQ, ~" Q}.
dent random numbers.

The above correspondence must satisfy the following souttkample 4 In order to treat Example 1, the prover is given as
ness conditions: input the indication thafl’,,., T,,T,, and T} are fixed-length

types; the type declarations for the functianBgen, mkgen’ : After applyingSimplify, @, is unchanged an@’; becomes
Trr — Tk, mac,mac’ : bitstring X Top — Tomss

check, check’ : bitstring x Ty % Tyms — bool, kgen, kgen' : Qly =1"<"cp [i'](x),, Tma);

T, — T, enc,enc’ : bitstring x Ty x T, — T, dec : find u < n suchthat defined(z,, [u], 7} [u]) A

T(‘5 ><'Tk — 'bztsérng_, k2b‘ : ‘Tk — ‘bztszfrmg, i & = mmlu] A check (2., mkgen' (z'.), Zma) then
bitstring — bitstring |, Z : bitstring — bitstring, and the

constantZ;, : bitstring; the equationsrfac), (mac’), (enc), let 2, : Ty, = a,[u] in cp[i']()

andVzx : Ty, Z(k2b(x)) = Zi (which expresses that all keys]] o
have the same length); the indication thab andi, are poly- Fll’st, the testsf true then = "’,‘nd'f .false then' ... are simpli-
injective (which generates the equatiokgl) and similar equa- fied- The termlec(z7,,,) is simplified kQOW'”gfin = Tm [u]
tions fori,); equivalenceg, ~ R for MAC (maceg) and encryp- PY thefind condition, ,, [u] = enc(k2b(y,[u]), zy, 7'[u]) by
tion (enceg); and the process, of Example 1. the assignment that defines,, z;, = kgen(z,) by the assign-
The prover first appliesRemoveAssigiiz,.;) to the pro- ment that definesy, anddec(enc(m,kgen(r)yir'%kgen(r)) =
cessQ, of Example 1, as described in Example 2. The pré-(172) by (enc). So we havelec(z7,, zy) = 11 (k2b(x}[u])).
cess can then be transformed using the security of the MARY, injectivity of i, andk2b, the assignment te:;’ simply

We takeS = {2}, M1 = mac(zi], mkgen(z.)), My = becomesz) = xj[u], using the equation§z : bitstring,
Check(x;n[i’],mkgen(x;),zma[i’]), and M = {Ml,MQ}. ill(iL(l’)) = x.andV:E : Tk,kafl(ka(I)) = .
We have Ny, = mac(z[i”,q], mkgen(r[i"])), Ny, = After applying RemoveAssigniz,), we apply the se-

check(ml[i", i'], mkgen(r[i"]), mali”, ']), mapldx,, (a;) = curity of encryption: enc(k2b(x;€),kger'1(xr)_,x;’? becomes
(1,a1), andmapldsx,,, (a2) = (1,as), SOz a1] corresponds enc’(Z(kzb(x;)),kgen(xr).,x’r’). After Simplify, it becomes
to z[l,a1], @ to r[l], 2/, [as] t0 m[l,as], and zmelas] to enc' (Zy, kgen(z,), x), usingvz : Ty, Z(k2b(z)) = Z, (which
mall, as). expresses that all keys have the same length).

After transformation, we get the following procegs: Using lists instead of arrays simplifies this transformation:

we do not need to add instructions that insert values in the list,

/o _ H
Qo = start();new z,.: Tr;let z, : Tj, = kgen(zy) in since all variables are always implicitly arrays. Moreover, if

new . : T3 ()5 (Q4 | Q) there are several occurrencesmedc(z;, k) with the same key
Q4= SN [i](); new), : Ty; new 27/ : TV in the initial process, eaatheck(m;, k, ma;) is replaced with a

let & : bitstring = enc(k2b(z}), 25, &) in find with one branch for each occurrenceahc. Therefore,

- " the prover distinguishes automatically the cases in which the

calil{@m, mac’ (z,,, mkgen’(z7.))) checked MACma; comes from each occurrence wfic, that
Q= 1s<ne [i'(2,, Zma); is, it distinguishes cases depending on the valug¢ aafch that

m; = x;. Typically, distinguishing these cases is useful in the

. . o
find u < n suchthat defined(wy [u]) A 2%y, = Zm[u] A following of the proof of the protocol. (A similar situation arises

check’(x,,, mkgen'(27.), 24 then for other cryptographic primitives specified usifigd.)

(

. . M\ / H . . .

i true then let i, (k2b(z}.)) = dec(z,, z) in 4 Criteria for Proving Secrecy Proper-

= _
) eVl ties
else Let us now define syntactic criteria that allow us to prove secrecy

(properties of protocols. The proofs for these results can be found

if false then let i | (k2b(z})) = dec(x, ,z4) in in Appendix E.5 in the supplemental material.

epli']{) Definition 4 (One-session secrecyThe processy preserves
) the one-session secrecyofvhen@ | Q. =~ Q | Q.,, where
The initial definition of 2/, is removed and replaced with a =~ @z =c(us : [Lma], st < [1,7m]);
new definition, which we still callz,. The termmac(z,,, if defined(zfus,...,un]) then &(zfu, ..., un))
r?lkgle{n(gfi)) I]: replaced Withléaecc’gﬁze,srfr}kfen’ (ﬁ’r))- Thi :ﬁrrt‘ﬂ Q. =cuy : [1,n], ..t ¢ [1,0]);
check(a,, mkgen(z,), Tma) ma u = T suchtna if defined(z[uq,...,uy]) then new y : T;¢(y)

defined(x,, [u]) Az!, = 2., [u] Acheck(z!,, mkgen'(z..), Zma)
then true else false Which yieldsQ’; after transformation of ﬁ £(Q), trs - . - sy & var(Q), and€(z) = [1,m] X ... x
functional processes into processes. The process looks up, ﬁm] T

messager!, in the arrayz,,, which contains the message ’
whose MAC has been computed with keykgen(x.). If the Intuitively, the adversary cannot distinguish a process that out-
MAC of 2/, has never been computed, the check always failsitts the value of the secret from one that outputs a random num-
returnsfalse) by the definition of security of the MAC. Other-ber. The adversary performs a single test query, model&g, by
wise, it returngrue whencheck’ (x/,,, mkgen’ ("), n4)- andq’,.

10

Proposition 4 (One-session secrecyfonsider a processy) cases of negligible probability, sda] andz[a’] are defined by
such that there exists a set of variablgsuch that 1) the defi- different restrictions, so they are independent random numbers.
nitions ofz are either restrictionsiew z[i] : T andz € S, or This notion of secrecy composed with correspondence asser-

assignmentset x[i| : T = z[My,..., M;] wherez is defined tions [46] can be used to prove security of a key exchange. (Cor-
by restrictionsnew z[i/,...,i]] : T, andz € S, and 2) all ac- respondence assertions are properties of the form “if some event

cesses to variableg € S in Q are of the form ‘let ¢/'[¢] : T" = e(Z\7) has been executed then some eventa/;) for i < m
y[Mi, ..., M;]" with o/ € S. ThenQ | Q. ~o Q | Q,, hence have been executed”.) We postpone this point to a future pa-
Q preserves the one-session secrecy.of per, since we do not present the verification of correspondence

N _ _ o assertions in this paper. (We have recently implemented this ver-
Intuitively, only the variables it depend on the restriction thagfication in Crypto\Verif.)

definesr; the sent messages and the control flow of the process
are independent of, so the adversary obtains no informatiopayma 2 I Q ~{=} @' and Q preserves the one-session se-

on z. In the implementation, the sétis computed by fixpoint crecy ofz then()’ preserves the one-session secrecy.oThe
iteration, starting fronx or z and adding variableg defined by <5me result holds for secrecy.
“let y'[i] : T' = y[Mq, ..., M;]"wheny € S.

We can then apply the following technique. When we want

Definition 5 (Secrecy) The process) preserves the secrecy ofo prove thatQ), preserves the (one-session) secrecy:,oive

xwhen@ | R, ~ Q | R., where transform@y by the transformations described in Section 3 with
<n V = {z}. By Propositions 1 and 3, we obtain a proc€gssuch
Ry =1""c(uy = [Lna], o ¢ L]); thatQo ~" Q}. We use Propositions 4 or 5 to show tii pre-
if defined(zfus, ..., un]) then &(xfu, ..., un)) serves the (one-session) secrecy pénd finally conclude that
RL = VSnc(uy < (L), st ¢ [L, m)); Qo also preserves the (one-session) secreaylyf Lemma 2.

'f def'?ed(x[ul’ o ’u’"]_) then , , , Example 5 After the transformations of Example 4, the only
find u" < n suchthat defined(y[u'], wx[u'], ..., um[u]) variable access t@), in the considered processlis =}/ : T}, =
Aur[u] =up Ao Aup U] = U, x. [u] andz}/ is not used in the considered process. So by Propo-

sition 4, the considered process preserves the one-session se-
crecy ofz) (with S = {z},,z}}). By Lemma 2, the process of

cd fc(Q), ur, ..., um, v,y ¢ var(Q), E(x) = [1,n1] x ... x Example 1 also preserves the one-session secrecl. dflow-
[1,nm] — T, andl,(n) > I,(n1) x ... x Iy(nm). ever, this process does not preserve the secregy dbecause

the adversary can force several session®db use the same

Intuitively, the adVersary cannot dIStInngh a process that %y :C;c/’ by replaying the message Senthy (According|y, the
puts the value of the secret for several indices from one that qyfpothesis of Proposition 5 is not satisfied.)

puts independent random numbers. In this definition, the ad-

versary can perform several test queries, modeled:pyand The criteria given in this section might seem restrictive, but

R!.. This corresponds to the “real-or-random” definition of s fact, they should be sufficient for all protocols, provided the

curity [4]. (As shown in [4], this notion is stronger than thg@revious transformation steps are powerful enough to transform
more standard approach in which the adversary can perforihé protocol into a simpler protocol, on which these criteria can

single test query and some reveal queries, which always revbeh be applied.

x[ut, ... Upm).)

then ¢(y[u']) else new y : T;¢(y)

Proposition 5 (Secrecy)Assume thaf) satisfies the hypothesis5 Proof Strategy
of Proposition 4.]]

WhenT is a trace ofC|[Q] for some evaluation context, UP to now, we have described the available game transforma-
we definedefRestr(z[a]), the defining restriction of[a] in tions. Next, we explain how we organize these transformations
trace 7, as follows: ifz[d] is defined bynew x[a] : T in N Orderto prove protocols.

T, defRestrr(z[a]) = z[a]; if z[a] is defined bylet z[a] : At the beginning of the proof, and after each successful
T = z[M,..., M, defRestrr(z[a]) = z[a},...,a;] where cryptographic transformation (that is, a transformation of Sec-

E, My | a), forall k < [and E is the environment iff” at the tion 3.2), the prover execute&&implify, and tests whether the

definition ofz[a). desired security properties are proved, as described in Section 4.
Assume that for all evaluation contextsacceptable for, 0, If 0, it stops. _ .

{2}, the probabilityPr[3(T, @, a’), C[Q)] reduces according to I order to perform the cryptographic transformations and the

TNG # g’/\defRestrT(m['dD _ defRestrT(x[E’])] is negligible. other syntactic transformations, our proof strategy relies of the
Then(preserves the secrecy of idea of advice. Precisely, the prover tries to execute each avail-

able cryptographic transformation in turn. When such a cryp-
The last hypothesis can be verified using the same equatidogtaphic transformation fails, it returns some syntactic trans-
prover as forSimplify in Section 3.1, as detailed in Ap-formations that could make the desired transformation work.
pendix E.2. Intuitively, this hypothesis guarantees that whefhese are the advised transformations.) Then the prover tries to
a # o/, we havelefRestrr (z[a]) # defRestrr(z]a’]) exceptin perform these syntactic transformations. If they fail, they may

11

also suggest other advised transformations, which are thenreay not lead immediately to a practical attack in the computa-
ecuted. When the syntactic transformations finally succeed, tiemal model).
retry the desired cryptographic transformation, which may suc-

ceed or fail, perhaps with new advised transformations, andci‘\?vay-Rees [40] We automatically prove the secrecy of the

on.
. . . exchanged key.
The prover determines the advised transformations as follows: g 4

e Assume that we try to execute a cryptographic transfofahalom [18] For the original version of the protocol, our
mation, and need to recognize a certain tetof L, prover cannot show the one-session secrecy of the exchanged
but we find in@Qo only part of M, the other parts beingkey, because the protocol is not secure, at least using encrypt-
variable accesses]...] while we expect function appli- then-MAC as definition of encryption. Indeed, there is a con-
cations. In this case, we advifemoveAssigitz). For firmation round{Nz}x whereK is the exchanged key. This
example, ifQo containsenc(M’, zy, ;) and we look for message may reveal some informationen After removing
enc(zm, kgen(z,), z,/), we adviseRemoveAssigiizy). If this confirmation round, our prover shows the one-session se-
Qo containdet zj, = mkgen(z,) and we look fommac(z, crecy of K. However, it cannot show the secrecy J§t since

mkgen(z,)), we also adviseRemoveAssigiizy). (The in the absence of a confirmation round, the adversary may force
transformation of Example 2 is advised for this reason.) several sessions of Yahalom to use the same key

e When we try to executRemoveAssigfiz), « has several
definitions, and there are accesses to varialjaarded by Needham-Schroeder shared-key [38] Like in the Yahalom
find in Qo, we adviséSArenamegx). protocol, a key confirmation round may reveal some informa-
) . tion on the key. After removing this round, our prover shows the
» When we check whether is secret or one-session sezne_session secrecy of the exchanged key. It does not prove the
cret, we have an assignmelst z[i] : T = y[M] in P, gecrecy of the exchanged key, because the adversary may force
and there is at least one assignment defininge advise geyera| sessions of the protocol to use the same key. Our prover

RemoveAssigify). shows the secrecy for the corrected version [39].

When we check whether is secret or one-session secret,

We.have an as§|g'nmerﬁt o] : T = y[].v.ﬂ in P,y s Denning-Sacco public-key [23] Our prover cannot show the
def!ned by restrictions has several def|n|t|0/n§7, and SOMGne-session secrecy of the exchanged key, since there is an at-
variable accesses fpare not of the formet y/'[i'] : 7' = 50y a5ainst this protocol [2]. The one-session secrecy of the
y[M']in P', then we advisSArename(y). exchanged key is proved for the corrected version [2]. Secrecy

These pieces of advice are the only ones we use, but one ,iﬁ(,;p)pt proved since the adversary can force several ;essions of

obviously extend them if needed. .the protocol to use the same key. (We QO not model tlmestamps
in this protocol.) In contrast to the previous examples, we give
the main proof steps to the prover manually, as follows:

6 Experimental Results
SArename Rkey

We have successfully tested our prover on a number of protoddiéto enc rkB
given in the literature. All these protocols have been tested if¥Pto sign rkS
configuration in which the honest participants are willing to rdifypto sign rkA
sessions with the adversary, and we prove secrecy of keysSé¢Cess

sessions between honest participants. In these examples, shared-
key encryption is encoded using a symmetric encryption sche variableRkey defines a table of public keys, and is assigned

and a MAC as in Example 1, public-key encryption is assum@ three places, corresponding to principaisand B, and to

to be IND-CCAZ2 (indistinguishability under adaptive ChOSEI?—t er principals defined by the adversary (like the variable

ciphertext attacks) [14], public-key signature is assumed to'BeEXample 3). The instructioBArename Rkey allows us

UF-CMA (unforgeability under chosen message attacks). to distinguish these three cases. The instruatiypto enc

For each proof, the prover outputs the sequence of gamé?;(% means that the prover should apply the definition of security
' dencryption (primitiveenc), for the key generated from ran-

has built, a succinct explanation of the transformation perform | , .
numberkB . The instructiorsuccess means that prover

between consecutive games, and an indication whether the p Id check whether the desired . . d
succeeded or failed. When the proof fails, the prover still outp ould check whether the desired security properties are proved.

a sequence of games, but the last game of this sequence does not

show the desired property and cannot be transformed furtheMN®edham-Schroeder public-key [38] This protocol is an au-
the prover. Manual inspection of this game often makes it pogsientication protocol. Since our prover cannot check authen-
ble to understand why the proof failed: because there is an attacktion yet, we transform it into a key exchange protocol in
(if there is an attack on the last game), because of a limitatiorsef/eral ways, by choosing for the key either one of the nonces
the prover (if it should in fact be able to prove the property or f§4 and Ny shared betweerl and B, or H(N4, Ng) where
transform the game further), for other reasons (such as the préfois a hash function (in the random oracle model). When the
col cannot be proved from the given assumptions; this situatkey is H(N 4, Ng), the one-session secrecy of the key cannot

12

be proved for the original protocol, due to the well-known atermal notions of secrecy in the framework of this library. Re-
tack [33]. For the corrected version [33], our prover shows smently, this framework has been used for a computationally-
crecy of the keyH (N4, Ng). For both the original and the cor-sound machine-checked proof of the Needham-Schroeder-Lowe
rected versions, the prover cannot prove the one-session seqoeatpcol [44]. Canetti [19] introduced the notion of universal
of N4 or Ng. For Ng, the failure of the proof corresponds t@omposability. With Herzog [20], they show how a Dolev-Yao-
an attack: the adversary can check whether it is givgnor a style symbolic analysis can be used to prove security properties
random number by sendingV; },x,, to B as the last messageof protocols within the framework of universal composability,
of the protocol: B accepts if and only iV, = Np. For N4, for a restricted class of protocols using public-key encryption
the failure of the proof comes from limitations of our prover: thas only cryptographic primitive. Then, they use the automatic
prover cannot take into account thalt, is accepted only after Dolev-Yao verification tool Proverif [17] for verifying proto-

all messages that contaiviy have been sent, which prevents theols in this framework. Lincoln, Mateus, Mitchell, Mitchell,
previous attack. (This is the only case in our examples wh&amanathan, Scedrov, and Teague [31, 32, 34, 37,41] developed
the failure of the proof comes from limitations of the provea probabilistic polynomial-time calculus for the analysis of se-
This problem could probably be solved by improving the transdrity protocols. They define a notion of process equivalence
formationSimplify.) Like for the Denning-Sacco protocol, weor this calculus, derive compositionality properties, and de-
provided the main proof steps to the prover manually, as follofuse an equational proof system for this calculus. Datta, Derek,

when the distributed key &4 or Np: Mitchell, Shmatikov, and Turuani [22] have designed a com-
putationally sound logic that enables them to prove computa-
SArename Rkey tional security properties using a logical deduction system. The
crypto sign rkS frameworks mentioned in this paragraph can be used to prove
crypto enc rkA security properties of protocols in the computational sense, but
crypto enc rkB except for [20] which relies on a Dolev-Yao prover and for the
success machine-checked proofs of [44], they have not been mechanized

up to now, as far as we know.

When the distributed key i (N, N), the proofis as follows: Laud [28] designed an automatic analysis for proving secrecy

SArename Rkey for protocols using shared-key encryption, with passive adver-
crypto sign rkS saries. He extended it [29] to active adversaries, but with only
crypto enc rkA one session of the protocol. This work is the closest to ours.
crypto enc rkB We extend it considerably by handling more primitives, and a
crypto hash polynomial number of sessions.

SArename Na 39 Recently, Laud [30] designed a type system for proving se-
simplify B curity protocols in the computational model. This type sys-
success tem handles shared-key and public-key encryption, with an un-

bounded number of sessions. This system relies on the Backes-
The total runtime for all these tests is 77 s on a PelIrDrw]lfl[té]mann—Wa|dnerI|brary. A type inference algorithm is given
tium M 1.8 GHz, for version 1.03 of our prover CryptoVerif.) . .
These examples are included in the CryptoVerif distribﬂ]— Barthe,.CerdSrthwsta {ahnd Ta:jento [11'|45] h(?vle. fotrr]ma]lzted
tion available atttp://www.di.ens.fr/"blanchet/ € generic model and the random oracle model in the Inter-
active theorem prover Coq, and proved signature schemes in
cryptoc-eng.html : L !
this framework. In contrast to our specialized prover, proofs in
generic interactive theorem provers require a lot of human effort,
7 Related Work in order to build a detailed enough proof for the theorem prover
to check it.

Results that show the soundness of the Dolev-Yao model witt1@levi [24] explains that implementing an automatic prover

respect to the computational model, e.g. [21,26,36], make it ppgsed on sequences of games would be useful, and suggests

sible to use Dolev-Yao provers in order to prove protocols in tif€as in this direction, but does not actually implement one.

computational model. However, these results have limitations,

in particular in terms of allowed cryptographic primitives (the .

must satisfy strong security properties so that they corresponeto Conclusion

Dolev-Yao style primitives), and they require some restrictions

on protocols (such as the absence of key cycles). This paper presents a prover for security protocols sound in the
Several frameworks exist for formalizing proofs of protocogomputational model. This prover works with no or very little

in the computational model. Backes, Pfitzmann, and Walklp from the user, can handle a wide variety of cryptographic

ner [7,9, 10] have designed an abstract cryptographic library fiiimitives in a generic way, and produces proofs valid for a poly-

cluding symmetric and public-key encryption, message auth@amial number of sessions in the presence of an active adver-

tication codes, signatures, and nonces and shown its soundsags Thus, it represents important progress with respect to pre-

with respect to computational primitives, under arbitrary activéous work in this area.

attacks. Backes and Pfitzmann [8] relate the computational antMe have recently extended our prover to provide exact se-

13

curity proofs (that is, proofs with an explicit probability of an[5] P. Adao, G. Bana, J. Herzog, and A. Scedrov. Sound-
attack, instead of the asymptotic result that this probability is

negligible) and to prove correspondence assertions. We leave
these extensions for a future paper.

In the future, it would

also be interesting to handle even more cryptographic primi-
tives, such as Diffie-Hellman key agreements. (The equivalence

19 <n
1i<n

new a :
newa: T;newb: Tinewc:T;(() — g% () — ¢° () —

Tinew b : T;(() — g%,() = ¢%() — ¢%) =

¢¢) models the decisional Diffie-Hellman assumption. How{6]
ever, it is not sufficient for our prover to handle protocols that

use Diffie-Hellman key agreements, because the corresponding

cryptographic transformation would requigé’ to be formed
only for a andb chosen in the same copy of a single replicated
process, which is typically not the caseandb are chosen by
two different participants of the protocol. So a more involved’]

equivalence is needed, and in fact the language of equivalences

that we use to specify the security properties of primitives will
need to be extended.)

The essential idea of simulating proofs by sequences of ga

in an automatic tool can be applied to any protocol or crypto-
graphic scheme. However, our tool applies in a fairly direct way
the security assumptions on the primitives, and cannot perform

deep mathematical reasoning. Therefore, it is best suited f

proving security protocols that use rather high-level primitives
such as encryption and signatures. It is more limited for proving
the security of such primitives from lower-level primitives, since
more subtle mathematical arguments are often needed.

[10]

Acknowledgments

| warmly thank David Pointcheval for his advice and explana-
tions of the computational proofs of protocols. This project
would not have been possible without him. | also thank Jacques
Stern for initiating this work. This work was partly supported by
ARA SSIA Formacrypt.

[11]

References

[1]

2]

[3]

[4]

M. Abadi and J. Orjens. Formal eavesdropping and
its computational interpretation. In N. Kobayashi and
B. Pierce, editorsTheoretical Aspects of Computer Soft-
ware (TACS’01)volume 2215 of_ecture Notes on Com-
puter Sciencepages 82-94, Sendai, Japan, Oct. 20042]
Springer.

M. Abadi and R. Needham. Prudent engineering practice
for cryptographic protocolsIEEE Transactions on Soft-
ware Engineering22(1):6-15, Jan. 1996.

M. Abadi and P. Rogaway. Reconciling two views of cryp-
tography (the computational soundness of formal encryip3]
tion). Journal of Cryptology15(2):103-127, 2002.

M. Abdalla, P.-A. Fouque, and D. Pointcheval. Password-
based authenticated key exchange in the three-party set-
ting. IEE Proceedings Information Securjt53(1):27-39,
Mar. 2006.

14

T

ness of formal encryption in the presence of key-cycles. In
S. de Capitani di Vimercati, P. Syverson, and D. Gollmann,
editors,Proceedings of the 10th European Symposium On
Research In Computer Security (ESORICS 200&lume
3679 ofLecture Notes on Computer Scienpages 374—
396, Milan, Italy, Sept. 2005. Springer.

M. Backes and P. Laud. Computational sound secrecy
proofs by mechanized flow analysis. Rroceedings of
13th ACM Conference on Computer and Communications
Security (CCS’06)pages 370-379, Alexandria, VA, Nov.
2006. ACM.

M. Backes and B. Pfitzmann. Symmetric encryption in a
simulatable Dolev-Yao style cryptographic library.17th
IEEE Computer Security Foundations Workshgages
204-218, Pacific Grove, CA, June 2004. IEEE.

M. Backes and B. Pfitzmann. Relating symbolic and cryp-
tographic secrecylEEE Transactions on Dependable and
Secure Computin@(2):109-123, Apr. 2005.

@] M. Backes, B. Pfitzmann, and M. Waidner. A compos-

able cryptographic library with nested operations.1@th
ACM conference on Computer and communication secu-
rity (CCS’03) pages 220-230, Washington D.C., Oct.
2003. ACM.

M. Backes, B. Pfitzmann, and M. Waidner. Symmetric au-
thentication within a simulatable cryptographic library. In

E. Snekkenes and D. Gollman, editad€gmputer Security

- ESORICS 2003, 8th European Symposium on Research
in Computer Securityvolume 2808 ofLecture Notes on
Computer Scienggages 271-290, Gjgovik, Norway, Oct.
2003. Springer.

G. Barthe, J. Cederquist, and S. Tarento. A machine-
checked formalization of the generic model and the ran-
dom oracle model. In D. Basin and M. Rusinowitch, edi-
tors,Second International Joint Conference on Automated
Reasoning (IJCAR’04)olume 3097 ol_ecture Notes on
Computer Sciengepages 385-399, Cork, Ireland, July
2004. Springer.

M. Baudet, V. Cortier, and S. Kremer. Computationally
sound implementations of equational theories against pas-
sive adversaries. In L. Caires and L. Monteiro, editors,
Proceedings of the 32nd International Colloquium on Au-
tomata, Languages and Programming (ICALP’0%pI-
ume 3580 ofLecture Notes on Computer Scienpages
652—663, Lisboa, Portugal, July 2005. Springer.

M. Bellare, A. Desai, E. Jokipii, and P. Rogaway.
A concrete security treatment of symmetric encryption.
In Proceedings of the 38th Symposium on Foundations
of Computer Science (FOCS'97pages 394-403, Mi-
ami Beach, Florida, Oct. 1997. IEEE. Full paper
available athttp://www-cse.ucsd.edu/users/
mihir/papers/sym-enc.html

[14] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. R3] D. E. Denning and G. M. Sacco. Timestamps in key dis-

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

lations among notions of security for public-key encryp-
tion schemes. In H. Krawczyk, editokdvances in Cryp-
tology - CRYPTO '98volume 1462 ofLecture Notes on

Computer Sciencegpages 26-45, Santa Barbara, Califof24]

nia, USA, Aug. 1998. Springer.

M. Bellare, J. Kilian, and P. Rogaway. The security of
the cipher block chaining message authentication code.

Journal of Computer and System Scienéd$3):362-399, [25]

Dec. 2000.

M. Bellare and P. Rogaway. The security of triple encryp-
tion and a framework for code-based game-playing pro

In S. Vaudenay, editorAdvances in Cryptology — Euro-
crypt 2006 Proceedingsolume 4004 of_ecture Notes on
Computer Scienggages 409-426, Saint Petersburg, Rus-
sia, May 2006. Springer. Extended version available at
http://eprint.iacr.org/2004/331

B. Blanchet. Automatic proof of strong secrecy for securi@”
protocols. INIEEE Symposium on Security and Privacy
pages 86—100, Oakland, California, May 2004.

M. Burrows, M. Abadi, and R. Needham. A logic of au
thentication. Proceedings of the Royal Society of Londo[n 8l
A, 426:233-271, 1989. A preliminary version appeared as
Digital Equipment Corporation Systems Research Center
report No. 39, February 1989.

R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. Rroceedings of 2
the 42nd Symposium on Foundations of Computer ScieLce]
(FOCS) pages 136-145, Las Vegas, Nevada, Oct. 2001.
IEEE. An updated version is available at Cryptology ePrint
Archive, http://eprint.iacr.org/2000/067

R. Canetti and J. Herzog. Universally composable syr[n-
bolic analysis of mutual authentication and key exchange
protocols. In S. Halevi and T. Rabin, editoRtoceed-
ings, Theory of Cryptography Conference (TCC,08)I-

ume 3876 ofLecture Notes on Computer Sciendéew [31]
York, NY, Mar. 2006. Springer. Extended version avail-
able athttp://eprint.iacr.org/2004/334

V. Cortier and B. Warinschi. Computationally sound, au-
tomated proofs for security protocols. In M. Sagiv, eq32]
itor, Proc. 14th European Symposium on Programming
(ESOP’05) volume 3444 ofLecture Notes on Computer
Science pages 157-171, Edimbourg, U.K., Apr. 2005.
Springer.

A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and
M. Turuani. Probabilistic polynomial-time semantics for

a protocol security logic. In L. Caires and L. Monteiro, ed33]
itors, ICALP 2005: the 32nd International Colloquium on
Automata, Languages and Programminglume 3580 of
Lecture Notes on Computer Scienpages 16—29, Lisboa,
Portugal, July 2005. Springer.

15

tribution protocols.Commun. ACM24(8):533-536, Aug.
1981.

S. Halevi. A plausible approach to computer-aided cryp-
tographic proofs. Cryptology ePrint Archive, Report
2005/181, June 2005. Available http://eprint.
iacr.org/2005/181

J. Herzog. A computational interpretation of Dolev-Yao
adversaries. Theoretical Computer Scienc840:57-81,
June 2005.

6] R. Janvier, Y. Lakhnech, and L. Mazar Completing the

picture: Soundness of formal encryption in the presence
of active adversaries. In M. Sagiv, editétoc. 14th Eu-
ropean Symposium on Programming (ESOP,0&)lume
3444 ofLecture Notes on Computer Scienpages 172—
185, Edimbourg, U.K., Apr. 2005. Springer.

D. E. Knuth and P. B. Bendix. Simple word problems
in universal algebras. In J. Leech, edit@omputational
Problems in Abstract Algebrgpages 263—-297. Pergamon
Press, Oxford, U.K., 1970.

