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Abstract

We present a new mechanized prover for secrecy properties of
security protocols. In contrast to most previous provers, our tool
does not rely on the Dolev-Yao model, but on the computational
model. It produces proofs presented as sequences of games;
these games are formalized in a probabilistic polynomial-time
process calculus. Our tool provides a generic method for speci-
fying security properties of the cryptographic primitives, which
can handle shared-key and public-key encryption, signatures,
message authentication codes, and hash functions. Our tool pro-
duces proofs valid for a number of sessions polynomial in the
security parameter, in the presence of an active adversary. We
have implemented our tool and tested it on a number of exam-
ples of protocols from the literature.

1 Introduction

There exist two main approaches for analyzing security proto-
cols. In the computational model, messages are bitstrings, and
the adversary is a probabilistic polynomial-time Turing machine.
This model is close to the real execution of protocols, but the
proofs are usually manual and informal. In contrast, in the for-
mal, Dolev-Yao model, cryptographic primitives are considered
as perfect blackboxes, modeled by function symbols in an al-
gebra of terms, possibly with equations. The adversary can
compute using these blackboxes. This abstract model makes
it possible to build automatic verification tools, but the security
proofs are in general not sound with respect to the computational
model.

Since the seminal paper by Abadi and Rogaway [3], there has
been much interest in relating both frameworks (see for exam-
ple [1, 9, 12, 21, 25, 26, 35, 36]), to show the soundness of the
Dolev-Yao model with respect to the computational model, and
thus obtain automatic proofs of protocols in the computational
model. However, this approach has limitations: since the com-
putational and Dolev-Yao models do not correspond exactly, ad-
ditional hypotheses are necessary in order to guarantee sound-
ness. (For example, key cycles have to be excluded, or a specific
security definition of encryption is needed [5].)

In this paper, we propose a different approach for automat-
ically proving protocols in the computational model: we have
built a mechanized prover that works directly in the computa-
tional model, without considering the Dolev-Yao model. Our
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tool produces proofs valid for a number of sessions polynomial
in the security parameter, in the presence of an active adversary.
These proofs are presented as sequences of games, as used by
cryptographers [16,42,43]: the initial game represents the proto-
col to prove; the goal is to show that the probability of breaking
a certain security property (secrecy in this paper) is negligible in
this game; intermediate games are obtained each from the pre-
vious one by transformations such that the difference of prob-
ability between consecutive games is negligible; the final game
is such that the desired probability is obviously negligible from
the form of the game. The desired probability is then negligible
in the initial game.

We represent games in a process calculus. This calculus is
inspired by the pi-calculus, and by the calculi of [31, 32, 37]
and of [30]. In this calculus, messages are bitstrings, and cryp-
tographic primitives are functions from bitstrings to bitstrings.
The calculus has a probabilistic semantics, and all processes run
in polynomial time. The main tool for specifying security prop-
erties is observational equivalence:Q is observationally equiv-
alent toQ′, Q ≈ Q′, when the adversary has a negligible prob-
ability of distinguishingQ from Q′. With respect to previous
calculi mentioned above, our calculus introduces an important
novelty which is key for the automatic proof of security proto-
cols: the values of all variables during the execution of a process
are stored in arrays. For instance,x[i] is the value ofx in thei-
th copy of the process that definesx. Arrays replace lists often
used by cryptographers in their manual proofs of protocols. For
example, consider the definition of security of a message authen-
tication code (MAC). Informally, this definition says that the ad-
versary has a negligible probability of forging a MAC, that is,
that all correct MACs have been computed by calling the MAC
oracle. So, in cryptographic proofs, one defines a list containing
the arguments of calls to the MAC oracle, and when checking a
MAC of a messagem, one can additionally check thatm is in
this list, with a negligible change in probability. In our calculus,
the arguments of the MAC oracle are stored in arrays, and we
perform a lookup in these arrays in order to find the message
m. Arrays make it easier to automate proofs since they are al-
ways present in the calculus: one does not need to add explicit
instructions to insert values in them, in contrast to the lists used
in manual proofs. Therefore, many trivially sound but difficult
to automate syntactic transformations disappear. Furthermore,
relations between elements of arrays can easily be expressed by
equalities, possibly involving computations on array indices.

Our prover relies on a collection of game transformations, in
order to transform the initial protocol into a game on which
the desired security property is obvious. The most important
kind of transformations exploits the definition of security cryp-
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tographic primitives in order to obtain a simpler game. As de-
scribed in Section 3.2, these transformations can be specified
in a generic way: we represent the definition of security of each
cryptographic primitive by an observational equivalenceL ≈ R,
where the processesL andR encode functions: they input the
arguments of the function and send its result back. Then, the
prover can automatically transform a processQ that calls the
functions ofL (more precisely, contains as subterms terms that
perform the same computations as functions ofL) into a process
Q′ that calls the functions ofR instead. We have used this tech-
nique to specify several variants of shared-key and public-key
encryption, signature, message authentication codes, and hash
functions, simply by giving the appropriate equivalenceL ≈ R
to the prover. Other game transformations are syntactic trans-
formations, used in order to be able to apply the definition of
cryptographic primitives, or to simplify the game obtained after
applying these definitions.

In order to prove protocols, these game transformations are
organized using a proof strategy based on advice: when a trans-
formation fails, it suggests other transformations that should be
applied before, in order to enable the desired transformation.
Thanks to this strategy, protocols can often be proved in a fully
automatic way. For delicate cases, our prover has an interac-
tive mode, in which the user can manually specify the trans-
formations to apply. It is usually sufficient to specify a few
transformations coming from the security definitions of primi-
tives, by indicating the concerned cryptographic primitive and
the concerned secret key if any; the prover infers the intermedi-
ate syntactic transformations by the advice strategy. This mode
is helpful for proving some public-key protocols, in which sev-
eral security definitions of primitives can be applied, but only
one leads to a proof of the protocol. Importantly, our prover
is always sound: whatever indications the user gives, when the
prover shows a security property of the protocol, the property in-
deed holds assuming the given hypotheses on the cryptographic
primitives.

Our prover CryptoVerif has been implemented in Ocaml
(17300 lines of code for version 1.03 of CryptoVerif) and
is available at http://www.di.ens.fr/˜blanchet/
cryptoc-eng.html .

1.1 Outline

The next section presents our process calculus for representing
games. Section 3 describes the game transformations that we
use for proving protocols. Section 4 gives criteria for proving se-
crecy properties of protocols. Section 5 explains how the prover
chooses which transformation to apply at each point. Section 6
presents our experimental results. Section 7 discusses related
work and Section 8 concludes. The supplemental material con-
tains additional formal details, proof sketches, and details on the
modeling of some cryptographic primitives.

1.2 Notations

We recall the following standard notations. We denote by
{M1/x1, . . . ,Mm/xm} the substitution that replacesxj with
Mj for eachj ≤ m. The cardinal of a set or multisetS is

M,N ::= terms
i replication index
x[M1, . . . ,Mm] variable access
f(M1, . . . ,Mm) function application

Q ::= input process
0 nil
Q | Q′ parallel composition
!i≤nQ replicationn times
newChannel c;Q channel restriction
c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P

input

P ::= output process
c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q output
new x[i1, . . . , im] : T ;P random number
let x[i1, . . . , im] : T = M in P assignment
if defined(M1, . . . ,Ml) ∧M then P else P ′

conditional
find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj

[̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj)
else P array lookup

Figure 1: Syntax of the process calculus

denoted by|S|. If S is a finite set,x
R←S chooses a random

element uniformly inS and assigns it tox. If A is a probabilis-
tic algorithm,x ← A(x1, . . . , xm) denotes the experiment of
choosing random coinsr and assigning tox the result of running
A(x1, . . . , xm) with coinsr. Otherwise,x←M is a simple as-
signment statement.

2 A Calculus for Games

2.1 Syntax and Informal Semantics

The syntax of our calculus is summarized in Figure 1. This
calculus was inspired by the pi calculus and by the calculi
of [31, 32, 37] and of [30]. We denote byη the security pa-
rameter, which determines in particular the length of keys.

This calculus assumes a countable set of channel names, de-
noted byc. There is a mappingmaxlenη from channels to inte-
gers, such thatmaxlenη(c) is the maximum length of a message
sent on channelc. Longer messages are truncated. For allc,
maxlenη(c) is polynomial inη. (This is key to guaranteeing
that all processes run in probabilistic polynomial time.)

Our calculus also uses parameters, denoted byn, which cor-
respond to integer values polynomial in the security parameter.
So, denoting byIη(n) the interpretation ofn for a given value
of the security parameterη, Iη(n) is a polynomially bounded,
efficiently computable function ofη.

Our calculus also uses types, denoted byT . For each value
of the security parameterη, each type corresponds to a subset
Iη(T ) of Bitstring ∪ {⊥} whereBitstring is the set of all bit-
strings and⊥ is a special symbol. The setIη(T ) must be recog-
nizable in polynomial time, that is, there exists an algorithm that
decides whetherx ∈ Iη(T ) in time polynomial in the length of
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x and the value ofη. Let fixed-lengthtypes be typesT such that
Iη(T ) is the set of all bitstrings of a certain length, this length
being a function ofη bounded by a polynomial. Letlarge types
be typesT such that 1

|Iη(T )| is negligible. (f(η) is negligible
when for all polynomialsq, there existsηo ∈ N such that for
all η > η0, f(η) ≤ 1

q(η) .) Particular types are predefined:bool ,
such thatIη(bool) = {true, false}, wherefalse is 0 andtrue is
1; bitstring , such thatIη(bitstring) = Bitstring ; bitstring⊥
such thatIη(bitstring⊥) = Bitstring ∪ {⊥}; [1, n] wheren
is a parameter, such thatIη([1, n]) = [1, Iη(n)]. (We consider
integers as bitstrings without leading zeroes.)

The calculus also uses function symbolsf . Each function
symbol comes with a type declarationf : T1 × . . . × Tm →
T . For each value ofη, each function symbolf corresponds to
a functionIη(f) from Iη(T1) × . . . × Iη(Tm) to Iη(T ), such
thatIη(f)(x1, . . . , xm) is computable in polynomial time in the
lengths ofx1, . . . , xm and the value ofη. Particular functions
are predefined, and some of them use the infix notation:M = N
for the equality test,M 6= N for the inequality test (both taking
two values of the same typeT and returning a value of type
bool ), M ∨ N for the boolean or,M ∧ N for the boolean and,
¬M for the boolean negation (taking and returning values of
typebool ).

In this calculus, terms represent computations on bitstrings.
The replication indexi is an integer which serves in distin-
guishing different copies of a replicated process!i≤n. (Repli-
cation indices are typically used as array indices.) The vari-
able accessx[M1, . . . ,Mm] returns the content of the cell of
indices M1, . . . ,Mm of the m-dimensional array variablex.
We usex, y, z, u as variable names. The function application
f(M1, . . . ,Mm) returns the result of applying functionf to
M1, . . . ,Mm.

The calculus distinguishes two kinds of processes: input pro-
cessesQ are ready to receive a message on a channel; output
processesP output a message on a channel after executing some
internal computations. The input process 0 does nothing;Q | Q′
is the parallel composition ofQ and Q′; !i≤nQ representsn
copies ofQ in parallel, each with a different value ofi ∈ [1, n];
newChannel c;Q creates a new private channelc and executes
Q; the semantics of the inputc[M1, . . . ,Ml](x1 [̃i] : T1, . . . ,

xk [̃i] : Tk);P will be explained below together with the seman-
tics of the output.

The output processnew x[i1, . . . , im] : T ;P chooses a new
random number uniformly inIη(T ), stores it inx[i1, . . . , im],
and executesP . (The typeT must be a fixed-length type,
because probabilistic polynomial-time Turing machines can
choose random numbers uniformly only in such types.) Func-
tion symbols represent deterministic functions, so all random
numbers must be chosen bynew x[i1, . . . , im] : T . Deter-
ministic functions make automatic syntactic manipulations eas-
ier: we can duplicate a term without changing its value. The
processlet x[i1, . . . , im] : T = M in P stores the bitstring
value ofM (which must be inIη(T )) in x[i1, . . . , im], and ex-
ecutesP . Next, we explain the processfind (

⊕m
j=1 uj1 [̃i] ≤

nj1, . . . , ujmj [̃i] ≤ njmj suchthat defined(Mj1, . . . ,Mjlj ) ∧
Mj then Pj) else P , wherẽi denotes a tuplei1, . . . , im′ . The
order and array indices on tuples are taken component-wise, so

for instance,uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj can be further

abbreviatedũj [̃i] ≤ ñj . A simple example is the following:
find u ≤ n suchthat defined(x[u]) ∧ x[u] = a then P ′ else P
tries to find an indexu such thatx[u] is defined andx[u] = a,
and when such au is found, it executesP ′ with that value of
u; otherwise, it executesP . In other words, thisfind construct
looks for the valuea in the arrayx, and whena is found, it
stores inu an index such thatx[u] = a. Therefore, thefind con-
struct allows us to access arrays, which is key for our purpose.
More generally,find u1 [̃i] ≤ n1, . . . , um [̃i] ≤ nm suchthat
defined(M1, . . . ,Ml)∧M then P ′ else P tries to find values of
u1, . . . , um for whichM1, . . . ,Ml are defined andM is true. In
case of success, it executesP ′. In case of failure, it executesP .
This is further generalized tom branches:find (

⊕m
j=1 uj1 [̃i] ≤

nj1, . . . , ujmj
[̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧
Mj then Pj) else P tries to find a branchj in [1,m] such that
there are values ofuj1, . . . , ujmj

for which Mj1, . . . ,Mjlj are
defined andMj is true. In case of success, it executesPj .
In case of failure for all branches, it executesP . More for-
mally, it evaluates the conditionsdefined(Mj1, . . . ,Mjlj )∧Mj

for eachj and each value ofuj1 [̃i], . . . , ujmj
[̃i] in [1, nj1] ×

. . . × [1, njmj
]. If none of these conditions istrue, it exe-

cutesP . Otherwise, it chooses randomly with uniform1 prob-
ability onej and one value ofuj1 [̃i], . . . , ujmj

[̃i] such that the
corresponding condition istrue, and executesPj . The condi-
tional if defined(M1, . . . ,Ml) ∧M then P else P ′ executesP
if M1, . . . ,Ml are defined andM evaluates totrue. Otherwise,
it executesP ′. This conditional is defined as syntactic sugar for
find suchthat defined(M1, . . . ,Ml) ∧M then P else P ′. The
conjunctdefined(M1, . . . ,Ml) can be omitted whenl = 0 and
M can be omitted when it istrue.

Finally, let us explain the outputc[M1, . . . ,Ml]〈N1, . . . ,
Nk〉;Q. A channelc[M1, . . . ,Ml] consists of both a chan-
nel namec and a tuple of termsM1, . . . ,Ml. Channel names
c allow us to define private channels to which the adver-
sary can never have access, bynewChannel c. (This is use-
ful in the proofs, although all channels of protocols are of-
ten public.) TermsM1, . . . ,Ml are intuitively analogous to
IP addresses and ports which are numbers that the adversary
may guess. A semantic configuration always consists of a
single output process (the process currently being executed)
and several input processes. When the output process exe-
cutesc[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q, one looks for an input
on channelc[M ′l . . . , M ′l ], whereM ′1, . . . ,M

′
l evaluate to the

same bitstrings asM1, . . . ,Ml, and with the same arityk,
in the available input processes. If no such input process is
found, the process blocks. Otherwise, one such input process
c[M ′1, . . . ,M

′
l ](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P is chosen ran-

domly with uniform probability. The communication is then ex-
ecuted: for eachj ≤ k, the output messageNj is evaluated, its
result is truncated to lengthmaxlenη(c), the obtained bitstring

1A probabilistic polynomial-time Turing machine can choose a random num-
ber uniformly in a set of cardinalm only whenm is a power of 2. Whenm is
not a power of 2, there exist approximate algorithms: for example, in order to
obtain a random integer in[0, m − 1], we can choose a random integerr uni-
formly among[0, 2k − 1] for a certaink large enough and returnr mod m.
The distribution can be made as close as we wish to the uniform distribution by
choosingk large enough.
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is stored inxj [̃i] if it is in Iη(Tj) (otherwise the process blocks).
Finally, the output processP that follows the input is executed.
The input processQ that follows the output is stored in the avail-
able input processes for future execution. Note that the syntax
requires an output to be followed by an input process, as in [30].
If one needs to output several messages consecutively, one can
simply insert fictitious inputs between the outputs. The adver-
sary can then schedule the outputs by sending messages to these
inputs.

Using different channels for each input and output allows the
adversary to control the network. For instance, we may write
!i≤nc[i](x[i] : T ) . . . c′[i]〈M〉 . . . The adversary can then decide
which copy of the replicated process receives its message, sim-
ply by sending it onc[i] for the appropriate value ofi.

An else branch of find or if may be omitted when it is
else yield〈〉; 0. (Note that “else 0” would not be syntactically
correct.) A trailing 0 after an output may be omitted.

Variables can be defined by assignments, inputs, restrictions,
and array lookups. Thecurrent replication indicesat a certain
program point in a process arei1, . . . , im where the replications
above the considered program point are!i1≤n1 . . . !im≤nm . We
often abbreviatex[i1, . . . , im] by x wheni1, . . . , im are the cur-
rent replication indices, but it should be kept in mind that this is
only an abbreviation. Variables defined under a replication must
be arrays: for example!i1≤n1 . . . !im≤nm let x[i1, . . . , im] : T =
M in . . . More formally, we require the following invariant:

Invariant 1 (Single definition) The processQ0 satisfies Invari-
ant 1 if and only if

1. in every definition ofx[i1, . . . , im] in Q0, the indices
i1, . . . , im of x are the current replication indices at that
definition, and

2. two different definitions of the same variablex in Q0 are in
different branches of afind (or if).