P. Laud. Handling encryption in an analysis for secure in-
formation flow. In P. Degano, editoProgramming Lan-
guages and Systems, 12th European Symposium on Pro-
gramming, ESOP’03volume 2618 ofLecture Notes on
Computer Sciencgpages 159-173, Warsaw, Poland, Apr.
2003. Springer.

9] P. Laud. Symmetric encryption in automatic analyses for

confidentiality against active adversaries. I[EEE Sym-
posium on Security and Privacpages 71-85, Oakland,
California, May 2004.

30] P. Laud. Secrecy types for a simulatable cryptographic li-

brary. In12th ACM Conference on Computer and Com-
munications Security (CCS’05)ages 2635, Alexandria,
VA, Nov. 2005. ACM.

P. D. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov.

A probabilistic poly-time framework for protocol analysis.
In ACM Computer and Communication Security (CCS-5)
pages 112-121, San Francisco, California, Nov. 1998.

P. D. Lincoln, J. C. Mitchell, M. Mitchell, and A. Sce-
drov. Probabilistic polynomial-time equivalence and secu-
rity protocols. In J. Wing, J. Woodcock, and J. Davies,
editors, FM'99 World Congress On Formal Methods in
the Development of Computing Systemaslume 1708
of Lecture Notes on Computer Sciengmges 776—793,
Toulouse, France, Sept. 1999. Springer.

G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. Ifiools and Algorithms
for the Construction and Analysis of Systermume 1055

of Lecture Notes on Computer Sciengages 147-166.
Springer, 1996.

[34] P. Mateus, J. Mitchell, and A. Scedrov. Composition ¢46] T. Y. C. Woo and S. S. Lam. A semantic model for authen-
cryptographic protocols in a probabilistic polynomial-time tication protocols. IlProceedings IEEE Symposium on Re-
process calculus. In R. Amadio and D. Lugiez, editors, search in Security and Privacpages 178-194, Oakland,
CONCUR 2003 - Concurrency Theory, 14-th International California, May 1993.

Conferencevolume 2761 ofLecture Notes on Computer
Science pages 327-349, Marseille, France, Sept. 2003.

Springer. Appendices

[35] D. Micciancio and B. Warinschi. Completeness theorer%?
for the Abadi-Rogaway logic of encrypted expressions) Type SyStem

Journal of Computer Securitt2(1):99-129, 2004. _ _ _ _
In this section, we define the type system, used in our calculus

[36] D. Micciancio and B. Warinschi. Soundness of formal ete check that bitstrings belong to the expected type.
cryption in the presence of active adversaries. In M. Naor,To be able to type variable accesses used not under their defi-
editor, Theory of Cryptography Conference (TCC'04dl- nition (such accesses are guarded Iiyné construct), the type-
ume 2951 ofLecture Notes on Computer Scienpages checking algorithm proceeds in two passes. In the first pass, we
133-151, Cambridge, MA, USA, Feb. 2004. Springer. build a type environmenf, which maps variable namesto
typesTy x ... x T,, — T, whereT,...,T,, are the interval
[37] J. C. Mitchell, A. Ramanathan, A. Scedrov, and V. Teagugpes of the indices of, andT is the type oftfiy, ..., 4,]. This
A probabilistic polynomial-time calculus for the analysigype environment is built as follows:
of cryptographic protocolsTheoretical Computer Science
353(1-3):118-164, Mar. 2006. o If z is defined bynew z[i1,... i, @ T, let xfiq,...,
im| T = M, ore[My,...,M](...,z[i1,...,im] : T,
[38] R. M. Needham and M. D. Schroeder. Using encryption for . .), and the replications above this subprocesd‘aré:,
authentication in large networks of computeSommun. NS then(x) = [1,nq] X ... x [1,n,,] — T.
ACM, 21(12):993-999, Dec. 1978.
o If u is defined byfind... & ...ufi1,...,im] <
[39] R. M. Needham and M. D. Schroeder. Authentication re- .. suchthat defined(...) A ...then... & ... and the
visited. Operating Systems Revigd (1):7, 1987. replications above thifind are!i1<m1 . 1im<nm then
o) E(u)=[1,n] X ... x [1,ny,] — [1,n].
[40] D. Otway and O. Rees. Efficient and timely mutual authen-
tication. Operating Systems Reviefi(1):8-10, 1987. e require that all definitions of the same variablgield the
] same value of (x), so thatf is properly defined.
[41] A. Ramanathan, J. Mitchell, A. Scedrov, and V. Teague. 5 process can then be typechecked in the type environghent

Probabilistic bisimulation and equivalence for securifysing the rules of Figure 3. This figure defines three judgments:
analysis of network protocols. In I. Walukiewicz, edi-

tOI’, FOSSACS 2004 - Foundations of Software Science and E+ M : T means that termd/ has typé]" in environment

Computation Structuresolume 2987 of_ecture Notes on E.
Computer Scienggages 468—483, Barcelona, Spain, Mar.
2004. Springer. e £+ P and€ F Q mean that the output procegsand the

. input procesg) are well-typed in environmerf, respec-
[42] V. Shoup. A proposal for an ISO standard for public-key jyely.

encryption, Dec. 2001. ISO/IEC JTC 1/SC27.
) In x[My, ..., M,], My,..., M,, must be of the suitable in-
[43] V. Shoup. OAEP reconsideredJournal of Cryptology terval type. Wherf (M, ..., M,,) is called, andf : T; x ... x
15(4):223-249, Sept. 2002. T,, — T, M; must be of typel;, and f(Mj, ..., M,,) is then
of type T'. The type system requires each subterm to be well-

[44] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, a ed. Furthermore, ifet z : T = M in P, M must be of type

M. Waidner. Cryptographically sound theorem provingx

In 19th IEEE Computer Security Foundations Workshop

I(Eg;\N—lQ,) pages 153-166, Venice, ltaly, July 2006. ¢4 (@, uinfi] < nji, .. wmjm < Njm, suchthat
defined(Mj1, ..., M) A M; then P;) else P

[45] S. Tarento. Machine-checked security proofs of crypto- _

graphic signature schemes. In S. de Capitani di Vimé¥; is of typebool for all j < m. In1'="Q, i is of type[1,n] in

cati, P. Syverson, and D. Gollmann, editoPspceedings Q. Fornew z[i] : T, T must be a fixed-length type.

of the 10th European Symposium On Research In ComWe say that an occurrence of a tefiin a process is of

puter Security (ESORICS 200%plume 3679 olecture typeT when& + M : T wheref is the type environment af

Notes on Computer Scienqeages 140-158, Milan, Italy,extended withi — [1,7] for each replicatio’=" aboveM in

Sept. 2005. Springer. Q.

16

EH)=T
EIT (TIndex)
Ex)=T1 x...xT,, =T Vi<m,EFM;:T;

B Formal Semantics

B.1 Definition of the Semantics

The formal semantics of our calculus is presented in Figures 4
and 5. In this figure and in the following of the appendix,
we usew for multiset union. WhenS is a multiset,S(z) is

the number of elements &f equal tox. A semantic config-
uration is a quadruplé’, P, Q,C, where F is an environment
mapping array cells to bitstrings dr, P is the output process
currently scheduledQ is the multiset of input processes run-
ning in parallel withP, C is the set of channels already cre-
ated. The semantics is defined by reduction rules of the form

Erz[My,...,.My,]:T E,P,Q.C%, , F' P, Q C meaning that, P, Q,C reduces
B
(TVar) to E', P',Q’,C’ with probability p, when the security parame-
. ter isn. The value of the security parameter is often omitted
Ty X ... x Ty —T <m,EFM,:T, T .
fi1h X ; - ;[X; =~ _W;E J~J (TFun) to lighten the notation. The indexjust serves in distinguish-
FMy; ..., M) - ing reductions that yield the same configuration with the same
L0 (TNil) probability in different ways, so that the probability of a certain
reduction can be computed correctly:
£ra Ere (TPar)
EFQIQ Pr[E, P,Q,C —, E',P',Q,C| = > p
o The probability of a trace is computed as follows:
£rQ (TNewChannel)
& F newChannel ¢; Q Pr[Ey,P1,Q1,Ci —y ... —y E P, Q1 . C]
Vi<lLEFM;: T Vj<kErafil:T;, EFP mt
= 4 :]: xJ[Z]A' 4 = H Pr[Ej7P77 Qj>cj —n E;'+1aP]{+1’ ;+1, j/’Jrl]
Er[My,...,M](x1[d) : T, ..., zx[t] : Tx); P i ’
(TIn)
. . We define an auxiliary relation for evaluating ternis: M |
< T < T . n
VisLERM,; T ViSkEFN;: T £ra a, or simply E, M |} a, means that the term/ evaluates to
EFe[My, ..., Mi](Ny,...,Ng); Q the bitstringa in environmentE. Rule (Cst) simply evaluates
(TOut) constants to themselves. This rule serves for replication indices,
' = which are substituted with constant values when reducing the
T fixed-length type g,J_ o] : T erp (TNew) replication. Rule (Var) looks for the value of the array variable
&+ new zli] : T P in the environment. Rule (Fun) evaluates the function call. Rules
SFM:T cr xm T EFP (Defl) and (Def2) evaluate conditions fofid: When some\/j,
T TP (TLet) is notdefineddefined(M, ..., M;)AM returnsfalse by (Def1).
EFletali : T=Min Otherwise, it returns the boolean valueldfby (Def2).
Vi <m,Vk <m;,EF ujk[ﬂ L1, m] We use an auxiliary reduction relatien,,, or simply ~-, for
Vi <m,Vk <1;,EF My : Ty reducing input processes. This relation transforms configura-
Vi <m,EF M; : bool Vi<m,EF P; ELP tions of the formE, Q,C. Rule (Nil) removes nil processes.

&+ find (@1, winli] < mnj1,. .., wjm,[i] < njm; suchthat
defined(Mj1, ..., Mj;,) A M; then P;) else P

(TFind)

Figure 3: Typing rules

Rules (Par) and (Repl) expand parallel compositions and repli-
cations, respectively. Rule (NewChannel) creates a new channel
and adds it t@. Semantic configurations are considered equiva-
lent modulo renaming of channels@nso that a single semantic
configuration is obtained after applying (NewChannel). Rule
(Input) evaluates the terms in the input channel. The input it-
self is not executed: the communication is done by the (Output)
rule. The relation~ is convergent (confluent and terminating),
so it has normal forms. Since processe®in configurations

E, P, Q,C are in normal form by, they always start with an
input.

Rules (New) to (Find2) simply reduce the scheduled process.
As explained in the footnote page 3, we use an approximately
uniform probability distribution for choosing an element among
a setS whenm = |S| is not a power of 2. Lek be the smallest

17

Terms andind conditions:

Eala (Cst)
Vi <m,E,M;| a; zla1,...,am] € Dom(E)
(Var)
E,x[My,...,My] | E(z[a1,...,amn))
ngm,E,Mjllaj f:Tlx...meﬂT
Vi <ma; € I,(Ty) o)
E7f(M1a"'aMm)‘U’In(f)(ala"'7a‘m)
-k <,3ay, E, M,
vk = l7 A, Loy M| ‘U’ ag (Defl)

E, (defined(My, ..., M;) A M) |} false

Output processes:

Vk < l,3ay, E, My, || ay, EMla a € {false, true} _
E, (defined(My, ..., M) A M) U a T fixed-length type a€l,(T)
(Def) o vew ufa] : T: PO, C 270, @ Elzla’] — a], P,Q,C
Input processes: (New)
E{0}wQ,C~ E,Q,C (Nil) EMya acly(T)
E{Qi|Q}wQ.C~ B {QQ:}wQ,c (Par) Eletaa]:T=MinP.Q.C %y Elza /}HGLRQ{
4 t
B {F5"Q} 8 Q.C ~ E,{Q{a/i} | a € [LL,(n)]} & Q.C i (e
(Repl) Vj < m, Vo < ny, Blag[a’] —], (Dj A M;) I a5

dé¢c S={j,v]a;jz =true} aj, 5 = true
E, {newChannel ¢; Q} & Q,C (NewChannel) Ej07~71~0 = Elujy[a’] — o]
~ B AQ{c [e}} W Q,CU{c'} E,find (@], i;]a’] < n; suchthat D; A M; then P))
VJ <l E, M l}aj elseP Q c among(S) F1(jo.50) EJ071)0)]O’Q C
E {c[My, ..., M](z[d)T, zpla’ /] Ty); P Q,C (Find1)
~ E {clay,...,q)(z1[a] : T1,...,zx[a’] : Tx); P} W Q,C . .
(Input) Vi <m,Vv <nj, Elu;[a’] — v],(D; A M;) | false

reduce(E, Q,C) is the normal form ofF, Q,C by ~~

E.find (@7,

{[J[E’] < nj suchthat D; A M, then P;)
else P,Q,C —p2 B, P,Q,C

, _ (Find2)
Figure 4: Semantics (1)
E, Q' ,C’ =reduce(F, {Q”} C)

integer such tha2* > m. We choose a random integewuni- S ={Q € Q|forsomer,, ... a},a",T},..., T}, P,
formly among[0, 2¥+/(" — 1] for a certain functiorf. Whenr Q= clar, ..., a)(@i[a"] : T}, ..., x}[a”] T;).P'}
isin [0, (2k+/() divm x m) —1],7 mod mreturns arandom Qo = cla1,...,q)(z1[a] : Th,...,2x[a'] : T}).P € S
integer in[0, m—1], with the same probability for all elements of Vi < kb, = bi&(2maxtenn(e) — 1) € I, (T})

i in [ok+F(n) g k+f(n) _ —
[0, m—1]. Whenr isin [25TF () div m xm, 28+ —1], we can B, My, M](M,.... Na).Q", O.C
do anything; we choose to block. The probability of being in this (g, x among(s)
case is(2¥t/(1) mod m) /28 < 2kt < /27, 0(Qo)

so it can be made as small as we wish by choogifig large
enough. We choosgé(n) > an for somea > 0, so that it is
negligible. The probability of choosing each elementSofs

thenamong(S) = %. Thenamong(.S) approximates
1/m. Rules (Find1) and (Find2) evaluatéiad. They compute

the value of all conditiong®); A M; of this find for all possi-

ble valuesy of the |nd|ce8uj[/1. When all these conditions are
false, rule (Find2) executes tlése branch of thefind. When

at least one of these conditions is true, rule (Find1) chooses one
such true case (fgr = jo andv = v) with approximately uni-
form probability, and executes the corresponditgn branch of

the find.

Rule (Output) performs communications: it evaluates the
terms in the channel and the sent messages, selects an input
on the desired channel randomly, and immediately executes the

18

Ele1[@] b},

Larla] = b, P,Qw Q' \ {Qo},C
(Output)

Figure 5: Semantics (2)

communication. The scheduled process after this rule is the Pefined (E, P, Q,C) C Defined(E’, P', Q',C"). The result fol-

ceiving process. (The process blocks if no suitable input is aviilws. a
able.)

The initial configuration for running proces®), is Therefore, ifQ, satisfies Invariant 1, then each variable is de-
initConfig(Qo) = 0, start(),Q,C where (), Q,C = finedat mostonce for each value of its array indices in a trace of
reduce(D, {Qo}, fc(Qo))- Qo. Indeed, by Invariant 4, just before executing a definition of

x[a], Defined(E, P, Q,C) does not contain duplicate elements,
Definition 6 Let ¢ be a channel name and be a bitstring. sox[a] ¢ Dom(E) sincex[a] € Defined(P)w Defined(Q).
We say thatF, P, Q,C executesi(a) immediatelywhen P =
¢(M).Q andE, M |} a for some@ and M.
The probability that() executesz(a) is denotedPr[Q ~-,

c(a)]. Whenc € fc(Q), Pr[Q ~y, &(a)] = Yo 7ep Pr[7] where | his section, we show that Invariant 2 implies that all variables

T is the set of tracemitConfig(Q) — .. —y Em, Pm, @m; are defined before being used. In order to show this property, we
Cp such thatsy,, Py, Qm, . €xecutesi(a) immediately and yse the following invariant:

forallj < m, E;, P;, Q,,C; does not execut®a) immediately.
Whenc ¢ fc(Q), Pr(Q ~+, ¢(a)] = 0.

B.3 \Variables are Defined Before Being Used

Invariant 5 (Defined variables, for executing games)The se-

. . . mantic configuration, P, Q, C satisfies Invariant 5 if and only
B.2 Each Variable is Defined at Most Once if every occurrence of a variable accesa/,, ..., M,,] in P or

In this section, we show that Invariant 1 implies that each arr&/S €ither

cell is assigned at most once during the execution of a process. . .
) . . ; < ; ;

WhenS andS’ are multisetsjax(S, S’) is the multiset such * present inDom(E): for all j < m, B, M; | a; and

thatmax(S, ') (z) — max(S(z), 5'(z)). We define the mul- #1012+ @m] € Dom(E);
T‘ISl?t of.varlable accesses that may be defined by a process 3Sor syntactically under the definition of M. ..., M,,] (in
OlIOWS. which case for allj < m, M, is a constant or variable
Defined(0) = 0 replication index);
Defined(Q1 | Q2) = Defined(Q1) & Defined(Q2) e or in adefined condition in afind process;
Defined("<"Q) = |+ Defined(Q{a/i}) m’
ae[lgn(n)] e orin M; or P; in a process of the forrfind (@, ;[i] <
n; suchthat defined(M/;, ..., M/,) A M/ then P; else P
Defined(newChannel ¢; Q) = Defined j groe e My) A My j
efined(newChannel c; Q) efined(Q) where for some: < [;, x[Mq,...,M,,] is a subterm of

Deﬁned(c[Ml, ey Ml](l‘l[?ﬂ : Tl, . ,.”L'k[a : Tk); P) = M]/k
{2,0] | j < k} & Defined(P)

Defined(c[M, ..., Mj{Ny,...,Ni); Q) = Defined(Q) Lemma 5 If Q satisfies Invariant 2, themitConfig(Qy) sat-
Defined(new z[a] : T; P) = {z[a]} W Defined(P) isfies Invariant 5.
Defined(let z[a] : T = M in P) = {z[a]} W Defined(P))
/ / / / H
Defined(find (@™, i;[d] < n; suchthatdefined (M1, Lemma6 If £,P,Q,C =, E',P',Q.C" withp > 0 and
J E, P, Q,C satisfies Invariant 5, then so do&s, P’, 9’,C’.
-anlj) A Mj then PJ) else P) =
max(miﬁfc{@[ﬁ]} W Defined(P;), Defined(P)) Proof sketch If z[My,..., M,,] is in the second case of In-
= variant 5, and we execute the definition ©fM1, ..., M,,],
We define Defined(E) = Dom(E), Defined(E, P,Q,C) = then for allj < m, M; is a constant replication index and
Defined(E) @ Defined(P) W g e o Defined(Q). x[My,...,M,] is added toDom(E) by rules (New), (Let),
(Find1), or (Output), so it moves to the first case of Invariant 5.
Invariant 4 (Single definition, for executing games)The se- If z[My,..., M,,] is in the third case of Invariant 5, and we

mantic configuratiort, P, Q, C satisfies Invariant 4 if and onlyexecute the correspondirgd, this access ta simply disap-
if Defined(FE, P, Q,C) does not contain duplicate elements. pears.

If z[M,,...,M,,] is in the last case of Invariant 5, and we
Lemma 3 If Q, satisfies Invariant 1, themitConfig(Qo) sat- execute thefind selecting branchy, thenz[M, ..., M,,] is a
isfies Invariant 4. subterm ofMj’.k, for £ < ;. We show by induction o/ that,

if E,M | a, then for all subterms:[My,..., M,,] of M, for
Lemma4 If E,P,Q,C %, E',P',Q ,C withp > 0and all j/ < m, E,M; || ajy andz[ai,...,a,] is in Dom(E).

E, P, Q,C satisfies Invariant 4, then so doés, P, Q',C’. Therefore, by hypothesis of the semantic rule fiad, for all
j' < m, E,Mj | aj andz[ay,...,an] is in Dom(E). So
Proof sketch We show by cases following the definiz[My,. .., M,,] also moves to the first case of Invariant 5.

tion of %, that if E,P,Q,c %, E. P, Q. C' then In all other cases, the situation remains unchanged. [

19

Therefore, ifQ, satisfies Invariant 2, then in traces@§, the B.5 Runtime
testzfay,...,a,] € Dom(E) in rule (Var) always succeeds
except when the considered term occurs defined condition
of afind.

Indeed, consider an application of rule (Var), where the ar-)))
ray access:[M, ..., M,,] is not in adefined condition of a Proof — We give a very brief sketch of this proof here. We
find. Then, this array access is not under any variable definiti&ier the reader to [37] for a more detailed proof for a different
or find, so for allj < m, E,M; | a; andzfay,... am] € calculus; their proof _coul_d be adapted to our calculus. _
Dom(E). Hence, the test[ay, . .., a,,] € Dom(E) succeeds. The length of all bitstrings manipulated by processes is poly-
nomial in the security parameter Indeed, by hypothesis, the
length of received messages is limitedyixlen,,, so polyno-
mial in the security parameter The length of random bitstrings

In this section, we show that our type system is compatible wighalso polynomial in the security parameter by hypothesis on
the semantics of the calculus, that is, we define a notion of typR§ types. Function symbols correspond to functions that run in
for semantic configurations, and show that typing is preseni@lynomial time, so they output bitstrings of size polynomial in
by reduction (subject reduction). Finally, the property that s size of their inputs, so also polynomial in the security param-
mantic configurations are well-typed shows that certain con8ier.
tions in the semantics always hold. Since the number of copies generated by each replication is
We say that® I, E if and only if E(z[ay,...,a,]) = a polynomial in the security parameter, the total number of exe-
implies€(z) = Ty x ... x T,,, — T with for all j < m, a; € cutedinstructions is polynomial in the security parameter, and it
I,(T;) anda € I,(T). We define€ -, P as€ + P, £ I, Q iseasy to see that each instruction runs in polynomial time since
as€ - Q,and€ I, M : T as€ - M : T, with the additional bitstrings are of polynomial length. Therefore, processes run in
rule £ -, a : Tif and only if a € I,(T). (This rule is useful polynomial time. O
to type constant replication indices. In the formulas giving the
typing rules, replication indicesmay then also be constantg . . .
We say thak -, E, P,Q,C ifand onlyif& -, E,& -, P,and C Simplification
forall Q € Q, & F, Q. Similarly, £ -, E, Q,C if and only if
EF, EandforalQ € Q,&+, Q. In this section, we define the transformati8mplify, which
is used to simplify games. The simplification proceeds as fol-
Lemma7 IfEt, E,EF, M : T,andE, M |} a, then€ I, lows. It uses information from several sources: equations and
a:T rewrite rules given by user, that come in particular from alge-
braic properties of cryptographic primitives; facts that hold at
Proof sketch By induction on the derivation aff, M |l a. [0 certain points in the game due to the form of the game; depen-
dency information obtained by two dependency analyses. (The
Lemma8 If -, E,Q,CandE, Q,C ~ E',Q',C’, thenf I, global dependency analysis tracks which variables depend on
E',Q.C. any element of the array at any program point. The local de-
So,if€ F, E, Q,C, thenf I, reduce(E, Q,C). pendency analysis tracks which terms depend on the current cell
of the arrayz, z[i], at each program point.) The simplification
Proof sketch By cases on the derivation of, Q,C ~-» algorithm uses this information in order to infer equalities using
E’, Q',C'. In the case of the replication, we use a substitutianKnuth-Bendix-like equational prover. The obtained equalities
lemma, noticing that: € I,,([1,n]), so€ F, a : [1,n]. Inthe are used to simplify the game, by replacing a term with an equal
case of the input, we use Lemma 7. O term or by simplifyingfind when the system proves that some
branches cannot be taken.

Proposition 6 For each process), there exists a probabilistic
polynomial time Turing machine that simulat@s

B.4 Typing

Lemma 9 If £ F Qo, then& I, initConfig(Qo).

Proof sketch By Lemma 8 and the previous definitions. 0 C-1 ~ User-defined Rewrite Rules

. . The user can give two kinds of information:
Lemma 10 (Subject reduction) If £ +, FE,P,Q,C and

E,P,Q,C %, E ., P,Q.C withp > 0, then& Fy e claims of the formvVz;, : Ti,...,Vz,, : T, M which
E' P, Q. C. mean that for all environment&, if for all j < m,
E(z;) € I,(T}), thenE, M || true.

Such claims must be well-typed, that isy; — T1,...,
Ty — T} B M : bool.

As an immediate consequence of Lemmas 9, 10, and 7, we They are translated into rewrite rules as follows:
obtain: if @, satisfies Invariant 3, then in traces@}, the tests

Proof sketch By cases on the derivation df, P, Q,C %,
E', P, Q' (', using Lemmas 7 and 8. O

T fixed-length typén rule (New),a € I,,(T) in rule (Let),Vj < — If M is of the formM; = M, andvar(M;) C
m,a; € I,(T;) in rule (Fun), and the test € {false, true} in var(M;), we generate the rewrite rute;; : 71, ...,
rule (Def2) always succeed. Vo, : T, My — Ms.

20

— If M is of the formM; # M,, we generate the The termM reduces intal/’ by the rewrite rulenew y; : 77,
rewrite rulesVzy, : Th,...,Vz,, : T,,(My = ...,newy : T/,Vaxy : T1,...,Ya, : Ty, M7 — M, if and
M) — false, Vzy : T1,...,V&u, @ T, (My # onlyif M = CloM;], M’ = C[oMs], whereC is a term con-
M) — true. (Such rules are used for instance ttext ande is a substitution that maps; to any term of typéel);

express that different constants are different.) for all j < m, andy; to terms to the forme[M] wherez is
— Otherwise, we generate the rewrite rile, : T,..., defined only by restrictionsew z : 7} forall j < 1.
Va2 T, M — true. The prover has built-in rewrite rules for defining boolean
functions:
e claims of the forrmew y; : 17, ..., new y; : T}, Vxy : 11,

o Y : Ty, My ~ My with var(Ms) C var(M,). In- —true — false —false — true Va : bool, —(—x) — x
formally, these claims mean that, and M, evaluate to Vo :T,Vy:T,~(x =y) = x #y

the same bitstring except in cases of negligible probabi; : T, vy : T, —~(z #y) —» z =y

ity, provided _thatyl, ...,y are chosen ranglomly with uni- v T, = & — true Ve : T,z 4z — false
form probability amondI7, ..., T} respectively, and that

Z1,..., %, are of typeTy, ..., Th,. (z1,...,z, may de- v : bool, ¥y : bool, ~(x A y) — (=a) V (—y)

pend ony,, ...,y.) Formally, a first approach is to defineVx : bool,Vy : bool, ~(x V y) — (=) A (—y)

these claims as: for all polynomiajs there exists a negli- vz : bool, 2 A true — z Yz : bool, z A false — false

gible p(n) such that Yz : bool,x V true — true Vx : bool,x V false — x

max Pr[E(y1) ﬁln(T{); . E(y) 3[,,(7’[); The prover also has support for commutative function sym-
~ bols, that is, binary function symbols : T'x T — T" such
(E(x1),...,E(rm)) i A(E(Zil)a o Ey)); that for allz,y € I,(T), I,(f)(z,y) = I,,(f)(y,x). For such

E, My Ja; E, Mz §a':a+#a'] <p(n) symbols, all equality and matching tests are performed modulo

commutativity. The functions,, v, =, and## are commutative.

whereA is a probabilistic Turing machine running in t'mPSo, for instance, the last four rewrite rules above may also be

q(v?)..However, this phrasing requirgs f;hecking that the '§sed to rewriterue A M into M, false A M into false, trueVV M
strictions that createy, . . ., y; are pairwise distinct, which

into true, andfalse V M into M. Used-defined functions may

is sometimes delicate. (It may depend on the value of ar3¥s be declared commutativeyr is an example of such a com-
indices.) So we prefer the following definition, in Whichnutative function

the substitutiorv allows us to renamey, .. ., y; to possi-
bly equal variableg/, ...,y :)
C.2 Collecting True Facts from a Game
The claimnew y; : T7,...,new y; : T,V :

We usefactsto represent properties that hold at certain program
points in processes. We consider two kinds of fadé$ined (M)
means thad/ is defined, and a terth/ means thad/ is true (the
boolean term\/ evaluates torue). In this section, we show how
to compute a set of fact&p that are guaranteed to hold at the
program pointP of the game.
The functioncollectFacts collects facts that hold at each pro-
R R gram point of the game. More precisely, for each occurrence
max Pr[E(y) < Iy(T7); .. E(yy) < Ly(T))); P of a subprocess of the game, it computes a%&etof facts
(E(z1), ..., E(@m)) — AEW), ..., Ely)); that holdgt thtat occurrence. (Itis |mpotrtant ttﬂ%tlts an occur-
rence and not a process: processes at several occurrences may
E,oMid a; B,oMz b a':a# o] < p(n) be equal, and must be distinguished from one another here.)
where A is a probabilistic Turing machine run- Th_e fungtioncollectFagts also comput_es a_sél) containing
ning in timegq(n). pairs (z[i], P) wherez[i] has b_efa_n defined just gbove process
P. (If there are several definitions af, there is one such
The claims need to be adapted to this definition. For iR&ir for each definition of:.) Finally, for output processes,
stance, we writnew 2 : Tinew y : T;pkgen(z) = collectFacts(P) returns a set of facts .that will hold when the
pkgen(y) ~ « — y rather thamnew o : Tinew y : NEXtoutputis executed, and stores this seFJit’. (The super-

T'pkgen(:c7 — pkegen(y) ~ false, since we may have scriptFut stands forfuture, since these facts do not hold yet at
pkgen(z) = pkgen(y) with probability 1 whenz andy £ butwillholdinthe future.) o
are in fact the same variable. The functioncollectFacts is defined in Figure 6. Itis initially

_ called bycollectFacts(Qo). It takes into account that[:] may
The above claim must be well-typed, that{s; — T, pe defined by an input, a restriction, a let, or a find, and updates

T,...,Ve,, @ T,,,M; ~ DMy means that
for all polynomialsgq, there exists a negligi-
ble p(n) such that, for all substitutions that

mapys, ...,y to variablesy], . ..y}, such that

o{yi,...,ut ={yi,...,y, }and forallj <1,
if oy; =y, thenT}) = T}, we have

o= Ty = T4,y = Ty My = M. D accordingly. Furthermore, when we execlgex|i] : T =
This claim is translated into the rewrite rulew y; : 77, M in P, z[i] = M holds inP’ andz[i] is defined in”’. When
coonewy T Ve T, . Va, t Ty My — M. we executefind (@;nzl ujr[i] < njr, e Ui i) < N

21

collectFacts(Q) =
if @ = Q1 | Q2 then collectFacts(Q1); collectFacts(Q2)

if Q@ =1"<"Q’ then collectFacts(Q’)

if Q@ = newChannel ¢; Q" then collectFacts(Q")

if Q=c[My,...,M(x1[i) : Tu,...,2x[i] : T)); P then
Fp = {defined(z;[i]) | j < k}; FE'* = collectFacts(P)
D =DuU{(a[il,P)|j <k}

collectFacts(P) =
if P=c[Mi,...,M](Ny,...,
collectFacts(Q); return ()
if P = new z[i] : T; P’ then
Fpr = {defined(z[i])}; FEW* = collectFacts(P’)
D = DU {(z[i], P")}; return Fp, U Foyt
if P=letzfi] : T =M in P’ then
Fpr = {defined(x[i]), z[i] = M}
FEM = collectFacts(P’)
D = DU {(z[i], P")}; return Fp, U Foyt
if P = find (@;") S g,] < g,
, Mji,) A Mj then P;) else P’

Ng); Q then

suchthat defined(Mjq, . ..
then

for eachj < m,
Fp, = {defined (u;1[i']), .. .,
defined(Mj1), . . ., defined(
fgjt = collectFacts(P;);
D=DU{(upld], P)), ..., (wm, ['], P})}
Fpr = {=M; | m; =1; = 0}; Fp* = collectFacts(P’)

m
Fut) m fP U]:Fut

Jj=1

defined (1, [?])’
Mji;), M}

return (Fpr U

Figure 6: The functiormollectFacts

suchthat defined(Mjy, ..., Mjy;) A M; then Pj) else P', M;
holds in P;, Mj17...,Mjlj7uj1[z] -, ujm, 1] are defined in
P;, and—M; holds inP’ whenm; = lj =0.

After calling collectFacts(Qo), we complete the computed
setsFp (whereP may be an input or output process) by adding
facts that come from processes abdte

Fp « Fp U Fp if Pisimmediately undeP’

We also add facts that we can deduce from faleféned(M).
Precisely, ifdefined(M) € Fp, andx[My,..., M,,] is a sub-
term of M, we take into account facts that are known to be true
at the definitions of by adding them tdFp as follows:

O’(fp/ U (fFl,lt N fp))
if P isunderP’

U FEit) otherwise

(ali,im]. PNED | o (Fps

whereo = {M;/i1,..., My /im}. Indeed, ifdefined(M) €

Fp andx[My, ..., M,] is a subterm ofM, thenz[M;, ...,
M,,] is defined afP, so some definition of [M, . .., M,,], just
above the procesB’, must have been executed before reaching
P, so the facts that hold &’ also hold atP, with a suitable
substitution of indices: we haveFp/, that is,Fp { M1 /i1, ...,
M,,/in}. Moreover, if the occurrenc® is not syntactically
under the occurrenc®’, then the code of”’ must have been
executed until the next output before yielding control to some
other code and reaching, so in facto(Fp U FE) hold. If

P is syntactically undef”, it is possible that the code d?’

has been executed until reachiRgnstead of until reaching the
next output, so we have onby(Fp: U (FEM N Fp)). If there

are several definitions af, we do not know which one has been
executed, so we only add 1Bp the facts that hold in all cases,
by taking the intersection on all definitions of

This operation may add nevefined facts to Fp, so it is
executed until a fixpoint is reached, except that, in order to
avoid infinite loops, we do not execute this step for definitions
defined(M) in which M contains nested occurrences of the
same symbol (such ag...z[...]...]).

We also consider an additional fact that serves in express-
ing that the condition part of dind failed. Precisely, the
fact elsefind((u1 < ni,... um < ngy), (My,..., M), M)
means that for allu; € [1L,n],...,um € [1,nn],
the termsM;,...,M; are not all defined orM is false.
The functioncollectElseFind described in Figure 7 collects
elsefind facts that hold at each occurrence. The function
collectElseFind(P, F) is called whenF is the set of true
elsefind facts at occurrencé. It sets the value ofFg'se¥ind
to F.

¢ In the case of restrictions, assignments, &reh branches
of find, it takes into account that a variable or
Uj1, - - -, Ujm, 1S NEWly defined. Hencelsefind facts that
claim that one of these variables is not defined are removed.

e In the case of thelse branch of afind, it adds the new
elsefind facts that hold when the conditions of tfied fail.
These conditions express that eabbn branch of thefind
fails by aelsefind fact. To construct this fact, we replace

22

collectElseFind(Q) =
i Q = Q1 | Qo then
collectElseFind(Q1); collectElseFind (Q2)
if @ = !"S"Q’ then collectElseFind(Q")
if @ = newChannel ¢; Q' then collectElseFind(Q")
if Q=c[M,...,M](x1[i) : Th,...,2x[i] : T)); P then
collectElseFind (P, ()

collectElseFind (P, F) =

]_-}]glseFind = F
if P =c[My,...,Mj}{Ny,...,Ng);Q then
collectElseFind(Q)

if P =new z[i]: T; P’
or P =letzfi] : T = M in P’ then
F' = {elsefind((u < m), (M, ..
x does not occur i, . .

collectElseFind (P, F')

if P = find (@j:1 Ujl[i] S UZITERE ;ujmj [’L] S njmj
suchthat defined(M;y, ..., Mj;,) A M; then P;) else P’
then
for eachj < m,
Fj = {elsefind((w < n), (M, ..

-7Ml)aM) e'7:|
'7Ml}

.,Ml),M) cF
| w1, ..., ujm,; donotoceurinMy,..., M}

collectElseFind(P;, F})

a5 = {urfup[i], .- wm, /tgm, [i]}
collectElseFind (P, FU

{elsefind((u1 < nj1,..

O'j(Mjl, ..

'7u7Rj S njmj)a

'7Mjlj)7Uij) |]€ {1,...,m}})

Figure 7: The functiorollectElseFind

(by applyinga;) the termsui[i], ..., ujm, [i] with fresh
variablesuy, . . ., un,,, respectively.

¢ In the case of an output, any code may be executed before
the input processes under it, so any variable may be defined
by that code, and aléisefind facts are removed. That is
why the functioncollectElseFind for input processes has
no F argument (this argument would always be empty),
and callscollectElseFind(P, 0) for processe#’ that follow
an input.

The elsefind facts can be used to add new facts to the féagts
Indeed, if 7p implies thatMy, ..., M, are defined for some
values ofuq,...,u.,, then the factelsefind((u1 < na,...,
Uy < M), (M1, ..., M;), M) implies thatM is false for these
values ofuq, ..., u,,. Precisely, we execute:

Fp — FpU{-oM | elsefind((u1 < ni,...,umn < npy),
(My, ..., M), M) € FESFnd Dom(o) = {ug, ..., um},
foreachj € {1,...,1},0M;, is a subterm of\/[j’- and
defined(M}) € Fp}

The possible images aof are found by exploring the set of
defined facts inFp.

Furthermore, when the previous updatefof adds facts, we
again complete the computed séis by adding facts that come
from processes abowve:

Fp « Fp U Fp: if Pisimmediately undeP’

We could also iterate the addition of consequencedetified
facts. (However, for simplicity, the current implementation does
not perform such an iteration.)

C.3 Global Dependency Analysis

For each variable, the global dependency analysis tries to find

a set of variables' such that only variables if depend one.

In particular, when the global dependency analysis succeeds, the
control flow and the view of the adversary do not depend:on
except in cases of negligible probability.

Let z be a variable defined only by restrictionsw = : T
whereT is a large type. LefS,.r be a set of variables defined
only by assignments. Leiqe, be a set of variables containing
x. (Intuitively, Sqep Will be a superset of variables that depend
onz.)

We say that a functiorf : T — T’ is uniform when each
element ofl, (7") has at mostZ,,(T)|/|I,,(T")| antecedents by
f. In particular, this is true in the following two cases:

e fissuchthaif(z) is uniformly distributed inZ,,(T") if x is
uniformly distributed inZ,, (T').

e f is the restriction to the image gf of an inverse off’,
where f’ is a poly-injective function. (We consider that
f(z) is undefined whem: is not in the image of’. Here,
in contrast to the rest of the paper, we allgw T — T’ to
be defined only on a subsethf(T').) Precisely, whem;, €
Sqef is defined by a pattern-matching f/(z1,...,z,) =
M in P else P/, we haver;, = f’;,"(M), but furthermore

23

whenzy, is defined we know that the value 81 is in the The last item implies that the result of tests does not depend on
image off’, sowe have:;, = f(M) wheref = f’;llim Iz the values of variables ifi, except in cases of negligible proba-
bility. Indeed, the testd/; = M, with M; characterizes a part
We say that)M characterizes a part ofr with Sqer,Sacp of z with S\ {z}, S and M, does not depend on variables in
when for all M, obtained from/ by substituting variables 5 are false except in cases of negligible probability, since the
of Sqer with their definition (when there is a dependency Cym|ue of M1, uniquely determines the value (. . . fi(z[M]))
cle among variables of4.¢, we do not substitute a variable in-and Ms does not depend offi (. -~fk(ff[1\7])), so the equal-

side its definition)a Mo = Mo implies fi(. .. fi((ax)[M"])) = ity M, = M, happens for a single value ¢f(. .. fr(z[M])),

fi(.. fr(2[M])) for some uniform functiong, , ..., fx and for \yhich yields a negligible probability becauge . . ., fx are uni-
somelM andM’, wherex is a renaming of variables fyc, t0 form, « is chosen with uniform probability, and the type of the
fresh variablesy[M] is a subterm of\fy, (cz)[M'] is a subterm result of f; is large. Similarly, the testd8/; # M, are true ex-

of aMy, the variables irf4., do not occur inM or M’, T'is the Cept in cases of negligible probability.

type of the result off; (or of z whenk = 0), andT is a large In checking the conditions afnly_dep(z) = S, we do not

type. In that case, the value &f uniquely determines the valueconsider the parts of the code that are unreachable due to tests
of f1(... fk(x[M])). whose result is known by the conditions above.

We use a simple rewriting prover to determine that. We con-The setS is computed by a fixpoint iteration, starting from
sider the set of termd4, = {aM, = M,}, and we rewrite {z} and adding variables defined by assignments that depend
elements of M, using the first kind of user-defined rewritén variables already if.
rules mentioned in the first point of this section and the rule

/ /
(M A Mo} U M= { My, Mo} UM _ Cf.4 Local Dependency Analysis

When M, can be rewritten to a set that contains an equal-
ity of the form fi(... fx(x[M])) = fi(... fe((ax)[M’])) or For each program poinf® and each variable, the local depen-
fi(... fk((ax)[ﬁ’])) =fi(... fk(x[ﬂ])) for someM andM’ dency analysis tries to find which variables and terms depend on
such that the variables ifize, do not occur inM or M’, we x[i] at program poinf?, wherei denotes the current replication
have that)/ characterizes a part afwith S, Sucp.- indices at the definition of. It simplifies the game on-the-fly

We say that\/ characterizes a part of: when M character- WNen possible. .
izes a part of: with 0, 5" whereS’ is {x} union the set of all For each occurrence of a proceg3sand each variable such
variables except those defined by restrictions. (We know ti3#t @ restrictiomew x : 7' occurs above?” and 7" is a large
variables different fronx and defined by restrictions do not delyPe, We compute a set of termsdep () 'tha.t are mdepen—
pend onz, so in the absence of more precise information, VNt ofz[i] wherei denotes the current replication indices at the
can setSqep, = 5'.) definition of x.

We say thabnly_dep(z) = S when intuitively, only variables FOr each.oc':currence of a procd3and each varigble such
in S depend onz, and the adversary cannot see the value.ofthat a restrictiomew = : 7" occurs aboveP” and T is a large

Formally,only_dep(z) = S when type, we also computéepend »(z) which can be eithefl (|
don’t know) or a set of pairsy, M) wherey[i] depends o]
e SNV =10. by assignments, andl/ is a term definingy[i] as a function of

_ o x[z~] (The tuplef denotes the current replication indices at the
e Variables ofS do not occur in input or output channels Ofefinition of and ofy.)

messages, that is, they do not occur in the teMhs ..., We define Y characterizes a part ofx[ﬂ at P’ as

My, Ny, ..., Ny inthe inputc[My, ..., Mw](@1[i] - Th, follows. Let a be defined bya(f(Mi,...,My)) =
- xgli] « Ty) orin the outpute[My, ..., My |(N1,..o, f(aMy, ..., aMy); a(i) = i wherei is a replication index;
N)- a(M’) = M’ whenM’ € indepp(z); a(y[M, ..., My]) =
_ i) ylady, ..., aM,,] wheny # x andy either is defined only by
e Variables ofS exceptr are defined only by assignments. oirictions ordepend p(z) # T and(y, M) ¢ dependp(z)
. . . . forany M’; a(y[Mq, ..., M) = y'[ab, ..., aM,, | where
* If a variabley € S occurs inM in let z : T = M in P, Y is a fresh (vc'ElriabIe, other\]/\)/ise. [\Ne writg = ay]in this

thenz € §. case. We say thal/ characterizes a part ofr[?‘] at P when

o Variables inS may occur indefined conditions offind but M = M implies fi(... fu((ax)[i])) = fi(... fu(a[d)) for
only at the root of them. some uniform functiong,, fi, wherex[i] is a subterm of

M, (az)[i] is a subterm ofeM, T" is the type of the result of;

o Allterms M; in processesind (], ;1] < mj suchthat (or of z whenk = 0), and7” is a large type. In that case, the
defined(Mj1, ..., Mj;,;) A M; then P;) else P’ are combi- value of M uniquely determines the value ¢f(... fi(z[i])).
nations byA, V, or — of terms that either do not containlhis property is shown by a simple rewriting prover, as in the
variables inS or are of the form\M; = M, or M; # M, global dependency analysis.
whereM; characterizes a part efwith S\ {z},Sandno We denote byubterms(M) the set of subterms of the term
variable ofS occurs inM;, or M, characterizes a part of M.
with S\ {z}, S and no variable of occurs in}M;. We say thatM does not depend om at P when M is

24

depAnal(Q, indep) =
Vy,dependg(y) = T;indepg = indep

lfQ = Ql | QQ then
depAnal(Q1,indep); depAnal(Q2, indep)

if @ =!"<"Q’ then depAnal(Q’, indep)

if Q@ = newChannel ¢; Q" then depAnal(Q’, indep)

if Q=c[My,...,M](x1[i): T1,... ,2x[i] : Ti); P then
depAnal(P, {Vy,y — T},indep)

Figure 8: Local dependency analysis (1)

built by function applications from terms imdep (), repli-
cations indices, and termgM,, ..., M,,] such thatMy, ...,
M,, do not depend on at P, y # x, and eithery is defined
only by restrictions ordependp(z) # T andy # ¢’ for all
(y',M') € dependp(z). Since terms irindep »(x) do not de-

pend onz[i] and whendependp(x) # T, variables not in the

first component oflepend (x) do not depend on|:], the con-
ditions above guarantee thaf does not depend ari], where
i are the current replication indices at the definition:of

Whendepend # T, we denote byl depend the term ob-
tained from by replacingy[i] with M’ for each(y, M’) €
depend, wherei denotes the replication indices at the definition
of y.

We definesimplify Term such thakimplify Term(M, P) is a
simplified version ofM, equal toM except in cases of negli-
gible probability. The ternsimplifyTerm (M, P) is defined as
follows.

e Case 1:M is M; = M,. For eachr, we proceed as fol-
lows. If dependp(z) = T, let My = M;; otherwise, let
My = Midependp(x). Let M) and M be obtained re-
spectively fromM, and M by replacing all array indices
that depend on at P with fresh replication indices. I8/
characterizes a part offi| at P, and M/ does not depend
onz at P, thensimplifyTerm (M, P) = false. Indeed,M
is equal tofalse up to negligible probability in this case.
We have similar cases swappidd; and M, or when M
is My # M. (In the latter casesimplify Term(M, P) =
true.)

e Case 2:M is My A M. Let M{ = simplifyTerm (M, P)
and M}, = simplifyTerm(Ms, P). If M| or M}, arefalse,
we returnfalse. If M istrue, we returnMy. If MJ is true,
we returnM;. Otherwise, we returd/; A Mj. We have
similar cases when/ is My Vv My or =M;.

e In all other casegimplify Term(M, P) = M.

The local dependency analysis is defined in Figures 8 and 9.

The functiondepAnal is initially called with depAnal(Qo,)
wheref) designates the function defined nowhere.

e For input processeslepAnal setsdepend(y) to T, so
thatdepend, gives no information, and propagateslep.

Indeed, whery[i’] is set in some output procesy, the

25

ifP:C[Ml,..

depAnal(P, depend, indep) =
depend p = depend; indepp = indep

o Mi)(Ny, ..., Ni); Q then

depAnal(Q, indep)

if P =new x[i] : T; P’ then

if T is a large type then
depend’(z) = ()
indep’(z) = Udefined(n1)e 7 Subterms (M)
Vy # x,depend’(y) = depend(y),
indep’(y) = indep(y) U {«[i]}
depAnal(P’, depend’, indep’)
if P=letafi] : T =M in P’ then
vy, if M does not depend apat P then
depend’(y) = depend(y)
indep’(y) = {x[i]} U indep(y)
else
if depend(y) # T then
depend’(y) = depend(y)U{(x, Mdepend(y))}
else
depend’(y) = T
indep’(y) = indep(y)
depAnal(P’, depend’, indep’)
if P = find (@:;1 ujlm <Nj1, ey Ujm, m < N,
suchthat defined (M1, ..., Mj;,) A M; then P;) else P’
then
for eachj < m, M} = simplify Term (M}, P)
replaceM; with M;
if M = false then remove thg-th branch
if M} = true andl; = 0 then replace”’ with yield()
if m = 0then
replaceP with P’; depAnal(P’, depend, indep)
else ifm =1, m; =11 = 0, andM; = true then
replaceP with P;; depAnal(P;, depend, indep)
else
Yy, if Vi, k, My andMJ’- do not depend op at P then
depend’(y) = depend(y)
for eachj < m,indep;(y) = indep(y) U {M" |
M’ e subterms(M) for somedefined(M) € Fp,,
M’ does not depend apat P}
else
depend’(y) = T
for eachj < m,indep;(y) = indep(y)
for eachj < m,depAnal(P;, depend’, indep,)
depAnal(P’, depend’, indep)

Figure 9: Local dependency analysis (2)

value ofy[i’] may be output by, or read byfind in other 7 U {M1 = Mz}, R when one of the following conditions

output processes executed afigr so as soon ab, passes {false}, R holds:
control to another process by the first output after the def- o denoting byM! the term obtained fromd/; by replac-
inition of y, we lose track of exactly which variables de- ing all array indices that are not replication indices with

pend ony[i']. However, variables already defined before fresh replication indices, we have the following proper-
P, passes control to another process and proved to be in- ties: 2 occurs inMj, x is defined only by restrictions

dependent of/[i’] remain independent offi’], so we can new z : T, T'is a large type)/; characterizes a part of
propagaténdep in all subprocesses . z, and M is obtained by optionally applying function
symbols to terms of the form[M] wherey is defined
e In the case of an outputiepAnal forgets the information only by restrictions ang # x;

ind dp as mentioned above. . : ' -
ependp e 1 occurs inMy, z is defined only by restrictionsew « :

e Inthe case of a restrictiamew x[1] : T', if T'is a large type, T, T'is a large type,M; characterizes a part of,
we create the dependency information for the newly de- ©nly-dep(z) = S, and no variable o occurs inMy;

fined variabler: no variable depends ori:], and all terms o simplifyTerm(M; = M,, P) = false, whereP is the
already defined before the restriction are independent of current program point.

x[¢]. We also note that]:] is independent of[:’] for other (4)

variablesy by addingz|i] to indep(y). FU{M=M}R

e In the case of an assignmet «[i] : 7" = M, if M de- FRU{M — M’}

pends ony[i'] for some variabley, thenz[i] depends on />R U {My — M} if M; reduces intaV/; by a rule ofR

y[i'], so is added talepend(y) (if itis not T); otherwise, 7 U {M1 = M3}, R or a user-defined rewrite rule

x[i] does not depend ayf7’] so it is added tandep(y). 6
F,RU{M; — My} . .

e In the case of dind, we first simplify each condition of 7 {M{{ ;Mg},;g if M, reduces intdV/; by arule ofR
thefind, remove branches when we can prove that they are @)
taken with negligible probability, and remove thied itself
when we know which branch is taken and this branch wfe also use the symmetrics of Rules (4) and (5) obtained by
the find does not define variables. Furthermore, if sonvapping the two sides of the equality.
condition of find depends ony[i] for some variabley, Rule (1) simplifies facts using rewrite rules. Rule (2) decom-
depend’(y) is set toT: the control flow depends omi] poses conjunctions of facts. Rules (3) and (4) exploit the elimi-
so future assignments in fact dependydi even if the as- nation of collisions between random values. Rule (3) takes into
signed expression itself does not, so we can no longer kéepount that, whem is defined by a restriction of a large type,
track precisely of which variables depend gjn]. Other- two different cells ofr have a negligible probability of contain-
wise, we add all terms that are guaranteed to be defiried the same value. So when two cellszotontain the same
and independent af] to indep(y). value, we can conclude up to negligible probability that they are

the same cell. Rule (4) expresses thitand M, have a negligi-

. ble probability of being equal whenis defined by a restriction

C.5 Equational Prover of a large type M, characterizes a part of and M, does not

We use an algorithm inspired by the Knuth-Bendix completiélepend ofz. The first item of (4) establishes these properties

algorithm [27], with differences detailed below. without further dependency analysis; the second item exploits
The prover manipulates paif§, R where F is a set of facts the global dependency analysis; and the third item exploits the

(M or defined(M)) andR is a set of rewrite ruled/; — M,. local dependency analysis.

We say thatM reduces intaM’ by M; — M, whenM = Rule (5) is applied only when Rules (1) to (4) cannot be ap-

C[M,] andM’ = C[Ms,)] for some term context'. (That s, all plied. Rule (5) transforms equations into rewrite rules by ori-

variables in rewrite rules oR are considered as constants.) THting them. We say that/ > M’ when eitherM is the form

prover starts with a certain set of fackandR = . Then the x[M], = does not occur inV/’, andz is not defined only by

if M > M’ (5)

prover transforms the pairfsF, R) by the following rules (the restrictions, otM = x[My, ..., M}, M" = z[Mj, ..., M,],
rule % means tha#, R is transformed into¥’, R'): and for allj < m, M; > M. Intuitively, our goal is to re-

' place M with M’ when M’ defines the content of the variable
FU{F},R if Freduces int&?’ by a rule ofR or 1 M. (Notice that this is not an ordering; the Knuth-Bendix al-
FU{F'},R auser-defined rewrite rule @) gorithm normally uses a reductiqn ordering to orient equations.

FU{M AM),R However, we tried some reduction orderings, namely the lex-

(2) icographic path ordering and the Knuth-Bendix ordering, and

FU{My, M2}, R obtained disappointing results: the prover fails to prove many

FU{z[M,y, ..., M| = x[Mj, ..., M},]}, R equalities because too many equations are left unoriented. The
FU{M, =Mj,..., M, = M],},R 3) simple heuristic given above succeeds more often, at the expense
whenz is defined only by restrictions of a greater risk of non-termination, but that does not cause prob-
new z : T andT is a large type lems in practice on our examples. We believe that this comes

26

from the particular structure of equations, which come ftetn e If P = find else P/, thenP is replaced withP’.

definitions and from conditions dind or if, and tend to define) m o~ N .

variables from other variables without creating dependency cy® 1 find (Dj= wli] = ”-7',5“Chthat defined(M;s, ...,

cles.) Mj;) A Mj then P;) else P’ and Fp: yields a contradic-
Rules (6) and (7) are systematically applied to simplify all tion, thenP" is replaced withyield().

rewrite rules ofR after a new rewrite rule has been added by |t p — find afi] < 7 suchthat M then Py else P', Fp:

Rule (5). Since all terms in _rewrite rules &f are c_onsidered as yijelds a contradiction, and the variablesiirare not used
constants, Rule (7) in fact includes the deduction of equations g iside P and are not irl/. then P is replaced withP; .

from critical pairs done by the standard Knuth-Bendix comple- (When thefind defines variables used elsewhere, we can-

tion algorithm. _ . _ not remove it.)
We say thatF yields a contradictiorwhen the prover starting . m o i
from (, 0) derivesfalse. o If P = find (@jzl u;[i] < nj suchthat defined(Mj1, .. .,

Mj;) A M; then yield()) else yield() and the variables
in u; are not used outsid® and are not inl/, then P is
replaced withyield().

C.6 Game Simplification

We use the following transformations in order to simplify games. | The defined conditions offind are updated so that Invari-
These transformations exploit the information collected as ex- ant 2 is satisfied. (When suchdafined condition guaran-

plained in the previous sections. tees thatl! is defined defined(M) implies defined (M),
and after simplificatiord/” appears in the scope of this con-
dition, thenM’ has to be added to this condition if it is not
already present.)

e EachtermM inthe game is replaced with a simplified term
M’ obtained by reducing/ by user-defined rewrite rules
(first point of this section) and the rewrite rules obtained
from Fp,, by the above equational prover whefg isthe o |f P = new z : T; P’ orlet z : T = M in P’ andz is not

smallest process containing. The replacement is per- ysed in the game and is not ¥, then P is replaced with
formed only when at least one user-defined rewrite rule has pr.

been used, to avoid complicating the game by substituting
all variables with their value. C.7 Further Simplifications

o If P = ﬁ”d_ (@;ﬂ:ﬂjlm < nj1y e Um i) < ”jm/j After applying the game simplifications described above, we fur-
suchthat defined(M;y, ..., Mji;) A M; then Pj) else P', nar apply the following transformations:

) o . / _ . . .
“J’?[Z] redu.ces mt.OM by user def'ned rewrite ru_les (f'rStMoveNewWe move restrictions downwards in the code as much
point of this section) and the rewrite rules obtained from

. . as possible, when they have no array access usinlg A
Fp,;, andu;, does not occur ind’, thenw;, is removed POS: y y

i~ new x[i7] : T cannot be moved under a replication, or under a

N e o .
from the-th branch of thf'nc!’ uﬂ’“[:} IS :jeplg;:ied WIthVI"™ o rallel composition when both sides user a letlet y[i] : 7 —
in Mj,..., My, M; and P; is replaced withlet w;[i] = 3 i Cinpute[M,, ..., Mi)(@1[i] : T, ..., x4 [i] : Th), out-

[Lnge] = M"in P;. (Intuitively, u;[i] = 'M’,.so the pute[My, ..., MJ(Ny,...,N;,) whenz occurs inM, M, . . .,
value ofu;y[i] can be computed by evaluatidg’ instead A7), Ny,..., Ny, or afind when the conditions use. It can

of performing an array lookup. We remougy [i] from the be moved under the other constructs, duplicating it if necessary,

variables looked up bfind and replace;, [¢] with its value When we move it under &énd that usese in several branches.

M) Note that when the restrictiomew x[i] : 7' cannot be moved
_ under an input, a parallel composition, or a replication, it must
e Suppose thatP = find (B, wili] < nj,..., be written above the output that is located above the considered
Ujpm, [i] < Njm, suchthat defined(M;y, ..., M) A M; input, parallel composition or replication, so that the syntax of
then P;) else P’, z[Ny,..., N;] is a subterm of\/;;,, and Pprocesses is not violated. N

none of the following conditions holds: &is under adef- When this transformation duplicatesiaw z[i] : 7' by mov-
inition of 2 in Qo; b) Qo contains®; | Q- such that a def- ing it under afind that uses: in several branches, a subsequent
inition of z occurs inQ; and P is underQ, or a definition SArenamgz) enables us to distinguish several cases depending
of z occurs inQ, and P is underQ; ; ¢) Q, containdp+ 1 in which branchr is created, which is useful in some proofs.

replications above a procegsthat contains a definition of RemoveAssigguselesy As a particular case of the transfor-
x andP, wherelp is the length of the longest common prémationRemoveAssignwe remove useless assignments, that is,

fix betweenNy, ..., N; and the current replication i”dicesassignments te whenz is unused and assignmeniés z[i] :

at the def|n|t|0n§ ofc. Then thej-th branch of théupd is o _ y[ﬁ]. Since removing such assignments may also remove
removed. (In this case;[Ny,. .., N;] cannot be defined at

uses of other variables, we repeat this removal until a fixpoint is
P, so thej-th branch of théind cannot be taken.) P P

reached.
o If P =find (D), u;[1] < m; suchthat defined(M;1,..., SArenamgauto): As a particular case of the transformation
Mj;;)AM; then P;) else P’ andFp, yields a contradiction, SArename whenx hasm > 1 definitions and all variable ac-
then thej-th branch of thdind is removed. cesses tac are of the formz[iy, ...,] under a definition of

27

x[t1,...,4], whereiy, ..., 4, are the current replication indices e Foralll <k <1, u;; is the concatenation of a prefix

at this definition ofx (that is,z has no array access usifigd), of the current replication indices (the same prefix for
we renamer to x4, . . ., z,, With a different name for each defi- all) and a non-empty prefix af;.
nition. e When; is non-empty, at least ongy, for 1 < k <

l; is the concatenation of a prefix of the current repli-
cation indices with the whole sequencg

D Applying the Definition of Security of e Whenl; # 0, there exists: € {1,...,1,} such that

Primitives for all k' # k, z;; is defined syntactically above all
definitions ofz;;, andu;z is a prefix ofu;,. (This
D.1 Formalization of the Transformation implies that the same find cannot access variables de-
fined in different functions under the same replication
In this appendix, we formalize the transformation performed by in R.)

exploiting equivalences that come from the definition of security
of cryptographic primitives. We require the following conditions
for the equivalenceb ~ R that model cryptographic primitives:

¢ Finally, variablesz;;, are not defined by &nd in R.
(Otherwise, the transformation would be considerably
more complicated.)

HO. [L] and[R] satisfy Invariants 1, 2, and 3. Furthermore, the Such equivalencek ~ R are used by the prover by replacing
result of each function il has the same type as the resulf process), observationally equivalent 6[[L]] with a process
of the corresponding function df. Q/, observationally equivalent t6[[R]], for some evaluation

contextC. We now give sufficient conditions for a process to

H1. In L, the functional processgs? are simply terms\; all - o equivalent ta>[[Z]]. These conditions essentially guarantee

their array accesses use the current replication indices. (tﬁlat all uses of certain secret variables@f, in a setS, can
lowing let or find in L is difficult, because we need to rec ' ’

: ; !) “be implemented by calling functions &f These conditions are
ognize the termd/ in a context and in a possibly Symac“éxplained in more detail below.
cally modified form.)