Invariant 1 guarantees that each variable is assigned at most once
for each value of its indices. (Indeed, item 2 shows that only one
definition of each variable can be executed for given indices in
each trace.)

Invariant 2 (Defined variables) The processQ0 satisfies In-
variant 2 if and only if every occurrence of a variable access
x[M1, . . . ,Mm] in Q0 is either

• syntactically under the definition ofx[M1, . . . ,Mm] (in
which caseM1, . . . ,Mm are in fact the current replication
indices at the definition ofx);

• or in adefined condition in afind process;

• or in M ′j or Pj in a process of the formfind (
⊕m′′

j=1 ũj [̃i] ≤
ñj suchthat defined(M ′j1, . . . ,M

′
jlj

) ∧M ′j then Pj) else

P where for somek ≤ lj , x[M1, . . . ,Mm] is a subterm of
M ′jk.

Invariant 2 guarantees that variables can be accessed only when
they have been initialized. It checks that the definition of the
variable access is either in scope (first item) or checked by afind

(last item). Both invariants are checked by the prover for the
initial game, and preserved by all game transformations.

We say that a functionf : T1 × . . . × Tm → T is poly-
injectivewhen it is injective and its inverses can be computed in
polynomial time, that is, there exist functionsf−1

j : T → Tj

(1 ≤ j ≤ m) such thatf−1
j (f(x1, . . . , xm)) = xj andf−1

j can
be computed in polynomial time in the length off(x1, . . . , xm)
and in the security parameter. Whenf is poly-injective,
we define a pattern matching constructlet f(x1, . . . , xm) =
M in P else Q as an abbreviation forlet y : T = M in
let x1 : T1 = f−1

1 (y) in . . . let xm : Tm = f−1
m (y) in

if f(x1, . . . , xm) = y then P else Q. We naturally generalize
this construct tolet N = M in P else Q whereN is built from
poly-injective functions and variables.

We denote byvar(P ) the set of variables that occur inP , and
by fc(P ) the set of free channels ofP . (We use similar notations
for input processes.)

2.2 Example

Let us introduce two cryptographic primitives that we use in the
following.

Definition 1 Let Tmr, Tmk, andTms be types that correspond
intuitively to random seeds, keys, and message authentication
codes, respectively;Tmr is a fixed-length type. A message au-
thentication code [15] consists of three function symbols:

• mkgen : Tmr → Tmk whereIη(mkgen) = mkgenη is
the key generation algorithm taking as argument a random
bitstring, and returning a key. (Usually,mkgen is a ran-
domized algorithm; here, since we separate the choice of
random numbers from computation,mkgen takes an addi-
tional argument representing the random coins.)

• mac : bitstring × Tmk → Tms whereIη(mac) = macη

is the MAC algorithm taking as argument a message and
a key, and returning the corresponding tag. (We assume
here thatmac is deterministic; we could easily encode a
randomizedmac by adding an additional argument as for
mkgen.)

• check : bitstring×Tmk×Tms → bool whereIη(check) =
checkη is a checking algorithm such thatcheckη(m, k, t) =
true if and only if t is a valid MAC of messagem under key
k. (Sincemac is deterministic,checkη(m, k, t) is typically
macη(m, k) = t.)

We have ∀m ∈ Bitstring ,∀r ∈ Iη(Tmr), checkη(m,
mkgenη(r),macη(m,mkgenη(r))) = true.

A MAC is UF-CMA (satisfies unforgeability under chosen
message attacks) if and only if for all polynomialsq,

max
A

Pr[r
R← Iη(Tmr); k ← mkgenη(r);

(m, t)← Amacη(.,k),checkη(.,k,.) : checkη(m, k, t)]

is negligible, where the adversaryA is any probabilistic Turing
machine, running in timeq(η), with oracle access tomacη(., k)
andcheckη(., k, .), andA has not calledmacη(., k) on message
m.
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Definition 2 Let Tr and T ′r be fixed-length types; letTk and
Te be types. A symmetric encryption scheme [13] consists of
three function symbolskgen : Tr → Tk, enc : bitstring ×
Tk × T ′r → Te, and dec : Te × Tk → bitstring⊥, with
Iη(kgen) = kgenη, Iη(enc) = encη, Iη(dec) = decη, such
that for all m ∈ Bitstring , r ∈ Iη(Tr), and r′ ∈ Iη(T ′r),
decη(encη(m, kgenη(r), r′), kgenη(r)) = m.

Let LR(x, y, b) = x if b = 0 andLR(x, y, b) = y if b = 1,
defined only whenx and y are bitstrings of the same length.
A symmetric encryption scheme is IND-CPA (satisfies indistin-
guishability under chosen plaintext attacks) if and only if for all
polynomialsq,

max
A

2 Pr

[
b

R←{0, 1}; r R← Iη(Tr); k ← kgenη(r);

b′ ← Ar′
R← Iη(T ′

r);encη(LR(.,.,b),k,r′) : b′ = b

]
− 1

is negligible, where the adversaryA is any probabilis-
tic Turing machine, running in timeq(η), with oracle
access to the left-right encryption algorithm which given
two bitstrings a0 and a1 of the same length, returns

r′
R← Iη(T ′r); encη(LR(a0, a1, b), k, r′), that is, encryptsa0

whenb = 0 anda1 whenb = 1.

Example 1 Let us consider the following trivial protocol:

A→ B : e,mac(e, xmk) wheree = enc(x′k, xk, x′′r )
andx′′r , x′k are fresh random numbers

A andB are assumed to share a keyxk for a symmetric encryp-
tion scheme and a keyxmk for a message authentication code.
A creates a fresh keyx′k, and sends it encrypted underxk to B.
A MAC is appended to the message, in order to guarantee in-
tegrity. The goal of the protocol is thatx′k should be a secret key
shared betweenA andB. This protocol can be modeled in our
calculus by the following processQ0:

Q0 = start(); new xr : Tr; let xk : Tk = kgen(xr) in

new x′r : Tmr; let xmk : Tmk = mkgen(x′r) in

c〈〉; (QA | QB)

QA = !i≤ncA[i](); new x′k : Tk; new x′′r : T ′r;
let xm : bitstring = enc(k2b(x′k), xk, x′′r ) in

cA[i]〈xm,mac(xm, xmk)〉

QB = !i
′≤ncB [i′](x′m, xma);

if check(x′m, xmk, xma) then

let i⊥(k2b(x′′k)) = dec(x′m, xk) in cB [i′]〈〉

WhenQ0 receives a message on channelstart, it begins execu-
tion: it generates the keysxk andxmk by choosing random coins
xr andxr′ and applying the appropriate key generation algo-
rithms. Then it yields control to the context (the adversary), by
outputting on channelc. After this output,n copies of processes
for A andB are ready to be executed, when the context outputs
on channelscA[i] or cB [i] respectively. In a session that runs
as expected, the context first sends a message oncA[i]. Then
QA creates a fresh keyx′k (Tk is assumed to be a fixed-length
type), encrypts it underxk with random coinsx′′r , computes the

MAC underxmk of the ciphertext, and sends the ciphertext and
the MAC oncA[i]. The functionk2b : Tk → bitstring is the
natural injectionIη(k2b)(x) = x; it is needed only for type
conversion. The context is then expected to forward this mes-
sage oncB [i]. WhenQB receives this message, it checks the
MAC, decrypts, and stores the obtained key inx′′k . (The func-
tion i⊥ : bitstring → bitstring⊥ is the natural injection; it is
useful to check that decryption succeeded.) This keyx′′k should
be secret.

The context is responsible for forwarding messages fromA to
B. It can send messages in unexpected ways in order to mount
an attack.

Although we use a trivial running example due to length con-
straints, this example is sufficient to illustrate the main features
of our prover. Section 6 presents results obtained on more real-
istic protocols.

2.3 Type System

We use a type system to check that bitstrings of the proper type
are passed to each function, and that array indices are used cor-
rectly.

To be able to type variable accesses used not under their defi-
nition (such accesses are guarded by afind construct), the type-
checking algorithm proceeds in two passes. In the first pass,
it builds a type environmentE , which maps variable namesx
to types[1, n1] × . . . × [1, nm] → T , where the definition of
x[i1, . . . , im] of type T occurs under replications!i1≤n1 , . . . ,
!im≤nm . The tool checks that all definitions of the same variable
x yield the same value ofE(x), so thatE is properly defined.

In the second pass, the process is typechecked in the type en-
vironmentE by a simple type system. This type system is de-
tailed in Appendix A in the supplemental material. It defines the
judgmentE ` Q which means that the processQ is well-typed
in environmentE .

Invariant 3 (Typing) The processQ0 satisfies Invariant 3 if
and only if the type environmentE for Q0 is well-defined, and
E ` Q0.

We require the adversary to be well-typed. This requirement
does not restrict its computing power, because it can always de-
fine type-cast functionsf : T → T ′ to bypass the type system.
Similarly, the type system does not restrict the class of protocols
that we consider, since the protocol may contain type-cast func-
tions. The type system just makes explicit which set of bitstrings
may appear at each point of the protocol.

2.4 Formal Semantics

The semantics is defined by a probabilistic reduction relation
formally detailed in Appendix B in the supplemental material.
The notationE,M ⇓ a means that the termM evaluates to the
bitstring a in environmentE. We denote byPr[Q  η c〈a〉]
the probability that at least one of the outputs ofQ on channel
c sends the bitstringa. (Whenc is not free inQ, Pr[Q  η

c〈a〉] = 0.)
Our semantics is such that, for each processQ, there exists

a probabilistic polynomial time Turing machine that simulates

5



Q. (Processes run in polynomial time since the number of pro-
cesses created by a replication and the length of messages sent
on channels are bounded by polynomials.) Conversely, our cal-
culus can simulate a probabilistic polynomial-time Turing ma-
chine, simply by choosing coins bynew and by applying a func-
tion symbol defined to perform the same computations as the
Turing machine.

2.5 Observational Equivalence

A context is a process containing a hole[ ]. An evaluation con-
text C is a context built from[ ], newChannel c;C, Q | C, and
C | Q. We use an evaluation context to represent the adversary.
We denote byC[Q] the process obtained by replacing the hole
[ ] in the contextC with the processQ. Our definition of ob-
servational equivalence is adapted from definitions for previous
calculi such as [37].

Definition 3 (Observational equivalence)Let Q and Q′ be
two processes, andV a set of variables. Assume thatQ andQ′

satisfy Invariants 1, 2, and 3 and the variables ofV are defined
in Q andQ′, with the same types.

An evaluation context is said to beacceptablefor Q, Q′, V
if and only if var(C) ∩ (var(Q) ∪ var(Q′)) ⊆ V and C[Q]
satisfies Invariants 1, 2, and 3. (ThenC[Q′] also satisfies these
invariants.)

We say thatQ and Q′ are observationally equivalentwith
public variablesV , written Q ≈V Q′, when for all evaluation
contextsC acceptable forQ, Q′, V , for all channelsc and bit-
stringsa, |Pr[C[Q] η c〈a〉]− Pr[C[Q′] η c〈a〉]| is negligi-
ble.

Intuitively, the goal of the adversary represented by context
C is to distinguishQ from Q′. When it succeeds, it performs a
different output, for examplec〈0〉 when it has recognizedQ and
c〈1〉 when it has recognizedQ′. WhenQ ≈V Q′, the context
has negligible probability of distinguishingQ from Q′.

The unusual requirement on variables ofC comes from the
presence of arrays and of the associatedfind construct which
givesC direct access to variables ofQ andQ′: the contextC is
allowed to access variables ofQ andQ′ only when they are inV .
(In more standard settings, the calculus does not have constructs
that allow the context to access variables ofQ and Q′.) The
following result is not difficult to prove:

Lemma 1 ≈V is an equivalence relation, andQ ≈V Q′ implies
that C[Q] ≈V ′

C[Q′] for all evaluation contextsC acceptable
for Q, Q′, V and allV ′ ⊆ V ∪ (var(C) \ (var(Q) ∪ var(Q′))).

We denote byQ ≈V
0 Q′ the particular case in which for all

evaluation contextsC acceptable forQ, Q′, V , for all channels
c and bitstringsa, Pr[C[Q]  η c〈a〉] = Pr[C[Q′]  η c〈a〉].
WhenV is empty, we writeQ ≈ Q′ instead ofQ ≈V Q′ and
Q ≈0 Q′ instead ofQ ≈V

0 Q′.

3 Game Transformations

In this section, we describe the game transformations that al-
low us to transform the process that represents the initial proto-

col into a process on which the desired security property can be
proved directly, by criteria given in Section 4. These transforma-
tions are parametrized by the setV of variables that the context
can access. As we shall see in Section 4,V contains variables
that we would like to prove secret. (The context will contain
test queries that access these variables.) These transformations
transform a processQ0 into a processQ′0 such thatQ0 ≈V Q′0.

3.1 Syntactic Transformations

RemoveAssign(x): When x is defined by an assignment
let x[i1, . . . , il] : T = M in P , we replacex with its value.
Precisely, the transformation is performed only whenx does
not occur inM (non-cyclic assignment). Whenx has sev-
eral definitions, we simply replacex[i1, . . . , il] with M in P .
(For accesses tox guarded byfind, we do not know which
definition of x is actually used.) Whenx has a single defini-
tion, we replace everywhere in the gamex[M1, . . . ,Ml] with
M{M1/i1, . . . ,Ml/il}. We additionally update thedefined
conditions offind to preserve Invariant 2, and to make sure that,
if a condition offind guarantees thatx[M1, . . . ,Ml] is defined in
the initial game, then so does the corresponding condition offind
in the transformed game. (Essentially, wheny[M ′1, . . . ,M

′
l′ ] oc-

curs inM , the transformation typically creates new occurrences
of y[M ′′1 , . . . ,M ′′l′ ] for someM ′′1 , . . . ,M ′′l′ , so the condition that
y[M ′′1 , . . . ,M ′′l′ ] is defined must sometimes be explicitly added
to conditions offind in order to preserve Invariant 2.) When
x ∈ V , its definition is kept unchanged. Otherwise, whenx
is not referred to at all after the transformation, we remove the
definition ofx. Whenx is referred to only at the root ofdefined
tests, we replace its definition with a constant. (The definition
point ofx is important, but not its value.)

Example 2 In the process of Example 1, the transforma-
tion RemoveAssign(xmk) substitutesmkgen(x′r) for xmk in
the whole process and removes the assignmentlet xmk :
Tmk = mkgen(x′r). After this substitution, mac(xm,
xmk) becomes mac(xm,mkgen(x′r)) and check(x′m, xmk,
xma) becomescheck(x′m,mkgen(x′r), xma), thus exhibiting
terms required in Section 3.2. The situation is similar for
RemoveAssign(xk).

SArename(x): The transformationSArename (single assign-
ment rename) aims at renaming variables so that each vari-
able has a single definition in the game; this is useful for dis-
tinguishing cases depending on which definition ofx has set
x[̃i]. This transformation can be applied only whenx /∈ V .
Whenx hasm > 1 definitions, we rename each definition of
x to a different variablex1, . . . , xm. Termsx[̃i] under a defini-
tion of xj [̃i] are then replaced withxj [̃i]. Each branch of find
FB = ũ[̃i] ≤ ñ suchthat defined(M ′1, . . . ,M

′
l′) ∧M then P

wherex[M1, . . . ,Ml] is a subterm of someM ′k for k ≤ l′ is re-
placed withm branchesFB{xj [M1, . . . ,Ml]/x[M1, . . . ,Ml]}
for 1 ≤ j ≤ m.

Example 3 Consider the following process

start(); new rA : Tr; let kA : Tk = kgen(rA) in

new rB : Tr; let kB : Tk = kgen(rB) in yield〈〉; (QK | QS)
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QK = !i≤nc[i](h : Th, k : Tk)

if h = A then let k′ : Tk = kA in yield〈〉 else
if h = B then let k′ : Tk = kB in yield〈〉 else
let k′ : Tk = k in yield〈〉

QS = !i
′≤n′

c′[i′](h′ : Th); find u ≤ n suchthat

defined(h[u], k′[u]) ∧ h′ = h[u] then P1(k′[u]) else P2

The processQK stores in(h, k′) a table of pairs (host name,
key): the key forA is kA, for B kB , and for any otherh, the ad-
versary can choose the keyk. The processQS queries this table
of keys to find the keyk′[u] of hosth′, then executesP1(k′[u]).
If h′ is not found, it executesP2.

By the transformationSArename(k′), we can perform a case
analysis, to distinguish the cases in whichk′ = kA, k′ = kB ,
or k′ = k. After transformation, we obtain the following pro-
cesses:

Q′K = !i≤nc[i](h : Th, k : Tk)

if h = A then let k′1 : Tk = kA in yield〈〉 else
if h = B then let k′2 : Tk = kB in yield〈〉 else
let k′3 : Tk = k in yield〈〉

Q′S = !i
′≤n′

c′[i′](h′ : Th);
find u ≤ n suchthat defined(h[u], k′1[u])

∧ h′ = h[u] then P1(k′1[u])
⊕ u ≤ n suchthat defined(h[u], k′2[u])
∧ h′ = h[u] then P1(k′2[u])

⊕ u ≤ n suchthat defined(h[u], k′3[u])
∧ h′ = h[u] then P1(k′3[u]) else P2

After the simplification (sketched below),Q′S becomes:

Q′′S = !i
′≤n′

c′[i′](h′ : Th);
find u ≤ n suchthat defined(h[u], k′1[u])

∧ h′ = A then P1(kA)
⊕ u ≤ n suchthat defined(h[u], k′2[u])
∧ h′ = B then P1(kB)

⊕ u ≤ n suchthat defined(h[u], k′3[u])
∧ h′ = h[u] then P1(k[u]) else P2

since, whenk′1[u] is defined,k′1[u] = kA andh[u] = A, and
similarly for k′2[u] andk′3[u].