We first define the functiomextract used in order to extract

H2. L and R have the same structure: same replications, Samfé)rmatmn from the left- or right-hand sides of the equivalence.

number of functions, same number of arguments with theextract((zy : T4, ...,z : 7)) — M, () =
same types for each function. (z1: Ty, 2 T)) — M
H3. The variableg; defined bynew andz; defined by function extract(!"="new y : T1;...;new y; : Ty; (G, - .., G),
inputs inL and R are distinct from other variables defined (5,,...,j%)) =
n &. (yl : Tlv e Y T‘l)v eXtraCt(Gjly (j21 v 7jk))
H4. Under !"<" with no restriction in L, one can have extract((Gi,...,Gmn), (jo,---,Jk)) =
only a single function(z;, :T4,...,2;:1;) — FP. extract(Gj,, (1, - - -, k)
i<n((z7 T, . :
(One can transform y <n(($1 +11) L FP1,---, e rename the variables 6k such that variables df andR
(T 2 Tp) = FPp, 1= e/ S0l VMO o not oceur inQo. Assume that there exist a set of variabfes
("=r(z1:T1) — FPy,....M"""(@p :Tn) — FPp, andaseiM of occurrences of terms i@}, such that:
s ool Sne) in order to eliminate situa- /4 SAV =0

tions that do not satisfy this requirement.)
H’2. No term in M occurs in the condition part of &ind

H5. Replications inL (resp. R) must have pairwise distinct (defined(Mj, ..., M;) A M) or in the channel of an input.
boundsn. (This strengthens the typing: the typing then

guarantees that, if several variables are accessed witt e FOr eachM € M, there exist a sequencBL(M) =
same array indices, then these variables are defined under (Jo, - - -, j1) Such thatextract(L, BL(M)) = (y11 : Tu,

the same replication.) ey Yimg f T1m1)7 sy (yll : T, 7ylm, .1 Tlml)7
(1 :T1,...,xm : Ty) — N and a substitutionr such
H6. For all restrictionsiew y : T that occur above a term/ that M = oN (o applies to the abbreviated form of
in L, y occurs inM. (This guarantees that, in Hypothe- in which we writex instead ofz[i]) and the following con-
sis H3.1 below,z;x[Mj1, . .., Mj,,] is defined forallj <1 ditions hold:

andk < m; . With Hypothesis H4, this guarantees that

/
index; is well-defined in Hypothesis'3.1.3 below.) H'3.1. For allj < L andk < m;, oy;y IS a variable access

ij[Mjl, ceey qu_;’}! with Zjk € S. We definezjk =

H7. Finds inR are of the form varlmL(y;x, M).
m] N H’3.1.1. All definitions ofz;; in Qo are of the form
find (B;Z, w; < nj suchthat defined(z;1[uj1], . . ., new z;i[...] : T, and for allk < m, they oc-
zji, [us1,]) A Mj then FP;) else FP’ cur under the same replications (but they may oc-
cur under different replications for different val-
where the following conditions are satisfied: ues ofy).

28

H'3.1.2. Whenj # j' ork # k', zji # zjir. Hypothesis H3.2 checks that the values received by inputs in
H’3.1.3. The sequence of array indic8$;:,..., M, L are of the proper type. Hypothesis3l.1 checks that vari-
is the same for alk < m; (but may depend ablesz;, rs that correspond to variables definedray in L are
on j). We denote byindex;(M) a substitu- of the proper type. The variablgg, defined bynew in L are
tion that maps the current replication indices ased only in termsV in L. Correspondingly, Hypothesis'8{3
the definition ofz;; to M;y,... qu respec- checks that the corresponding variablgs, € S are not used
tively. If m; = 0, index;(M) is not set by elsewhere irQ, and Hypothesis H checks that they cannot be
the previous definition, so we sétdex;()/) used directly by the context.
to map the current replication indices af In L, for distinct j, k, the variablegy;;, correspond to inde-
to themselves. For each < I, there exists pendentrandom numbers. Correspondingly, Hypothe/@slt?
a substitutionp, (M) such thatindex; (M) = requires that the variables;, »; are created by different restric-
index; 41 (M) o p;(M) and the image op; (M) tions for distinctj, k. In L, the variableg;;, are accessed with
does not contain the current replication indices #te same indices for arly(but a fixedj). Correspondingly, Hy-
M. We denote bym index;(M) the sequence pothesis H3.1.3 requires that the variables », are accessed
image byindex; (M) of the sequence of currentwith the same indicesn index; (M) for anyk. When instances
replication indices at the definition of;; (so, of N and N’ both refer toy;;, with the same indices, then they
im index;(M) = (Mj1,. .., Mj,,)). We define also refer toy;, with the same indices whejf < j. Corre-
im p; (M) similarly. spondingly, if M and M’ refer to the samejk, by Hypothe-
sis H4.1, they also refer to the same,, for j/ < j. More-
, X)) , over, if index; (M) andindex;(M’) evaluate to the same bit-
H’3.3. All occurrences if), of a variable inS are elth'er aS strings, therindex (M) andindex, (M’) also evaluate to the
Zjk z_ibov_e or at the root of an argument ofiefined ;o bitstrings, sincedex; (M) = index;(M) o p;_1 (M) o
testin afind process. ... 0 pj/(M) by Hypothesis ¥B.1.3 andp;, (M) = py,(M’) for
To make it precise which terd each element refers to, wek < 7 by Hypothesis F4.2. These conditions guarantee that we
add M as a subscript, Writing. . a7 for y;x, 2k ar fOF 2 can establish a correspondence from the array cells of variables
T ay fOF Top, 1 0s for = § T-Jj\}for T N]\/J[for NV, and Of S in Qo to the array cells of variables defined byw in L,
aiwﬁfor . We also defineiNe\jx’rM — m; nNewSeq,, — 2and thatthis correspondence is an injective function, as required
. J,M J1 -

H’3.2. Forallj < m, ox; is a term of typel;.

I, andnInput,, = m in S.ectlon 3.2. . .
Finally, a termN in L is evaluated at most once for each
H'4. We say that two terma/, M’ € M share the first’ se- value of the indices ofj1, . .., yim,, SO N is computed for a
quences of random variables whef. »; = y;x,a and single value of the arguments, . .., z,,,. Correspondingly, by
Zikomw = zjpe forallj < "andk < nNew; = Hypothesis 4.3, whenM and M’ share thd = nNewSeq,,

nNew; r # 0. Let!’ be the greatest integer such thafequences of random variables andex; (M) andindex; (M")
M andM’ share the first’ sequences of random variablessvaluate to the same bitstring, théh and M’ evaluate to the
Then we require: same bitstring.
H’4.1. The sets of variable$z;r v | j > "andk < _Ne_compute\';\t;e possib_lea\zal_u%s ofdtge Sﬁmd.M by _fix-l
nNew, 1} and{zix apr | j = I andk < nNew; vy} point iteration. We start witt\1 = () and.5' containing a single.
M S SISk, 7 variable of()y bound by a restriction. (We try all possible vari-
must be disjoint.) . :
ables.) When a term/ of)y contains a variable ii§, we try to
H'4.2. p;(M) = p;(M’) forall j < '. find a function inL that corresponds td/, and if we succeed,
H'4.3. If ' = nNewSeq,, and N); = Ny, then there we addM to M, and add tcb variables inM that correspond to
exists M, such thatM = (index; (M))My, M’ = variables bound by restrictions in (If we fail, the transforma-
(index; (M')) My, and M, does not contain the cur-tion is not possible.) We continue until a fixpoint is reached, in
rent replication indices a¥/ or M’. which case all occurrences of variablesSodre in terms ofM.

We now describe how we construct a procésssuch that
When these conditions are satisfied, there exists a conftex v C[IR]). proceks

such tha)y ~¥ C[[L]].

Terms in M must not occur in conditions dfnd (Hypothe- 1. We first move restrictions in the right-hand side of the
sis H2) because such terms may refer to variables defined by equivalence, so that they occur above the reception of the
find, and by the transformation, these variables might be moved arguments of functional processes instead of inside func-
outside their scope, thus violating Invariant 2. Termgimust tional processes. As explained below, this is necessary
not occur in the channel of an input, because otherwise, after the for the correctness of the subsequent transformati@pyof
transformation, the input process might need to perform compu- when restrictions appear in the corresponding part of the
tations byfind or let, forbidden by the syntax. (This requirement left-hand side. More precisely, we transform the right-
is not a limitation in practice, since terms in channels of inputs hand side of the equivalence&, as follows: for each

are typically the current replication indices, so they do not con- ji,...,j, if extract(L, (j1,...,41) = (y11 : Ti1,---,
tain cryptographic primitives.) Yimg © Dima)s---> Wi = Tias ooy Yimy & Timy), (21 2 11,

In Hypothesis K3, the sequenceBL(M) indicates which coy T 2 T) — N with m; # 0 andextract(R, (1,
branch ofL corresponds to the teri. o) = (W T1117"”y/1m/1 : Tl/m,l),...,(yl’1 2T,

29

..7y;m2 :T’l/mi)’(wl Ty, ..., xm: T,) — FP, for each
new z : T'in FP,

e we addz : T in the sequence of random variables
i s T Yy T

o if z does not occur idefined conditions offind in R,
we removenew z : T from FP;

e otherwise, we replaceew z : T with let 2’ : T' = cst
for some constantst and addi [J\7} to eachdefined

condition of R that containg[M].

This transformation is needed, because in the right-hand replaceP), with (new z, ,,
side, a new random number must be chosen exactly for each '

different call to the function(zy : T3, ..., zm : Tpn) —

FP. This would not be guaranteed without that transfor-
mation, because when the left-hand sidas evaluated at
several occurrences with the same random numbers

Ti1s .- s Yim, = Tim, (my # 0), these occurrences all corre-
spond to a single call teeq : T4, ..., 2m : T,n) — N,SO0Q
single callto(xy : Th, ..., 2y : T,) — FP, butwe create

a copy of FP for each occurrence. After the transforma-
tion, F'P contains no choice of random numbers, so we can
evaluate it several times without changing the result. When
my = 0, evaluations ofV at several occurrences can cor-
respond to different calls tey : 71, ..., zm : Tn) — N,

so the transformation is not necessary.

. Next, we create fresh variables corresponding to vari-
ables of the right-hand side of the equivalence. For
eachM € M, let extract(R, BL(M)) = (yi;

Tlll,M7 . "yim’l,M : Tl/m’l,IVI)v cee (ylll,M : Tlll,M’ EEE
yfm;,M : Tl’,,n;,M% (im0 Tonts e Tt - T o) —
FPyr with [= nNewSeq,,, m = nlnput,, and we de-
fine nNew’, ,, = m/. We create fresh variables, ,, =
varlmR(yj;, s, M) for eachj < nNewSeqy,, k£ <
nNew’ ,, andM e M, such that ifM and M’ share the
first!’ sequences of random variables, thgn,, = 2,
for j < 1" andk < nNew, ;. All variablesz/, ,, are oth-
erwise pairwise distinct.

We also create a fresh variablerImR (x; a7, M) for each
j < nlnput,, and eachM € M, and a fresh variable
varlmR(z, M) for each variable defined bylet or new in
FP,; and each\f € M.

. We update theefined conditions offinds, in order to pre-
serve Invariant 2. More precisely, ifd&fined condition of
afind containsz;i a[Mi, ..., M| for someM, we add
defined (2], 5 [Mi, ..., My]) for all k' < nNew! , to
this condition. (So that accesseSzgqc,’M[Ml, ey My
created when transforming terd/ satisfy Invariant 2,
since accesses 191 »/[M1,. .., My] occur inM and sat-
isfy Invariant 2.)

. We update restrictions corresponding to restrictions of the
left-hand side of the equivalence: we either remove them
or replace them with restrictions corresponding to the
right-hand side of the equivalence. More precisely, when
x € S occurs at the root of a term¥/;, in a condition

30

defined(My, ..., M;), we replace its definitiomew z :
T;Qwithlet z : T = cst in (Q for some constantst; when

it does not occur inlefined tests, we remove its definition.
If 2 = 2j1,0 for someM, we addnew z7; ,, : 17, ,, for
eachk < nNew’; ,, wherenew z : T was.

5. Finally, we transform the term®& < M corresponding to

functions of the left-hand side of the equivalence into their
corresponding functional process in the right-hand side.
For each term\M € M, let P,y = Cps[M] be the smallest
process containing/. (Note thatd never occurs in an in-
put, SoP,, is an output process.) Lét= nNewSeq,,. We

: Tl,k,J\l;)kSIINeW{)MPJ/\/I if
nNew; p; = 0 andnNew; ,, > 0, and with P}, otherwise,
where '

— Py, = (let varImR(zy pr, M)
in)kSnInputMtransfd,mcM (FP]w)
— ¢ is defined as follows:

P Ty = OMTrM

do(xjmlins ..., i) = varlmR(zj ar, M)[iY, . . ., i}]
do(z[i1, ..., i) = varlmR(z, M)[i, ..., i}]
bo (Wi arlins - - -5 15]) =

varlmR(yj s, M)[im index; (M)]

whereiy,...,i; are the current replication indices at the
definition of z; »s in R, i}, ...,4], are the current replica-
tion indices atM in Qo, andz is a variable defined blet
ornew in F'P ;.

— A function ¢ from array accesses to array accesses is ex-
tended to terms as a substitution,dyf (M, ..., M,,)) =

f(¢(M1)7 R (b(Mm))

—transf, ¢, (FP) is defined recursively as follows:

transfy, ¢, (M') = Cp[p(M)]

transfy ¢, (new z : T; FP') =

new varlmR(z, M) : T; transf, c,, (FP')
transfy, o), (let 2 : T'= M’ in FP') =

let varlmR(z, M) : T = ¢(M’) in transf s ¢,, (FP')

transty ., (find(@ FB;) else FP') =
]:

find(@fn transfy o, (FB,)) else transfy, ¢, (FP")
]:

and forfind branchesF'B, transf, ¢,, (FB) is defined as
follows:

transf, o, (suchthat M’ then FP') =

suchthat ¢(M’) then transf, c,, (FP')

transfy o,, (@ < 7 suchthat

defined(2x [Mpy1, - - ., My J1<k<i) A My then FP') =

EDM/EM/ u’ < n’ suchthat
defined(¢'(2x[Mpa, - - -, Mryy 1<h<t) A
im index;, (M"){u’/i'} = im index;, (M) A
@' (M) then transfy o, (FP')

wherel # 0; ji; is the length of the prefix of the current variable for each variable i’; n' is the sequence of

replication indices that occurs i1, .., My, (by bounds of replications above the definition of ;. a//;
Hypothesis H7); M’ is the set of M’ € M such that ¢' is an extension ofp with ¢'(z[My1,..., My]) =
varlmR(zx, M') is defined fork < [and M' and M varlmR (2, M) [im (pjo—1(M') o ... o p;(M")){u/ /7'}]

share the firstj; sequences of random variabINeE; is

the sequence of current replication indices\at, v’ is a

sequence formed with a fresh variable for each variable

in i’; n’ is the sequence of bounds of replications above

M’; ¢' is an extension o with ¢’ (z [M1, ..., My]) =]
Npe N S When several term3/’ € M share the firsj, sequences

varlmR (2x, M')[im index; (M) {u'/i'}] if 25 = yip ap f rand ables. th h |

for some K, and ¢ (z[M My]) A of random variables, they generate the samso only one

T RLTHRLy - o SOKL find branch needs to be added for all of them, which can

varlmR (z, M')[w'] if 2z is defined bylet or by a reduce considerably the numberfofd branches to add.
function input. Optimizations for the definition of

transf s ¢, (FB) are presented in Appendix D.2.1.

|f ZL = y_{jk,]\'f/'

The compositiorp;,_1(M’) o ... o p;(M’) computes the
indices ofz7,, 5, for any &’ from the indices ok} ;.
for any%”.

An optimization similar to the first one above also applies
to this case, wheim (p;,—1(M')o...op;, (M')) is a prefix
The two essential parts of the transformation are the last two of ;.

ones, numbered 4 and 5. In step 4, we add the restrictions to

create random variab_les that correspond to random variableg, 6f » Guiding the Application of Equivalences

R. We create the varlablegk’M at the place where;; »s was _ _ _

created in the initial game (We could have chosep), for We introduce a small extension to the equivalen@@s,.. .,
anyk’.), or when there is ne;; 57, we havej = nNewSeq,; Gm) ~ (GY,...,G.,) described in Section 3.2. These equiva-
and we create’;, ,, just before evaluating/. In step 5, we lences becomeGy modes, . .., Gy mode,) ~ (G, ..., G1),
transform the term\/ itself into the corresponding functionawheremode; is either empty ofall]. The modgall] is an indi-
process ofk, FP,;. The only delicate part for evaluatirigP,, cation for the prover, to guide the application of the equivalence
is the case ofind: instead of looking up arrays dt, we look up Without changing its semantics. Whemde; = [all], M must
the corresponding arrays 6f, given by the mapping. contain all occurrences in the initial gargeof the root function
symbols of termsV/ insideG;. Whenmode; is empty, at least

D2 Extensions one variable defined byew in G; must correspond to a variable

inS.
D.2.1 Optimizations for transf, c,, (FB) The following hypotheses guarantee the good usage of modes:
We can apply two optimizations to the definition oH8. At most onemode; can be empty. (Otherwise, when
transf s ¢, (FB): several sets of random variables can be chosen for each
~ G;, there are many possible combinations for applying the
e When im indele (M/) is a prefiX of ¢, transformation')

im index;, (M’){u’/i'} is a prefix ofu’, so the equality
im index;, (M'){w'/i'} = im index; (M) defines the '~
value of a prefix ofu/. We simply substitute the fixed
elements of.’ with their value, and remove them from the
sequence of variables to be looked upfiny.

If G; is of the form!’="(zy : T1,..., 2, : ;) — FP with-
out any restriction, themode; = [all]. (A restriction is
needed in the definition of empty mode.)

D.2.3 Relaxing Hypothesis H6
e When all variables;, arey;x r for somej, &/, and M,

with max j = jo, we use the following definition instead: Hypothesis H6 requires that for all restrictiomsw y : T that

occur above a ternV in the left-hand side of an equivalengg,
transfy, ¢, (i < 7 suchthat occurs inV. We can relax this hypothesis, by allowing that some
defined(ze Mo M M, then FP') — random variableg do not occur le, provided thgt the miss-
efined(zx[M1, - My Ji<ist) A My then) ing variables can be determined using HypothesiH when

@M/E ,J’ < n' suchthat some termV/ shares some variabign thel’-th sequence of ran-
defined(¢ (21, (M1, - - -, Mgy D 1<rci)A dom variables with some other terid’, we know that it must
. , i~ also share with\/’ all random variables in sequences above and
im (pjo—1(M")o...0p; (M){w/i'} = including thel’-th sequence; so, knowing the random variables
im index;, (M) A ¢/(M;) then transfy ¢, (FP') associated td/’, we can determine some of those associated

to M. The transformation simply fails when the algorithm de-
scribed above cannot fully determine the random variables asso-
ciated to some termy/.

where j; is the length of the prefix of the current repli
cation indices that occurs idMy1,..., My, (by Hy-
pothesis H7); M’ is the set of M’ € M such that
varlmR(z,, M") is defined fork < [and M’ and M
share thej; first sequences of random variable; is
the sequence of current replication indices at the defirlypothesis H2 requires that no termV transformed by
tion of z;,, a; v is a sequence formed with a freslthe equivalence occurs in the condition part of fiad

D.2.4 Relaxing Hypothesis K2

31

(defined(M, ..., M;) A M). We can relax this hypothesis bychoice bynew r : T on a channel on whicl@ does not re-
allowing N to occur inM (but not in thedefined test), provided ceive after this output. The conditiorsheruses(r|...]) are
the variables: bound by thigfind do not occur in the following correct in@ when, for all setsS, for all contextsC' that ig-
terms in the transformed expression/éf nore the message containingy,...,ig] for (iy,...,ix) €
S, we haveC[Q] ~¥ C[Q'] where Q' is obtained from

e N’ inprocesses of the forfat z : T'= N’ in .. ;

e N, andN; ianrocesses of the foriind (P;_; u;1[i] <
Nj1s -5 Wim;[i] < mjm; suchthat defined(N7,,...,

Nj) ANjthen...)else....

(If the variablesu bound byfind occurred in such terms, thef
transformation would move them outside the scope of their dS?
inition.)

Q@ by replacing conditionsotheruses(r[Mj, ..
m ~ (M7, ..
T[il, ..
find with conditionotheruses(r[Mj, ..
when(M{,...,M]) e S.)

Conditionsotheruses are left unchanged by all game trans-
rmations except simplification. Simplification looks for uses
“r not in terms of the form[M7, ..
otheruses(r[Mj, ..

., Mj]) with
(Informally, C[Q] does not use
ix) € S. In that case, the branches of
., M}]) can be removed

LML) ¢ S,
i) for (iq, ...,

., M}] under a condition
., M}]). If no such usage of is found, the

branches ofind that contain conditionstheruses(r|. . .]) are re-

D.2.5 Eliminating Useless Branches dind

A random oraclé: can be modeled in our prover using the fol-
lowing equivalence:

1Sn (g 2 bitstring) — h(z) [all]

~o
1SP (g 2 bitstring) —
find u < n suchthat defined(x[u], r[u]) A

x = x[u] then r[u] else new r : T;r

This allows the prover to replace callsiowith a lookup in the
arguments passed to other callsitolf the same argument was
already given toh, we return the same result as in the previ-
ous call with the same argument. Otherwise, we return a fresh
random number.

When there are several calls ko each call is replaced with
a lookup in all arguments of all calls to. However, in some
cases, some of these lookups are useless. For instaricés if
used in a check(z) = y, whenh(z) is a fresh random number,
the check always fails up to negligible probability (wHEns a
large type), so the random number will not be used. We can then
ignore the case in which(x) returns a fresh random number,
and avoid the lookup in.

To implement this reasoning in the prover, we add an optional
conditionotheruses(Mjy, . . ., M,;,) to find, where each\/; is of
the formr[M7,..., M]] andr is defined only by restrictions.
The random oracle is then modeled as follows:

VSn (g2 bitstring) — h(z) [all]

~o

VSP (g 2 bitstring) —

find u < n suchthat defined(x[u], r[u]) A
otheruses(r[u]) A z = x[u] then r{u]

elsenewr : T;r

The additional conditiorotheruses(r[u]) allows the prover to
remove the considerethd branch when is used only in terms
r[u] underotheruses(r[u]).

More generally, let@Q be a process that uses in

moved.
A similar situation arises for block ciphers modeled as super-
pseudo-random permutations, as formalized below.

D.3 Modeling other Primitives

This appendix gives the definition of a number of cryptographic
primitives in our prover.

D.3.1 Super-Pseudo-Random Permutations (SPRP)

T, large, fixed lengtht large, fixed length
e,d: T xTy,—T
kgen : T, — Ty,

Ym : T,Vr : T,,d(e(m, kgen(r)), kgen(r)) = m
VYm : T,Vr : T,, e(d(m, kgen(r)), kgen(r)) = m

-//< "
" =" "newr: Tp; (

!i§7’(x : T) — e(x,kgen(r)),
ji'<n’ (m:T) — d(m,kgen(r)))

~
~

-//< "
=" newr: T (

1SR (g T) —
find u < n suchthat defined(z[u], r'[u]) A
otheruses(r’[u]) A x = z[u] then 7'[u]
@ u < n' suchthat defined(r"[u], m[u]) A
otheruses(r”[u]) A x = " [u] then m[u]
else new r’ : T 1/,
S (T —
find u < n suchthat defined(r’[u], z[u]) A
otheruses(7'[u]) A m = r'[u] then x[u]
@ u < n' suchthat defined(m[u], 7" [u]) A
otheruses(r” [u]) A m = m[u] then 7" [u]

else new r' : T;7")

two ways: in termsr[Mj,...,M]] under a condition This equivalence expresses that the encryption and decryp-
otheruses(r[M7, ..., M]]), and for sending it just after itstion oracles can be replaced with inverse random permutations.

32

These random permutations are built as follows for the encrygyto find such a.’ and returrtrue when they succeed. Lines 8-
tion oracle: when we receive an argumenalready passed to9 of the right-hand side returrislse when no such:’ is found
the encryption oracle, we return the previous result; when wdines 5-7, buty = pkgen’ (r[u]) for someu. The last line han-
receive the result of a previous call to the decryption oracle, dies the case when the k@yis notpkgen’ (r[u]). In this case,
return the argument of the decryption oracle in that call; otive check the signature as before. (Usirand notc’ in the last
erwise, we return a fresh random number. (Collisions betwdem of the transformation allows to reapply this transformation
random numbers iff;. have negligible probability, so we ob-with another value of.)

tain permutations except in cases of negligible probability.) TheWe can model deterministic signatures in a similar way, by

construction is similar for the decryption oracle. removing the third argument af
D.3.2 Public-Key Cryptography IND-CCAZ2 Public-Key Encryption
UF-CMA Signature T. large, fixed lengthT’ fixed length

enc,enc’ : T X Ty x T — T,
dec,dec’ : T, x Ty, — T,
skgen, skgen’ : T}, — Ty,

T, large, fixed lengthl’ fixed length
8,8 1T X Ty x T\ — Ty

=
c,c T X Ty x Ty — bool pkgen, pkgen’ : Ty — Ty,

i, : T — T, (poly-injective)
pkgen, pkgen’ : T, — Ty 7y T

skgen, skgen’ : T, — Ty,

Vm : T,¥r : TN : TV,
c(m, pkgen(r), s(m, skgen(r), 7)) = true
Vm : T,Nr : T,,Nr" : T/,

d (m, pkgen’(r), s'(m, skgen'(r), ")) = true

Vm : T,Yr : T,,5r" : TV,

dec(enc(m, pkgen(r),r’), skgen(r)) = i (m)
Vm : T,¥r : TN : T/,

dec’(enc’(m, pkgen'(r), "), skgen'(r)) = i, (m)
newz : Trynewy: Ty f(z) = f(y) mz =y newz:Tnewy: T, f(z)=flyy mz=y

!/ !
for f € {pkgen, skgen, pkgen’, skgen'} for f € {pkgen, pkgen’, skgen, skgen'}

<Pnew r : T); (<P new 1 : T; (
() = pheen(r), () — phgen(r),
1< new ¢« TV (z: T) — s(x, skgen(r), 1)), 1< (1 s T,) — dec(m, skgen(r)),
!i”gn”(m 2Ty s Tok, 512 Ts) — c(m,y, s1) [all] 1< new 1 Tl (x: T,y : Tpr) — enc(z,y,r’) [all]
1. I'="newr: Ty (!;”newr LT (
2 0~ pkeen'(r), 1"="() — pkgen'(r),
3. 1< new 7/ - T;; (z:T)— s/(:v,skgen/(r), 7‘/)), !ilgn,(m . T,) — find u < 0" suchthat
4. !i//gn,/(m oy Tk, st Ts) — defined(m’[u], x[u], y[u]) A y[u] = pkgen'(r)
5. find u < n,u’ < n' suchthat defined(r[u], z[u, u']) Am =m'[u] then i, (z[u]) else dec’ (m, skgen' (1)),
6. Ay = pkgen' (r[u]) Am = x[u,u] !i//g"”(m STy Ty) —
7. _ A c'(m,y, i) then. frue else find ' < n suchthat defined(r[u’]) A y = pkgen’(r[u'])
8. find u < n suchthat defined(r[u]) then new 7/ : T'-
9. Ay = pkgen’(r[u]) then false else let 1 - T:: enc'(Zr, pkgen' (r[w]), ') in m’
10. e(m,y, si)

1 / "
else new r" : T;; enc(z, y, r")

The first three lines of each side of the equivalence expregien no decryption is present, this transformation reduces to
that the generation of public keys and the computation of ey cpa public key encryption, described below.
signature are left unchanged in the transformation. The verifi- ’

cation of a signature(m, y, si) is replaced with a lookup in the
previously computed signatures: if the signature is checked
ing one of the keypkgen’ (r[u]) (thatis, ify = pkgen’ (r[u])),
then it can be valid only when it has been computed by the sig- ;)
nature oracle’ (z, skgen’(r[u]), '), that is, whenn = z[u, '] enc,enc’ : "X Ty X 1), — T,
for someu’. Lines 5-7 of the right-hand side of the equivalence dec: T, x Ts — T1

|IND-CPA Public-Key Encryption

T, large, fixed lengthl fixed length

33

skgen : T, — Ty I'="new k : T; (x : T) — xor(z, k)

pkgen, pkgen’ : T, — Tok ~o
i, : T — T, (poly-injective) l<tnew k : T;(x: T) — k
ZT T
This modeling ofzor could be improved by taking into account
Vm : T,¥r : T,,¥r" : T/, more equations, in particular associativity.
dec(enc(m, pkgen(r),r’),skgen(r)) =iy (m)
newz : Tr;newy : T f(x) = ~Nr =
Y f(z)=f(y) Y E PrOOfS

for f € {pkgen, skgen, skgen’}
E.1 Proof of Proposition 1

l<"new 7 : T; () — pkgen(r),

< new v’ s T (z: Ty Tor) — enc(z,y,r’) [all] The proof thatQ; satisfies Invariants 1, 2, and 3 is in general
easy, and the proof af)y ~§ Q) relies on a correspondence
between traces of’ [Qo] and traces of”[Qf], with the same
new 1 : Tp; () — pkgen'(r), probability and such that a configuration of the traceC6),]
ji’ <n’ (x:T,y: Tpi) — executeg(a) immediately if and only if the corresponding con-
: . ’ et 4 . . . _ .
figuration of the corresponding trace@fQ;,] executeg(a) im-
mediately. This correspondence is obtained by replacing some
then new 1 : T); enc’(Zr, pkgen'(r[u]), ') internal actions of), with corresponding internal actions @f,.
else new v’ : T/ enc(x,y, ") We sketch the proof only for the cases $#renamgx) and
Simplify, and leave the case BemoveAssigiiz) to the reader.

~
~

1i<n

find u < n suchthat defined(r[u]) A y = pkegen'(r[u])

D.3.3 Hash Functions
Proof sketch of Proposition 1 for SArenaméz) The pro-

Collision Resistant Hash Function cess), satisfies Invariant 1 because definitions of variables du-
T, fixed length plicated bySArenameall occur in a different branch offénd.
T For Invariant 2, each variable acces§M,. .., M;] in Q;
h: Ty x bitstring — T comes from a variable acces§\1, ..., M;] in Qy. SinceQq
new k : Ty;Vx : bitstring, Vy : bitstring, satisfies Invariant 2, either this access is under its definition, in
h(k,z) = h(k,y) ~z =y which caseSArenamex) has replaced this definition afwith
a definition ofz;, sox;[M;, ..., M;] is under its definition in

Q) or this access is in defined test, in which case it is also in

Hash Function in the Random Oracle Model X - o ; -
a defined test inQy; or this access is in a branch ffid with

T fixed length a conditiondefined(Ny, ..., Ny/) such thate[My, ..., M;] is a
h: bitstring — T subterm ofV; for somej < I/, in which case:[M, ..., M;| has
B been substituted with;[M;, . .., M;] in this branch ofind, so
I'="(x : bitstring) — h(z) [all] a;[My, ..., M) is under a suitablgefined condition. Therefore

~ Q| satisfies Invariant 2.

For Invariant 3, the type environmeét for @, is obtained

1i<n
. from the type environmerd for Qq, by settingf’(z1) = ... =

x @ bitstring) —

find u < n suchthat defined(z[u], 7{u]) A £'(x,) = £(x) and€’(x) is not defined. (Indeed, all definitions
otheruses(r{u]) A = z[u] then r|u] of z in Qo have the same typ®(x), which is therefore the type
else new r: T; 7 of the definitions ofr;,j < m in Q{.) The proof of’ F @,

is obtained from the proof of + Qq, by replacing requests
Note that the game must include, in parallel with the protocolto £ (x) with requests t&(z;) for somej < m, and duplicat-
verify, the proces§=<"c(x : bitstring); ¢(h(x)). Otherwise, the ing parts of the proof of + @, that correspond to duplicated
prover would incorrectly assume that the adversary cannot cdmanches ofind.
pute the hash function. This particularity is related to the factFinally, let us prove that), ~} Q). We denote by
that a random oracle is unimplementable: otherwise, the adv@trename(z, Q) the process obtained by applyin§Are-
sary could implement it without being explicitly given access ttame(x) to). Let j be a partial function fromi-tuples of

it. indicesay, ..., a; to subscriptsl, ..., m of variablez. Infor-
mally, j is such thatz[a4, . .., ;] in a trace ofQ, corresponds to
D.3.4 Xor Tj(ay,...a)l01, - - -, ar] in the corresponding trace af;,. We de-

fine a functionSArename; that relates configurations in a trace
of Qo to configurations in a trace of the renamed prod@§s
Below, we will show that this function maps traces @f to
Va : T,y : T, xor(x,xor(z,y)) = y. traces of@Q), of the same probability, which will show the de-
Ve :T,y:T,z:T,(xor(x,z) =xor(y, z)) = (x =y). sired equivalenc€, ~ Q.

xor: T x T — T (commutative

34

e We defineSArename; for terms so thabArename;(z, E, has been derived by (Var)E,M; | a; for all & <

M) replaces occurrences afin M with the appropriate I and « = FE(x[a1,...,q]). By induction hypothesis,
x;. More precisely, SArename;(z, E), SArename;(z, E, M) | ai forall k <.
Moreover,
SArename;(z, E,x[M, ..., M) =
Tj(ay,...,a) [SArename;(x, E, My),. . ., SArename;(z, E,x[M;, ..., M) =
SArename;(z, E, M;)) Tj(ay,....a)) [SATename;(x, £, My),.. .,
whenE, My, |} a for k <l and SArename;(x, E, M;)]
. D E);
x[alv 7al] € Om()a and
SArename;(z, E,y[M,..., M) =
y[SArename;(x, E, M), ..., SArename;(x, E, M;)] SArename;(z, E)(Zj(a,,...apla1, ... @]) =
wheny # x; E(zlay,...,a]) =a
SArename;(z, E, f(Mi, ..., My)) = soSArename;(x, E), SArename(z, E, M) | a.
f(SArename;(x, E, M), ..., SArename;(z, E, M))); Next, we can show by cases on the reductionQ,C ~
SArename;(z, E, 1) =i E', Q' C'that,ifE,Q,C ~ E', Q' ,C’, then

e We define SArename; for (input and output) pro- SArename;(z,(E,Q,C)) ~ SArename;(x, (E', Q',C")).
cesses as follows:SArename;(x, E, Pr) first computes
SArename(x, Py) = P,. More precisely, it renames eacfience
definition gf'x to the name used when renaming the whole SArename (z, reduce(E, Q,C)) =
proces); it replaces variable accessesitwith variable J
accesses to; when the definition of that caused this re- reduce(SArename;(z, (E, Q,C)))
placement inQy also occurs inPy; it duplicates branches
of find as SArename(x, Qo), renaming variable accesses Let C' be any evaluation context acceptable 195, Q.
to = into variable accesses tq when thefind that caused V- We show that for each tradeitConfig(C[Qo]) — ...
this replacement i), also occurs inP;. (When a variable —n Em, Pn; Qm,Cr, there exists a tracmitConfig(C[Qp])
access ta is under both a definition of andfind, orun- —4 --- —n Ep, P, Q5. Co with the same proba-
der several nestefihds that guarantee that it is defined, #ility, and a function j,,, such that E},, P, Q;,.C. =
is important to follow exactly the renaming procedure th&drename;,, (2, (Em, Pm, Qm,Cn)). The proof proceeds by
happened inQo. Formally, this can be done by annotathduction on the lengthn of the trace. For the induction step,
ing each construct in processes with a distinct occurreré@ distinguish cases depending on the last reduction step of the
symbol and by reducing annotated processes. When H@a£e.
performSArename(x, Qo), we can then remember the oc-

currence symbols of the constructs that cause each variabf® 'Nitial casem = 01 fe(C[Qo]) = fc(C[Qy)) since the
renaming.) Finally,SArename; replaces each term/ in transformationrSArename does not modify channels. Let

Py with SArename; (z, E, M). jo be the function defined nowhere.. We haedQ] =
SArename;, (z,0,C[Qo]). Indeed, sincer ¢ V, x ¢

e We also defineSArename; for environments: E/ = var(C), so

SArename;(x, E) if and only if E'(z;q, . a)la1,- ..,

a;]) = E(zlay,...,q]) whenzlay,...,a] € Dom(E), SArename, (x,0, C[Qo]) = SArename(x, C[Qo]) =

E'(ylar,...,a]) = E(ylay,...,a]) wheny # z and C[SArename(x, Qo) = C[Qy)

ylai,...,a;] € Dom(E), and E'(y[aq,...,q]) is unde-

fined in all other cases. Therefore,
o We extendSArename; to semantic configurations: SArename;, (z, (0, {C[Qo]}, fc(C[Qo]))) =

SArename;(z, (E, P, Q,C)) = (0,{C[Qp]}, fe(C[Qp)))

(SArename;(z, E), SArename;(z, E, P),
{SArename;(z, E,(Q1) | Q1 € Q},C)
We also defin&§Arename;(z, (E, Q,C)) in the same way.

We first show that ifE/, M |} a, then

Hence we have

SArename, (xz, reduce(d, {C[Qol}, fc(C[Qo]))) =
reduce(, {C[Qo]}, fc(C[QG]))

Thus,
SArename;(x, E), SArename;(x, E, M) | a
The proof proceeds by induction of/. The only inter- SArén?mejO(x’lmtclonﬁg(c[Qo])) -
esting case isM = «[M,...,M;]. SinceE,M | a initConfig(C[Q))

35

e The last step of the trace is a definition ©ff;, ..., a;]: of runtimeq(n)}). The probabilitypmax(n) is negligible, since
By induction hypothesis, we have a trace of length- 1, itis the maximum of a constant number of negligible functions.
with an associated functiof},,—1. SinceC[Qy] satisfies We shall prove in the following that the probability that a de-
Invariant 1, the configuratio®,, 1, P,,—1, Qm—1,Cm—1 Sired fact does not hold is at mag{(n)pmax(n), whereq' is a

satisfies Invariant 4, safai,...,a;] ¢ Dom(E,,_1). polynomial, soitis negligible.
Since P;,_, = SArename;, ,(z,En_1,Pn_1), the The proof follows the structure of the simplification algo-
first instruction of P),_, is a definition ofzy[as,...,a;] rithm: we prove the correctness of each component of the al-

for some k (using the property “if E,M | a, then gorithm separately.

SArename;(w, E), SArename;(z, B, M) { a” sShown 0 necs of the collection of true facts. We consider a

above.tothprove th?t th;lndlcesdmf”rje/sp. ml\CN a(rje the slightly modified semantics for our calculus, in which each pro-
gam_e |‘n € execution m];1 and oh ma}])'t N Et"?e cess is accompanied with a substitution that defines the values
gm = gm-1(ay, ..., a) — k], and show 1at we obtain ayt the replication indices in that process. For example, the rule
suitable trace of length with this functiony,,.

(Repl) becomes in this semantics:

e The last step of the trace isfamd whosedefined condi- i<n
E 1°= WQ,C ~~
tion refers tox: By induction hypothesis, we have a trace Al Q)} v Q,
of lengthm — 1, with an associated functiof),,_;. If a B {(olia],Q) la e L, L(n)]}wQ.C

branchFB. of thefi”d in Py succeeds for cert_ain val'uethen evaluating a term/ in a process with substitutid, Q)
of the variables defined biynd, exactly one of its copies g, (o, P), we now useZ, o, M | a instead ofEZ, M | a, with

succeeds itP;, _,, the copy whoseefined condition refers e ryle 7, 5, | o instead of (Cst), and the other rules modi-
0, (ay,...aploa, .-,] when thedefined condition of fieq accordingly.
the branch#'B in P, refers tozfay, ..., a]. Ifabranch the judgments, o - F means that a facF holds in en-

of thefind fails in P, 1, all its copies fail inP;, ;. There- \;ironment E and substitutions. It is defined byE,oc - M
fore, the numbetS| of successful choices of théind is i gng only if E,0,M | true; E,o - defined(M) if and

the same inP,,_, and in P/, _,. Hence, the probability only if E,0,M | a for somea; E,o b elsefind((uy <

that each successful branch is taken is the same. When . = nm), (My, ..., M), M) if and only if for
P,,_1 executes a successful branch, we build the corggy 9317 e In(n;)] o xﬁ; c [1,1,(n,)], we have
sponding trace of?/, _, by executing the successful COPYz, o', (defined(Mi, ..., M;) A M) |} false whereo’ = ofu; —

of this branch. Whei®,,,_; executes thelse branch,P/, _,

also executes these branch. So we obtain a suitable trac
of lengthm with associated functios,,, = j,,—1 (except » o)
when thefind also defines:[d}, ..., a]], in which case the --- —v E, (0, P), Q,C implies E,o - Fp. Our goal is to

previous item of the proof must also be applied). show that7» is indeed correct for alP. _
For occurrences of process®s @ in C' and in the process

e All other cases are easy: they execute in the same wayiarz(); 0 used in the initial configuration, we |fip = Fo =

Z1,...,Um — Z,]. We extend this definition to sets of facts
ﬁaturally. We say thafp is correct for all P whenC, 2,

Pm—l and inP;n—l']:'gut _ fElseFind _]:'ElseFind _ (Z)
We show SO immediately after callingcollectFacts, if
We also show the converse property, that for each trace ,
property %2 (01,P), 01,60 By E,(0,P),0,C then E,0 + Fp.

initConfig(C[Q4]) — .. —y E),, P, 9, Cm, there exists
a traCEinitCOHﬁg(C[Qo]) —n .- T7n Ep, Py, Qm, Cry With
the same probability and

If the reduced process is i, the result is obvious since
Fp = 0. Otherwise, we proceed by cases on the reduction

Ei,(01,P)),Q1,Ci &, E,(0,P),Q,C. For example, in the

E,. P Q. Cn = SArename;, (z,(Enm, Pm, Qm,Cm)). case (Let)Ey,0,M | a,a € I,(T), andEy, (o,let z[i] : T =

. 1 93
The proof is similar to the proof above. f]W in P),Q.C L E~._ El.mm] - a].’(a’ P)’Q’g' we
P aveFp = {defined(x[i]), xz[i{] = M}. SinceE,o,x[i] | qa,

If E/,, P, Q. ,Cn = SArename;, (x, (Enm, Prmy Qm,Cm)), . ~
then for all channels and bitstringsa, Evn, P, O, Con €X6- V€ ha"eEﬂ ~ defined(z[z]). We also have, o, M | a, SO
cutesz(a) immediately if and only itE’, P! | Q' C,, executes £+ " @li] = M, soE, o I Fp. We proceed in a similar way
%(a) immediately. SOPr[C[Q] ~, c(a)] = Pr[C[Q}] ~, [OFtheothercases. _ _
(a)]. ThereforeQy ~Y Q). 0 We show that, immediately after c/allmg)llectFacts, Fpis

correct for allP, that is, ifCy %, ... 25, E, (0, P), Q,C then
Proof sketch of Proposition 1 for Simplify ~ The proof of In- £ 5 + Fp. For the initial configuration, the property is obvious
variants 1, 2, and 3 is relatively easy, so we focus on the prefice 7/ = (. For the other configurations, we conclude by
of Qo =V Q. (S0).

Let C' be any evaluation context acceptable @, Q5. V. We show the invarianBl F¢(q,) = 0 and if Q is an input
Letg(n) be the maximum runtime af'[Qo], whereg is a poly- process and is the input or output process just abagethen
nomial. We denote by, the initial configuration ofC'(Qo], F, C Fp. This property is obvious aftamllectFacts since
initConfig(C[Qo)). Fo = 0, and it is preserved by all updates, (provided the

We definepmax(n) = max({;—7; | T'isalargetyp¢ U consequences défined facts are not added iy before they are
{p(n) associated to user-defined rewrite rules, for an adversadged inP, which we can easily satisfy).

36

We proveS2 if E,9,C ~ E’,Q',C' and for all(0,Q) € wheres’ = {M;/i1,..., My /im}, Wwhendefined(M) € Fp
Q, E,o - Fg, then for all (0,Q) € Q', E',o0 - Fo. andz[M,...,M,] is a subterm ofM/, andF, = Fp oth-
The proof is easy by cases on the derivation®fQ,C ~» erwise, thenF} is also correct for allP. We assume that
E' Q' (C', using (Sét?c. Th”erefore, we ha®?’" if EIHQ,’fC/ :" Co &y ... it, E,(o,P),Q,C and show thatt,o + Fp.
reduce(E, Q,C) andforall(s,Q) € Q, E, 0 - Fq, thenfora Since Fp is correct for allP, E,0c + Fp. SinceE,o

(0.Q) € &\ B0k Fq. defined(M), E, o, M, | a; for all j < m andz|ay, ...,] €
.Next, we prove that itFp is correct for allP, then 7, ob- Dom(FE). Therefore, some definition afa, . .., a,,] has been
tained by executed in the considered trace. Next, we show that, for some
Fp = Fp U Fp if Pisimmediately undeP’ (z[i1, ..., im], P') € D, we haveE,o, = Fp/; if P is un-
, der P’ then E, 0y + FE¥ N Fp; and if P is not underP’
is correct for all P. We show that, ifCo % ... ¢ thenE, o, FESt, whereo (i1) = a1, ...,01(im) = am.

E, (0,P),Q,C then for all (o, P') € {(0,P)} W Q, E,0' I The desired result follows. LeEy, (o1, P1), Q1,C p—1>t1

The proof proceeds by induction on the length of the tracg (01, P»), Qs,C» be the reduction that definegar . . . ,]
For the intal configurationFciq,) = ® by (S1), s00,0 & i\"the considered trace. We have,o, - Fp, since Fp
Folqo), andd, 0 = Far,, so the property follows immediatelyis correct for all P. So E,0, - Fp, since E is an exten-
from (S2"). For the mductlve step, if the last reductlon of thgg of E, so all facts that hold inF, also hold inE. We
trace is (Output), we havE, (o1, P1),{(c,Q)} W Q1,Cq —>t/ have (z[i1,...,im], P2) € D. If P is not underP,, the trace
E,(0,P),Q,C with P = c[My,..., M[(Ny,.... No)Qu B, (51, Py),Q0,C0 P, ... Zop E,(0,P),Q,C must ex-
Q = cMy,..., MJ(z:li] : Th,....ali] = T).P. B = ecute an output, so by (S3Fs, 03 + FE* where the con-
Ei[zi[oi] — ..., aklod] — L], @ = Q1 W Qs, and figuration in which the first output aftelEy, (o1, P2), Qz,Ca is
Ey, Q5,C = reduce(Ey, {(01, 1)}, C1). f PisinC, Fp =0, executed ik, (03, P3), Q3,Cs, SOE, 01 - FE*. (We have
SO E,o - Fp. Otherwise,E, o + Fg, by induction hypoth- 5, — 4, since the substitution is changed only when ex-
esis. Moreovells,o - Fp sinceFp is correct for allP, so ecuting a communication.) IP is underP,, two cases can
E,o = Fp sinceFp = Fo U Fp C F, U Fp. By induc-
tion hypothesis, for allo’, Q') € Qi, E1,0" = F(,,. Also by (o
induction hypothesisE, oy = Fp , S0F, 00 & Fo C© Fp, 77 ,
by (S1). By (S2), forallo’, Q') € Qz, E1, 0’ F F,,,. Soforall asabove, 0F,, (01, P»), Q2,C2 2y, ... 254 E, (0, P), Q,C
(0',Q") € Q= Q1 W Qy, E1,0' = F(,,, SOE, 0’ = Fp,, since executes no output, so = o1. (The substitutionr is changed
E'is an extension of; . If the last reduction is not (Output), it isonly when executing a communication.) Sir€g is correct for
of the formFEy, (o, P), Q,C 2, E, (0,P),Q,CwhereEisan all P, E,o = Fp, henceE,o1 = Fp. Then, in both cases,
extension off;. By induction hypothesis, for alb’, Q') € Q, E,o1F FF‘” NFp.
E\, o'+ F,,soforall(c',Q") € Q, E,o',F F/,,. SinceFp
is correctforallP, £F,oc + FpandE;,c - Fp/,SOE, 0 - Fpr, » o
SOE, 0 Fl = Fp U Fpr. Next, we shQ\/\B4: if Co =¢ ... —¢ E,(0,P),Q,C then

’ E,o = FEseFind - The proof proceeds by induction on the

H p P
E/We/ show /SC3, hlf i,(), th N _’td _“'b Iength of the trace. For the initial configuration, the result is ob-
, (o, P"), &', C" where P" is an output and no process beg;, sinceFBeFind — (). For the inductive step, if the reduced

fore Pl in this trace .'S an OUtpUt’. thel’, o - fF_Ut' Sinc process is nC the result is obvious sincgEseFind = (). Oth-
NO Process beforé” in Fh's trace is an output, this trace doe rwise, we proceed by cases on the Iast reduction of the trace.
not_contatn the reduction tule (Output). The proof.procee the (Output) case, the result is obvious sigggseFind — (.
by |nQUct|ofr]Fu?n]_3. lfHP I;S an]gmrﬁjt'@theoﬁsu't.'s 0?\? In the (New), (Let), and (Findl) cases,is unchangedF is
?Dus sm;:)e g th_ 0 ec;. atCtS(b) RS mfervv\v/lseh, €l extended with definitions for some variables, aftfind facts

1o B DE pe Immediate Subprocesses e. V€ that claim that these variables are not defined are removed from
E, (0‘, P), Q,C —; Fn, (O’7 Pj), Q7C for some extension;]:ElseFind, so we still haVEE o F]:ElseFind_ In the (FlndZ)
of E and somej € {1,...,m}. Moreover, by definition of y . o~
collectFacts, FEut = colloctFacts(P) =N (Fp, U]—"F“) case forP’ = find (), uinli] < mjus - > Ugm; [1] < g,

S =1\ F; ' suchthat deflned(i1,---,Mji.) N M; then P;) else P, E

where the value of-p, is considered |mmed|ately after callmgandg are unchangjed’ and sinjce (Find2) is ex]ecutgd< m
collectFacts. By (S0),FE;, o t—]—'p,SOE' o' = Fp, sinceE’ Vay € [LIy(nj1)]s .., Yam, € [LI,(nym,)] E[u-l[al?] ’_)
is an extension of; ando¢’ = o since no (Output) reduction 2 i NI J

occurs in this trace. By induction hypothesis,, o’ + FEut, ?11’ - ;f_gﬁe%”HfLH a’}élbeFffffBef(yﬁva'('(M<) AM;) 4
. Fut) i alse. elsefind ((uy ity
SOE', 0" - Fp, U Fp! for somej € {1,...,m}. Therefore, U, < gm,)03 (Mo My) oy M) | G € {1,....m}}

E' o'+ Fput, = = - -
’ o . whereo; = {u1/ujili,. .. un, /ujmj [¢]}. By |nduct|on hy-
We now show that itFp is correct for allP, and ¥} is ob- pothesis, o - FE}SQF“‘C‘. Moreover,E, o - elsefind((u1 <

happen. Either the tracks, (o1, P»), Q2,Co 2oy, ... 2,
P), Q,C executes an output, and we halles, - Fp"

tained by i1y Um, < njmj),O'j(Mjl, - ?Mjlj)7 O'ij) for Jj €
0_/(]:}3/ (]:Fut a)]:P)) {17 L ,m}’ SOE, ok fElseFmd_
Fp=FpU ﬂ if P is underpP’
(@[ir,im], PED | o' (Fpr U FEM) otherwise We now show that ifFp is correct for allP, thenF, obtained

37

by e and for ally such thaty # x andy is defined only by
restrictions, for alla, E(y[a]) is defined if and only if

Fp=FpU{-o' M| cscfind((ur < na,... tm < nim), E'(yla)) is defined and when they are defindtiy[a]) =
(My, ..., M), M) € FESFnd Dom(o’) = {uy, ..., um}, E'(y[a)).
foreachj € {1,...,1},0'M; is a subterm of\/; and When E ~.depend.indep E', the environments? and E' dif-
defined(Mj) € Fp} fer only by variables that depend arjoi], according to the
, information contained independ and indep. That is, terms
is also correct for allP. Assuming thatC 2, ... &, in indep have the same value i and E’ (first item); when

E,(o,P),Q,C, we show thatEl,oc + Fp. SinceFp is cor- depend # T, variables not inlepend have the same value in
rect for all P, E,o + Fp. By (S4),E,o - FEsFind As- E and E’ (second item); variables defined only by restrictions
sumeelsefind (w1 < ni,y ..., Um < np), (My,...,M;), M) € have the same value i and E’ (third item). We abbreviate
Fpeetind and for eacly € {1,...,1}, 0’ M; is asubterm o} ~; depend, (x),indepy (z) BY ~o,P-

anddefined(Mjf) € Fp. Leta, be suchthatl, o, 0’uy, || ay, for We showSé6: if M’ does not depend anat P andE ~, p
eachk € {1,...,m}. Leto” = o[uy — a1,...,um — ap]. E’', thenE, o, M’ | b if and only if E',o, M’ |} b. This
SinceE, o - defined(M}), we havel, o, M || a; for somea’; property expresses the correctness of the definition6fdoes
S0 E,0,0'M; |} aj for somea’, soE, 0", M; |} a}. (Thisis not depend o at P". We prove that if &, 0, M" || b then
proved by induction om/;.) By definition of elsefind facts, E’,o, M’ | b, by induction on the derivation that/’ does not
E,c", (defined(M,...,M;) A M) | false so E,¢”,M | depend on: at P. The converse follows immediately by swap-
false, that is, E,0,0’M |} false, so E,0 + —o¢’M. So pingthe roles off andE’.

E .ok Fp. .
Therefore, we conclude that at the end of the computation® CaseM’ = f(Mj, ..., M) and for allj < m, M does
not depend o at P. SinceE,o, M’ || b, E, 0, Mjf I b,

Fp is correct for allP.
_) andI,(f)(bi,...,bm) = bfor someb,, ..., b,,. Hence by
Correctness of the local dependency analysisAs above in induction hypothesisi’, o, M/ | b;, SOE’, o, M | b.

the correctness of the collection of true facts, we denoté by
an occurrence of a process, so that we can distinguish identical CaseM’ € indepp(z). The result comes from the defini-
subprocesses that occur at several occurrences in a process. tion of ~, p.

We first show the soundness of the local dependency analy- . L , ,
sis ignoring modifications in the game performeddepAnal. ® Case]}4 IS a/repllca}tlon index. We hav, o, M" | oM
Then we will show the soundness of the game modifications, and£",o, M’ | oM, so the result holds.
that is, that these modifications change the behavior of the gamg ~ace 1/ — yMl, ..., M.], MJ,..., M, do not de-

only with negligible probability. Since the game modifications pend onz at P/, y # =, and eithery is defined only
do not change the part of the computationlepend andindep by restrictions ordependp(z) # T andy # ¢’ for all

performed before the modification, thiepAnal procedure is (4, M") € depend p(z). SinceE, o, M’ |} b, E, o, M' ||

equivalent to performing a full dependency analysis without ;" and E(y[bs, ..., b)) = b for someb, ..., by. HeJnce
game modification, performing game modification, redoing the bjy induction hypothesisE’, o, M’ | b;. By definition
whole dependency analysis analysis on the modified game, and ¢ ~opr E'(ylbr,. .. b)) = E(é;[bl,] bil) = b, so
so on, until a fixpoint is reached. Therefore, the separate proof E'.o, W b

of the dependency analysis and the game modifications outlined

above is sufficient to prove the correctness ofdhpAnal pro- Let us consider the following property:
cedure.

We haveSs if y is defined only by restrictions angd# z, 1 If Pr(Co =" £, (0, P), Q.C] > 0, dependp(z) # T, and
then there exists nd/ such that(y, M) € dependp(z). This (y, M) € dependp(z), thenE, o, M || E(y[oi]) wherei

property is obvious since the only case in which an element denotes the current replication indicesat

(y, M) is added independ 5 (z) is in the assignmenitt yli] : . .

T = M’ in P, so such an addition cannot happen wheis 2. :;i’r]rj[é?o E fé(f‘;’rig’n%a‘?] > 0.andM € indepp (),
defined only by restrictions. A '

For eacly, depend, indep, we define an equivalence relation 3. For each e I,,(T), for eachs, for eachE,, Pr[3E,3Q,

~o depend,indep ON environments bY ~ depend,indep £’ if and 3C,Co —* E,(0,P),Q,CANE ~,p Ey A E(z[oi]) =
only if b < gy PrEE.3Q.3C,Co —* E,(0,P), Q.C A
e for all M € indep, for all b, E,o, M | b if and only if E ~, p Eo] wherei denotes the current replication indices
E o,M |0 at the definition ofr.

o if depend # T, then for allz[a] such that[a] # z[oi] and we will show that if dependp(z) # T, then (LO) holds at
there exists nqy, M) € depend such that:[a] = y[oi], P. This property expresses the correctness of the local depen-
E(z[a)) is defined if and only ifE’(z[a]) is defined and dency analysis @, whendepend »(x) # T. (We will consider
when they are definedy(z[a]) = E’(z[a]) (« denotes the the general case below, Property L1.) Item 1 says that, when
current replication indices at definition oj; (y, M) € dependp(z), M evaluates to the contentsmfltem 2

38

says that, whef/ € indepp(z), the value ofM is always de- E(y[o1)) is defined. LetE) = E0|ﬁ be the environment
fined atP. Finally, the last item is the most important one: it g restricted to the variables de?inedl%(t

expresses the independence properties. Essentially, the traces

that differ by the value of:[oi] all have the same probability, Pr [H(E Q,C),Cy —* E, (o, P), Q,C}

NE ~qp Ey AN E(z|oi]) =b

and differ only by the values of variables that depend:@ri],

collected independp(x), so their environments are related by 1 3(E',0,C),Cy —* E, (0, P'), Q,C
~s p. When the value of[ci] is fixed tob, the probability of = |1, (T")] {A E' ~pp By A E(z]od]) = b]
reaching an environment related By by ~, p is thenm ﬁ(E’ 0.0)
times the probability of reaching such an environment for any < 1 1 prlC 4* E, ’(U P, 0.C
value ofz[oi). = L, (T |1,(T)] /\OE’ N T

We first showS7: if (LO) holds at P with indep instead of o b =0
indepp(x), for all E, o such thatr[Cy —* E, (0, P), Q,C] > <1 5 [H(E, 9,C),Co =" E, (0, P), Q,C}
0, E,o,M' |} a for somea, and M’ does not depend an at — |L,(T)] ANE ~;p FEy

P with indep instead ofindep(z), then (LO) also holds aP
with indepU{ M’} instead ofindep , (z). Essentially, this prop-
erty means thad/’ can be added tmdep(x) when M’ does
not depend orx at P. Items 1 and 2 of (LO) hold by hypoth-

esis. IfE ~;depend, (z)indep £+ DY (S6), E 0, M" UL bif o poccursinP’ = let yfi] : T/ = M in P with y # z.