Simplify : The prover uses a simplification algorithm, based on
an equational prover, using an algorithm similar to the Knuth-
Bendix completion [27]. This equational prover uses:

• User-defined equations, of the form∀x1 : T1, . . . ,∀xm :
Tm,M which mean that for all environmentsE, if for all
j ≤ m, E(xj) ∈ Iη(Tj), thenE,M ⇓ true. For exam-
ple, considering MAC and encryption shemes as in Defini-
tions 1 and 2 respectively, we have:

∀r : Tmr,∀m : bitstring ,

check(m,mkgen(r),mac(m,mkgen(r))) = true
(mac)

∀m : bitstring ;∀r : Tr,∀r′ : T ′r,

dec(enc(m, kgen(r), r′), kgen(r)) = i⊥(m)
(enc)

We express the poly-injectivity of the functionk2b of Ex-
ample 1 by

∀x : Tk,∀y : Tk, (k2b(x) = k2b(y)) = (x = y)

∀x : Tk, k2b−1(k2b(x)) = x
(k2b)

wherek2b−1 is a function symbol that denotes the inverse
of k2b. We have similar formulas fori⊥.

• Equations that come from the process. For example, in the
processif M then P else P ′, we haveM = true in P and
M = false in P ′.

• The low probability of collision between random values.
For example, whenx is defined bynew x : T andT is
a large type,x[M1, . . . ,Mm] = x[M ′1, . . . ,M

′
m] implies

M1 = M ′1, . . . ,Mm = M ′m up to negligible probability.

Similarly, when 1)x is defined bynew x : T andT is a
large type, 2) for each value ofM1, there is at most one
value ofx (or of a part ofx of a large type) that can yield
that value ofM1, and 3)M2 does not depend onx, then
M1 6= M2 up to negligible probability. The fact thatM2

does not depend onx is proved using a dependency analy-
sis.

The prover combines these properties to simplify terms, and uses
simplified forms of terms to simplify processes. For example, if
M simplifies totrue, then if M then P else P ′ simplifies to
P . Similarly, a branch offind is removed when the associated
condition simplifies tofalse.

Details on the simplification procedure can be found in Ap-
pendix C and the proof of the following proposition in Ap-
pendix E.1 in the supplemental material.

Proposition 1 Let Q0 be a process that satisfies Invariants 1,
2, and 3, andQ′0 the process obtained fromQ0 by one of the
transformations above. ThenQ′0 satisfies Invariants 1, 2, and 3,
andQ0 ≈V Q′0.

3.2 Applying the Definition of Security of Primi-
tives

The security of cryptographic primitives is defined using obser-
vational equivalences given as axioms. Importantly, this formal-
ism allows us to specify many different primitives in a generic
way. Such equivalences are then used by the prover in order to
transform a game into another, observationally equivalent game,
as explained in the following of this section.

The primitives are specified using equivalences of the form
(G1, . . . , Gm) ≈ (G′1, . . . , G

′
m) whereG is defined by the fol-

lowing grammar, withl ≥ 0 andm ≥ 1:

G ::= group of functions
!i≤nnew y1 : T1; . . . ; new yl : Tl; (G1, . . . , Gm)

replication, restrictions
(x1 : T1, . . . , xl : Tl)→ FP function
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FP ::= functional processes
M term
new x[̃i] : T ;FP random number
let x[̃i] : T = M in FP assignment
find (

⊕m
j=1 ũj [̃i] ≤ ñj suchthat

defined(Mj1, . . . ,Mjlj ) ∧Mj then FP j) else FP
array lookup

Intuitively, (x1 : T1, . . . , xl : Tl) → FP represents a function
that takes as argument valuesx1, . . . , xl of typesT1, . . . , Tl re-
spectively, and returns a result computed byFP . The obser-
vational equivalence(G1, . . . , Gm) ≈ (G′1, . . . , G

′
m) expresses

that the adversary has a negligible probability of distinguish-
ing functions in the left-hand side from corresponding functions
in the right-hand side. Formally, functions can be encoded as
processes that input their arguments and output their result on

a channel, as shown in Figure 2:[[FP ]]
ejei denotes the transla-

tion of the functional processFP into an output process;[[G]]
ejei

denotes the translation of the group of functionsG into an in-
put process. The translation of!i≤nnew y1 : T1; . . . ; new yl :
Tl; (G1, . . . , Gm) inputs and outputs on channelcej so that the
context can trigger the generation of random numbersy1, . . . , yl.
The translation of(x1 : T1, . . . , xl : Tl) → FP inputs the argu-
ments of the function on channelcej and translatesFP , which
outputs the result ofFP on cej . (In the left-hand side of equiv-
alences, the resultFP of functions must simply be a termM .)
The observational equivalence(G1, . . . , Gm) ≈ (G′1, . . . , G

′
m)

is then an abbreviation for[[(G1, . . . , Gm)]] ≈ [[(G′1, . . . , G
′
m)]].

For example, the security of a MAC (Definition 1) is repre-
sented by the equivalenceL ≈ R where:

L = !i
′′≤n′′

new r : Tmr; (

!i≤n(x : bitstring)→ mac(x, mkgen(r)),

!i
′≤n′

(m : bitstring ,ma : Tms)→
check(m,mkgen(r),ma))

R = !i
′′≤n′′

new r : Tmr; (

!i≤n(x : bitstring)→ mac′(x, mkgen′(r)),

!i
′≤n′

(m : bitstring ,ma : Tms)→
find u ≤ n suchthat defined(x[u]) ∧ (m = x[u])
∧ check′(m,mkgen′(r),ma) then true else false)

(maceq)

wheremac′, check′, andmkgen′ are function symbols with the
same types asmac, check, andmkgen respectively. (We use
different function symbols on the left- and right-hand sides, just
to prevent a repeated application of the transformation induced
by this equivalence. Since we add these function symbols, we
also add the equation

∀r : Tmr,∀m : bitstring ,

check′(m,mkgen′(r),mac′(m,mkgen′(r))) = true
(mac′)

which restates (mac) for mac′, check′, andmkgen′.) Intuitively,
the equivalenceL ≈ R leaves MAC computations unchanged
(except for the use of primed function symbols inR), and al-
lows one to replace a MAC checkingcheck(m,mkgen(r),ma)

with a lookup in the arrayx of messages whosemac has been
computed with keymkgen(r): if m is found in the arrayx and
check(m,mkgen(r),ma), we returntrue; otherwise, the check
fails (up to negligible probability), so we returnfalse. (If the
check succeeded withm not in the arrayx, the adversary would
have forged a MAC.) Obviously, the form ofL requires thatr
is used only to compute or check MACs, for the equivalence to
be correct. Formally, the following result shows the correctness
of our modeling. It is a fairly easy consequence of Definition 1,
and is proved in Appendix E.3 in the supplemental material.

Proposition 2 If (mkgen,mac, check) is a UF-CMA message
authentication code,Iη(mkgen′) = Iη(mkgen), Iη(mac′) =
Iη(mac), andIη(check′) = Iη(check), then[[L]] ≈ [[R]].

Similarly, we represent the security of an IND-CPA symmet-
ric encryption scheme (Definition 2) by the equivalence:

!i
′≤n′

new r : Tr; !i≤n(x : bitstring)→
new r′ : T ′r; enc(x, kgen(r), r′)

≈ !i
′≤n′

new r : Tr; !i≤n(x : bitstring)→
new r′ : T ′r; enc′(Z(x), kgen′(r), r′)

(enceq)

whereenc′ andkgen′ are function symbols with the same types
as enc andkgen respectively, andZ : bitstring → bitstring
is the function that returns a bitstring of the same length as
its argument, consisting only of zeroes. Using equations such
as ∀x : T,Z(T2b(x)) = ZT , we can prove thatZ(T2b(x))
does not depend onx when x is of a fixed-length type and
T2b : T → bitstring is the natural injection. The represen-
tation of other primitives can be found in Appendix D.3 in the
supplemental material. The equivalences that formalize the se-
curity assumptions of all primitives are designed and proved cor-
rect by hand, as in the MAC example. Importantly, these manual
proofs are done only once for each primitive, and the obtained
equivalence can be reused for proving many different protocols
automatically.

We use such equivalencesL ≈ R in order to transform a
processQ0 observationally equivalent toC[[[L]]] into a process
Q′0 observationally equivalent toC[[[R]]], for some evaluation
contextC. In order to check thatQ0 ≈V C[[[L]]], the prover uses
sufficient conditions, which essentially guarantee that all uses of
certain secret variables ofQ0, in a setS, can be implemented by
calling functions ofL. LetM be a set of occurrences of terms,
corresponding to uses of variables ofS. Informally, the prover
shows the following properties.

• For eachM ∈ M, there exist a termNM , which is the
result of a function ofL, and a substitutionσM such that
M = σMNM . (Precisely,σM applies to the abbreviated
form of NM in which we writex instead ofx[̃i].) Intu-
itively, the evaluation ofM in Q0 will correspond to a call
to the function with resultNM in C[[[L]]].

• The variables ofS do not occur inV , are bound by restric-
tions inQ0, and occur only in termsM = σMNM ∈ M
in Q0, at occurrences that are images byσM of variables
bound by restrictions inL. (To be precise, the variables of
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[[(G1, . . . , Gm)]] = [[G1]]1 | . . . | [[Gm]]m

[[!i≤nnew y1 : T1; . . . ; new yl : Tl; (G1, . . . , Gm)]]
ejei =

!i≤ncej [̃i, i](); new y1 : T1; . . . ; new yl : Tl; cej [̃i, i]〈〉; ([[G1]]
ej,1ei,i | . . . | [[Gm]]

ej,mei,i )

[[(x1 : T1, . . . , xl : Tl)→ FP ]]
ejei = cej [̃i](x1 : T1, . . . , xl : Tl); [[FP ]]

ejei
[[M ]]

ejei = cej [̃i]〈M〉
[[new x[̃i] : T ;FP ]]

ejei = new x[̃i] : T ; [[FP ]]
ejei

[[let x[̃i] : T = M in FP ]]
ejei = let x[̃i] : T = M in [[FP ]]

ejei
[[find (

⊕m
j=1 ũj [̃i] ≤ ñj suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then FP j) else FP ]]

ejei =

find (
⊕m

j=1 ũj [̃i] ≤ ñj suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then [[FP j ]]
ejei ) else [[FP ]]

ejei
wherecej are pairwise distinct channels,ĩ = i1, . . . , il′ , andj̃ = j0, . . . , jl′ .

Figure 2: Translation from functional processes to processes

S are also allowed to occur at the root ofdefined condi-
tions; in that case, their value does not matter, just the fact
that they are defined.)

• Let ĩ and ĩ′ be the sequences of current replication indices
atNM in L and atM in Q0, respectively. The prover shows
that there exists a functionmapIdxM that maps the array
indices atM in Q0 to the array indices atNM in L: the
evaluation ofM when ĩ′ = ã will correspond inC[[[L]]]
to the evaluation ofNM when ĩ = mapIdxM (ã). Thus,
σM andmapIdxM induce a correspondence between terms
and variables ofQ0 and variables ofL: for all M ∈ M,
for all x[ĩ′′] that occur inNM , (σMx){ã/ĩ′} corresponds
to x[ĩ′′]{mapIdxM (ã)/̃i}, that is,(σMx){ã/ĩ′} in a trace
of Q0 has the same value asx[ĩ′′]{mapIdxM (ã)/̃i} in the
corresponding trace ofC[[[L]]] (ĩ′′ is a prefix of̃i). We detail
below conditions that this correspondence has to satisfy.

For example, consider a processQ0 that containsM1 =
enc(M ′1, kgen(xr), x′r[i1]) under a replication!i1≤n1 andM2 =
enc(M ′2, kgen(xr), x′′r [i2]) under a replication!i2≤n2 , where
xr, x′r, x′′r are bound by restrictions. LetS = {xr, x

′
r, x
′′
r},

M = {M1,M2}, andNM1 = NM2 = enc(x[i′, i], kgen(r[i′]),
r′[i′, i]). The functionsmapIdxM1

andmapIdxM2
are defined

by

mapIdxM1
(a1) = (1, a1) for a1 ∈ [1, Iη(n1)]

mapIdxM2
(a2) = (1, a2 + Iη(n1)) for a2 ∈ [1, Iη(n2)]

Then M ′1{a1/i1} corresponds tox[1, a1], xr to r[1], x′r[a1]
to r′[1, a1], M ′2{a2/i2} to x[1, a2 + Iη(n1)], and x′′r [a2] to
r′[1, a2 + Iη(n1)]. The functionsmapIdxM1

andmapIdxM2

are such thatxr′ [a1] andxr′′ [a2] never correspond to the same
cell of r′; indeed,xr′ [a1] andxr′′ [a2] are independent random
numbers inQ0, so their images inC[[[L]]] must also be indepen-
dent random numbers.

The above correspondence must satisfy the following sound-
ness conditions:

• whenx is a function argument inL, the term that corre-
sponds tox[ã′] must have the same type asx[ã′], and when
two terms correspond to the samex[ã′], they must evaluate
to the same value;

• whenx is bound bynew x : T in L, the term that corre-
sponds tox[ã′] must evaluate toz[ã′′] wherez ∈ S andz is
bound bynew z : T in Q0, and the relation that associates
z[ã′′] to x[ã′] is an injective function (so that independent
random numbers inL correspond to independent random
numbers inQ0).

It is easy to check that, in the previous example, these conditions
are satisfied.

The transformation ofQ0 into Q′0 consists in two steps. First,
we replace the restrictions that define variables ofS with re-
strictions that define fresh variables corresponding to variables
bound bynew in R. The correspondence between variables of
Q0 and variablesC[[[L]]] is extended to include these fresh vari-
ables. Second, we reorganizeQ0 so that each evaluation of a
termM ∈M first stores the values of the argumentsx1, . . . , xm

of the function(x1 : T1, . . . , xm : Tm) → NM in fresh vari-
ables, then computesNM and stores its result in a fresh variable,
and uses this variable instead ofM ; then we simply replace the
computation ofNM with the corresponding functional process
of R, taking into account the correspondence of variables.

The full formal description of this transformation is given Ap-
pendix D.1 in the supplemental material. The following propo-
sition shows the soundness of the transformation and is proved
in Appendix E.4.

Proposition 3 Let Q0 be a process that satisfies Invariants 1,
2, and 3, andQ′0 the process obtained fromQ0 by the above
transformation. ThenQ′0 satisfies Invariants 1, 2, and 3, and
if [[L]] ≈ [[R]] for all polynomialsmaxlenη(cj0,...,jl

) andIη(n)
wheren is any replication bound ofL or R, thenQ0 ≈V Q′0.

Example 4 In order to treat Example 1, the prover is given as
input the indication thatTmr, Tr, T

′
r, andTk are fixed-length
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types; the type declarations for the functionsmkgen,mkgen′ :
Tmr → Tmk, mac,mac′ : bitstring × Tmk → Tms,
check, check′ : bitstring × Tmk × Tms → bool , kgen, kgen′ :
Tr → Tk, enc, enc′ : bitstring × Tk × T ′r → Te, dec :
Te × Tk → bitstring⊥, k2b : Tk → bitstring , i⊥ :
bitstring → bitstring⊥, Z : bitstring → bitstring , and the
constantZk : bitstring ; the equations (mac), (mac′), (enc),
and∀x : Tk,Z(k2b(x)) = Zk (which expresses that all keys
have the same length); the indication thatk2b andi⊥ are poly-
injective (which generates the equations (k2b) and similar equa-
tions fori⊥); equivalencesL ≈ R for MAC (maceq) and encryp-
tion (enceq); and the processQ0 of Example 1.

The prover first appliesRemoveAssign(xmk) to the pro-
cessQ0 of Example 1, as described in Example 2. The pro-
cess can then be transformed using the security of the MAC.
We takeS = {x′r}, M1 = mac(xm[i],mkgen(x′r)), M2 =
check(x′m[i′],mkgen(x′r), xma[i′]), and M = {M1,M2}.
We have NM1 = mac(x[i′′, i],mkgen(r[i′′])), NM2 =
check(m[i′′, i′],mkgen(r[i′′]),ma[i′′, i′]), mapIdxM1

(a1) =
(1, a1), andmapIdxM2

(a2) = (1, a2), soxm[a1] corresponds
to x[1, a1], x′r to r[1], x′m[a2] to m[1, a2], and xma[a2] to
ma[1, a2].