The first step is by the semantic rule (New), the second step
by induction hypothesis, and the last step by the semantic
rule (New) again. Therefore, we obtain Item 3 of (LO).

and only if ', 5, M" |} b, SOE" ~5 depend, (a),indepuinr’} E'- For all traces of non-zero probability that reaBhthe last
Conversely, we have obviously: B ~; dcpend, (2).indepu{n} reduction reduce$” by (Let), so these traces are all of the
E', thenE ~o,depend p (z),indep E', so ~o,dependp(x),indep — form Cy —* E/, (0’, P/), Q,C — E, (O’, P), Q,C where
~¢,depend p(z),indepU{ M’} - This proves ltem 3 of (LO), and con- E . o.M U o andE = E’[y[J;] N a/]‘ LetE. = E ——.
cludes the proof of (L0). o 07 Tolyled]
Next, we proveS8 if dependp(z) # T then (LO) holds at If M does not depend anat P’, we havedepend p(z) =
P, by decreasing induction on the procdasThe only cases in depend p, (z) andindepp(z) = indepp (x) U {y[i]}. In
whichdepend p(x) # T are as follows: this case, by (S6)’, o, M | o’ if and only if E}, 0, M ||
_ . _ a’ (whereE’ ~, p, Ej are environments ab’). We can
e P occurs inP" = new z[i] : T;P whereT is a large then show that (LO) holds & using the induction hypoth-
type. We havedependp(z) = () and indepp(z) = esis. (We havél ~,, p E, if and only if E' ~, p: Ej and
Udefined(arye 7., Subterms(M). Item 1 of (LO) holds triv- Eo = Elyloi] — a'].)

ially. For all traces of non-zero probability that reaéh .

the last reduction reduce? by (New), so these traces are ~ Otherwise, we havelependp(z) = dependp(z) U
all of the formCy —* E/, (0, P'), Q,C — E, (o, P), Q,C {(y, Mdependp, (x))} andlnde}l)P(m/) = indepp/ (). By
where E = E'[z[oi] — d'] for somed’ € I,,(T). Since induction hypothesg, for ally’, M) € dep§11dp,(x),
Fp is correct for allP, E',oc + Fp/, so for all M’ € E'o,M" | E'(y'[oi]), soE,0, M’ | E(y'[oi]), hence

subterms(M) such thatlefined(M) € Fp/, E',o, M’ || a E,0, Mdependp, (z) | o = E(y[oi].), S0 we obtain
for somea, henceE,o, M’ |l a since E is an exten- Item 1 of (LO). Item 2 of (LO) follows immediately from
sion of E’, which proves Item 2 of (L0). By the se- theinduction hypothesis. Item 3 of (LO) also follows from
mantic rule (New), for allb € I,(T), Pr[3E,3Q,3C, Fhe lnductlonlhypothess. (We haye~, p Ey if and only
Co —* B,(0,P),Q.,C N E ~gp Ey A E(zloi]) = b = it E" ~o.pr Eo:)
WlT)I PI‘[HE, ElQ’ E|C, CO s E’ (07 P>7 Q’C NE ~o,P e P occursinP’ = find (@;”:1 ujlm < Nj1y -y Ujmy m <
Ej] since the conditio ~, p Ey does not use the value Njm, suchthat defined(M;1, . .., Mj;,;) AM; then P;) else
of E(z[oi]). (The firstitem ofE ~, p Ej does not use P", P is either P" or P; for somej < m, and for all
the value ofE/(x[oi]) because the elements oflep () J»k, Mjx and M} do not depend o at P’. We have
are all defined i?’ andE’ (z[ci]) is not defined. The other ~ dependp(z) = dependp, (x), indepp(z) = indepp ()
two items never us&(z[ci)).) Therefore, we obtain Item 3 if P = P”, andindepp(z) = indepp (z) U {M' |
of (LO). M’ € subterms(M) for somedefined(M) € Fp,, M’
N does not depend om at P’} if P = P;. By (S6), we

e Poccurs inP" = new y[i] : T; P with y # xz. We can show that the same branch of fivel is taken with
have dependp(z) = dependp,(z) and indepp(z) = the same probability for alE such thatE ~, p. Ey for
indepp () U {y[i]}. For all traces of non-zero probabil- the sameE,. Using the induction hypothesis, we can
ity that reachP, the last reduction reducé® by (New), so then show that (LO) holds aP with indepp.(x) instead
these traces are all of the foi®y —* E’, (o, P'), Q,C — of indepp(z). This concludes the proof wheR = P”.

E,(0,P),Q,C where E = E'[yloi] — a/] for some WhenP = P;, let M{',..., M, be the termsM’ such
a’ € I,(T"). ltem 1 of (LO) comes from the induction thatA/’ € subterms(M) for somedefined(M) € Fp, and

hypothesis (atP’) and the fact tha¥ is an extension of M’ does not depend anat P’. SinceFp, is correct and
E'. Item 2 of (LO) comes from the induction hypothesis (at Pr[Cy —* E, (0, P), Q,C] = p > 0thenE,o - Fp,, SO
P"), the fact thatF is an extension of’, and the fact that E,o,M] |} a for somea. The terml/;’ does not depend

39

on z at P with indepp, (x) U {M7',..., M}/ |} instead then E ~, 7 indep,(») £'- SO each equivalence class of
of indepp (). By (S7) applied atP with indepp, (¥) U ~g T indep, () IS @ Union of equivalence classes-af p. So we
{M{, ..., M}_,} instead ofindepp(x), if (LO) holds atP obtain (LO) with~,, T indep . () INStead ok, p by adding prob-
with indepp, (x) U {M7', ..., M;/_;}, then (LO) holds at abilities. We conclude that (L1) holds & with ~, T indep , (x)
P with indepp, () U {M{,...,M;'}. So (LO) holds atP instead of~, p using a proof similar to that of (S9).
with indepp, (z) U {M{', ..., M]'} = indepp (). We showS1Q If P is an output process?’ is the small-
est output process such thatis a strict subprocess af’,
?El) holds at P’ with ~; T indep ., () iNStead of~, p/, and
dependp(z) = T, then (L1) holds atP with mdepp,() in-
stead ofindepp(x). The equivalence between environments
for (L1) at P with indepp, () instead ofindepp(z) is also
~ o T indep s (z), SiNC€dependp(z) = T. Item 1 of (L1) holds
vially at P sincedepend »(z) = T. For the proof of ltem 3
ng) we letp = Pr[3(E, Q,C),Cy —* E,(0,P),Q,C A
~o,T,indepp/ (z) Ep A E([D - b]

For eacho, P, we define a special semantics of process
This semantics executes the procé#g),] normally until it
reaches a configuratioR’, (¢/, P'), Q,C such thatP’ is the
smallest superprocess &f such thatdependp, (z) # T and
o'(i) = o(i) for all i € Dom(c’). After reaching this con-
figuration, it executes restrictions for all variables defined or'{lr
by restrictions inC[Qo] that have not been assigned yet a
executes the not-executed-yet restrictions and the assignm
P, =lety : T = M in P, such thatM does not depend on
x at P; betweenP’ and P. In the second part of the trace, —
a configuration is onlyE”, (¢, P"); " is always set to be ¢ CaseP’ = let y[i] : T" = M in P. In traces of non-
o restricted to the current replication indicest. We write zero probability that reach, the last reduction of the trace
Co—'*E, (0, P) to designate a trace in this special semantics. eéduces? by (Let), so these traces are all of the form:

(Whendependp(z) # T, this semantics executes the process

normally, and finally executes restrictions for all variables de- Co =" E',(0,P"),9,C = E,(0,P),Q,C
fined only by restrictions that have not been assigned yet.) B
We will show the following property.1: whereE’ o, M || aandE = E'[y[o%] — a] and the corre-

sponding trace of~' is
1. 1fPr[Co —* E, (0, P),Q,C] > 0, dependp(z) # T, and
(y, M) € dependp(x), then_E,a_, My E(yloi]) wherei Co—""E!, (0, P') —' E, (o, P)
denotes the current replication indiced3t

2. If PI‘[(C() Lk E, (0.7]))7 Q,C] > QandM € indepp(x), WhereE , 0, M U, a andE1 = [y[az} — CL] LetEO =
thenE, o, M |} a for someq; Eo|y[ai] be the environmenk, restrlcted to the variables
defined atP’. For all M’ € indepp (z), E1,0,M' | b
3. For eachb € [,(T), for each o, for each E, for someb since (L1) holds at”’. ThenE,o, M’ | b,
Pr[3(E,Q,C),Co —* E (0,P),Q,CANE ~gp Eo A so Item 2 of (L1) holds af with indep, (2) instead of
E(zloi]) = b0 < 7y (T)| Pr[3E;,Co—""Ey, (0, P) A indepp(z). Since all elements dhdep ., (x) must be de-
Bypom(m) ~o,p Eo] Wherei denotes the current repli- fined atP’ (by Item 2 of (L1) atP’), y[oi] is not defined
cation indices at the definition af at P’, andy is not defined only by restrictions, the con-

dition £ ~; T indep,, (z) Fo in Item 3 of (L1) atP with
Property (L1) expresses the correctness of the local dependency indepp, (z) instead ofindep(z) does not use the value
analysis atP. It differs from (LO) by the use of the special of E(y[gﬂ), henceE ~, T indep, () Eo if and only if
semantics—’ in Item 3. This semantics is necessary when g’ ~oTindeppr () By AN E1jDom(By) ~o,T indepp (2)
dependp(z) = T, because inNthat case the control-flow may £, if and only if E1|Dom (E7) ~o.Tindepps () E!, so the
also depend on the value ofoi], so P may not be reachable propanilities that occur in Item 3 of (L1) are the samer
for certain values of[ci], which breaks the inequality between and for P with indep . (x) instead ofindep »(z). There-
probabilities of (LO), Item 3. In contrast, the special semantics fore, Item 3 of (L1) holds aP with indep p/ (z) instead of
—' computesF, (o, P) without taking into account the control- indepp ().
flow, so this problem is avoided.

Property (S7) also holds for (L1), with the same proof as
for (LO).

We showS9 if (LO) holds at P, then (L1) holds atP.
Let £, be FE extended with values for all variables defined
only by restrictions. IfE ~,p Ep, the variables defined
only by restrictions are defined for the same indice&imand

e CaseP’ = new y[z~] : T'; P, wherey is not defined only by
restrictions. In traces of non-zero probability that re&th
the last reduction of the trace reducBsby (New). This
case is similar to thiet case above.

e CaseP’ = new y[i] : T'; P, wherey is defined only by

in Ey, so E1|D0111(E0) = E, henceEl\Dom(Eo) ~o,P Eq. - YT
g S 0 e TGS T et e o on e iy
Ey] < Pr[3E;,Co—""E1,(0,P) A Eipom(E,) ~o.r Fo) y '

which proves (L1). is proved as in thést case above. Let us consider Iltem 3.

[
We show S9" if (LO) holds at P, then (L1) holds at “€tF0 = Fy 5 be the environmenky restricted to the
P with ~, 7 indep,(2) INStead of~; p. If B ~;p FE', variables defined aP’. Leti’ be the replication indices at

40

the definition ofz. (i’ is a prefix ofi.) prove Item 3 of (L1) as follows:

3(E,E',Q,0), IE,E,Q,C),
p=Pr |Cy—*FE, (0,P),Q,C— E, (0,P)Q,C p="Pr|Co—" E’,(a,P’),Q,C—»E,({,P),Q,C
A E ~ T indeppr () Fo A E(z[oi']) = b ANE ~g T indepp(2) Eo N E(z[oi']) = b

. a(g/, 0,C),Co —* Egl(o, P, 0,C . HA(J]EE %C),.(CO o E]’él(a, P, 0,C
B PR E T BT N <
_ 1 1 3E],Co—""E}, (o, P') A P 1, [PE1Com" B (o, P) A
= |1, (T |1,(T)] [EQDOIH(E()) ~o, T indep p (2) E(J T (T T (T)] [B jpom(sy) ~e. T indepp: (2) Eo
< L op FE“COH'*EM (0, P)] 1 AL B,
= LM LA Eipom(Ee) ~o. T indepp (x) Eo = Pr|Co—"Ey, (0, P) =" B, (0, P)

|1, (T

| 77()| A El\Dom(Eo) ~0,T,indepp(x) Ey

The first step comes from the semantic rule (New), the sec- i i

ond step from (L1) at”’, the last step from the assign- The first step comes from the semantic rule (New), the sec-

ment of variables defined only by restrictions in the spe- ond step from (L1) a”’, the last step from the specia¥’

cial —' semantics. (Note thaE! = E), but the con- semantics ofiew. This inequality proves (L1) aP.

dition E1|Dom(€£’)) ~o,T.indepps (z) o dOES NOt use the o casep’ = find (@;n:lujlm < nj17~-~,ujm,-m < M,
value of B} (y[oi]).) This inequality proves (L1) aP with suchthat defined(Mjy,..., Mj;,) A M; then Pj) else
indep p/ () instead ofindep (). P"”, dependp(x) = dependp/(x) = T, P = Fj,

indepp(z) = indepp:(z) U{M’' | M’ € subterms(M)
e Cases in which there is no assignment and no restriction for somedefined(M) € Fp,, M’ does not depend anat

betweenP and P’. Everything that is defined &’ is also P’}. For all M’ such thatM’ € subterms(M) for some
defined atP, since the environment &t is an extension of defined(M) € Fp, and M’ does not depend on at P,
the environment aP’, so Item 2 of (L1) holds aP since M’ does not depend anat P with indepp, (z) instead of
it holds atP’. Let us now prove Item 3 of (L1). The final indepp(x). SinceFp is correct for allP, for all E, o such
environmentE’ of the —' trace is the same faP and for thatPr[Cq —* E, (o, P), Q,C] > 0, we haveE, o + Fp,

P', so the right-hand side of the inequality is the same for soFE, o, M’ || a for somea. So, by (S7), (L1) holds aP.
P and for P’. The left-hand side decreases frahto P, .

since all traces that readh must first have reachel’, so ~ ® CaseP’ = letyli] : T" = M in P,y # x, M does not
the inequality still holds. depend orx at P’. The term)M does not depend anat P
with indep p. (x) instead ofindep 5 (x). By (S7), (L1) holds

From the previous results, we show that (L1) holds at all out- at P with indepp, () U {M} instead ofindep (). In all
put processe®’. The proof proceeds by decreasing induction traces (of non-zero probability) considered in (L1), we have
on P. If dependp(z) # T, we have the result using (S8) E,o,y[i] | bifand only if E,0, M | b andEy, 0, y[i] |
and (S9). Otherwise, Ig?’ be the smallest output process such b if and only if E1,0, M | b, so (L1) holds atP with
that P is a strict subprocess aP’. If dependp (z) # T, indepp(z) = indepp, (v) U {yli]}.
by (S8) and (S9"), (L1) holds &’ with ~, T indep ., (=) INStEQd
of ~, pr. If dependp, (x) = T, by induction hypothesis, (L1)
holds atP’, that is, (L1) holds atP’ with ~; 1 indep ., () iN-
stead of~, p/. In both cases, by (S10), (L1) holds Btwith
indepp/(x) instead ofindepp(z). The only cases in which
indepp, (x) # indepp(x) are as follows:

This result concludes the proof of soundness of the dependency
analysis.

We now show the soundness sdfnplifyTerm. Essentially,
whenM simplifies toM’, M andM’ evaluate to the same value
except in cases of negligible probability. More precisely, we
showS11 for eachP, M, M’, if M’ = simplifyTerm(M, P),

e CaseP’ = new yli| : T;P, y # x, indepp(z) = thenPr[3(E,0,Q,C),Co —* E,(0,P),Q,C AN E,0,(M' =

. o . . o M) | false] < ¢'(n)pmax(n) for some polynomialg’.
indep (2)U{y[i]}. Wheny is defined onlybyrestrlcnons,_l_he proof proceeds by induction on the derivation that

y[i] does not depend anat I’ with indep p, (x) instc_ead (.Jf M’ = simplifyTerm(M, P). We only consider the case
indepp (), S0, by (S7), (IT.l) holds ap. Otherwise, in simplifyTerm(M; = My, P) = false; the other cases are simi-
traces of non-zero probability that reagh the last reduc- lar or easy. We show that mplifyTerm(M, — My, P) —
tion of the trace reduceB’ by (New), so these traces are - then;; = Pr3(E.0, 0 C];) (CT) o El (U_ P)Q’Q oA

allofthe form: E,0,(My = My) | true] < ¢'(n)pmax(n) for some polyno-
N : :
“ B (5. P E (0. P mial ¢'. Whendependp(z) = T, let My = My; oth_erW|se,
Co =" E',(0,P"),Q,C — E,(0,P),Q,C let My = Midependp(z). Let M and M be obtained re-
whereE — E’[y[o—ﬂ — a] for somea € I,(T"). So ltem 2 spectively fromMO_ and M, by replgcmg e_lll array indices that
£(L1) holds atP. Let E, — E ——. Leti’ be the repli- depend onr at P with fresh replication indices. We assume that
0 ' 0™ Polylo” - M characterizes a part afi] at P, and M/} does not depend on
cation indices at the definition of. (i’ is a prefix ofi.) We « at P.

41

Let o and o’ be fixed, such that’ is an extension of to
the fresh replication indices dff) and Mj. We denote by&
equivalence classes for, p=~, p. We show that for ali,, for
all E, there existd such that for allE € E, if E,o', M} || a,

thenB, o', fi(... fr(zfi])) 4 b.

e Assume that there exisfs' € E such thatt’, o', M | a.
We define an environment” by E”(y[a]) = E(yla))
for all y[a] € Dom(E) and E”((ay)[a]) = E'(y[a])

for variablesy renamed to fresh variables hy. We

have E” ((ay)[a]) = E’(y[a]) for all y[a] € Dom(E’),
since whenoy = y, E'(yla]) = E(yla]) sinceE ~, p
E'. HenceE" o', Mj | a and E" o', aM} | a,
so E" o', (aM] M) { true. So by rewriting

"o (filee f(@@)f]) = A fi(z[]) U true.
Let b such thatE”, o', fi(... fu((ax)[i])) | b.

"ol i fr(@fi]) U b,

Otherwise, there exists 6 € E such thatF, o', M} |} a,
so the result holds trivially.

So there exists a functiofi such that for alla, for all £, for

al E € E, if E,0/,M} || a, thenE, o', fi(... fu(z[1]))
fla,0', E). B
If E,0,(M; = My) || true andE € FE, E,c,M; || a and

E, o0, M, || a for somea. ThenE, o, My |} a by Item 1 of (L1).

Then

whereq; (n) is the number of possible’, which is polynomial
in 7.

We now show the correctness of the game simplifications
performed indepAnal. If Qg is the process before sim-
plification and@Q;, the process after simplification, we show
that Qg Qp. For simplicity, we consider one trans-
formation at a time, and use transitivity 6f¥ to conclude
when several transformations are applied. For each trace
initConfig(C[Qo]) —* Em, Pm, Qm,Cm, €xcept in cases of
negligible probability, we show that there exists a corresponding
traceinitConfig(C[Qp)) —* E..., P, Q...,C,., with E/ , =
E.., P!, is obtained fronP,, by the same transformatlon (=)
from Qo, Q.,,, is obtained fronQ,,, by the same transformation
asQy from Qo, C,,, = C,,, with the same probability. The proof
proceeds by induction om. The casen = 0 is obvious, since
the game simplifications do not change input processes. For the
inductive step, we reason by cases on the last reduction step of
the trace ofC[Q,]. We consider only the cases in which the
transition may be altered by the game simplification.

e Case 1: WhesimplifyTerm(M, P) = M’, we replacel/
with M’ in P. We exclude traces such thBto t/ M =
M’. (They have negligible probability by (S11).) In the
remaining tracesl,c - M = M'. SOE,o0, M | aifand
only if E,0, M’ || a, and the transformed process reduces
in the same way as the initial process.

~V

So there exists an extensien of ¢ to the fresh replication in-

dices of My andM; such thatt, o', My |} aandE, o', M |} a.
ThenE, o', fi(... fr(z[i])) I f(a,o', E). SinceE, o', M} || a
and M2 does not depend onm at P, by (S6), we have:
f'(o', E) for some functlonf’ henceE([01]) € Su(0", E)

(. (fl) o L(f) N (f' (o', E), 0, E)). Let Ty, ..., T,
be the types of the arguments #f, ...

[1n (T4)] In(Te)l _ [4p(Te)| _ 1y(T)]
1S2(0" E)| < [y X -+ X DTl = Mool = 1o
sincefi, ..., fr are uniform. Let’ = Dom(c) be the current

replication indices aP.

—P E'(E,O',Q,C),(CO —* E7(U7P)7Q7C
T AE, 0, (M) = M,) | true
* /]
<ZZ E QC) (Co—> E,(U‘?,vp)vgac
r ANE € ENE(x[0'i]) € Sp(o', F)
A(E, Q,0),]
<ZZ Z (CO_> E(|/a)Lgvc
E 9 beS,(0',E) ANE € E A E(x]o'i]) = b
1 JE',Co—""F', (0%, P)
- o
<ZZ Z |L,(T)\P NE' eFE
o' beS, (0!, E) |Dom(E)

ha
by Item 3 of (L1). Dom(E) denotes the domain of an elemen]ti

of I, for instance the smallest one.)

3E (CO—>’*E’ (o), P)
P T’ \ZZ cF
|Dom(E)
< ql(n/)
1, (T")]

, [respectively; let
Ty, = T’ be the type of the result of;; T, = T. We have

Case 2: Whenl/; = false, we remove thej-th branch
of find (P, wji[i) < 1y . wjm,[i] < njm, suchthat
defmed(1y My,) ANM; then P;) else P’ In all traces

o, (defined(Mj1, ..., Mj;,) A M) | false, so in the
reductlon rule (Findl), the se&t never containgj, v) for
any v, hence by (Findl) or (Find2), the process takes the
same branch of thiénd with the same probability, whether
or not thej-th branch is present.

e The other cases are similar.

We also show the converse property: for each tracg[Qf;], ex-

cept in cases of negligible probability, there exists a correspond-
ing trace ofC[Qo] with the same probability. Moreover, for
all channels: and bitstringss, E,,,, P, Qm, Cr, €Xecutes(a)
immediately if and only ifE! ,, P/, Q! ,.C! , executes({a)
immediately, saPr[C[Qo] ~, ¢(a)] = Pr[C[Qg] ~+, €(a)],

which yields the desired equivalen€g ~" QJ.

Correctness of the equational prover. We say thatF,o +
(F,R) when E,c + F and for all (M; — M) € R,
E,o0 b M; = M. For eachP, the equational prover rewrites
pairs F,R starting from (Fp,()) according to a certain se-
quence. We denote HyF;, R;)(P) the j-th element of this se-

quence. So we havgFy, Ro)(P) = (Fp, D), and for allj, we
e Bt R ety (P) = Pri3(E.0,Q,C),Cy —*
P),Q,CANE, ot/ (FpyyRm)(P)]. We showS12 for

eachP P (P) < ¢’ (n)Pmax(n) for some polynomialy. The
proof proceeds by induction an’. Form’ = 0, this is an imme-
diate consequence of the property thiats - (Fo, Ro)(P) =

(Fp,0) sinceFp is correct for allP, with ¢’(n) = 0. For the
inductive step,

DPm’ (P) S an’—l(P)

42

H(an—v QaC%Co —* K, (va)a ON¢
+PI‘ /\E,O’ = (fmlfl,le/,l)(P)
/\E50—|7((-7:m’7Rm’)(P)

By induction hypothesisp,,,—1(P) < ¢'(17)pmax(n) for some
polynomial ¢'. So we just have to show that i£-%, then
Pr[3(E,0,Q,C),Co —* E,(0,P),Q,C AE,o F (F,R) A
E,o t/ (F,R")] < ¢ (n)pmax(n) for some polynomiay’. We

proceed by cases on the derivation5%,.

e The cases (2), (5), (7), as well as the cases (1) and (6) when
the reduction uses a rule &, are obvious and there is no
loss of probability (that is’(n) = 0.)

e Cases (1) and (6) when the reduction uses a user-defined
rewrite rule new y; : Ty,....new y; : T/,Vry
Ti,...,Ve, : T, M1 — M,, with associated probabil-
ity p(n): Assuming this user-defined claim is correct, when
E o+ (F,R)butE ot/ (F,R'), for at least one value
of the indices of restrictions that correspondo. .., y;,
the proces«”[Qo] provides an adversary that satisfies the
conditions of the definition of the corresponding user claim.
(The proof of Proposition 2 below details a similar argu-
ment in a more complicated case.) So the probability that
E,oF (F,R)andE,c t/ (F',R') is at mostp(n) times
the number of possible values for the indices of restrictions
that correspond tgs, . . ., y;, Which is polynomial iny, so
the result holds withy’(n) equal to the number of possi-
ble values for the indices of restrictions that correspond to

Yty Y1

e Case (3): Assume thaF,c + (F,R) and E,oc I/
(F',R"). So for alj < m, E,oM; | aj
E,o,M; |} aj, (a1,...,a,) # (ai,...,ap,), and
E(zlay,...,an]) = E(z[ai,...,an]). Since for each
ai,...,Qm, Tlal,...,ay,] is chosen randomly with uni-

form probability amongI,,(T')| values, the probability that

this happens is smaller th (Z)I(Ii((Tg)lil) whereq” () is
the number of possible values of, ..., a,,, which is a

polynomial inn.

e Case (4): We first show that, if/ characterizes a part af
With Sger, Saep, then for allA/, obtained from) by sub-
stituting variables ofSy.; with their definition, there exist
a tuple of terms\, a large typel’, and uniform functions
f1,..., fr such thatl" is the type of the result of;, (or of
x whenk = 0) and for eachs, Ey, ando, there existd
such that for allE’ such thatZ equalsE, on variables not
iN Saep, if E,0, M |} athenE, o, fi(... fr(z[M))) | b.
Indeed, M, = {aMy = My} is rewritten into a set that

containsfy (... fr((ax)[M'))) = fi(... fu(x[M])). Due
to the form of rewrite rulesioz)[M'] is a subterm oMy

andz[M] is a subterm of\f,. Moreover, the variables in
Sdep do not occur inM or M’.

— If a is such that there exist8’ such thatE’ equals
Ey, on variables not inSqep, E',o,aMy | a
and E’ defines variables ot)M, let b such that
E' o, fi(... fr((ay)[M'])) | b. Then for all E

43

such thatE' equalsE, on variables not inS4e, and
E.o,My | a, we can define theE” that maps
variables of M, as E¥ and variables otxM, as E’.

ThenE” o, (aMy = My) | true, so by rewriting

E", 0, fi(... fu((az)[M])) = fil... fu(z[M])) I

true, SOE, o, f1(... fx(z[M])) | b.

— Otherwise, there is n& such thatE equalsE, on
variables not inSqe, and E, o, My | a, so the result
holds trivially.

So there exists a functiofi such that for each, o, E,
if E507M0 “U a then E,O'7f1(fk(.’17[M])) ‘U f(a707
E\Tep)' Since the variables ¥4, do not occur inM,

there exists a tuple of functionE such thatE7a,Z\7 (i

f(U’E\E) So E707fl(fk($[f<U’E\Tep)])) U’
f(a7a, E|?ep)

Let us now consider the three cases of Rule (4). In
each case, we show that= Pr[3F,30,3Q,3C,Cy —*

E (6,P),Q,CANE,oc - M; = Ms] < ¢ (n)pmax(n) for
some polynomiay’ and forM; , My that satisfy the hypoth-
esis of Rule (4).

— First caseM] is obtained from\/; by replacing all array
indices that are not replication indices with fresh replication
indices,z: occurs inMj, « is defined by restrictionsew z :

T, T' is a large type M/ characterizes a part of, and
M, is obtained by optionally applying function symbols to
terms of the forny[ﬁ '] wherey is defined by restrictions
andy # .

Let M/, be obtained from\/, by replacing all array indices
that are not replication indices with fresh replication in-
dices. LetSingep be the set of variables defined only by
restrictions, excluding. SinceM; characterizes a part of
x, there exist a large typé€, functions f andf, and uni-
form functions f, ..., fx such thatT" is the type of the
result of f; (or of z whenk = 0) and for eachu, E, ando,

if E,0,M; |} athenE, o, fi(... fu(z[f(0, E|s;a.,)]) 4
fla,o, Elsindep)'

If E,o0 - M, = M, then we haveF,o, M; || a and
E,0,Ms | a for somea. Then there exists an exten-
sion ¢’ of o to the fresh replication indices a¥/; and
M} such thatE, o', M; | a and E,¢’, M} | a. So

Ea OJ? fl(e fk(x[f(o—la E|Smdep)])) U’ f(a7 0/7 E\S;ndep)
and since only the variables 6f,4., Occur in M, there
is a functionf’ such thatw = f'(0’, Eig,, ..,)- SO

indep

E(z[f(0', Bispae,)]) € S2(0, Esna.,) = (Iy(f1) 0
<.. 0 I’V](fk))_l(f(f/(a/7 E|Sindcp)7 U/a E|Sindcp))'

LetTy,..., T, be the types of the arguments ff . .., fx

respectively; o, = T, T, = T We have

[, (T1)]| I (Te)| I (Te)|

192(9 Bsinaey)| < Tm) X+ X M tha] = i)l =

“3’7 ((TT))ll sincefy, ..., fi. are uniform. LetEi,q., be an en-
n

vironment giving values to variables &f,qe,. Leti’ =

Dom(o) be the current replication indices Bt For traces that have not been excluddd,c, (M;

M) | false, so the result follows with¢'(n) =

ZMl,Mz ZMO q1(n).

— Third casesimplifyTerm(M; = M, P) = false. The
result follows immediately from the correctness of the local

A(E, 9,C),Cy —* E, (azf,,P), 9,C

P X Pr| AP, = B
E(m[f(a aEindep)]) € Sm(o 7Eindep)

o’ FEindep

A(E,9,C) :
1 » oM) dependency analysis, Property (S11).
<y S Pr|Co— B, (0, P), Q,C pendency analysis, Property (SL1)
— |I,(T) ol A Egyns = Bindep Similarly, we also haveS12: For eachQ’, Pr[3(FE,
() e 0,P,Q,C,e,My,...,M;,Ny,...,Ni,Q",0',Q,C"),Cy —*
< |;“(;)| E,(0,P),Q,C NP = cM,....,M](Ny,...,N:).Q" A
n

E {(0,Q")},C ~* E,Q,C' A (0,Q) € Q NE, 0’ ¥/
(Fonrs R)(Q)] < ¢’ (n)Pmax(n) for some polynomiad’.

We have For = Fp, hence (F/,Rn)(Q) =
(Fmrs Rm)(P), and ¢’ is an extension ofs, so E,o +
— Second case: occurs inM;, z is defined by restrictions (Fm, R/)(P) implies E, o’ = (Fpr, R) (Q'). S0 the result
new z : 7', T' is a large type); characterizes a partof follows from (S12).
only_dep(z) = S, and no variable of occurs in}M>. Correctness of game simplification. For simplicity, we con-
We consider traces af'[Qo] that differ by the choices of sider one transformation at a time, and use transitivity=8f
values ofz. Sinceonly dep(z) = S, these traces differ to conclude when several transformations are applied.
only by the values of variables ifi, after excluding excep- €ach tracénitConfig(C[Qo]) —* En, P, Qm,Cm, €XCEpLin
tional traces in which we ha8, o, (M, = M) | true for cases of negligible probability, we show that there exists a cor-
M, M, considered in Rule (4) or for some tet, = M, responding tracénitConfig(C(Qp]) —* E;.., P}, Q5.,Cr
or My # M> in Qg such that)M; characterizes a part of With £, , = E,,, P, , is obtained fromP,, by the same trans-
with S\ {x}, S, and no variable it§ occurs inMs. formation as@; from Qo, Q) is obtained fromQ,, by the
In the considered traces, the value &f, is the same ;?(;T)Zgiﬁtr;s?;??:ggfﬁ%::fgg&%é;ﬁgﬁ;O\gith the same
a', which is therefore a function of and E|§’ s0a = For the casen = 0, the only simplification that can be applied
o, E\§)' Assrl:me rt]haIE_, o, (M = MQ.) U tfrue' Then to input processes is the simplification of terms in input chan-
E,0, M, |} a. Thenthere is somel, obtained from/, by s Moreover, ifY’ is the transformed procesBq = 0 since
substituting variables i§' \ {z} with th_el_r_def|n|t|on such Feign = 0 and@Q’ is obtained fromC[Qo] by ~, which re-
thatE, o, My | a. (We choose the definition of these Var'aucels], only input processes. 88, Ro)(Q') = (0,). No rule

. . . s IXQ 5 .
ables used to set them in environmén) When M, M- of the equational prover applies 6 1), SO(Fo, Ronr) (Q') —
come from Rule (4), we setdy = M;. The number of ' my e

. L . (@,0), hence no rewrite rule dR,,,» can be applied. So one can
choices ofM/j is independent af: it can be bounded know- - . . , i
ing the number of different definitions of variablesSrand only simplify terms in the input channel af’ by a user-defined

. . rewrite rule. The proof then proceeds exactly as in Case 1 below.
the number of occurrences of these variables in the M o1 the inductive step, we reason by cases on the last reduction
M. step of the trace of’ [Qo]. We consider only the cases in which
Due to the properties of “characterize”, there exist the transition may be altered by the game simplification.