After transformation, we get the following processQ′0:

Q′0 = start(); new xr : Tr; let xk : Tk = kgen(xr) in

new x′r : Tmr; c〈〉; (Q′A | Q′B)

Q′A = !i≤ncA[i](); new x′k : Tk; new x′′r : T ′r;
let xm : bitstring = enc(k2b(x′k), xk, x′′r ) in

cA[i]〈xm,mac′(xm,mkgen′(x′r))〉

Q′B = !i
′≤ncB [i′](x′m, xma);

find u ≤ n suchthat defined(xm[u]) ∧ x′m = xm[u] ∧
check′(x′m,mkgen′(x′r), xma) then

(
if true then let i⊥(k2b(x′′k)) = dec(x′m, xk) in

cB [i′]〈〉
)

else

(
if false then let i⊥(k2b(x′′k)) = dec(x′m, xk) in

cB [i′]〈〉
)

The initial definition of x′r is removed and replaced with a
new definition, which we still callx′r. The termmac(xm,
mkgen(x′r)) is replaced withmac′(xm,mkgen′(x′r)). The term
check(x′m,mkgen(x′r), xma) becomesfind u ≤ n suchthat
defined(xm[u])∧x′m = xm[u]∧check′(x′m,mkgen′(x′r), xma)
then true else false which yieldsQ′B after transformation of
functional processes into processes. The process looks up the
messagex′m in the arrayxm, which contains the messages
whose MAC has been computed with keymkgen(x′r). If the
MAC of x′m has never been computed, the check always fails (it
returnsfalse) by the definition of security of the MAC. Other-
wise, it returnstrue whencheck′(x′m,mkgen′(x′r), xma).

After applyingSimplify , Q′A is unchanged andQ′B becomes

Q′B = !i
′≤ncB [i′](x′m, xma);

find u ≤ n suchthat defined(xm[u], x′k[u]) ∧
x′m = xm[u] ∧ check′(x′m,mkgen′(x′r), xma) then

let x′′k : Tk = x′k[u] in cB [i′]〈〉

First, the testsif true then . . . andif false then . . . are simpli-
fied. The termdec(x′m, xk) is simplified knowingx′m = xm[u]
by thefind condition,xm[u] = enc(k2b(x′k[u]), xk, x′′r [u]) by
the assignment that definesxm, xk = kgen(xr) by the assign-
ment that definesxk, anddec(enc(m, kgen(r), r′), kgen(r)) =
i⊥(m) by (enc). So we havedec(x′m, xk) = i⊥(k2b(x′k[u])).
By injectivity of i⊥ and k2b, the assignment tox′′k simply
becomesx′′k = x′k[u], using the equations∀x : bitstring ,
i−1
⊥ (i⊥(x)) = x and∀x : Tk, k2b−1(k2b(x)) = x.

After applying RemoveAssign(xk), we apply the se-
curity of encryption: enc(k2b(x′k), kgen(xr), x′′r ) becomes
enc′(Z(k2b(x′k)), kgen(xr), x′′r ). After Simplify , it becomes
enc′(Zk, kgen(xr), x′′r ), using∀x : Tk,Z(k2b(x)) = Zk (which
expresses that all keys have the same length).

Using lists instead of arrays simplifies this transformation:
we do not need to add instructions that insert values in the list,
since all variables are always implicitly arrays. Moreover, if
there are several occurrences ofmac(xi, k) with the same key
in the initial process, eachcheck(mj , k, maj) is replaced with a
find with one branch for each occurrence ofmac. Therefore,
the prover distinguishes automatically the cases in which the
checked MACmaj comes from each occurrence ofmac, that
is, it distinguishes cases depending on the value ofi such that
mj = xi. Typically, distinguishing these cases is useful in the
following of the proof of the protocol. (A similar situation arises
for other cryptographic primitives specified usingfind.)

4 Criteria for Proving Secrecy Proper-
ties

Let us now define syntactic criteria that allow us to prove secrecy
properties of protocols. The proofs for these results can be found
in Appendix E.5 in the supplemental material.

Definition 4 (One-session secrecy)The processQ preserves
the one-session secrecy ofx whenQ | Qx ≈ Q | Q′x, where

Qx = c(u1 : [1, n1], . . . , um : [1, nm]);
if defined(x[u1, . . . , um]) then c〈x[u1, . . . , um]〉

Q′x = c(u1 : [1, n1], . . . , um : [1, nm]);
if defined(x[u1, . . . , um]) then new y : T ; c〈y〉

c /∈ fc(Q), u1, . . . , um, y /∈ var(Q), andE(x) = [1, n1]× . . .×
[1, nm]→ T .

Intuitively, the adversary cannot distinguish a process that out-
puts the value of the secret from one that outputs a random num-
ber. The adversary performs a single test query, modeled byQx

andQ′x.
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Proposition 4 (One-session secrecy)Consider a processQ
such that there exists a set of variablesS such that 1) the defi-
nitions ofx are either restrictionsnew x[̃i] : T andx ∈ S, or
assignmentslet x[̃i] : T = z[M1, . . . ,Ml] wherez is defined
by restrictionsnew z[i′1, . . . , i

′
l] : T , andz ∈ S, and 2) all ac-

cesses to variablesy ∈ S in Q are of the form “let y′ [̃i] : T ′ =
y[M1, . . . ,Ml]” with y′ ∈ S. ThenQ | Qx ≈0 Q | Q′x, hence
Q preserves the one-session secrecy ofx.

Intuitively, only the variables inS depend on the restriction that
definesx; the sent messages and the control flow of the process
are independent ofx, so the adversary obtains no information
on x. In the implementation, the setS is computed by fixpoint
iteration, starting fromx or z and adding variablesy′ defined by
“ let y′ [̃i] : T ′ = y[M1, . . . ,Ml]” wheny ∈ S.

Definition 5 (Secrecy) The processQ preserves the secrecy of
x whenQ | Rx ≈ Q | R′x, where

Rx = !i≤nc(u1 : [1, n1], . . . , um : [1, nm]);
if defined(x[u1, . . . , um]) then c〈x[u1, . . . , um]〉

R′x = !i≤nc(u1 : [1, n1], . . . , um : [1, nm]);
if defined(x[u1, . . . , um]) then

find u′ ≤ n suchthat defined(y[u′], u1[u′], . . . , um[u′])
∧ u1[u′] = u1 ∧ . . . ∧ um[u′] = um

then c〈y[u′]〉 else new y : T ; c〈y〉

c /∈ fc(Q), u1, . . . , um, u′, y /∈ var(Q), E(x) = [1, n1] × . . . ×
[1, nm]→ T , andIη(n) ≥ Iη(n1)× . . .× Iη(nm).

Intuitively, the adversary cannot distinguish a process that out-
puts the value of the secret for several indices from one that out-
puts independent random numbers. In this definition, the ad-
versary can perform several test queries, modeled byRx and
R′x. This corresponds to the “real-or-random” definition of se-
curity [4]. (As shown in [4], this notion is stronger than the
more standard approach in which the adversary can perform a
single test query and some reveal queries, which always reveal
x[u1, . . . , um].)

Proposition 5 (Secrecy)Assume thatQ satisfies the hypothesis
of Proposition 4.

WhenT is a trace ofC[Q] for some evaluation contextC,
we definedefRestrT (x[ã]), the defining restriction ofx[ã] in
trace T , as follows: if x[ã] is defined bynew x[ã] : T in
T , defRestrT (x[ã]) = x[ã]; if x[ã] is defined bylet x[ã] :
T = z[M1, . . . ,Ml], defRestrT (x[ã]) = z[a′1, . . . , a

′
l] where

E,Mk ⇓ a′k for all k ≤ l andE is the environment inT at the
definition ofx[ã].

Assume that for all evaluation contextsC acceptable forQ, 0,
{x}, the probabilityPr[∃(T , ã, ã′), C[Q] reduces according to
T ∧ã 6= ã′∧defRestrT (x[ã]) = defRestrT (x[ã′])] is negligible.
ThenQ preserves the secrecy ofx.

The last hypothesis can be verified using the same equational
prover as forSimplify in Section 3.1, as detailed in Ap-
pendix E.2. Intuitively, this hypothesis guarantees that when
ã 6= ã′, we havedefRestrT (x[ã]) 6= defRestrT (x[ã′]) except in

cases of negligible probability, sox[ã] andx[ã′] are defined by
different restrictions, so they are independent random numbers.

This notion of secrecy composed with correspondence asser-
tions [46] can be used to prove security of a key exchange. (Cor-
respondence assertions are properties of the form “if some event
e(M̃) has been executed then some eventsei(M̃i) for i ≤ m
have been executed”.) We postpone this point to a future pa-
per, since we do not present the verification of correspondence
assertions in this paper. (We have recently implemented this ver-
ification in CryptoVerif.)

Lemma 2 If Q ≈{x} Q′ and Q preserves the one-session se-
crecy ofx thenQ′ preserves the one-session secrecy ofx. The
same result holds for secrecy.

We can then apply the following technique. When we want
to prove thatQ0 preserves the (one-session) secrecy ofx, we
transformQ0 by the transformations described in Section 3 with
V = {x}. By Propositions 1 and 3, we obtain a processQ′0 such
thatQ0 ≈V Q′0. We use Propositions 4 or 5 to show thatQ′0 pre-
serves the (one-session) secrecy ofx, and finally conclude that
Q0 also preserves the (one-session) secrecy ofx by Lemma 2.

Example 5 After the transformations of Example 4, the only
variable access tox′k in the considered process islet x′′k : Tk =
x′k[u] andx′′k is not used in the considered process. So by Propo-
sition 4, the considered process preserves the one-session se-
crecy ofx′′k (with S = {x′k, x′′k}). By Lemma 2, the process of
Example 1 also preserves the one-session secrecy ofx′′k . How-
ever, this process does not preserve the secrecy ofx′′k , because
the adversary can force several sessions ofB to use the same
key x′′k , by replaying the message sent byA. (Accordingly, the
hypothesis of Proposition 5 is not satisfied.)

The criteria given in this section might seem restrictive, but
in fact, they should be sufficient for all protocols, provided the
previous transformation steps are powerful enough to transform
the protocol into a simpler protocol, on which these criteria can
then be applied.

5 Proof Strategy

Up to now, we have described the available game transforma-
tions. Next, we explain how we organize these transformations
in order to prove protocols.

At the beginning of the proof, and after each successful
cryptographic transformation (that is, a transformation of Sec-
tion 3.2), the prover executesSimplify , and tests whether the
desired security properties are proved, as described in Section 4.
If so, it stops.

In order to perform the cryptographic transformations and the
other syntactic transformations, our proof strategy relies of the
idea of advice. Precisely, the prover tries to execute each avail-
able cryptographic transformation in turn. When such a cryp-
tographic transformation fails, it returns some syntactic trans-
formations that could make the desired transformation work.
(These are the advised transformations.) Then the prover tries to
perform these syntactic transformations. If they fail, they may
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also suggest other advised transformations, which are then ex-
ecuted. When the syntactic transformations finally succeed, we
retry the desired cryptographic transformation, which may suc-
ceed or fail, perhaps with new advised transformations, and so
on.

The prover determines the advised transformations as follows:

• Assume that we try to execute a cryptographic transfor-
mation, and need to recognize a certain termM of L,
but we find inQ0 only part of M , the other parts being
variable accessesx[. . .] while we expect function appli-
cations. In this case, we adviseRemoveAssign(x). For
example, ifQ0 containsenc(M ′, xk, x′r) and we look for
enc(xm, kgen(xr), xr′), we adviseRemoveAssign(xk). If
Q0 containslet xk = mkgen(xr) and we look formac(xm,
mkgen(xr)), we also adviseRemoveAssign(xk). (The
transformation of Example 2 is advised for this reason.)

• When we try to executeRemoveAssign(x), x has several
definitions, and there are accesses to variablex guarded by
find in Q0, we adviseSArename(x).

• When we check whetherx is secret or one-session se-
cret, we have an assignmentlet x[̃i] : T = y[M̃ ] in P ,
and there is at least one assignment definingy, we advise
RemoveAssign(y).

When we check whetherx is secret or one-session secret,
we have an assignmentlet x[̃i] : T = y[M̃ ] in P , y is
defined by restrictions,y has several definitions, and some
variable accesses toy are not of the formlet y′[ĩ′] : T =
y[M̃ ′] in P ′, then we adviseSArename(y).

These pieces of advice are the only ones we use, but one may
obviously extend them if needed.

6 Experimental Results

We have successfully tested our prover on a number of protocols
given in the literature. All these protocols have been tested in a
configuration in which the honest participants are willing to run
sessions with the adversary, and we prove secrecy of keys for
sessions between honest participants. In these examples, shared-
key encryption is encoded using a symmetric encryption scheme
and a MAC as in Example 1, public-key encryption is assumed
to be IND-CCA2 (indistinguishability under adaptive chosen-
ciphertext attacks) [14], public-key signature is assumed to be
UF-CMA (unforgeability under chosen message attacks).

For each proof, the prover outputs the sequence of games it
has built, a succinct explanation of the transformation performed
between consecutive games, and an indication whether the proof
succeeded or failed. When the proof fails, the prover still outputs
a sequence of games, but the last game of this sequence does not
show the desired property and cannot be transformed further by
the prover. Manual inspection of this game often makes it possi-
ble to understand why the proof failed: because there is an attack
(if there is an attack on the last game), because of a limitation of
the prover (if it should in fact be able to prove the property or to
transform the game further), for other reasons (such as the proto-
col cannot be proved from the given assumptions; this situation

may not lead immediately to a practical attack in the computa-
tional model).

Otway-Rees [40] We automatically prove the secrecy of the
exchanged key.

Yahalom [18] For the original version of the protocol, our
prover cannot show the one-session secrecy of the exchanged
key, because the protocol is not secure, at least using encrypt-
then-MAC as definition of encryption. Indeed, there is a con-
firmation round{NB}K whereK is the exchanged key. This
message may reveal some information onK. After removing
this confirmation round, our prover shows the one-session se-
crecy ofK. However, it cannot show the secrecy ofK, since
in the absence of a confirmation round, the adversary may force
several sessions of Yahalom to use the same key.

Needham-Schroeder shared-key [38] Like in the Yahalom
protocol, a key confirmation round may reveal some informa-
tion on the key. After removing this round, our prover shows the
one-session secrecy of the exchanged key. It does not prove the
secrecy of the exchanged key, because the adversary may force
several sessions of the protocol to use the same key. Our prover
shows the secrecy for the corrected version [39].

Denning-Sacco public-key [23] Our prover cannot show the
one-session secrecy of the exchanged key, since there is an at-
tack against this protocol [2]. The one-session secrecy of the
exchanged key is proved for the corrected version [2]. Secrecy
is not proved since the adversary can force several sessions of
the protocol to use the same key. (We do not model timestamps
in this protocol.) In contrast to the previous examples, we give
the main proof steps to the prover manually, as follows:

SArename Rkey
crypto enc rkB
crypto sign rkS
crypto sign rkA
success

The variableRkey defines a table of public keys, and is assigned
at three places, corresponding to principalsA and B, and to
other principals defined by the adversary (like the variablek′

in Example 3). The instructionSArename Rkey allows us
to distinguish these three cases. The instructioncrypto enc
rkB means that the prover should apply the definition of security
of encryption (primitiveenc ), for the key generated from ran-
dom numberrkB . The instructionsuccess means that prover
should check whether the desired security properties are proved.

Needham-Schroeder public-key [38] This protocol is an au-
thentication protocol. Since our prover cannot check authen-
tication yet, we transform it into a key exchange protocol in
several ways, by choosing for the key either one of the nonces
NA andNB shared betweenA andB, or H(NA, NB) where
H is a hash function (in the random oracle model). When the
key is H(NA, NB), the one-session secrecy of the key cannot
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be proved for the original protocol, due to the well-known at-
tack [33]. For the corrected version [33], our prover shows se-
crecy of the keyH(NA, NB). For both the original and the cor-
rected versions, the prover cannot prove the one-session secrecy
of NA or NB . For NB , the failure of the proof corresponds to
an attack: the adversary can check whether it is givenNB or a
random number by sending{N ′B}pkB

to B as the last message
of the protocol:B accepts if and only ifN ′B = NB . For NA,
the failure of the proof comes from limitations of our prover: the
prover cannot take into account thatNA is accepted only after
all messages that containNA have been sent, which prevents the
previous attack. (This is the only case in our examples where
the failure of the proof comes from limitations of the prover.
This problem could probably be solved by improving the trans-
formationSimplify .) Like for the Denning-Sacco protocol, we
provided the main proof steps to the prover manually, as follows
when the distributed key isNA or NB :

SArename Rkey
crypto sign rkS
crypto enc rkA
crypto enc rkB
success

When the distributed key isH(NA, NB), the proof is as follows:

SArename Rkey
crypto sign rkS
crypto enc rkA
crypto enc rkB
crypto hash
SArename Na_39
simplify
success

The total runtime for all these tests is 77 s on a Pen-
tium M 1.8 GHz, for version 1.03 of our prover CryptoVerif.
These examples are included in the CryptoVerif distribu-
tion available athttp://www.di.ens.fr/˜blanchet/
cryptoc-eng.html .

7 Related Work

Results that show the soundness of the Dolev-Yao model with
respect to the computational model, e.g. [21,26,36], make it pos-
sible to use Dolev-Yao provers in order to prove protocols in the
computational model. However, these results have limitations,
in particular in terms of allowed cryptographic primitives (they
must satisfy strong security properties so that they correspond to
Dolev-Yao style primitives), and they require some restrictions
on protocols (such as the absence of key cycles).

Several frameworks exist for formalizing proofs of protocols
in the computational model. Backes, Pfitzmann, and Waid-
ner [7,9,10] have designed an abstract cryptographic library in-
cluding symmetric and public-key encryption, message authen-
tication codes, signatures, and nonces and shown its soundness
with respect to computational primitives, under arbitrary active
attacks. Backes and Pfitzmann [8] relate the computational and

formal notions of secrecy in the framework of this library. Re-
cently, this framework has been used for a computationally-
sound machine-checked proof of the Needham-Schroeder-Lowe
protocol [44]. Canetti [19] introduced the notion of universal
composability. With Herzog [20], they show how a Dolev-Yao-
style symbolic analysis can be used to prove security properties
of protocols within the framework of universal composability,
for a restricted class of protocols using public-key encryption
as only cryptographic primitive. Then, they use the automatic
Dolev-Yao verification tool Proverif [17] for verifying proto-
cols in this framework. Lincoln, Mateus, Mitchell, Mitchell,
Ramanathan, Scedrov, and Teague [31,32,34,37,41] developed
a probabilistic polynomial-time calculus for the analysis of se-
curity protocols. They define a notion of process equivalence
for this calculus, derive compositionality properties, and de-
fine an equational proof system for this calculus. Datta, Derek,
Mitchell, Shmatikov, and Turuani [22] have designed a com-
putationally sound logic that enables them to prove computa-
tional security properties using a logical deduction system. The
frameworks mentioned in this paragraph can be used to prove
security properties of protocols in the computational sense, but
except for [20] which relies on a Dolev-Yao prover and for the
machine-checked proofs of [44], they have not been mechanized
up to now, as far as we know.

Laud [28] designed an automatic analysis for proving secrecy
for protocols using shared-key encryption, with passive adver-
saries. He extended it [29] to active adversaries, but with only
one session of the protocol. This work is the closest to ours.
We extend it considerably by handling more primitives, and a
polynomial number of sessions.

Recently, Laud [30] designed a type system for proving se-
curity protocols in the computational model. This type sys-
tem handles shared-key and public-key encryption, with an un-
bounded number of sessions. This system relies on the Backes-
Pfitzmann-Waidner library. A type inference algorithm is given
in [6].

Barthe, Cerderquist, and Tarento [11, 45] have formalized
the generic model and the random oracle model in the inter-
active theorem prover Coq, and proved signature schemes in
this framework. In contrast to our specialized prover, proofs in
generic interactive theorem provers require a lot of human effort,
in order to build a detailed enough proof for the theorem prover
to check it.

Halevi [24] explains that implementing an automatic prover
based on sequences of games would be useful, and suggests
ideas in this direction, but does not actually implement one.

8 Conclusion

This paper presents a prover for security protocols sound in the
computational model. This prover works with no or very little
help from the user, can handle a wide variety of cryptographic
primitives in a generic way, and produces proofs valid for a poly-
nomial number of sessions in the presence of an active adver-
sary. Thus, it represents important progress with respect to pre-
vious work in this area.

We have recently extended our prover to provide exact se-
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curity proofs (that is, proofs with an explicit probability of an
attack, instead of the asymptotic result that this probability is
negligible) and to prove correspondence assertions. We leave
these extensions for a future paper. In the future, it would
also be interesting to handle even more cryptographic primi-
tives, such as Diffie-Hellman key agreements. (The equivalence
!i≤nnew a : T ; new b : T ; (() → ga, () → gb, () → gab) ≈
!i≤nnew a : T ; new b : T ; new c : T ; (() → ga, () → gb, () →
gc) models the decisional Diffie-Hellman assumption. How-
ever, it is not sufficient for our prover to handle protocols that
use Diffie-Hellman key agreements, because the corresponding
cryptographic transformation would requiregab to be formed
only for a andb chosen in the same copy of a single replicated
process, which is typically not the case:a andb are chosen by
two different participants of the protocol. So a more involved
equivalence is needed, and in fact the language of equivalences
that we use to specify the security properties of primitives will
need to be extended.)

The essential idea of simulating proofs by sequences of games
in an automatic tool can be applied to any protocol or crypto-
graphic scheme. However, our tool applies in a fairly direct way
the security assumptions on the primitives, and cannot perform
deep mathematical reasoning. Therefore, it is best suited for
proving security protocols that use rather high-level primitives
such as encryption and signatures. It is more limited for proving
the security of such primitives from lower-level primitives, since
more subtle mathematical arguments are often needed.
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Appendices

A Type System

In this section, we define the type system, used in our calculus
to check that bitstrings belong to the expected type.

To be able to type variable accesses used not under their defi-
nition (such accesses are guarded by afind construct), the type-
checking algorithm proceeds in two passes. In the first pass, we
build a type environmentE , which maps variable namesx to
typesT1 × . . . × Tm → T , whereT1, . . . , Tm are the interval
types of the indices ofx, andT is the type ofx[i1, . . . , im]. This
type environment is built as follows:

• If x is defined bynew x[i1, . . . , im] : T , let x[i1, . . . ,
im] : T = M , or c[M1, . . . ,Ml](. . . , x[i1, . . . , im] : T,
. . .), and the replications above this subprocess are!i1≤n1 ,
. . . , !im≤nm , thenE(x) = [1, n1]× . . .× [1, nm]→ T .

• If u is defined by find . . . ⊕ . . . u[i1, . . . , im] ≤
n . . . suchthat defined(. . .) ∧ . . . then . . . ⊕ . . . and the
replications above thisfind are !i1≤n1 , . . . , !im≤nm , then
E(u) = [1, n1]× . . .× [1, nm]→ [1, n].

We require that all definitions of the same variablex yield the
same value ofE(x), so thatE is properly defined.

A process can then be typechecked in the type environmentE
using the rules of Figure 3. This figure defines three judgments:

• E ` M : T means that termM has typeT in environment
E .

• E ` P andE ` Q mean that the output processP and the
input processQ are well-typed in environmentE , respec-
tively.

In x[M1, . . . ,Mm], M1, . . . ,Mm must be of the suitable in-
terval type. Whenf(M1, . . . ,Mm) is called, andf : T1× . . .×
Tm → T , Mj must be of typeTj , andf(M1, . . . ,Mm) is then
of type T . The type system requires each subterm to be well-
typed. Furthermore, inlet x : T = M in P , M must be of type
T . In

find (
⊕m

j=1 uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj suchthat

defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj) else P

Mj is of typebool for all j ≤ m. In !i≤nQ, i is of type[1, n] in
Q. Fornew x[̃i] : T , T must be a fixed-length type.

We say that an occurrence of a termM in a processQ is of
typeT whenE ` M : T whereE is the type environment ofQ
extended withi 7→ [1, n] for each replication!i≤n aboveM in
Q.
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E(i) = T

E ` i : T
(TIndex)

E(x) = T1 × . . .× Tm → T ∀j ≤ m, E `Mj : Tj

E ` x[M1, . . . ,Mm] : T
(TVar)

f : T1 × . . .× Tm → T ∀j ≤ m, E `Mj : Tj

E ` f(M1, . . . ,Mm) : T
(TFun)

E ` 0 (TNil)

E ` Q E ` Q′

E ` Q | Q′
(TPar)

E [i 7→ [1, n]] ` Q

E ` !i≤nQ
(TRepl)

E ` Q

E ` newChannel c;Q
(TNewChannel)

∀j ≤ l, E `Mj : T ′j ∀j ≤ k, E ` xj [̃i] : Tj E ` P

E ` c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P
(TIn)

∀j ≤ l, E `Mj : T ′j ∀j ≤ k, E ` Nj : Tj E ` Q

E ` c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q
(TOut)

T fixed-length type E ` x[̃i] : T E ` P

E ` new x[̃i] : T ;P
(TNew)

E `M : T E ` x[̃i] : T E ` P

E ` let x[̃i] : T = M in P
(TLet)

∀j ≤ m,∀k ≤ mj , E ` ujk [̃i] : [1, njk]
∀j ≤ m,∀k ≤ lj , E `Mjk : Tjk

∀j ≤ m, E `Mj : bool ∀j ≤ m, E ` Pj E ` P

E ` find (
⊕m

j=1 uj1 [̃i] ≤ nj1, . . . , ujmj
[̃i] ≤ njmj

suchthat

defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj) else P

(TFind)

Figure 3: Typing rules

B Formal Semantics

B.1 Definition of the Semantics

The formal semantics of our calculus is presented in Figures 4
and 5. In this figure and in the following of the appendix,
we use] for multiset union. WhenS is a multiset,S(x) is
the number of elements ofS equal tox. A semantic config-
uration is a quadrupleE,P,Q, C, whereE is an environment
mapping array cells to bitstrings or⊥, P is the output process
currently scheduled,Q is the multiset of input processes run-
ning in parallel withP , C is the set of channels already cre-
ated. The semantics is defined by reduction rules of the form
E,P,Q, C p−→η,t E′, P ′,Q′, C′ meaning thatE,P,Q, C reduces
to E′, P ′,Q′, C′ with probabilityp, when the security parame-
ter is η. The value of the security parameter is often omitted
to lighten the notation. The indext just serves in distinguish-
ing reductions that yield the same configuration with the same
probability in different ways, so that the probability of a certain
reduction can be computed correctly:

Pr[E,P,Q, C →η E′, P ′,Q′, C′] =
∑

E,P,Q,C
p−→η,tE′,P ′,Q′,C′

p

The probability of a trace is computed as follows:

Pr[E1, P1,Q1, C1 →η . . .→η E′m, P ′m,Q′m, C′m]

=
m−1∏
j=1

Pr[Ej , Pj ,Qj , Cj →η E′j+1, P
′
j+1,Q′j+1, C′j+1]

We define an auxiliary relation for evaluating terms:E,M ⇓η

a, or simply E,M ⇓ a, means that the termM evaluates to
the bitstringa in environmentE. Rule (Cst) simply evaluates
constants to themselves. This rule serves for replication indices,
which are substituted with constant values when reducing the
replication. Rule (Var) looks for the value of the array variable
in the environment. Rule (Fun) evaluates the function call. Rules
(Def1) and (Def2) evaluate conditions offind: When someMk

is not defined,defined(M1, . . . ,Ml)∧M returnsfalse by (Def1).
Otherwise, it returns the boolean value ofM by (Def2).

We use an auxiliary reduction relation η, or simply , for
reducing input processes. This relation transforms configura-
tions of the formE,Q, C. Rule (Nil) removes nil processes.
Rules (Par) and (Repl) expand parallel compositions and repli-
cations, respectively. Rule (NewChannel) creates a new channel
and adds it toC. Semantic configurations are considered equiva-
lent modulo renaming of channels inC, so that a single semantic
configuration is obtained after applying (NewChannel). Rule
(Input) evaluates the terms in the input channel. The input it-
self is not executed: the communication is done by the (Output)
rule. The relation is convergent (confluent and terminating),
so it has normal forms. Since processes inQ in configurations
E,P,Q, C are in normal form by , they always start with an
input.

Rules (New) to (Find2) simply reduce the scheduled process.
As explained in the footnote page 3, we use an approximately
uniform probability distribution for choosing an element among
a setS whenm = |S| is not a power of 2. Letk be the smallest
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Terms andfind conditions:

E, a ⇓ a (Cst)

∀j ≤ m,E, Mj ⇓ aj x[a1, . . . , am] ∈ Dom(E)
E, x[M1, . . . ,Mm] ⇓ E(x[a1, . . . , am])

(Var)

∀j ≤ m,E, Mj ⇓ aj f : T1 × . . .× Tm → T
∀j ≤ m,aj ∈ Iη(Tj)

E, f(M1, . . . ,Mm) ⇓ Iη(f)(a1, . . . , am)
(Fun)

¬∀k ≤ l,∃ak, E, Mk ⇓ ak

E, (defined(M1, . . . ,Ml) ∧M) ⇓ false
(Def1)

∀k ≤ l,∃ak, E, Mk ⇓ ak E,M ⇓ a a ∈ {false, true}
E, (defined(M1, . . . ,Ml) ∧M) ⇓ a

(Def2)

Input processes:

E, {0} ] Q, C  E,Q, C (Nil)

E, {Q1 | Q2} ] Q, C  E, {Q1, Q2} ] Q, C (Par)

E, {!i≤nQ} ] Q, C  E, {Q{a/i} | a ∈ [1, Iη(n)]} ] Q, C
(Repl)

c′ /∈ C
E, {newChannel c;Q} ] Q, C
 E, {Q{c′/c}} ] Q, C ∪ {c′}

(NewChannel)

∀j ≤ l, E, Mj ⇓ aj

E, {c[M1, . . . ,Ml](x1[ã′] : T1, . . . , xk[ã′] : Tk);P} ] Q, C
 E, {c[a1, . . . , al](x1[ã′] : T1, . . . , xk[ã′] : Tk);P} ] Q, C

(Input)

reduce(E,Q, C) is the normal form ofE,Q, C by  

Figure 4: Semantics (1)

integer such that2k ≥ m. We choose a random integerr uni-
formly among[0, 2k+f(η) − 1] for a certain functionf . Whenr
is in [0, (2k+f(η) div m×m)− 1], r mod m returns a random
integer in[0,m−1], with the same probability for all elements of
[0,m−1]. Whenr is in [2k+f(η) div m×m, 2k+f(η)−1], we can
do anything; we choose to block. The probability of being in this
case is(2k+f(η) mod m)/2k+f(η) ≤ m/2k+f(η) ≤ 1/2f(η),
so it can be made as small as we wish by choosingf(η) large
enough. We choosef(η) ≥ αη for someα > 0, so that it is
negligible. The probability of choosing each element ofS is
thenamong(S) = 2k+f(η) div m

2k+f(η) . Thenamong(S) approximates
1/m. Rules (Find1) and (Find2) evaluate afind. They compute
the value of all conditionsDj ∧ Mj of this find for all possi-
ble values̃v of the indicesũj [ã′]. When all these conditions are
false, rule (Find2) executes theelse branch of thefind. When
at least one of these conditions is true, rule (Find1) chooses one
such true case (forj = j0 andṽ = ṽ0) with approximately uni-
form probability, and executes the correspondingthen branch of
the find.

Rule (Output) performs communications: it evaluates the
terms in the channel and the sent messages, selects an input
on the desired channel randomly, and immediately executes the

Output processes:

T fixed-length type a ∈ Iη(T )

E, new x[ã′] : T ;P,Q, C
1

|Iη(T )|−−−−→N(a) E[x[ã′] 7→ a], P,Q, C
(New)

E,M ⇓ a a ∈ Iη(T )

E, let x[ã′] : T = M in P,Q, C 1−→L E[x[ã′] 7→ a], P,Q, C
(Let)

∀j ≤ m,∀ṽ ≤ ñj , E[ũj [ã′] 7→ ṽ], (Dj ∧Mj) ⇓ aj,ev
S = {j, ṽ | aj,ev = true} aj0, ev0 = true

Ej0, ev0 = E[ũj0 [ã′] 7→ ṽ0]

E, find (
⊕m

j=1 ũj [ã′] ≤ ñj suchthat Dj ∧Mj then Pj)

else P,Q, C among(S)−−−−−−→F1(j0, ev0) Ej0, ev0 , Pj0 ,Q, C
(Find1)

∀j ≤ m,∀ṽ ≤ ñj , E[ũj [ã′] 7→ ṽ], (Dj ∧Mj) ⇓ false

E, find (
⊕m

j=1 ũj [ã′] ≤ ñj suchthat Dj ∧Mj then Pj)

else P,Q, C 1−→F2 E,P,Q, C
(Find2)

∀j ≤ l, E, Mj ⇓ aj ∀j ≤ k, E, Nj ⇓ bj

E,Q′, C′ = reduce(E, {Q′′}, C)
S = {Q ∈ Q | for somex′1, . . . , x

′
k, ã′′, T ′1, . . . , T

′
k, P ′,

Q = c[a1, . . . , al](x′1[ã′′] : T ′1, . . . , x
′
k[ã′′] : T ′k).P ′}

Q0 = c[a1, . . . , al](x1[ã′] : T1, . . . , xk[ã′] : Tk).P ∈ S
∀j ≤ k, b′j = bj&(2maxlenη(c) − 1) ∈ Iη(Tj)

E, c[M1, . . . ,Ml]〈N1, . . . , Nk〉.Q′′,Q, C
S(Q0)×among(S)−−−−−−−−−−−→O(Q0)

E[x1[ã′] 7→ b′1, . . . , xk[ã′] 7→ b′k], P,Q]Q′ \ {Q0}, C′
(Output)

Figure 5: Semantics (2)
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communication. The scheduled process after this rule is the re-
ceiving process. (The process blocks if no suitable input is avail-
able.)

The initial configuration for running processQ0 is
initConfig(Q0) = ∅, start〈〉,Q, C where ∅,Q, C =
reduce(∅, {Q0}, fc(Q0)).

Definition 6 Let c be a channel name anda be a bitstring.
We say thatE,P,Q, C executesc〈a〉 immediatelywhenP =
c〈M〉.Q andE,M ⇓ a for someQ andM .

The probability thatQ executesc〈a〉 is denotedPr[Q  η

c〈a〉]. Whenc ∈ fc(Q), Pr[Q  η c〈a〉] =
∑
T ∈T Pr[T ] where

T is the set of tracesinitConfig(Q) →η . . . →η Em, Pm,Qm,
Cm such thatEm, Pm,Qm, Cm executesc〈a〉 immediately and
for all j < m, Ej , Pj ,Qj , Cj does not executec〈a〉 immediately.
Whenc /∈ fc(Q), Pr[Q η c〈a〉] = 0.

B.2 Each Variable is Defined at Most Once

In this section, we show that Invariant 1 implies that each array
cell is assigned at most once during the execution of a process.