I;lrge tyﬁegcﬁj?ﬁgg‘? Sf tﬁgdt féeags tﬁglfrc;rsnaltﬂ:)r}ctl(c;rrls e Case 1:M reduces intdV!’ by a user-defined rewrite rule,
1y--+5Jk 1

) - ; and we replacé/ with M’ in the smallest (input or output)
of > whenk = 0) and for eactu, o, E, if E,0, My § a processPy; = Cy[M] that containsM. If E,o,M | a

then E,o, h(fi@lf(o, Eg))) 4 fla.0 Ez). So thenE, o, M’ || o (since the variable accesseshff are

whereq; (1) is the number of possibl#, which is polyno-
mial in 7). So the result follows witly’ (n) = ¢1(n).

For

E(z[f(o,Eg)]) € Silo.Eg) = Iy(fi) o ... 0
L(f)) " (f(f'(0,E5),0,Eg). LetTi,..., T, be the

types of the arguments gi, . . ., fi respectivelyly = T,
|1y (T1)]

Ty, = T'. We have|S;(0,Eg)| < T T X e X

In(Te)l _ Hn(Te)l _ (T i
|I71(7Tk—1)| T (M)l T IIZ(T)I since f1,..., fi are uni
form.

The probability thatF, o, (M; = M) | true is at
most the sum for all choices ab, of the probabil-
ity that E(z[f (0, Ejg)]) € Su(0,Eg), so it is at most
oMy m (Note thatT" may depend on the choice of
My.) Therefore, the probability of excluded traces is at
() i
mostZ.MhMQ Yo TECH) Wherg the number of possible
o, that is, the number of executions of the tégf = M,
or M, # M, is at mosiy (n), polynomial iny.

44

included in those of\f and M and M’ are well-typed).
Whena # o', the game provides an adversary that satisfies
the conditions of the definition of the corresponding user
claim (as in the item “Cases (1) and (6) when the reduction
uses a user-defined rewrite rule” above) so this situation
has negligible probability and can be excluded. Otherwise,
a = a’, andCy;[M’] reduces in the same way &&; =
Cr[M].

e Case 2: M reduces intoM’ by a rule of R, and we re-

place M with M’ in the smallest procesBy; = Cy[M]
that containsM, whereR is the set of rewrite rules ob-
tained by the equational prover froffip,,. We first as-
sume thatP,; is an output process. We exclude traces
such thatE,o t/ (Fo, R)(Pum). (They have negli-
gible probability by (S12).) In the remaining traces, for

al (M, — M) € R = Ry, E,o b My = Moy,
sOE,c v M = M'. SoE,o,M | a if and only if
E,o,M' || a, andC)ys[M’'] reduces in the same way as
Py = Cy[M]. When we reduce a term in the channel
of an input, we have a similar proof with an input process
Qu = Cy[M] instead of Py, and using (S12’) instead
of (S12).

Case 3: P = find (6p uﬂ[z} < nj17...7ujmj[~z'] <
Njm, suchthat defined(Mjy,..., Mj;;) A M; then Pj)
else P/, Fp, yields a contradiction, and we remove the
j-th branch of thefind. We exclude traces in which
o, (defined(Mjl, ey Mjlj) A M]) U« true. Let.S we
the set defined in the reduction rule (Findl). We have
18] < X% L I nj = q(n) for some polynomialg,
ok+f(n) div | S| .
and among(.S) “—rrm— Wherek is the smallest
integer such thae* > |S|, soamong(S) > 2,?%(,’()”) >
o = ﬁ > #(n) By (Findl), P reduces intoP;
with probability at leastmong(.S), so at Ieas%, when
E, o, (defined(M. Mjy;) A Mj) |} true. Therefore

Jlyeees

Pr i(E,r,9,C),Cy —* E,(0,P),Q,C
N E, o, (defined(Mj1, ..., Mj;,) A Mj) | true

S 2q(77) Pr [H(Evo-a Q7C)a(c0 —* E7 (07 Pj)a Q,C]

I(E,0,9,C),Co =" E, (0, P)),Q,C
< 2q(n) Pr {AE’U e R (B :]

since E,0 / (Fomr, Rmr)(P)) is always true sinceFp,
yields a contradiction. So the excluded traces have neg-
I|g|ble probability by (S12). In the remaining traces,
o, (defined(Mj1, ..., Mj;,) A Mj) |} false, so the seb
nevercontalnsj,)for anyv hence by (Find1) or (Find2),
the process takes the same branch ofitiwewith the same
probability, whether or not thg-th branch is present.

Case 4:Py = find (B ujili] < nj1, ... wjm,[i] <
Njm; suchthat defined(Mjl, ooy M) N M then P;j) else
P’ x[Ny,...,Nj]isa subterm of\/;;, and none of the fol-
lowing conditions holds: aF, is under a definition of in
Qo; b) Qo contains®; | Q2 such that a definition of oc-
curs inQ; and P, is under@- or a definition ofx occurs

in Q2 and Py is underQ);; c) Qo containslp + 1 replica-
tions above a proces3 that contains a definition aof and
Py, wherelp is the length of the longest common prefix be-
tweenNy, ..., N; and the current replication indices at the
definitions ofz. Thej-th branch of thdind is removed.

We show that:[N, . .., N;] cannot be defined &, as fol-
lows. We say that the formula(E, (o, P), Q,C) is true
when one of the following condition holds:

A. zlay,...,an] € Dom(E), (¢”,P") € QW{(o, P)},
Py is under P”, and 0"t} = a; for all & <
min(Ip, |Dom(c")[), wheret} is thek-th replication
index atP”;

B. {(¢/,P),(¢",P")} C QW {(o,P)} (multi-

set inclusion), P’ contains a definition ofz,
P, is under P”, o’y for all k <

11
(23X

45

min(lp, |Dom(c”)|, [Dom(c”)|) wherei) is thek-th
replication index atP’ andi}, is the k-th replication
index atP”;

C. (¢/,P") € QW {(o, P)} where
C.a. P, is under a definition of in P’;

C.b. orP’ contains@; | Q2 such that a definition of
2 occurs in@, and P, is underQ), or a definition
of x occurs inQ, and P, is underQy;

C.c. orP’ containslp + 1 — |Dom(c”)| replications
above a procesg that contains a definition of
andP,.

Next, we show that if a configuration in the trace satisfies
¢, then the previous configuration also satisfies

More precisely, we first show that #(F, (o, P), Q" W
Q. C"yandE,Q,C ~ E, Q' C', theng(FE, (s, P), Q" &
Q,C). The proof is by cases on the reduction rule-ef
Case (Nil) is obvious. For rule (Par), if we are in case B
and both processd?® and P” are generated by (Par), then
before applying (Par), we are in case C.b. In all other cases,
we remain in the same case of the definitiom dfefore ap-
plying (Par). For rule (Repl), if we are in case B and both
processed”’ and P” are generated by (Repl), then before
applying (Repl), we are in case C.c. In all other cases, we
remain in the same case before applying (Repl). For rules
(NewChannel) and (Input), we remain in the same case.

Therefore, if¢(FE, (o, P), Q" W Q',C') and E,Q’,C' =
reduce(E, Q,C), thend(E, (o, P), Q" v Q,C).

We also show that, if¢(F’,(¢’,P"),Q,C’) and
E,(0,P),Q.C %, FE (,P),Q,C, then ¢(E

(o, P),Q,C). The proof is by cases on the reduction rule
of %,. For rule (Find2), we remain in the same case
of the definition of¢. For rules (New), (Let), (Findl),

if we are in case A after applying the reduction and the
reduction definesz|aq,...,a,], then we are in case
C.a before the reduction ifo”, P"”) is (o, P) and in
case B otherwise. Otherwise, we remain in the same

case. For rule (Output)E, (o, c[M](Nl,...,Nk>.Q”),
{(O'/,C[’C\L/](Jﬁl[a] T, ... Ik[] : Tk)P)} W 9,C
is transformed into E',(¢",P),Q W {(0,Q")}.C,
where B/ = Elzy[a/] — ...,... Japld] — .,
then we reduce E’,{(0,Q")}, C by the function
reduce. By the property shown foreduce, we have

¢(F', (0o, P),Q W {(c,Q")},C). If we are in case A
and the input defines[a4, . .., a,,], then before (Output),
we are in case C.a ife”’, P") is (o, P) and in case B
otherwise. Otherwise, we remain in the same case.

Next, we show that if thg-th branch of théind is taken by
(Find1) when evaluating, then the last configuration of
the trace satisfieg. In this casegla, ... a;] € Dom(E)
in a configuration®, (o, Py), Q, C such thaioi,, = ay, for
all k£ < Ip, whereiy, is thek-th replication index af,. So
d(E, (0, P), Q,C) (case A).

Therefore, by the previous proaf holds for the initial con-
figuration, so we have (0, (0, start()), {(0, C[Qo])}, D).

Case A cannot happen becausés empty; case B cannotThe local dependency analysis is disabled because it gives infor-
happen becauseart() contains neitheP, nor a definition mation valid only at a certain process occurrence, and here we
of x and(o¢’, P') and(s”, P"") cannot be the same processombine facts obtained at two occurrenéeand P'.

(0,C[Qo]). So we are in case C with’ = C[Qo] and . ~ ~
o' = 0. SinceC' contains neithe, nor a definition ofz, 1001 ~ Consider a tracd” of C[Q] anda # o’ such that

we obtain that one of the conditions a), b), c) holds, whidl§fRestr7 (¢[a]) = defRestrr(z[a'])]. Let P and P’ be the

contradicts the hypothesis. So tfi¢h branch of theiind Processes that definga] andz[a’], respectively, in this trace.
cannot be taken, and can be removed. Let o be mapping the replication indices Btto a, ¢’ be map-
ping the replication indices &’ to o’, ando” be mapping to
e The other cases can be handled in a way similar to cage¥di’ toa’. Let E” be the environment at the end Bt
1-3. Just before the definition aof[a] is executed, the configura-
tion of 7 is of the formE, (¢, P), ..., SO, sinceFp is cor-
We also show the converse property: for each tracg[Qfy], ex- rect for all P, E,oc + Fp, so E”,¢" + Fpl[i]. Similarly,
cept in cases of negligible probability, there exists a correspom- 5 j:P,m, Sincea # a, E" ¢" F H £ 7. Since
ing trace of C[Qo] _/vith_ the same probability. Moreover, forqefRestr; (z[a]) = defRestry(z[a])], defRestrp(zfi]) =
gll chapnel& .and bltstrlngsa,/ Em,/Pm, /Qm,gm executesj(a) 2[My,..., M), defRestrp/(x[?]) = 2[M!,..., M), for some
immediately if and only ifE7,, P}/, Q.. C,,, executesz(a) 5 My,..., My, M,,..., M/, andE", 0" v M, = M/, .
|mr_ned|§itely, soPr[C’_[QO] ~ ¢(a)] = Pr[C[Qy] ~, €a)], E".¢" - M, = M]. SOE",o" \ Fp p:, where Fp p:
which yields the desired equwale_n_ce. _ fp[ﬂ U Fpr [iN’] U {77& 5,M1 — M., M = M},
We leave the proof of the additional transformatidvieve- Hence Pr[3(7,d J/) C[Q] reduces according tof A
New, RemoveAssigfuseles} and SArenamgauto) to the Pl

reader. The proof technique is similar to that Skrename(z). ¢, 7 @ A defRestrr (a[a]) = d‘ffRe,StrT(x[a/])]
|:| ZP,P’ Pr[zl(EN, O—”), (CO 4)* E”, .. /\ E /, g ! F fP7P/].

When the local dependency analysis is disabled, the proof of
correctness of the equational prover (S12) shown in the previous
E.2 Proving the Last Hypothesis of Proposition 5 section also shows that, #-%;, then

In this section, we show how to prove the last hypothesis of Pr A(E",0"),Co —=* E", ...
Proposition 5. We use the notations of Proposition 5 and of the ANE" 0c"FFRANE" "t/ F' R

proof 0fS|mpI|fy .|r.1the preylous Sec“of" ~ is negligible. Moreover, for allP and P’ definitions
For each definitio of z in @, we definedefRestrp(z[i]) as ¢ Q. since Fpp yields a contradiction, Fp pr,

IN

follows: is transformed intofalse, R’ by the equational prover, so
. Ay Pr[3(E",0"),Co —* E",... NE", 0" Fp p:] is negligible,
defRebErP (2lil) = _ which shows the desired resuilt. O
x[d] if P =new z[i’] : T; P’
z[My, ..., M{i/i'} E.3 Proof of Proposition 2

if P=leta[i']: T = z[Mi,...,M]in P’ iy : :
! et 2[{' #IM,--, MiJin Proof of Proposition 2 The idea of the proof is to show that

~)) if an adversary (represented by a cont€jtdistinguisheq L]
L.et]: P m denote the fi‘CtS th.at ho'ﬁ & with current replica- from [R], then we can build an adversa#y, against the security
tion indices renamed tq that is, Fp[i] = Fp{i/i’} where the ofthe mac for the keynkgen(r[a]), for somea € I,,(n"").

replication indices ab> areq’. Let C be an evaluation context acceptable b, [R], 0.
For each pair of definitions of, P, P’, we check that, if e define a probabilistic polynomial Turing machide, for

defRestrp(a[i]) = z[Mi,..., M| and defRestrp (2[i']) = a € [1,1,(n")], as follows. A, uses oraclesnac(., k) and

z[Mi,...,M]], then Fp[i] U Fp[i'] U {i # i',My = check(.,k,.). A, simulatesC[[L]] except that:

M{,...,Ml = M/} yields a contradiction. That isj # e for ' < a, in copies corresponding t§ = o' of L,

i'ANMy = MiA...AM; = Mjis false exceptin cases of negli- 4, computesind u < n suchthat defined(z[u]) A (m =

gible probability, taking into account the facts that are knownto 1)) A check(m, mkgen(r), ma) then true else false in-
hold atP andP’. When this check succeeds, the last hypothesis stead ofcheck(m, mkgen(r), ma), and

of Proposition 5 holds, as shown by the next proposition. . _
e in the copy corresponding @ = a, A, does not choose

P ition 7 A hat f I pairs?. P’ of defini a random number[a], it calls the oraclemac(., k) on z
roposition 7 Assume that, for_all pairs”, or detini- instead of computingnac(z, mkgen(r)), and instead of

tions of z in @, if defRestrp(z[i]) = 2[M,..., M;] and computing check(m, mkgen(r), ma), it computesb; =

defRestrp: (z[i']) = 2[My, ..., Mj], thenFp[i]UFp [i'U{i # check(m, k, ma) using the oracleheck(., k,.) andby =
i/, My = Mj,..., M, = M} yields a contradiction (with local find w < n suchthat defined(z[u]) A (m = z[u]) A by then
dependency analysis disabled). N true else false; if by # by, the execution of the Turing ma-

ThenPr[3(7,a,a’), C[Q] reduces according t@ Aa # a’ A chine stops, with resultm, ma); otherwise, the execution
defRestry(z[a]) = defRestrr(x[a’])] is negligible. continues using valuly = b,.

46

When A, has not stopped due to the last item above, it retutas4 Proof of Proposition 3

1 when the simulation of’[[L]] terminates. . . .
[[2]] Let us first introduce some notations. We denote by

b VthrgA,aritg:ps(m]:[f),lg 72 ba. l;/lor%c;)ver, II)blT:h 0, tfhen Lj,...j. the subtrees ofL defined as follows by induc-
2 = U by definition ofb. 50061 = 1andbs = Crelore, ion on k. We define Ly,...,L,, such that L =

ther? IS nou SI’:Ch thathf wlul, h(tar?ceA h?s not clalled thle(..., Lym). The functional procesg;, .. ;, being defined,
oraclemac(., k) onm. Moreover, there exists a polynomial deflneLJm_“ oy Ljo. im0 be the immediate sub-

such that fqr alla, _A_a runs in timeq(n). So by Definition 1, functional-processes of.;, ..., So thatL;, ., is of the
max, pa(n) is negligible, where o o

.....

form !"<"new 7, : Tl;...;new Ym - Tm,(I,Jm,,_,jk’l,...7
R Ljo,....jxm)- _

pa(n)) = Pr 7 Ly (Tonr); k < mkgen, (r); (m,t) «— Aq : When Lj, 5, = !""fnew y; : Ti;...;new yp,
a - .
check, (m, k,t) Tons (Lo, ity -+ s Lijo,oo jrsme), WE defined zjo ,,,,, e = i

Njo,.cvie = T Y(jo,nsiin) k! = Yk's ananero, e M

Since I,(n") is polynomial inn, Y, ypa(n) < WhenLj, . = (e1:Th,....0m: Tn) — FP, we say
o thatLJU ;. is a leaf ofL and we definer(;, .)& = Trr,

max, p,(n) x I,(n”) is also negligible. : of le
On the other hand, letbe a channel and be a bitstring. We (JI?] d?(lj)ekr, o rko Z”P::) ng)sufon 3]‘1 *e”;-ef e 2 conxeuch
need to evaluatePr(C[[L]] ~,, ¢(a’)]—Pr[C[[R]] ~>, ¢(a’)]]. provi positi Wi i u

: . . thatQo ~§ C[[L]] andC[[R]] ~Y Q. While Q, evaluates
We consider three categories of pairs of traCEs7’) whereT 0 0 Qo
andT” are traces of’[[L] andC[[R]] respectively: the terms inM directly, the context will send messages fd]

in order to evaluate these terms(fi[L]]. Similarly, the process

1. TracesT and7" have the same configurations except f(ﬁzo contains inlined versions of the functional processe&n
while C[[R]] computes the same result by sending messages to

the replacement of with R in processes, they termmaten]
and none of their configurations execut®a’) immedi-

ately In order to defineC', we first define a processlay(L) as

follows:

2. TracesT and7” have the same configurations except for relay((G1, ..., Gr)) = relay(G1)* | ... | relay(Gyn)™
the replacement of. with R in processes up to a point relay (1i<n ST ST (G G J_
at which their corresponding configurations both execute ay(F="new yy s Tis..snew g Ti3 (G, G

¢(a’) immediately. 1= ds{i, 1) (); e54,) J[Z i (); &5, ()
Ji1 im
3. TracesT and7’ have the same configurations except for (relaY(Gl)Z,qz [relaY(G’”)Z,i |

the replacement of. with R in processes up to a point !i’gn'df[g ']()~d~ﬁ i0)

at which their configurations differ because for some A A ~
[1,1,,(n")], for some messages, ma received on chan- relay((zy : T4, ...,2; : T}) — FP). =

nel cz[a] (wherec, is the channel used ifL] and[R] for ~ '

the second parallel processbfind R), the result returned d}[i](fﬂl Ty, w i T [[z, .. m);
by [L] differs from the one returned bjR]. In this case,

the simulating Turing machine that rung- I (Trr); k — i - -
mkgen, (r) and executest, will return (m,ma), by con- et dsli] (e Ty, @ T dy[i(r)
struction.

c;[;]& : bitstring); ;[ZN'](M;

wherei = iy,...,ip andj = jo,...,ju. The relay process

correspondlng to replicated restrictions relays messages sent on
All traces of C[[L]] fall in one of the above categories, and sim channebl~ to channet:- (used in[] and[R]) so that the corre-

ilarly for traces of C[[R]]. Traces of the first category have
no contribution toPr[C[[L]] ~, &(a)] and toPr[C[[R]] ~ spondmg random numbe;r/s, ...,y are chosen byL]. When

< "]; traces of the second category cancel out when computH se random numbers have already been chosen, the process ac-
Pr[C[[L]] ~n &{a’)] — PX[C[[R]] ~n ¢{a’)]. So Ccepts messages af but yields control back to the sending pro-

cess without executlng anything by outputtlngdan Thus, the
caller of the relay process can harmlessly ask several times for

N !
| Pr[C[[L]] ~y e(a)] — Pr[C[[R]] ~, e(a’}]| choosing the same random numbers. Similarly, the relay process

< Pr[(7,7") is in the third category corresponding to a function relays the arguments of the function
< Z Prr HI r); ke mkgen, (r); (m,) — A] receiveq on channel; to channet;, S0 thali[;]] r(_aplies on chan-
nel ¢ with the resuftr of the function, which is forwarded to

a€[1,I,(n"")] ; :
channeld;. The relay process also allows calling several times

< D> pa(n) the same function with the same valueg aids, in which case
€L, Iy ()] it always returns the same result(We make sure in the follow-
ing that when a function is called several times, the calls all use
Hence| Pr[C[[L]] ~+, ¢(a’)] — Pr[C[[R]] ~, €(a’)]| isNeg- the same arguments.) Sinéeand R are required to have the
ligible, so[L] ~ [R]. U same structure by Hypothesis H2Jay(L) = relay(R).

47

We introduce the following auxiliary definitions, which allow convindex(l, M){a/i}, wherei is the sequence of current
us to define the correspondeneaepldx,, from replication in- replication indices ai/ and! = nNewSeq,,.
dices atM in Qg to replication indices aV,, in L:
Then we defin€’ = (newChannel c;; newChannel d5;)=([] |
e For eachM € M andk < nNewSeq,,, we define relay(L) | Qy) where the procesg/ is defined fromQ, as
count, (k, M) as follows. Letny,...,n; be the sequencefollows:
of bounds of replications above the definitiornzf, », for
anyk’. Let!’ be the length of the longest common prefix ® Whenz < S, we replace its definitionew z : 7'; Q with
of im index; (M) andim indexy, (M) for ky < k. We let z : T = cst in () for some constantist.

define count,, (k, M) = I,(ny41) % ... x Iy(ng). We

define parametersount;, y; such thatl,(county) = © FOr €achM € M, let Py = Cuy[M] be the
count, (k, M). smallest subprocess af, containing M. Let! =

. . nNewSeq,, and m = nlnput,,. Let BL(M) =
We define function symbolsumy, »s : [1,n1] X ... X Gos--.oj1). Letdy = dj,...;lconvindex(l, M)] and
[1,] — [1, county n] such thatl, (numy, ar)(ar, - -, for all & < I, dyr = dj(/) ’jk , [convindex(k, M)].
a) = L (ara =D+ T(nep)x(@rie= by nea) < we replace Py with dyr():dai (). . daga (s dari)

.+ I,(ni—1) X (a; — 1)). Thennumy s establishes a bi-
jection between the lagt— I’ components of its argument
and its result.

dyv{omTi v, -, OMTm M) du(y ¢ bitstring); Carly]
wherey is a fresh variable.

Instead of evaluating the termdd € M directly as inQo, @y
sends messages to the relay proaessy (L), which will then
forward them tq[L] in C[[L]] and to[R] in C[[R]].

e We define tot_count,(jo,...,jx) as the sum of
count,(k + 1,M"”) for all M” such that the first
k + 1 elements of BL(M") are equal tojo,...,jk,
counting only once termd/” that share the first + 1

sequences of random variables.

We set I, (nj,...;,) = totcount,(jo,...,jk), Where proof The bounds of replications ¢f.] andrelay(L) have

Nj,.....5. 1S the bound of the replication at the root oheen defined above. As outlined in the proof of Proposition 6,

Ljo,...;. in L. The value ofl,(nj,,...;,) is then large the |ength of all bitstrings manipulated I, is polynomial iny.

enough so that there is always an available copy of the gga can therefore defin@axlen,(c;) to be a polynomial large

sired replicated process when we need to execute one. enough so that messages sentcjeirby C[[L]] are never trun-

The replication at the root ofelay(Lj, . ;)70 7/* is cated. We definenaxlen, (dz) = maxlen, (c;); then messages

also bounded bynj,, .. ;.. The other replication of on d are never truncated.

relay(Ly, .. j,)77/ is bounded byn', wherel, (n’) is Let C’ be any evaluation context acceptable €y, C[[L]],

the sum for allMl € M of I,(n1) x ... x I,,(n;) where V. We relate traces af’[Q,] and ofC’[C[[L]]] as follows.

ni,...,n; is the sequence of bounds of replications abovewe assume that the channelsand d- do not occur inC’

M in Qo. andQ, and that during reductions (NewChannel), these chan-
nels are substituted by themselves. (This is easy to guarantee by

. V\/Ie o;der the Iferrn occirr?\;c%sﬁz(?rbltéarlly% VI\I"th a ti’ renaming; this assumption simplifies notations in the proof.)
tal ordering. Letstart,(k, M) be defined as follows. Let We write M =5 M’ whenE, M |} a andE, M’ | a for

M’ the smallest (in the chosen ordering .bf) term oc- e =
) some bitstringz. We denote by:-th(i) the k-th component of
currence of M that shares the first sequences of ran- % Yeeth(i) P

dom variables withV/. Thenstart, (k, M) is the sum of the tuple, _and byl the_ number of eIemer_lts of the tu_ple

.’ ,, , We define a relation between variables 6f in Qg
count,, (k, M") for all A" smaller than}/’ such that the .) .)
first k& elements ofBL(M") are equal to the first ele- and variablesy defined by new in [L]: we say that

ments of BL(M'), counting only once term&/” that share yl[“l’ ai] - —p varlmL(y, M)[a’] when for all
the firstk sequences of random variables. k

Lemma 11l Qo ~y§ C[[L]]

S j, E, addstartkI,M(numkz7M(im (pj_l(M) o ... 0O
o (M)){a'/i})) | ar, wherei < 7 are the current replication

we tdefine fLinction Symr?OIS?LdSJJ\“;‘“’“M o [1’ indices at the definition ofarImL(y, M) with their associated
o 2 ISP I o and ol < 1, 10 < (.10 (o
that— depends om.)
e Let us defineonvindex(k, M) as the sequence of terms ~ We show that the relatiof™> g is a (partial) function, that
is, if y[al, . ,aj] E)E My and y[al, . 7%‘] E}E M‘//
convindex(k, M) = then My = M{,. Assume thaylas,...,a;] “p 2'[o/] and
(addstart pr(numy as(im index; (M))), ylag,...,a;] “>p 2"[a”]. Then

..., addstartg, ps(numy pr(im indexy (M)))) e We have:’ — varlmL(y, M') and

This sequence of terms implements the functiotpldx
mentioned in the explanation of the transformation,
in Section 3.2. More preciselymapldx,,(a) = o pe (MY /i) | ag forall k' < j

E, addstartk/7M/(numk/,M/(im (pj_l(M/) o

48

wherei’ < n/ are the current replication indices at the defi- &, im (pw_1(M’) o ... o pku(M/)){a’/Z} =g

nition of 2 with their associated bounds, and forlatt |i'|, im (pgr—1(M') o ... 0 pgn M’)){a”/z }. Fork” =K,
l-th(a/) € [17lﬂ(l-th(n/))}’ we havalumk/7M/() =g numk/)M/()
e we have:” = varlmL(y, M") and Let [be the length of the longest common prefix of
_ . im index (M') andim indexy (M') for k5 < k'. Since
B, addstarty, ar (numyy a (im (pj—1(M") o indexy,y (M") = indexy (M")o pjr—1(M')o. ..0pyy (M),
o pe (M) Ji"}) I ay forall &' < j the firstl components ofm (p—1(M’) o ... o pgy (M'))

B . are then the first components of’, so the firstl compo-
wherei” < n'” are the current replication indices at the nents ofa’ anda” are equal. Moreoveriumy, ;. estab-

definition of 2" with their associated bounds, and for all jishes a bijection between the Idst| — I components of its
L <", I-th(a) € [1, I (I-th(n"))]. argument and the intervél, count,,(k', M")]. So the last
For all terms M”, we have eitherstart,(k’, M") < |a’| — I components oi’ anda” are equal. Hence' = a”.

start, (k’,M') or start, (k’, M" > start, (k', M’ ~ o~ ~ ~
coung:(k',Mz) since staZt(n(k',]W)”) is Computne(d by a)deirng Therefore, we conclude that = a“,.sov,i;[a’} - z_”.[a”}_.
count,, (k', Ms) for some terms\/; in a fixed order. Moreover, ,N/eXt' we SQSYW that the funct|0n7>E”|s |nje/(/:t|vev.ar If
numy (.. .) evaluates to a bitstring ifil, count, (&', M")]. Y a1, ..., ay] — & Z[ai,...,q;] andy /[ap/---v%“} —E
Therefore, start, (k', M") < start,(k',M’). By sym- zlay, ..., C,l/ﬂ chen z = Va_rImL(y ,M/) and Fo=
metry, start,(k',M") > start,(k’,M’). So we have varlmL(y"”, M""). By Hypothesis H4.1, M’ and M" share
for all k' < j, start,(k,M’) = start (k’ M//) and at Ieait the firsty/ = j” sequencels of rando/r/n vanablsas and
numy (lm (pjfl(M/) o ... 0 pu (]\4/)){@,/Z }) =5 y = y// By HypOtheSIS l'LH- 2 yPk! (M) = Pk’ (M)fOr all kK <

N ~ & . j' = j”. By definition ofaddstart andnum, start, (k’, M') =
numyg v (im (pj—1 (M) o ... o pp (M")){a"/i"}). Since

start, (j, M') = start,(j, M"), by definition ofstart,, M’ start, (', M") and I (numpar) = I7,(numk/7M//) for all
shargs]’the first n\Js :) moc k' < j/ = j”. Henced), = ay, forall k¥ < j' = j”. So
i sequences of random variables witlf”. 7 N ran "
y'lay,...,a5] =y"[af,... aj.].