WhenS andS′ are multisets,max(S, S′) is the multiset such
that max(S, S′)(x) = max(S(x), S′(x)). We define the mul-
tiset of variable accesses that may be defined by a process as
follows:

Defined(0) = ∅
Defined(Q1 | Q2) = Defined(Q1) ]Defined(Q2)

Defined(!i≤nQ) =
⊎

a∈[1,Iη(n)]

Defined(Q{a/i})

Defined(newChannel c;Q) = Defined(Q)
Defined(c[M1, . . . ,Ml](x1[ã] : T1, . . . , xk[ã] : Tk);P ) =
{xj [ã] | j ≤ k} ]Defined(P )

Defined(c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q) = Defined(Q)
Defined(new x[ã] : T ;P ) = {x[ã]} ]Defined(P )
Defined(let x[ã] : T = M in P ) = {x[ã]} ]Defined(P )
Defined(find (

⊕m
j=1 ũj [ã] ≤ ñj suchthatdefined(Mj1,

. . . , Mjlj ) ∧Mj then Pj) else P ) =

max(
m

max
j=1
{ũj [ã]} ]Defined(Pj),Defined(P ))

We defineDefined(E) = Dom(E), Defined(E,P,Q, C) =
Defined(E) ]Defined(P ) ]

⊎
Q∈QDefined(Q).

Invariant 4 (Single definition, for executing games)The se-
mantic configurationE,P,Q, C satisfies Invariant 4 if and only
if Defined(E,P,Q, C) does not contain duplicate elements.

Lemma 3 If Q0 satisfies Invariant 1, theninitConfig(Q0) sat-
isfies Invariant 4.

Lemma 4 If E,P,Q, C p−→t E′, P ′,Q′, C′ with p > 0 and
E,P,Q, C satisfies Invariant 4, then so doesE′, P ′,Q′, C′.

Proof sketch We show by cases following the defini-
tion of

p−→t that if E,P,Q, C p−→t E′, P ′,Q′, C′ then

Defined(E,P,Q, C) ⊆ Defined(E′, P ′,Q′, C′). The result fol-
lows. �

Therefore, ifQ0 satisfies Invariant 1, then each variable is de-
fined at most once for each value of its array indices in a trace of
Q0. Indeed, by Invariant 4, just before executing a definition of
x[ã], Defined(E,P,Q, C) does not contain duplicate elements,
sox[ã] /∈ Dom(E) sincex[ã] ∈ Defined(P ) ]Defined(Q).

B.3 Variables are Defined Before Being Used

In this section, we show that Invariant 2 implies that all variables
are defined before being used. In order to show this property, we
use the following invariant:

Invariant 5 (Defined variables, for executing games)The se-
mantic configurationE,P,Q, C satisfies Invariant 5 if and only
if every occurrence of a variable accessx[M1, . . . ,Mm] in P or
Q is either

• present inDom(E): for all j ≤ m, E,Mj ⇓ aj and
x[a1, . . . , am] ∈ Dom(E);

• or syntactically under the definition ofx[M1, . . . ,Mm] (in
which case for allj ≤ m, Mj is a constant or variable
replication index);

• or in adefined condition in afind process;

• or in M ′j or Pj in a process of the formfind (
⊕m′′

j=1 ũj [̃i] ≤
ñj suchthat defined(M ′j1, . . . ,M

′
jlj

) ∧M ′j then Pj else P

where for somek ≤ lj , x[M1, . . . ,Mm] is a subterm of
M ′jk.

Lemma 5 If Q0 satisfies Invariant 2, theninitConfig(Q0) sat-
isfies Invariant 5.

Lemma 6 If E,P,Q, C p−→t E′, P ′,Q′, C′ with p > 0 and
E,P,Q, C satisfies Invariant 5, then so doesE′, P ′,Q′, C′.

Proof sketch If x[M1, . . . ,Mm] is in the second case of In-
variant 5, and we execute the definition ofx[M1, . . . ,Mm],
then for all j ≤ m, Mj is a constant replication index and
x[M1, . . . ,Mm] is added toDom(E) by rules (New), (Let),
(Find1), or (Output), so it moves to the first case of Invariant 5.

If x[M1, . . . ,Mm] is in the third case of Invariant 5, and we
execute the correspondingfind, this access tox simply disap-
pears.

If x[M1, . . . ,Mm] is in the last case of Invariant 5, and we
execute thefind selecting branchj, thenx[M1, . . . ,Mm] is a
subterm ofM ′jk for k ≤ lj . We show by induction onM that,
if E,M ⇓ a, then for all subtermsx[M1, . . . ,Mm] of M , for
all j′ ≤ m, E,Mj′ ⇓ aj′ andx[a1, . . . , am] is in Dom(E).
Therefore, by hypothesis of the semantic rule forfind, for all
j′ ≤ m, E,Mj′ ⇓ aj′ andx[a1, . . . , am] is in Dom(E). So
x[M1, . . . ,Mm] also moves to the first case of Invariant 5.

In all other cases, the situation remains unchanged. �
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Therefore, ifQ0 satisfies Invariant 2, then in traces ofQ0, the
testx[a1, . . . , am] ∈ Dom(E) in rule (Var) always succeeds,
except when the considered term occurs in adefined condition
of afind.

Indeed, consider an application of rule (Var), where the ar-
ray accessx[M1, . . . ,Mm] is not in adefined condition of a
find. Then, this array access is not under any variable definition
or find, so for all j ≤ m, E,Mj ⇓ aj andx[a1, . . . , am] ∈
Dom(E). Hence, the testx[a1, . . . , am] ∈ Dom(E) succeeds.

B.4 Typing

In this section, we show that our type system is compatible with
the semantics of the calculus, that is, we define a notion of typing
for semantic configurations, and show that typing is preserved
by reduction (subject reduction). Finally, the property that se-
mantic configurations are well-typed shows that certain condi-
tions in the semantics always hold.

We say thatE `η E if and only if E(x[a1, . . . , am]) = a
impliesE(x) = T1 × . . . × Tm → T with for all j ≤ m, aj ∈
Iη(Tj) anda ∈ Iη(T ). We defineE `η P asE ` P , E `η Q
asE ` Q, andE `η M : T asE ` M : T , with the additional
rule E `η a : T if and only if a ∈ Iη(T ). (This rule is useful
to type constant replication indices. In the formulas giving the
typing rules, replication indicesi may then also be constantsa.)
We say thatE `η E,P,Q, C if and only if E `η E, E `η P , and
for all Q ∈ Q, E `η Q. Similarly, E `η E,Q, C if and only if
E `η E and for allQ ∈ Q, E `η Q.

Lemma 7 If E `η E, E `η M : T , andE,M ⇓ a, thenE `η

a : T

Proof sketch By induction on the derivation ofE,M ⇓ a. �

Lemma 8 If E `η E,Q, C andE,Q, C  E′,Q′, C′, thenE `η

E′,Q′, C′.
So, ifE `η E,Q, C, thenE `η reduce(E,Q, C).

Proof sketch By cases on the derivation ofE,Q, C  
E′,Q′, C′. In the case of the replication, we use a substitution
lemma, noticing thata ∈ Iη([1, n]), soE `η a : [1, n]. In the
case of the input, we use Lemma 7. �

Lemma 9 If E ` Q0, thenE `η initConfig(Q0).

Proof sketch By Lemma 8 and the previous definitions. �

Lemma 10 (Subject reduction) If E `η E,P,Q, C and

E,P,Q, C p−→t E′, P ′,Q′, C′ with p > 0, then E `η

E′, P ′,Q′, C′.

Proof sketch By cases on the derivation ofE,P,Q, C p−→t

E′, P ′,Q′, C′, using Lemmas 7 and 8. �

As an immediate consequence of Lemmas 9, 10, and 7, we
obtain: if Q0 satisfies Invariant 3, then in traces ofQ0, the tests
T fixed-length typein rule (New),a ∈ Iη(T ) in rule (Let),∀j ≤
m,aj ∈ Iη(Tj) in rule (Fun), and the testa ∈ {false, true} in
rule (Def2) always succeed.

B.5 Runtime

Proposition 6 For each processQ, there exists a probabilistic
polynomial time Turing machine that simulatesQ.

Proof We give a very brief sketch of this proof here. We
refer the reader to [37] for a more detailed proof for a different
calculus; their proof could be adapted to our calculus.

The length of all bitstrings manipulated by processes is poly-
nomial in the security parameterη. Indeed, by hypothesis, the
length of received messages is limited bymaxlenη, so polyno-
mial in the security parameterη. The length of random bitstrings
is also polynomial in the security parameter by hypothesis on
the types. Function symbols correspond to functions that run in
polynomial time, so they output bitstrings of size polynomial in
the size of their inputs, so also polynomial in the security param-
eter.

Since the number of copies generated by each replication is
polynomial in the security parameter, the total number of exe-
cuted instructions is polynomial in the security parameter, and it
is easy to see that each instruction runs in polynomial time since
bitstrings are of polynomial length. Therefore, processes run in
polynomial time. �

C Simplification

In this section, we define the transformationSimplify , which
is used to simplify games. The simplification proceeds as fol-
lows. It uses information from several sources: equations and
rewrite rules given by user, that come in particular from alge-
braic properties of cryptographic primitives; facts that hold at
certain points in the game due to the form of the game; depen-
dency information obtained by two dependency analyses. (The
global dependency analysis tracks which variables depend on
any element of the arrayx at any program point. The local de-
pendency analysis tracks which terms depend on the current cell
of the arrayx, x[̃i], at each program point.) The simplification
algorithm uses this information in order to infer equalities using
a Knuth-Bendix-like equational prover. The obtained equalities
are used to simplify the game, by replacing a term with an equal
term or by simplifyingfind when the system proves that some
branches cannot be taken.

C.1 User-defined Rewrite Rules

The user can give two kinds of information:

• claims of the form∀x1 : T1, . . . ,∀xm : Tm,M which
mean that for all environmentsE, if for all j ≤ m,
E(xj) ∈ Iη(Tj), thenE,M ⇓ true.

Such claims must be well-typed, that is,{x1 7→ T1, . . . ,
xm 7→ Tm} `M : bool .

They are translated into rewrite rules as follows:

– If M is of the form M1 = M2 and var(M2) ⊆
var(M1), we generate the rewrite rule∀x1 : T1, . . . ,
∀xm : Tm,M1 →M2.

20



– If M is of the form M1 6= M2, we generate the
rewrite rules∀x1 : T1, . . . ,∀xm : Tm, (M1 =
M2) → false, ∀x1 : T1, . . . ,∀xm : Tm, (M1 6=
M2) → true. (Such rules are used for instance to
express that different constants are different.)

– Otherwise, we generate the rewrite rule∀x1 : T1, . . . ,
∀xm : Tm,M → true.

• claims of the formnew y1 : T ′1, . . . , new yl : T ′l ,∀x1 : T1,
. . . ,∀xm : Tm,M1 ≈ M2 with var(M2) ⊆ var(M1). In-
formally, these claims mean thatM1 andM2 evaluate to
the same bitstring except in cases of negligible probabil-
ity, provided thaty1, . . . , yl are chosen randomly with uni-
form probability amongT ′1, . . . , T

′
l respectively, and that

x1, . . . , xm are of typeT1, . . . , Tm. (x1, . . . , xm may de-
pend ony1, . . . , yl.) Formally, a first approach is to define
these claims as: for all polynomialsq, there exists a negli-
giblep(η) such that

max
A

Pr[E(y1)
R← Iη(T ′1); . . . E(yl)

R← Iη(T ′l );

(E(x1), . . . , E(xm))← A(E(y1), . . . , E(yl));
E,M1 ⇓ a;E,M2 ⇓ a′ : a 6= a′] ≤ p(η)

whereA is a probabilistic Turing machine running in time
q(η). However, this phrasing requires checking that the re-
strictions that createy1, . . . , yl are pairwise distinct, which
is sometimes delicate. (It may depend on the value of array
indices.) So we prefer the following definition, in which
the substitutionσ allows us to renamey1, . . . , yl to possi-
bly equal variablesy′1, . . . , y

′
l′ :

The claimnew y1 : T ′1, . . . , new yl : T ′l ,∀x1 :
T1, . . . ,∀xm : Tm,M1 ≈ M2 means that
for all polynomials q, there exists a negligi-
ble p(η) such that, for all substitutionsσ that
mapy1, . . . , yl to variablesy′1, . . . , y

′
l′ such that

σ{y1, . . . , yl} = {y′1, . . . , y′l′} and for allj ≤ l,
if σyj = y′j′ thenT ′′j′ = T ′j , we have

max
A

Pr[E(y′1)
R← Iη(T ′′1 ); . . . E(y′l′)

R← Iη(T ′′l′ );

(E(x1), . . . , E(xm))← A(E(y′1), . . . , E(y′l′));
E, σM1 ⇓ a;E, σM2 ⇓ a′ : a 6= a′] ≤ p(η)

whereA is a probabilistic Turing machine run-
ning in timeq(η).

The claims need to be adapted to this definition. For in-
stance, we writenew x : T ; new y : T ; pkgen(x) =
pkgen(y) ≈ x = y rather thannew x : T ; new y :
T ; pkgen(x) = pkgen(y) ≈ false, since we may have
pkgen(x) = pkgen(y) with probability 1 whenx andy
are in fact the same variable.

The above claim must be well-typed, that is,{x1 7→ T1,
. . . , xm 7→ Tm, y1 7→ T ′1, . . . , yl 7→ T ′l } `M1 = M2.

This claim is translated into the rewrite rulenew y1 : T ′1,
. . . , new yl : T ′l ,∀x1 : T1, . . . ,∀xm : Tm,M1 →M2.

The termM reduces intoM ′ by the rewrite rulenew y1 : T ′1,
. . . , new yl : T ′l ,∀x1 : T1, . . . ,∀xm : Tm,M1 → M2 if and
only if M = C[σM1], M ′ = C[σM2], whereC is a term con-
text andσ is a substitution that mapsxj to any term of typeTj

for all j ≤ m, andyj to terms to the formx[M̃ ] wherex is
defined only by restrictionsnew x : T ′j for all j ≤ l.

The prover has built-in rewrite rules for defining boolean
functions:

¬true→ false ¬false→ true ∀x : bool ,¬(¬x)→ x

∀x : T,∀y : T,¬(x = y)→ x 6= y

∀x : T,∀y : T,¬(x 6= y)→ x = y

∀x : T, x = x→ true ∀x : T, x 6= x→ false
∀x : bool ,∀y : bool ,¬(x ∧ y)→ (¬x) ∨ (¬y)
∀x : bool ,∀y : bool ,¬(x ∨ y)→ (¬x) ∧ (¬y)
∀x : bool , x ∧ true→ x ∀x : bool , x ∧ false→ false
∀x : bool , x ∨ true→ true ∀x : bool , x ∨ false→ x

The prover also has support for commutative function sym-
bols, that is, binary function symbolsf : T × T → T ′ such
that for allx, y ∈ Iη(T ), Iη(f)(x, y) = Iη(f)(y, x). For such
symbols, all equality and matching tests are performed modulo
commutativity. The functions∧, ∨, =, and 6= are commutative.
So, for instance, the last four rewrite rules above may also be
used to rewritetrue∧M into M , false∧M into false, true∨M
into true, andfalse ∨M into M . Used-defined functions may
also be declared commutative;xor is an example of such a com-
mutative function.

C.2 Collecting True Facts from a Game

We usefactsto represent properties that hold at certain program
points in processes. We consider two kinds of facts:defined(M)
means thatM is defined, and a termM means thatM is true (the
boolean termM evaluates totrue). In this section, we show how
to compute a set of factsFP that are guaranteed to hold at the
program pointP of the game.

The functioncollectFacts collects facts that hold at each pro-
gram point of the game. More precisely, for each occurrence
P of a subprocess of the game, it computes a setFP of facts
that hold at that occurrence. (It is important thatP is an occur-
rence and not a process: processes at several occurrences may
be equal, and must be distinguished from one another here.)
The functioncollectFacts also computes a setD containing
pairs (x[̃i], P ) wherex[̃i] has been defined just above process
P . (If there are several definitions ofx, there is one such
pair for each definition ofx.) Finally, for output processesP ,
collectFacts(P ) returns a set of facts that will hold when the
next output is executed, and stores this set inFFut

P . (The super-
scriptFut stands forfuture, since these facts do not hold yet at
P , but will hold in the future.)

The functioncollectFacts is defined in Figure 6. It is initially
called bycollectFacts(Q0). It takes into account thatx[̃i] may
be defined by an input, a restriction, a let, or a find, and updates
D accordingly. Furthermore, when we executelet x[̃i] : T =
M in P ′, x[̃i] = M holds inP ′ andx[̃i] is defined inP ′. When
we executefind (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj

[̃i] ≤ njmj
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collectFacts(Q) =
if Q = Q1 | Q2 then collectFacts(Q1); collectFacts(Q2)

if Q = !i≤nQ′ then collectFacts(Q′)
if Q = newChannel c;Q′ then collectFacts(Q′)

if Q = c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P then

FP = {defined(xj [̃i]) | j ≤ k};FFut
P = collectFacts(P )

D = D ∪ {(xj [̃i], P ) | j ≤ k}

collectFacts(P ) =

if P = c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q then
collectFacts(Q); return ∅

if P = new x[̃i] : T ;P ′ then

FP ′ = {defined(x[̃i])};FFut
P ′ = collectFacts(P ′)

D = D ∪ {(x[̃i], P ′)}; return FP ′ ∪ FFut
P ′

if P = let x[̃i] : T = M in P ′ then

FP ′ = {defined(x[̃i]), x[̃i] = M}
FFut

P ′ = collectFacts(P ′)

D = D ∪ {(x[̃i], P ′)}; return FP ′ ∪ FFut
P ′

if P = find (
⊕m

j=1
uj1 [̃i] ≤ nj1, . . . , ujmj

[̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj) elseP ′

then

for eachj ≤ m,

FPj
= {defined(uj1[ĩ′]), . . . , defined(ujmj

[ĩ′]),
defined(Mj1), . . . , defined(Mjlj ),Mj}
FFut

Pj
= collectFacts(Pj);

D = D ∪ {(uj1[ĩ′], Pj), . . . , (ujmj
[ĩ′], Pj)}

FP ′ = {¬Mj | mj = lj = 0};FFut
P ′ = collectFacts(P ′)

return (FP ′ ∪ FFut
P ′ ) ∩

m⋂
j=1

(FPj ∪ FFut
Pj

)

Figure 6: The functioncollectFacts

suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj) else P ′, Mj

holds in Pj , Mj1, . . . ,Mjlj , uj1 [̃i], . . . , ujmj [̃i] are defined in
Pj , and¬Mj holds inP ′ whenmj = lj = 0.

After calling collectFacts(Q0), we complete the computed
setsFP (whereP may be an input or output process) by adding
facts that come from processes aboveP :

FP ← FP ∪ FP ′ if P is immediately underP ′

We also add facts that we can deduce from factsdefined(M).
Precisely, ifdefined(M) ∈ FP , andx[M1, . . . ,Mm] is a sub-
term ofM , we take into account facts that are known to be true
at the definitions ofx by adding them toFP as follows:

FP ← FP ∪

 ⋂
(x[i1,...,im],P ′)∈D


σ(FP ′ ∪ (FFut

P ′ ∩ FP ))
if P is underP ′

σ(FP ′ ∪ FFut
P ′ ) otherwise


whereσ = {M1/i1, . . . ,Mm/im}. Indeed, ifdefined(M) ∈
FP and x[M1, . . . ,Mm] is a subterm ofM , thenx[M1, . . . ,
Mm] is defined atP , so some definition ofx[M1, . . . ,Mm], just
above the processP ′, must have been executed before reaching
P , so the facts that hold atP ′ also hold atP , with a suitable
substitution of indices: we haveσFP ′ , that is,FP ′{M1/i1, . . . ,
Mm/im}. Moreover, if the occurrenceP is not syntactically
under the occurrenceP ′, then the code ofP ′ must have been
executed until the next output before yielding control to some
other code and reachingP , so in factσ(FP ′ ∪ FFut

P ′ ) hold. If
P is syntactically underP ′, it is possible that the code ofP ′

has been executed until reachingP instead of until reaching the
next output, so we have onlyσ(FP ′ ∪ (FFut

P ′ ∩ FP )). If there
are several definitions ofx, we do not know which one has been
executed, so we only add toFP the facts that hold in all cases,
by taking the intersection on all definitions ofx.

This operation may add newdefined facts toFP , so it is
executed until a fixpoint is reached, except that, in order to
avoid infinite loops, we do not execute this step for definitions
defined(M) in which M contains nested occurrences of the
same symbol (such asx[. . . x[. . .] . . .]).

We also consider an additional fact that serves in express-
ing that the condition part of afind failed. Precisely, the
fact elsefind((u1 ≤ n1, . . . , um ≤ nm), (M1, . . . ,Ml),M)
means that for allu1 ∈ [1, n1], . . . , um ∈ [1, nm],
the terms M1, . . . ,Ml are not all defined orM is false.
The functioncollectElseFind described in Figure 7 collects
elsefind facts that hold at each occurrence. The function
collectElseFind(P,F) is called whenF is the set of true
elsefind facts at occurrenceP . It sets the value ofFElseFind

P

toF .

• In the case of restrictions, assignments, andthen branches
of find, it takes into account that a variablex or
uj1, . . . , ujmj is newly defined. Henceelsefind facts that
claim that one of these variables is not defined are removed.

• In the case of theelse branch of afind, it adds the new
elsefind facts that hold when the conditions of thefind fail.
These conditions express that eachthen branch of thefind
fails by aelsefind fact. To construct this fact, we replace
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collectElseFind(Q) =
if Q = Q1 | Q2 then

collectElseFind(Q1); collectElseFind(Q2)

if Q = !i≤nQ′ then collectElseFind(Q′)
if Q = newChannel c;Q′ then collectElseFind(Q′)

if Q = c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P then
collectElseFind(P, ∅)

collectElseFind(P,F) =

FElseFind
P = F

if P = c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q then
collectElseFind(Q)

if P = new x[̃i] : T ;P ′

or P = let x[̃i] : T = M in P ′ then

F ′ = {elsefind((ũ ≤ ñ), (M1, . . . ,Ml),M) ∈ F |
x does not occur inM1, . . . ,Ml}

collectElseFind(P ′,F ′)

if P = find (
⊕m

j=1
uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj) elseP ′

then

for eachj ≤ m,

F ′j = {elsefind((ũ ≤ ñ), (M1, . . . ,Ml),M) ∈ F
| uj1, . . . , ujmj

do not occur inM1, . . . ,Ml}
collectElseFind(Pj ,F ′j)

σj = {u1/uj1 [̃i], . . . , umj
/ujmj

[̃i]}
collectElseFind(P ′,F∪
{elsefind((u1 ≤ nj1, . . . , umj

≤ njmj
),

σj(Mj1, . . . ,Mjlj ), σjMj) | j ∈ {1, . . . ,m}})

Figure 7: The functioncollectElseFind

(by applyingσj) the termsuj1 [̃i], . . . , ujmj [̃i] with fresh
variablesu1, . . . , umj , respectively.

• In the case of an output, any code may be executed before
the input processes under it, so any variable may be defined
by that code, and allelsefind facts are removed. That is
why the functioncollectElseFind for input processes has
no F argument (this argument would always be empty),
and callscollectElseFind(P, ∅) for processesP that follow
an input.

Theelsefind facts can be used to add new facts to the factsFP .
Indeed, ifFP implies thatM1, . . . ,Ml are defined for some
values ofu1, . . . , um, then the factelsefind((u1 ≤ n1, . . . ,
um ≤ nm), (M1, . . . ,Ml),M) implies thatM is false for these
values ofu1, . . . , um. Precisely, we execute:

FP ← FP ∪ {¬σM | elsefind((u1 ≤ n1, . . . , um ≤ nm),

(M1, . . . ,Ml),M) ∈ FElseFind
P ,Dom(σ) = {u1, . . . , um},

for eachj ∈ {1, . . . , l}, σMj is a subterm ofM ′j and

defined(M ′j) ∈ FP }

The possible images ofσ are found by exploring the set of
defined facts inFP .

Furthermore, when the previous update ofFP adds facts, we
again complete the computed setsFP by adding facts that come
from processes aboveP :

FP ← FP ∪ FP ′ if P is immediately underP ′

We could also iterate the addition of consequences ofdefined
facts. (However, for simplicity, the current implementation does
not perform such an iteration.)

C.3 Global Dependency Analysis

For each variablex, the global dependency analysis tries to find
a set of variablesS such that only variables inS depend onx.
In particular, when the global dependency analysis succeeds, the
control flow and the view of the adversary do not depend onx,
except in cases of negligible probability.

Let x be a variable defined only by restrictionsnew x : T
whereT is a large type. LetSdef be a set of variables defined
only by assignments. LetSdep be a set of variables containing
x. (Intuitively, Sdep will be a superset of variables that depend
onx.)

We say that a functionf : T → T ′ is uniform when each
element ofIη(T ′) has at most|Iη(T )|/|Iη(T ′)| antecedents by
f . In particular, this is true in the following two cases:

• f is such thatf(x) is uniformly distributed inIη(T ′) if x is
uniformly distributed inIη(T ).

• f is the restriction to the image off ′ of an inverse off ′,
wheref ′ is a poly-injective function. (We consider that
f(x) is undefined whenx is not in the image off ′. Here,
in contrast to the rest of the paper, we allowf : T → T ′ to
be defined only on a subset ofIη(T ).) Precisely, whenxk ∈
Sdef is defined by a pattern-matchinglet f ′(x1, . . . , xn) =
M in P else P ′, we havexk = f ′

−1
k (M), but furthermore
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whenxk is defined we know that the value ofM is in the
image off ′, so we havexk = f(M) wheref = f ′

−1
k |im f ′ .

We say thatM characterizes a part ofx with Sdef ,Sdep

when for all M0 obtained fromM by substituting variables
of Sdef with their definition (when there is a dependency cy-
cle among variables ofSdef , we do not substitute a variable in-
side its definition),αM0 = M0 impliesf1(. . . fk((αx)[M̃ ′])) =
f1(. . . fk(x[M̃ ])) for some uniform functionsf1, . . . , fk and for
someM̃ andM̃ ′, whereα is a renaming of variables ofSdep to
fresh variables,x[M̃ ] is a subterm ofM0, (αx)[M̃ ′] is a subterm
of αM0, the variables inSdep do not occur iñM or M̃ ′, T is the
type of the result off1 (or of x whenk = 0), andT is a large
type. In that case, the value ofM uniquely determines the value
of f1(. . . fk(x[M̃ ])).

We use a simple rewriting prover to determine that. We con-
sider the set of termsM0 = {αM0 = M0}, and we rewrite
elements ofM0 using the first kind of user-defined rewrite
rules mentioned in the first point of this section and the rule
{M1 ∧M2} ∪M′ → {M1,M2} ∪M′.

WhenM0 can be rewritten to a set that contains an equal-
ity of the form f1(. . . fk(x[M̃ ])) = f1(. . . fk((αx)[M̃ ′])) or
f1(. . . fk((αx)[M̃ ′])) = f1(. . . fk(x[M̃ ])) for someM̃ andM̃ ′

such that the variables inSdep do not occur inM̃ or M̃ ′, we
have thatM characterizes a part ofx with Sdef , Sdep.

We say thatM characterizes a part ofx whenM character-
izes a part ofx with ∅, S′ whereS′ is {x} union the set of all
variables except those defined by restrictions. (We know that
variables different fromx and defined by restrictions do not de-
pend onx, so in the absence of more precise information, we
can setSdep = S′.)

We say thatonly dep(x) = S when intuitively, only variables
in S depend onx, and the adversary cannot see the value ofx.
Formally,only dep(x) = S when

• S ∩ V = ∅.

• Variables ofS do not occur in input or output channels or
messages, that is, they do not occur in the termsM1, . . . ,
Mm, N1, . . . , Nk in the inputc[M1, . . . ,Mm](x1 [̃i] : T1,

. . . , xk [̃i] : Tk) or in the outputc[M1, . . . ,Mm]〈N1, . . . ,
Nk〉.

• Variables ofS exceptx are defined only by assignments.

• If a variabley ∈ S occurs inM in let z : T = M in P ,
thenz ∈ S.

• Variables inS may occur indefined conditions offind but
only at the root of them.

• All termsMj in processesfind (
⊕m

j=1 ũj [̃i] ≤ ñj suchthat
defined(Mj1, . . . ,Mjlj )∧Mj then Pj) else P ′ are combi-
nations by∧, ∨, or ¬ of terms that either do not contain
variables inS or are of the formM1 = M2 or M1 6= M2

whereM1 characterizes a part ofx with S \ {x}, S and no
variable ofS occurs inM2, or M2 characterizes a part ofx
with S \ {x}, S and no variable ofS occurs inM1.

The last item implies that the result of tests does not depend on
the values of variables inS, except in cases of negligible proba-
bility. Indeed, the testsM1 = M2 with M1 characterizes a part
of x with S \ {x}, S andM2 does not depend on variables in
S are false except in cases of negligible probability, since the
value ofM1 uniquely determines the value off1(. . . fk(x[M̃ ]))
and M2 does not depend onf1(. . . fk(x[M̃ ])), so the equal-
ity M1 = M2 happens for a single value off1(. . . fk(x[M̃ ])),
which yields a negligible probability becausef1, . . . , fk are uni-
form, x is chosen with uniform probability, and the type of the
result off1 is large. Similarly, the testsM1 6= M2 are true ex-
cept in cases of negligible probability.

In checking the conditions ofonly dep(x) = S, we do not
consider the parts of the code that are unreachable due to tests
whose result is known by the conditions above.

The setS is computed by a fixpoint iteration, starting from
{x} and adding variables defined by assignments that depend
on variables already inS.

C.4 Local Dependency Analysis

For each program pointP and each variablex, the local depen-
dency analysis tries to find which variables and terms depend on
x[̃i] at program pointP , wherẽi denotes the current replication
indices at the definition ofx. It simplifies the game on-the-fly
when possible.

For each occurrence of a processP and each variablex such
that a restrictionnew x : T occurs aboveP andT is a large
type, we compute a set of termsindepP (x) that are indepen-
dent ofx[̃i] wherẽi denotes the current replication indices at the
definition ofx.

For each occurrence of a processP and each variablex such
that a restrictionnew x : T occurs aboveP andT is a large
type, we also computedependP (x) which can be either> (I
don’t know) or a set of pairs(y, M) wherey[̃i] depends onx[̃i]
by assignments, andM is a term definingy[̃i] as a function of
x[̃i]. (The tuplẽi denotes the current replication indices at the
definition ofx and ofy.)

We define “M characterizes a part ofx[̃i] at P ” as
follows. Let α be defined by α(f(M1, . . . ,Mm)) =
f(αM1, . . . , αMm); α(i) = i wherei is a replication index;
α(M ′) = M ′ whenM ′ ∈ indepP (x); α(y[M1, . . . ,Mm′ ]) =
y[αM1, . . . , αMm′ ] wheny 6= x andy either is defined only by
restrictions ordependP (x) 6= > and (y, M ′) /∈ dependP (x)
for anyM ′; α(y[M1, . . . ,Mm′ ]) = y′[αM1, . . . , αMm′ ] where
y′ is a fresh variable, otherwise. We writey′ = αy in this
case. We say thatM characterizes a part ofx[̃i] at P when
αM = M implies f1(. . . fk((αx)[̃i])) = f1(. . . fk(x[̃i])) for
some uniform functionsf1, . . . , fk, wherex[̃i] is a subterm of
M , (αx)[̃i] is a subterm ofαM , T ′ is the type of the result off1

(or of x whenk = 0), andT ′ is a large type. In that case, the
value ofM uniquely determines the value off1(. . . fk(x[̃i])).
This property is shown by a simple rewriting prover, as in the
global dependency analysis.

We denote bysubterms(M) the set of subterms of the term
M .

We say thatM does not depend onx at P when M is
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depAnal(Q, indep) =
∀y, dependQ(y) = >; indepQ = indep

if Q = Q1 | Q2 then
depAnal(Q1, indep); depAnal(Q2, indep)

if Q = !i≤nQ′ then depAnal(Q′, indep)
if Q = newChannel c;Q′ then depAnal(Q′, indep)

if Q = c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P then
depAnal(P, {∀y, y 7→ >}, indep)

Figure 8: Local dependency analysis (1)

built by function applications from terms inindepP (x), repli-
cations indices, and termsy[M1, . . . ,Mm] such thatM1, . . . ,
Mm do not depend onx at P , y 6= x, and eithery is defined
only by restrictions ordependP (x) 6= > and y 6= y′ for all
(y′,M ′) ∈ dependP (x). Since terms inindepP (x) do not de-
pend onx[̃i] and whendependP (x) 6= >, variables not in the
first component ofdependP (x) do not depend onx[̃i], the con-
ditions above guarantee thatM does not depend onx[̃i], where
ĩ are the current replication indices at the definition ofx.

Whendepend 6= >, we denote byMdepend the term ob-
tained fromM by replacingy[̃i] with M ′ for each(y, M ′) ∈
depend, wherẽi denotes the replication indices at the definition
of y.

We definesimplifyTerm such thatsimplifyTerm(M,P ) is a
simplified version ofM , equal toM except in cases of negli-
gible probability. The termsimplifyTerm(M,P ) is defined as
follows.

• Case 1:M is M1 = M2. For eachx, we proceed as fol-
lows. If dependP (x) = >, let M0 = M1; otherwise, let
M0 = M1dependP (x). Let M ′0 andM ′2 be obtained re-
spectively fromM0 andM2 by replacing all array indices
that depend onx atP with fresh replication indices. IfM ′0
characterizes a part ofx[̃i] at P , andM ′2 does not depend
on x at P , thensimplifyTerm(M,P ) = false. Indeed,M
is equal tofalse up to negligible probability in this case.
We have similar cases swappingM1 andM2 or whenM
is M1 6= M2. (In the latter case,simplifyTerm(M,P ) =
true.)

• Case 2:M is M1 ∧M2. Let M ′1 = simplifyTerm(M1, P )
andM ′2 = simplifyTerm(M2, P ). If M ′1 or M ′2 arefalse,
we returnfalse. If M ′1 is true, we returnM ′2. If M ′2 is true,
we returnM ′1. Otherwise, we returnM ′1 ∧M ′2. We have
similar cases whenM is M1 ∨M2 or¬M1.

• In all other cases,simplifyTerm(M,P ) = M .

The local dependency analysis is defined in Figures 8 and 9.
The functiondepAnal is initially called with depAnal(Q0, ∅)
where∅ designates the function defined nowhere.

• For input processes,depAnal setsdependQ(y) to >, so
thatdependQ gives no information, and propagatesindep.