Sincey hasj indices,y is defined undeyj replications inL, For each tracénitConfig(C*[Qo]) — ... — Eu, Pons O,

S0 varlmL(y, M) = varlmL(y, M"), that s, 2’ = 2". S0 , C’[Qq] of probability p,,, we show that there exists a
la’| = |a”|. By Hypothesis H4.2, ppr (M’) = pp (M) for all traceinitConfig(C’'[C[[L]]]) — ... — E',, P’ . Q' of
kK < 7 By definition of num, In(numk/,M/) = [n(numk/7M//) C/[CH[L]H] of probabilityp’ , such that
forall &/ < j. mn

We show by induction ork’ that if for all ¥/ < ¥/, e Forallz ¢ S, E! (z[d),...,ad",]) = En(z[a),...,ad5]);

] >

”m

numgr yp (im (prr—1(M') o ... o pn(M"){a'/i'}) =g forall z € S, z[a),...,a}] is in Dom(E,,) if and only
numg a0 (im (pr—1 (M) o ... o pk/,(M/)){[ﬁ/{/}), where if it is in Dom(E! ,); if y is defined bynew in L and
i’ < n’ are the current replication indices at the definition of ylax, ..., aj] Gvg?om(E%') then there existd/,, such that
zi_ v With their associated bounds, andh(a’), I-th(a”) € ylar,. .., ax] —p, My and My € Dom(Ey,) and for
[17 In(l-th(’rﬂ;l))], thena’ = (’1\/7 all suchMy/, Em,(y[al, oo 7%']) = Em(Mv).
~ —_ / i i H
o Fork’ = 1, we assumewm; yy/(a/) =g numy ap(a”) e P/, is obtained fromP,, as Qg from Qo (transforming

only the occurrences that appeariy,), Q,,, = Q,, &
Q% ,w Q3 ,, whereQ! , is obtained fromQ,,, asQ{ from
Qo (transforming only the occurrences that appea®jp),
Q2 , is what remains ofelay(L) after partial execution,
and Q3 , is what remains of L] after partial execution.
More precisely, let

The longest common prefix ofindex;(M’) and
index;»(M') for j” < 1 is empty, sinceindex;~(M")
is defined only forj” > 1. Sonum; ;s establishes a
bijection between the tuples’ smaller than the current
replication bounds at definition af;_,, and the interval

[1, count,, (1, M")]. Soad’ = d”.

e Fork’ > 1, we assume thatumy pp (im (prr—1(M') o relaY(o, ’Jkk) :4 4
.0 pk//(M/)){(?/;}) =g Numpg pp (1m (pk’—l(M/) o relaY(jo,---yjk)]’m”..,gk {al/ih s ak/lk}
-0 pr(M")){a”/i'}) for all k" < K. Lethki, < [LS 0] = [Lyy....g J207 70 an v, - an fir}
K. Let Eim (pw—1(M') o ... 0 pyy (M"){d/i'} U R o
whereiq, ..., i, are the replications indices df above

0/ina AN E, i (M) o...0pw (M)){a"/i)
@ina ANAE, im (prr—1 (M) 0. 0 pyg, ,(M){a” /1) 4 Lj,..j.. These processes correspond respectively to the

@i BY hypothesis, we /have for allk” = relay process and to the translation of the subfrge ;,
kmd' riumk’”vM’(lm (Pry—1(M') 0 .0 prr(M')) of L, for the value of the replication indices, ..., a.
{@/ina/Vina}) =p numgs ap(im (prr 1 (M) o ... 0 Let redRepl(a,"<"P) = P{a/i}. ThenQ?, and Qi’n,

pk,,(M/)){&Wmd/{/md}) where 7.,y < nlipq are are formed as follows:
the current replication indices at the definition of
M With their associated bounds. By induc-

tion hypothesis, a’ina = a”ina, so for all k" < Y1)k (@15 - -

— for eachyy, ..., jk—1, a1, ..., ax such that

-

2kl
.,ag] € Dom(E],,),

49

Q2 , contains

dju»--,jkq [ala ce aak}(% djo»--~7jk—l [alv e 7ak]<>

possibly several times.

— for eachy,, a such that

yJk—1,01, .
Y(jorji_2) k015 - -+, ag—1] € Dom(Ey,,) and
YGoyerdr—1).k [al’ R ak] ¢ DOHl(E,:n/),

2, containsredRepl(a, relay (L ")) and

m’ Y " J0y-- k-1
3 H Tseeey k—1
Q,,, containsredRepl(ay, [L; "7 " ']).
— for eachjy, ..., j;,a1,...,a; such that

Y(os--rfi—1),k’ [alv s 7al] € Dom(E;n/)

and L;, .. is a leaf of L, either Q2 , contains

a,...,al 3 H ay,...,ar
relay (L7 0t) and Q;, contains [Lj) '], or

Q2 contains

djo:"'7jl [ah RN al](m(jo g1),1 ¢ T(j(),...,jl),17 ceey
L(Go,nmrdi)sl! T(jo ----- jz)yl/); djo,....5u [ala R al]<r>
with /' = nlnput; ,, possibly several times,

and there existM’ e M and o’ such that
By, convindex(l, M"){a’ /i'} (3 a,...,a,
Em,M'{a’/i"} |} v, and BL(M") = (jo,-- ;i)
wherei’ is the sequence of replication indiceshdt.

where for eaclk, ay, is a bitstring in[1, tot_count,, (jo, . . . ,
Jr—1)]-

o Cl=CnU{c,d; | j}.

e p ., = pm X Hm,l’.__?a;, |I,,(T")| whereT is the type of
zandz € S,aj,...,a} are such thatlay,...,a}] €
Dom(E,,) and there exists ngla, ..., a;] € Dom(E/,,)

SUCh thaiy[al, . .,aj] vAal;)Em z[a'l, . .,a;,].

Note that the same trace of’[C[[L]]] corresponds to
IL. a.....ar, Hn(T)] traces ofC’[Qo] that differ only by the val-

ues of B, (z[d], . ..,
the last item above.
The proof proceeds by induction on the lengthof the trace

ay]) for z € Sal,...,a} as defined in

of C’[Qo]. For the induction step, we distinguish cases depend-

ing on the last reduction step of the trace.

e For the initial case, we show by induction 64 that for all

C"”, Q,C, o such that substitutes channel names for chan-

nel names without touching andd;, there exisQ’,C’, o’

such thats’ substitutes channel names for channel names

without touchingcs and ds, 0,{C"[0Qo]} W Q,C ~*
0,{c'Qo} W Q'.C', and 0, {C"[cC[[L]]]} ¥ Q,C ~*
0,{co'C[[L]]} @ Q',C’. This is obvious wherC"" = [],
with o/ = 0, @' = Q, andC’ = C. We show this result by
applying (Par) whe®?” = C; | Q; orC"” = @, | C1, and
(NewChannel) whe@” = newChannel ¢; C;.

So we can apply this result t6¢” = C’, ¢ = Id,
Q = 0, andC = fc(C’'[Qo]). We havefc(C'[Qo]) =

50

fe(C'[C[[L]]]), sincefc(Qo) = fc(Qy) = fe(CIL]]).
Therefore, there exis®, C, o such thav substitutes chan-
nel names for channel names without toucfﬂ:;agandd;,

0,{C"[Qol}, fc(C'[Qo]) ~* 0,{cQo} & Q,C, and
0, {C"[C[[L]N]}, fe(C[CIIL]]) ~" 0,{cC[[L]]} ¥ Q,C

~" 0, {oQg, relay (L), [L]} ¥ Q.C U {5, d; | j}
by (NewChannel) and (Par)

~*0,{ocQp} e QW QW Q,CU{c;,d5 | j}
by (Par) and (Repl)

where Q2 = {redRepl(a,relay(Lj,)°) | jo.a €

[1, tot_count,,(jo)]} is what remains fromrelay (L) after
expansion of parallel compositions and replications and
9} = {redRepl(a, [Lj,]%°) | jo,a € [1, tot_count, (jo)]}

is what remains of L] after expansion of parallel compo-
sitions and replications.

Moreover,c Qg is obtained fromrQ, asQy from Qo, and
Q does not contain any occurrence modified when trans-
forming Qo into Qf, so {cQy} W Q is obtained from
{oQo} W QasQyq from Qo.

Reducing{cQg} ¥ Q and{cQo} W Q by ~~ until they
are in normal form, we obtain thatduce(?, {C’[Qo]},
fe(C'[Qo])) = (0, Qo,C’") and reduce(, {C’[C[[L]]]},
fe(C'[CIILI]) = (0, Q5w Q8 ¥ Q3.C" U {c;.d5 | j}),
where Q} is obtained fromQ, as Q{j from Q,. There-
fore initConfig(C’[Qo]) andinitConfig(C’[C[[L]]]) sat-
isfy the desired invariant.

When the trace of’[Qo] executesiew z[aq,...,qa;] : T

by (New) forz € S at stepm, the corresponding trace
of C'[C[[L]]] executeset z[as,...,a;] : T = cstin by
(Let) at stepm’. This yields|I,,(T')| traces ofC’[Qo], one
for each value o5, (x[a1, ..., a;]), each with probability
Pm = Pm—1/|I,(T)|. In contrast, this yields a single trace
of C’'[C][L]]], with probabilityp.,, = p..,_;.

Moreover, there exists ngla},...,a;,] € Dom(E],)
such thaty[a),...,a}] ~>g, zla,...,a]. Other-
wise, by the first point of the invariant, before the def-
inition of z[a1,...,q], there would existMy such that
ylay,...,a,] Z5p, . My and My € Dom(E,, ;).
SinceE,, is an extension ofZ,,, 1, yla},...,a)] ~g,,
My . Since 2% p is injective, My = zfai,...,q).
This yields a contradiction, sincéfy, € Dom(FE,,—1)
butzfai,...,a;] ¢ Dom(E,,_1) by Invariant 4. (The ar-
ray cellz[ay, ..., q;] cannot be defined several times in a
trace.)

It is then easy to see that the invariant is satisfied.

When the trace of’[Q] executesr; Py, for M € M, the
corresponding trace @’ [C[[L]]] executes

Ui(mo; dM,l(); .. W[l@y dM,l();

dy{omTing, - - - L OMZm, 0); A (y : bitstring); Carly])

whereo; = {a/i}, 7 is the sequence of current replication
indices atPy;, and BL(M) = (jo,---,J1)-

Fork <, leta; be such that
M))))) 4 ak

M)) I by.

Let mj be the step of the trace ofC'[C[[L]]]
after executing oida i (); oidnm (), where dyp =
djo.....jx_. [convindex(k, M)]. We show by induction on
k that for all &', y(jo,...je) [0, -, ax] € Dom(Ejn;v)
and that the invariant is satisfied at stef) except that
ai(dar,1 () daea ()i -5 dak(); dar() has been removed
from Pv/nL Let zpp = VarImL(y((jo’wjkf1)’k/,M). We

E,,, addstarty as (numy, a7 (o (im indexy (

and Ietb~k be such thaf,,, o;(im indexy(

havey(j07___7jk71)7k/ [al, . ,ak] V(—'H>Em Zkk’ [6;} More-
over, zix [br] € Dom(Ey,) sincezgy [oi(im indexy (M))]
occurs ino; M, ando; M is successfully evaluated in the

trace ofC'[Qo]. We distinguish two cases:

= D) YGorjr_)k a1, ar] € Dom(Er/n;,l)'
By the invariant at stepm),_,, Q2, contains
Y 1

my _
djo ----- Jk—1 [al, R ak](); dj()w»-ajk—l [alt LR ak}o

So we can executeridk(); oidak() by two
(Output) steps, without changing the environment,
SO Y(jo,jn_1) k! [O15- > Ak] € Dom(E;n;c) and
the invariant is satisfied at stem; except that

O’i(dM’1<>; dM,l(); - d]\{’k<>; d]y[yk()) is removed
from P, .

= 2) Yliorrjron) [a1,...,ax] ¢ Dom(Em 1). By
induction hypothesisy ;.. j.).k (01, - Lap_1] €

Dom(E! ,). By the invariant at stepy;,_,,
k—1

redRepl(ay, relay (L5 """ 1)) € Qil%a and

JOsee s Jk—1
redRepl(ag, [[Lal’)€ Qi’nkﬂ'

50k —1
WJk—1

By (Output) twice, we send an empty message on
dj07---7jk'71 [al, RN ak] and OI’]C]'OV__,’J'ki1 [(11, RN (lk].
By (New), we definey(j,, .. j.) la,...,ax] for
each k. We chooseE,, (zuw [b]) as value of
Y(jorejr_1),k @1, -, ax] (with probability el (T)‘
where T is the type ofyg,,)k). Finally,
by (Output) twice, we send an empty message on
(S T [al, ey ak] and Ondjow‘,jk_l [al, ey ak].
Then the invariant is satisfied at steyj, except that
O’l(dM 1<> dM71(); .. dM,k<>§ dM’,k()) is removed
from P/ ,. (Note that the probability of the trace
of C'[C[L])] is divided by[T, |1y (To.....ju—1).0)]
whereT ;. . i)k isthetype ofyg, . . .)wlai,

ax]. Thisis whatis required by the invariant since
Y(jo,jn_1)k 01, - - -, ax] is defined at stepn;, but
was not at step),_,.)

SO y(jo’,_,’jk_l)’k/[al,...,ak] - DOI’Il(E;n;) for a" k S
[and &/, and the invariant is satisfied at step, ex-
cept thato; (dar,1(); dar,1(); - - - dari(); dari()) is removed
from P/,. Let a be such thatE,,,o;M | a. Let

m' be the step of the trace @¥'[C[[L]]] after executing

51

Ji(@<UM$1,M> A ,UMLEl/’M>; d/]\/[(y : bitstm'ng)) with
I’ = nInput,,. By the invariant, we have two cases:

The process<r,dM<aMx1,M, . ,aMxl/7M> sends
the value ofoijop i v for ¥ < I’ on chan-
nel dj,... jlai,...,a]. By (Output), this mes-
sage is received byelay(Lj " 5'), which for-
wards it by (Output) again t(ﬁL“1 """ '] on chan-
nel ¢j,.. a1, ...,a;]. On recept|on of this mes-
sage by[Lj], B (%o, @, - i) 1S
set to the recelved value, sB,,ciopmzi v |
E (T (o,...50 .4 a1, ..., ay]) for eachk” < 1. For

.....

.....

all £ < [and %', since yyo, . j. 1)kl01,---,
ar)] g, zuwe|bi], by the invariant we have

E} (Yo, ax]) = B (21 [bi]), SO

E,’/,n// (y(jowu,jkfl)q,k’ [al, e ,ak]) = Em(zkk’ [bk])
Moreover,aMykk/,M = Zkk’ [1m indexk(M)], SO

Jk—1),k' [al’)

B, 0i00yik v b B (Yionnjn)b (015 - - -5 ak])

Therefore, for all variables of V,; defined under
k replications, E,,, ciopyz | EL.(z[a1,...,ak]).
Since M = oy Ny, we haVQEm,O'iO'MN]w lL

a, so E! , Ny{ai/ir,...,a;/is} | a, where
i1, . il are the replication indices of, above
LjO, J 505y

Clorii [al,.. ,a;] by (Output) which is forwarded
onchannetl;, jla1,...,a]by I‘elay(Lal """) by
(Output) again, sa is stored iny[a] by Q” Thus
E7.(yla]) = a.

In order to show that the invariant still holds after this
step, we remark that, after these outputs, the relay
process makes available the following process

: T(jm---,jz),lv ey
sail(a)

and we have?vm, convindex(l, M){Zi/;} I a,...,
ay, B, M{a/i} | a,andBL(M) = (jo,- .-, Ji)-

- 2) djo,--»,jl, [ah N 7al](x(j07___7jl)71 : T(jg,...,jl),h ey
C(joreeni) il Loreenin)) Dio,..gelon, - ai(r) €
Qp. and there existM’ € M and a’ such
that E,,,convindex(l, M'){a’/i'} | a1,...,a,
Ep, M'{@’/i'} | 7, and BL(M") = (jo, .-, 1),
wherei’ is the sequence of current replication indices
atM'.

We haveE,,, convindex(l, M){a/i} |} aq,. ..,
definition ofa, ..., a;. So

djg n [ah cee val](x(jo,...,jl),l

L(Ga,e.ndn),l! :T(jo Jl)l/) djo,..., Jl[alv"'

ap by

convindex(l, M Y{a')i} =g,
convindex(l, M){a/i}

so, as shown in the proof thats 5 is a function,

1ndexl(M’){a’/z} =g, index;(M){a/z} =g, b,
and M’ and M share the first sequences of random

variables, that is, all sequences of random variablégmma 13 Processy;, satisfies Invariant 1.

orm; = 0andM = M'. Moreover, BL(M) =

BL(M") = (jo, ..., 1), SONy = Ny Proof Process); satisfies Invariant 1 since all newly created
If m; = 0andM = M’, @' = @, SOE,,, ;M || r, S0 definitions concern fresh_vanables; for vangbles;téfthat cor-
respond to variables defined lagw or by an input inR, there

r=a.

. . . is a single definition for each of them {p,; for variables ofQy,
Otherwise, by Hypothesis’H.3, there exists a term .) A
M,y such thatM — (index,(M))Mo, M’ that correspond to variables definedi&yin R, there are several

definitions only when there are several definitions of these vari-
ables inR, and sincd R] satisfies Invariant 1, these definitions
are in different branches difd (or if) in R, so also inQ,. O

(index;(M")) My, and M, does not contain the cur-
rent replication indices al or M’. Thena =g,

M{aji} =g, Mo{b/i"} =g, M'{d'}i'} =g, r

wherei” is the sequence of current replication indic§Sma 14 Process), satisfies Invariant 2.
at definition ofz;,/ »s for anyk’.

Therefore, in all cases, we obtai,,(y[d]) — a, SO Proof The only variable accesses createdjf come from

o:Chrly] in the trace ofC'[C[[L]]] executes in the sametranSf‘bo’CM(FP)' We show by induction oi'P that the only

way aso;C)s[M] in the trace ofC’[Qy], which yields the variable accesses greated_tb .ynSfd)’CM(FP) and not_guardeq
desired invariant. by a correspondingind are inim ¢. (We do not consider vari-

able accesses ify;, which already existed id),.) So the
e The other cases are easy: both sides reduce in the s@nlg variable accesses createdthynsfy, ¢, (FPys) and not
way. guarded by a correspondirfigd are inim ¢,. Moreover, vari-

able accesses im ¢, are of three kinds:
Conversely, we show that all traces@f{C[[L]]] correspond to

a trace ofC’[Qo] with the same relation as above. The proofl. varImR(x; s, M)[i}, ..., 4] which are defined inP;,,
follows a technique similar to the previous proof. just abovetranst;, ¢y, (FPar).
SO [L.a,...ar, n(T)]| traces ofC’[Qo], each of probabil-

: 2. ImR(y’,. 17, M)[im index;(M)] where
ity p,, correspond to one trace 6f [C[[L]]] with probability varTmR(yjy, r, M)lim index; (M)

P = Pm X [L. a1, ar, Hy(T)|. Moreover, for all channels (a) eithernNew; py > 0 and zj; a[im index;(M)] is
c and bitstringsy, E,», pJW Oum,Crm €XECUtes(a) immediately guaraqtggd to be defined, .since iF occurs at Fhis point
if and only if £/ ,, P’ , Q! ,.C! , executest(a) immediately. in the |n|t|gl .procesQO which .s.at|sf|.es. Invariant 2.
So Pr[C'[Qo] ~y &a)] = Pr[C’[C[[L]]] ~, &a)]. Hence By the addition ofdefined conditions infind and the
Qo ~Y C[[L]). 0 fact thatz}, ,, = VarIm_R(yé-,?’M,M)_ is defined in
Q) wherez;; ys was defined irQo, this implies that
Lemma 12 @}, ~¥ C[[R]] varlmR (v, 5y, M)[im index; (M)] is also defined.
(b) or nNew; 5, = 0, thenim index;(M) is the se-
Proof sketch The proof uses the same technique as the proof quence of current replication indices atf, and
of Lemma 11. The main addition is that, in contrast/ipR varImR(y/;, ,,, M)[im index;(M)] is defined just
may contain functional processes that are more complex than aboveP;, . ’
just terms. In order to handle them, we need to define a re-
lation between variables @), and variables of? defined by 3. varlmR(z, M)[i},...,i;] where z is defined by
let or new in functional processes: whenis such a variable, let in FPy. Since [R] satisfies Invariant 2, ac-
ylay,...,a) E55 varlmR(y, M)[a’] where for allk < I, cesses 1o z[ii,...,4] in FPy occur under the
E, addstarty, y (numg p (im indexy, (M){a’/i})) | a), andi definition of z[i1,...,4] in FP,, SO accesses to
is the sequence of current replication indiceg/atThe relation varlmR (z, M)[iy, ..., iy] = do(z[i1, ..., 4]) also occur
2, ; is not a function for these variables, but we can show that under their definition inransfy, o, (FPar).
whenyla1, . ..,] is related to several variables, these Variablﬁerefore@{) satisfies Invariant 2. 0

hold the same value at runtime.

The most delicate case is thatfofd functional processes Lemma 15 ProcessY, satisfies Invariant 3.
FP = find ™ 4; <n, suchthat defined(z;1[u;1],. .., . .

(@:1 T (/ nltn] Proof The only newly added variable definitions are
zji; [ugi;]) A Mj then FPj) else FP let varImR(z; as, M) : Tjm = omxjpm andnew Z/'k,JW :
. . ! T!, - Each variablevarImR(x; as, M) has at most one def-
where for eachk, u;;, is the concatenation of the prefix of the 75"~~~ . S
current replication Jindices of length and of a non-empt re_?n!t!on In Q. For variablesz;, ,,, when several of these def-
fix of @ pWh " hgﬁnd Rl pty Fh initions are added for the same variablg ,,, they are added
X of ;. €n executing such process[R] tests the in place of the definition(s) of;1,a, so by Hypothesis £3.1.1,
value ofzjx[a1, ... ’ali] for all indices ofay, ..., a;; such that .

. . " they occur under the same replications, so they all have the same
ai,...,ay correspond to a prefix of the current replication in:

; ; ype. Therefore, the type environment f9f is well-defined.
dlcgs. Correspondinglyransf, ¢, (FP) testsvir:e values of all Assume thatV € M and Py, — Ch[M] is the small-
variables that are related tgy (a1, . . ., ali] by —.

est process containinyy/. Let £;, be the type environment at

52

Py = Cy[M]in Qo; let Eg be the type environment dt),
in Qp; let &7 be the type environment &y, in L; let £, be
the type environment at'P,; in R. We know thatf; + Py,
and show thaEr - P;,. It is then easy to see thék; is well-
typed knowing that), is well-typed. We note thafy is an
extension of€z, with types for variablesarlmR(y’;, 1., M’),
varlmR (z; p, M'), and varImR(z, M") when z is defined
by let in FPy,, for eachM’ € M. By Hypothesis 3.2,
&, F OMZTjM : Tj,M, SOER H OMZTjM : Tj,M, sinceé‘R
is an extension of. Then, in order to showr F P;,, itis
enough to showr - transfs, o, (FPar).

We say that is well-typed wher[M] € Dom(¢) and&, +
2[M] : T implies&g F ¢(z[M]) : T".

First, it is easy to show by induction oW’ that for all well-
typed ¢, for all A’ such thatf, - M’ : T, we havelr +

S(M'): T.

varImR(zy, M’) is declared under the same replica-
tions asM’, sou/ is of the suitable type. The variables
z in R andvarImR(z,, M') in Q are declared of
the same type, so f}; + Zk[Mm,-.-,Mkz;J T

thené&p b varlmR (2, M')[u] : T".

So¢’ is well-typed.

Moreover, we show thafr F im index;, (M){u [i'} =
im index;, (M) : bool. We havez; k. ;r = 2zj,5,m SiNCE
M and M’ share thej, first sequences of random vari-
ables, sdm index;, (M’) andim index;, (M) are of the
same type, since they are both used as indices,@f;.
Sincew’ and i’ are of the same type, by a substitution
lemma,im index;, (M’){v’/i’} andim index;, (M) are of
the same type, which yields the desired result.

Next, we show that for all well-typed, if £, F [[FP’}]% It is easy to see thag is well-typed. Moreovety, - [[FPM]];
and the type of the result of P’ is the type of Ny, then and the type of the result dfP), is the type oV, by Hypoth-
Er F transfy ¢, (FP'), by induction onFP’. esis HO, sg |- transfy, c,, (FPu). O

o If FP' = M', we have to show thaz - Ca[¢(M’)]. Let proof of Proposition 3 Invariants 1, 2, and 3 have been
Tsuchtha€y - M : T. proved in Lemmas 13, 14, and 15 respectively. Finally, we
We haveM = o, Ny, so if N, contains a function sym-show thatQ, ~" Q). After renaming variables so thaf
bol, & & Ny = T. If Ny = x4, M = opyaxjy a@ndC do not contain variables of and R, by Lemmas 1, 11,
is of type T;.as by Hypothesis 8.2, soT = T, and12,Qo =~y C[[L]] =" C[[R]] =y Qp, so by transitivity
hence we also hav€; + Ny : T. If Ny = yjra, Qo =" Q. O
M = O'Myjk,ll\l = Zjk,M [1m inder (M)] is of typeTjk_,M
by Hypothesis 3.1.1, soI’ = Tj; » and we also have E5 Proofs for Section 4
By hypothesis, we have theff, + M’ : T, so&x + Proof of Proposition 4 Let C' be an acceptable context for
o(M') : T. Since&y, - Cy[M] with & F M : T, by @ | Qu Q | Q, 0. We relate the traces af[Q | Q.] and
a substitution lemma, we conclude tigat - Cy[o(M7)]. ClQ | Q5] as follows:

¢ The inductive cases follow easily usidg, + [[FP’]]% and
the property proved above to type terms. ’

e If a trace of C[Q | Q.| never executes the subprocess
c(xlug,. .., un]) of Q. then we obtain a trace «f[Q |
Q!] with the same probability, by just replacirg, with
Q!, and subprocesses @f, with the corresponding sub-
process of)’ .

In the case of dind branch with non-emptylefined condi-

tions, we extena into ¢’ as follows. Let’ be the sequence
of current replication indices at/’ andw’ be a sequence
formed with a fresh variable for each variableiin e Otherwise, the considered trace 6fQ | Q.] executes
the subprocess(z[ui, ..., u.;]) of @, exactly once, with

— o/ /
— If 2 = yjp O SOMeX’, then E(u1) = ar,..., E(um) = am, andE(z[ay, . .., am]) =
/ _ a, whereFE is the environment wheR(z[uy, ..., u,]) iS
O (M- My]) = s executed. By hypothesis, the definitionadf.y., . . . , a,,] in
varImR(zx, M")[im index; (M"){u’/i'}]. this trace is either a restrictiarew z[aq, ..., a,] : T, Or
anassignmenét zjay,...,ay] : T = z[My,. .., M;] with

Since varImR(zy, M) is defined wherezj; 5 is
defined, the indices ofarImR(z;, M') are the in-
dices of zj1,pv, SO im index;(M’) is of the suit-
able type. Moreover,’ andi’ have the same types,

E, My | a} forall k < [, and the definition of[a’, . . ., a]]
in this trace isew z[a}, ..., q)] : T.

We build |I,,(T)| traces of C[Q | Q] from this

so by a substitution lemmam index; (M’){u’/i'}
is of the suitable type. Moreover, in R and

varImR(z,, M') in Qf are both declared of type

j}{k/}]\fl, SO(S‘}% - Zk[Mk»l,. ..,]\/[k-l;“l : TJ/’?\’JW and
Er F varlmR(z;, M')[im index;(M"){u’/i'}]
jykf/,M/.

— If 2, is defined bylet or by a function in-
put, ¢’ (z2x[Mp1, . .., My]) = varlmR(zx, M')[w’].

53

trace, by choosing any value @§(T) for the restriction
new zfai,...,an] : T Of new z[a},...,a]] : T defined
above, and the valuefor the restrictiomew y : T of Q.

By definition of S, these traces are the same as the trace of
C[Q | Q] except perhaps for values of variablesSinand

for the process)’, instead ofQ)... The probability of each

of these traces is/|I,,(T")| times the probability of the con-
sidered trace o€[Q | Q.], since these traces choose one
more random number ify, (T') than the trace of'[Q | Q.].

Moreover, all traces of’[@ | Q’,] are obtained by the previous
construction. (To show that, we rebuild a tracef) | Q.]
from the trace olC[Q | Q'] by the reverse construction of the
one detailed above.)

For each configuratioR,,,, Py, Q, Cr, Of the trace of”[Q |
@], and corresponding configuratiaf, ,, P, ,, Q. ,,C. . of
the trace ofC[Q | @Q.], for all channelsc and bitstrings
a, Em, Py, Qm,Cy executes(a) immediately if and only if
El .. P ., Q..,C,. executeg(a) immediately.

ThereforePr(C[Q | Q.] ~, ¢la)] = Pr[C[Q | Q,] ~,
c(a)], s0Q | Qz ~o Q | Q- 0

Proof sketch of Proposition 5 Let C' be an acceptable con-
textfor@ | Q., Q| Q.. 0.

We first exclude traceg such thatdefRestrs(z[a]) =
defRestrr(z[a’]) anda # a/. These traces have negligible
probability by hypothesis, sind@[_ | Q.] is an acceptable con-
text for @, 0, {z}. So this removal does not change the result.

For the remaining traces, whén= o, defRestry (z[a]) #
defRestr(z[a’]), so the definitions of:[a] and z[a’] do not
come from a single execution of the same restriction. £
andz[a’] are independent random numbers.) Then we can apply
a proof similar to that of Proposition 4, except that we replace
each tested value afla’] with independent random numbers in-
stead of single one. O

Proof of Lemma 2 Let us prove the result for one-session
secrecy. (The proof is essentially the same for secrecy.) The
contexts[] | Q. and[] | @, are acceptable contexts f@y, Q’,

{z} (after renaming.y, ..., u,,y SO that they do not occur in

Q andQ’). We haveQ ~{*} Q’. So, by Lemma 1Q | Q. ~

Q| Q,andQ | Q, ~ Q' | Q. SinceQ preserves the one-
session secrecy of, Q | Q. ~ Q | Q.. So, by transitivity of

~, Q| Q. = Q| Q.. ThereforeQ' preserves the one-session
secrecy ofr. O

54