Indeed, wheny[̃i′] is set in some output processP0, the

depAnal(P,depend, indep) =
dependP = depend; indepP = indep

if P = c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q then
depAnal(Q, indep)

if P = new x[̃i] : T ;P ′ then
if T is a large type then

depend′(x) = ∅
indep′(x) =

⋃
defined(M)∈FP

subterms(M)

∀y 6= x,depend′(y) = depend(y),

indep′(y) = indep(y) ∪ {x[̃i]}
depAnal(P ′,depend′, indep′)

if P = let x[̃i] : T = M in P ′ then
∀y, if M does not depend ony atP then

depend′(y) = depend(y)

indep′(y) = {x[̃i]} ∪ indep(y)
else

if depend(y) 6= > then

depend′(y) = depend(y)∪{(x, Mdepend(y))}
else

depend′(y) = >
indep′(y) = indep(y)

depAnal(P ′,depend′, indep′)

if P = find (
⊕m

j=1
uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj) elseP ′

then

for eachj ≤ m,M ′j = simplifyTerm(Mj , P )

replaceMj with M ′j

if M ′j = false then remove thej-th branch

if M ′j = true andlj = 0 then replaceP ′with yield〈〉
if m = 0 then

replaceP with P ′; depAnal(P ′,depend, indep)
else ifm = 1, m1 = l1 = 0, andM1 = true then

replaceP with P1; depAnal(P1,depend, indep)
else

∀y, if ∀j, k, Mjk andM ′j do not depend ony atP then

depend′(y) = depend(y)
for eachj ≤ m, indepj(y) = indep(y) ∪ {M ′ |

M ′∈subterms(M) for somedefined(M)∈FPj
,

M ′ does not depend ony atP}
else

depend′(y) = >
for eachj ≤ m, indepj(y) = indep(y)

for eachj ≤ m,depAnal(Pj ,depend′, indepj)

depAnal(P ′,depend′, indep)

Figure 9: Local dependency analysis (2)
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value ofy[̃i′] may be output byP0 or read byfind in other
output processes executed afterP0, so as soon asP0 passes
control to another process by the first output after the def-
inition of y, we lose track of exactly which variables de-
pend ony[̃i′]. However, variables already defined before
P0 passes control to another process and proved to be in-
dependent ofy[̃i′] remain independent ofy[̃i′], so we can
propagateindep in all subprocesses ofP0.

• In the case of an output,depAnal forgets the information
in dependP as mentioned above.

• In the case of a restrictionnew x[̃i] : T , if T is a large type,
we create the dependency information for the newly de-
fined variablex: no variable depends onx[̃i], and all terms
already defined before the restriction are independent of
x[̃i]. We also note thatx[̃i] is independent ofy[̃i′] for other
variablesy by addingx[̃i] to indep(y).

• In the case of an assignmentlet x[̃i] : T = M , if M de-
pends ony[̃i′] for some variabley, thenx[̃i] depends on
y[̃i′], sox is added todepend(y) (if it is not >); otherwise,
x[̃i] does not depend ony[̃i′] so it is added toindep(y).

• In the case of afind, we first simplify each condition of
thefind, remove branches when we can prove that they are
taken with negligible probability, and remove thefind itself
when we know which branch is taken and this branch of
the find does not define variables. Furthermore, if some
condition of find depends ony[̃i] for some variabley,
depend′(y) is set to>: the control flow depends ony[̃i]
so future assignments in fact depend ony[̃i] even if the as-
signed expression itself does not, so we can no longer keep
track precisely of which variables depend ony[̃i]. Other-
wise, we add all terms that are guaranteed to be defined
and independent ofy[̃i] to indep(y).

C.5 Equational Prover

We use an algorithm inspired by the Knuth-Bendix completion
algorithm [27], with differences detailed below.

The prover manipulates pairsF ,R whereF is a set of facts
(M or defined(M)) andR is a set of rewrite rulesM1 → M2.
We say thatM reduces intoM ′ by M1 → M2 when M =
C[M1] andM ′ = C[M2] for some term contextC. (That is, all
variables in rewrite rules ofR are considered as constants.) The
prover starts with a certain set of factsF andR = ∅. Then the
prover transforms the pairs(F ,R) by the following rules (the
rule F,R

F ′,R′ means thatF ,R is transformed intoF ′,R′):

F ∪ {F},R
F ∪ {F ′},R

if F reduces intoF ′ by a rule ofR or
a user-defined rewrite rule

(1)

F ∪ {M1 ∧M2},R
F ∪ {M1,M2},R

(2)

F ∪ {x[M1, . . . ,Mm] = x[M ′1, . . . ,M
′
m]},R

F ∪ {M1 = M ′1, . . . ,Mm = M ′m},R
whenx is defined only by restrictions
new x : T andT is a large type

(3)

F ∪ {M1 = M2},R
{false},R

when one of the following conditions
holds:

• denoting byM ′1 the term obtained fromM1 by replac-
ing all array indices that are not replication indices with
fresh replication indices, we have the following proper-
ties: x occurs inM ′1, x is defined only by restrictions
new x : T , T is a large type,M ′1 characterizes a part of
x, andM2 is obtained by optionally applying function
symbols to terms of the formy[M̃ ] wherey is defined
only by restrictions andy 6= x;

• x occurs inM1, x is defined only by restrictionsnew x :
T , T is a large type,M1 characterizes a part ofx,
only dep(x) = S, and no variable ofS occurs inM2;

• simplifyTerm(M1 = M2, P ) = false, whereP is the
current program point.

(4)

F ∪ {M = M ′},R
F ,R∪ {M →M ′}

if M > M ′ (5)

F ,R∪ {M1 →M2}
F ∪ {M1 = M ′2},R

if M2 reduces intoM ′2 by a rule ofR
or a user-defined rewrite rule

(6)

F ,R∪ {M1 →M2}
F ∪ {M ′1 = M2},R

if M1 reduces intoM ′1 by a rule ofR

(7)

We also use the symmetrics of Rules (4) and (5) obtained by
swapping the two sides of the equality.

Rule (1) simplifies facts using rewrite rules. Rule (2) decom-
poses conjunctions of facts. Rules (3) and (4) exploit the elimi-
nation of collisions between random values. Rule (3) takes into
account that, whenx is defined by a restriction of a large type,
two different cells ofx have a negligible probability of contain-
ing the same value. So when two cells ofx contain the same
value, we can conclude up to negligible probability that they are
the same cell. Rule (4) expresses thatM1 andM2 have a negligi-
ble probability of being equal whenx is defined by a restriction
of a large type,M1 characterizes a part ofx, andM2 does not
depend ofx. The first item of (4) establishes these properties
without further dependency analysis; the second item exploits
the global dependency analysis; and the third item exploits the
local dependency analysis.

Rule (5) is applied only when Rules (1) to (4) cannot be ap-
plied. Rule (5) transforms equations into rewrite rules by ori-
enting them. We say thatM > M ′ when eitherM is the form
x[M̃ ], x does not occur inM ′, andx is not defined only by
restrictions, orM = x[M1, . . . ,Mm], M ′ = x[M ′1, . . . ,M

′
m],

and for all j ≤ m, Mj > M ′j . Intuitively, our goal is to re-
placeM with M ′ whenM ′ defines the content of the variable
M . (Notice that this is not an ordering; the Knuth-Bendix al-
gorithm normally uses a reduction ordering to orient equations.
However, we tried some reduction orderings, namely the lex-
icographic path ordering and the Knuth-Bendix ordering, and
obtained disappointing results: the prover fails to prove many
equalities because too many equations are left unoriented. The
simple heuristic given above succeeds more often, at the expense
of a greater risk of non-termination, but that does not cause prob-
lems in practice on our examples. We believe that this comes
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from the particular structure of equations, which come fromlet
definitions and from conditions offind or if, and tend to define
variables from other variables without creating dependency cy-
cles.)

Rules (6) and (7) are systematically applied to simplify all
rewrite rules ofR after a new rewrite rule has been added by
Rule (5). Since all terms in rewrite rules ofR are considered as
constants, Rule (7) in fact includes the deduction of equations
from critical pairs done by the standard Knuth-Bendix comple-
tion algorithm.

We say thatF yields a contradictionwhen the prover starting
from (F , ∅) derivesfalse.

C.6 Game Simplification

We use the following transformations in order to simplify games.
These transformations exploit the information collected as ex-
plained in the previous sections.

• Each termM in the game is replaced with a simplified term
M ′ obtained by reducingM by user-defined rewrite rules
(first point of this section) and the rewrite rules obtained
fromFPM

by the above equational prover wherePM is the
smallest process containingM . The replacement is per-
formed only when at least one user-defined rewrite rule has
been used, to avoid complicating the game by substituting
all variables with their value.

• If P = find (
⊕m

j=1 uj1 [̃i] ≤ nj1, . . . , ujmj
[̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj) else P ′,

ujk [̃i] reduces intoM ′ by user-defined rewrite rules (first
point of this section) and the rewrite rules obtained from
FPj

, andujk does not occur inM ′, thenujk is removed

from thej-th branch of thisfind, ujk [̃i] is replaced withM ′

in Mj1, . . . ,Mjlj ,Mj andPj is replaced withlet ujk [̃i] :
[1, njk] = M ′ in Pj . (Intuitively, ujk [̃i] = M ′, so the
value ofujk [̃i] can be computed by evaluatingM ′ instead
of performing an array lookup. We removeujk [̃i] from the
variables looked up byfind and replaceujk [̃i] with its value
M ′.)

• Suppose thatP = find (
⊕m

j=1 uj1 [̃i] ≤ nj1, . . . ,

ujmj [̃i] ≤ njmj suchthat defined(Mj1, . . . ,Mjlj ) ∧ Mj

then Pj) else P ′, x[N1, . . . , Nl] is a subterm ofMjk, and
none of the following conditions holds: a)P is under a def-
inition of x in Q0; b) Q0 containsQ1 | Q2 such that a def-
inition of x occurs inQ1 andP is underQ2 or a definition
of x occurs inQ2 andP is underQ1; c) Q0 containslp+1
replications above a processQ that contains a definition of
x andP , wherelp is the length of the longest common pre-
fix betweenN1, . . . , Nl and the current replication indices
at the definitions ofx. Then thej-th branch of thefind is
removed. (In this case,x[N1, . . . , Nl] cannot be defined at
P , so thej-th branch of thefind cannot be taken.)

• If P = find (
⊕m

j=1 ũj [̃i] ≤ ñj suchthat defined(Mj1, . . . ,
Mjlj )∧Mj then Pj) else P ′ andFPj

yields a contradiction,
then thej-th branch of thefind is removed.

• If P = find else P ′, thenP is replaced withP ′.

• If find (
⊕m

j=1 ũj [̃i] ≤ ñj suchthat defined(Mj1, . . . ,
Mjlj ) ∧Mj then Pj) else P ′ andFP ′ yields a contradic-
tion, thenP ′ is replaced withyield〈〉.

• If P = find ũ[̃i] ≤ ñ suchthat M then P1 else P ′, FP ′

yields a contradiction, and the variables inũ are not used
outsideP and are not inV , thenP is replaced withP1.
(When thefind defines variables̃u used elsewhere, we can-
not remove it.)

• If P = find (
⊕m

j=1 ũj [̃i] ≤ ñj suchthat defined(Mj1, . . . ,

Mjlj ) ∧ Mj then yield〈〉) else yield〈〉 and the variables
in ũj are not used outsideP and are not inV , thenP is
replaced withyield〈〉.

• The defined conditions offind are updated so that Invari-
ant 2 is satisfied. (When such adefined condition guaran-
tees thatM is defined,defined(M) implies defined(M ′),
and after simplificationM ′ appears in the scope of this con-
dition, thenM ′ has to be added to this condition if it is not
already present.)

• If P = new x : T ;P ′ or let x : T = M in P ′ andx is not
used in the game and is not inV , thenP is replaced with
P ′.

C.7 Further Simplifications

After applying the game simplifications described above, we fur-
ther apply the following transformations:

MoveNewWe move restrictions downwards in the code as much
as possible, when they have no array access usingfind. A
new x[̃i] : T cannot be moved under a replication, or under a
parallel composition when both sides usex, or a letlet y[̃i] : T =
M in . . ., input c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk), out-
put c[M1, . . . ,Ml]〈N1, . . . , Nk〉 whenx occurs inM,M1, . . . ,
Ml, N1, . . . , Nk, or a find when the conditions usex. It can
be moved under the other constructs, duplicating it if necessary,
when we move it under afind that usesx in several branches.
Note that when the restrictionnew x[̃i] : T cannot be moved
under an input, a parallel composition, or a replication, it must
be written above the output that is located above the considered
input, parallel composition or replication, so that the syntax of
processes is not violated.

When this transformation duplicates anew x[̃i] : T by mov-
ing it under afind that usesx in several branches, a subsequent
SArename(x) enables us to distinguish several cases depending
in which branchx is created, which is useful in some proofs.

RemoveAssign(useless): As a particular case of the transfor-
mationRemoveAssign, we remove useless assignments, that is,
assignments tox whenx is unused and assignmentslet x[̃i] :
T = y[M̃ ]. Since removing such assignments may also remove
uses of other variables, we repeat this removal until a fixpoint is
reached.

SArename(auto): As a particular case of the transformation
SArename, whenx hasm > 1 definitions and all variable ac-
cesses tox are of the formx[i1, . . . , il] under a definition of
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x[i1, . . . , il], wherei1, . . . , il are the current replication indices
at this definition ofx (that is,x has no array access usingfind),
we renamex to x1, . . . , xm with a different name for each defi-
nition.

D Applying the Definition of Security of
Primitives

D.1 Formalization of the Transformation

In this appendix, we formalize the transformation performed by
exploiting equivalences that come from the definition of security
of cryptographic primitives. We require the following conditions
for the equivalencesL ≈ R that model cryptographic primitives:

H0. [[L]] and[[R]] satisfy Invariants 1, 2, and 3. Furthermore, the
result of each function inR has the same type as the result
of the corresponding function ofL.

H1. In L, the functional processesFP are simply termsM ; all
their array accesses use the current replication indices. (Al-
lowing let or find in L is difficult, because we need to rec-
ognize the termsM in a context and in a possibly syntacti-
cally modified form.)

H2. L andR have the same structure: same replications, same
number of functions, same number of arguments with the
same types for each function.

H3. The variablesyj defined bynew andxj defined by function
inputs inL andR are distinct from other variables defined
in R.

H4. Under !i≤n with no restriction in L, one can have
only a single function(x1 : T1, . . . , xl : Tl) → FP .
(One can transform !i≤n((x̃1 : T̃1) → FP1, . . . ,

(x̃m : T̃m) → FPm, !i1≤n1 . . . , . . . , !im′≤nm′ . . .) into
(!i≤n(x̃1 : T̃1) → FP1, . . . , !i≤n(x̃m : T̃m) → FPm,
!i1≤n′

1 . . . , . . . , !im′≤n′
m′ . . .) in order to eliminate situa-

tions that do not satisfy this requirement.)

H5. Replications inL (resp. R) must have pairwise distinct
boundsn. (This strengthens the typing: the typing then
guarantees that, if several variables are accessed with the
same array indices, then these variables are defined under
the same replication.)

H6. For all restrictionsnew y : T that occur above a termM
in L, y occurs inM . (This guarantees that, in Hypothe-
sis H′3.1 below,zjk[Mj1, . . . ,Mjqj

] is defined for allj ≤ l
and k ≤ mj . With Hypothesis H4, this guarantees that
indexj is well-defined in Hypothesis H′3.1.3 below.)

H7. Finds inR are of the form

find (
⊕m

j=1 ũj ≤ ñj suchthat defined(zj1[ũj1], . . . ,

zjlj [ũjlj ]) ∧Mj then FP j) else FP ′

where the following conditions are satisfied:

• For all1 ≤ k ≤ lj , ũjk is the concatenation of a prefix
of the current replication indices (the same prefix for
all k) and a non-empty prefix of̃uj .

• Whenũj is non-empty, at least onẽujk for 1 ≤ k ≤
lj is the concatenation of a prefix of the current repli-
cation indices with the whole sequenceũj .

• Whenlj 6= 0, there existsk ∈ {1, . . . , lj} such that
for all k′ 6= k, zjk′ is defined syntactically above all
definitions ofzjk and ũjk′ is a prefix ofũjk. (This
implies that the same find cannot access variables de-
fined in different functions under the same replication
in R.)

• Finally, variableszjk are not defined by afind in R.
(Otherwise, the transformation would be considerably
more complicated.)

Such equivalencesL ≈ R are used by the prover by replacing
a processQ0 observationally equivalent toC[[[L]]] with a process
Q′0 observationally equivalent toC[[[R]]], for some evaluation
contextC. We now give sufficient conditions for a process to
be equivalent toC[[[L]]]. These conditions essentially guarantee
that all uses of certain secret variables ofQ0, in a setS, can
be implemented by calling functions ofL. These conditions are
explained in more detail below.

We first define the functionextract used in order to extract
information from the left- or right-hand sides of the equivalence.

extract((x1 : T1, . . . , xl : Tl)→ M, ()) =
(x1 : T1, . . . , xl : Tl)→ M

extract(!i≤nnew y1 : T1; . . . ; new yl : Tl; (G1, . . . , Gm),
(j1, . . . , jk)) =

(y1 : T1, . . . , yl : Tl), extract(Gj1 , (j2, . . . , jk))
extract((G1, . . . , Gm), (j0, . . . , jk)) =

extract(Gj0 , (j1, . . . , jk))

We rename the variables ofQ0 such that variables ofL andR
do not occur inQ0. Assume that there exist a set of variablesS
and a setM of occurrences of terms inQ0 such that:

H′1. S ∩ V = ∅.

H′2. No term inM occurs in the condition part of afind
(defined(M1, . . . ,Ml) ∧M ) or in the channel of an input.

H′3. For eachM ∈ M, there exist a sequenceBL(M) =
(j0, . . . , jl) such thatextract(L,BL(M)) = (y11 : T11,
. . . , y1m1 : T1m1), . . . , (yl1 : Tl1, . . . , ylml

: Tlml
),

(x1 : T1, . . . , xm : Tm) → N and a substitutionσ such
that M = σN (σ applies to the abbreviated form ofN
in which we writex instead ofx[̃i]) and the following con-
ditions hold:

H′3.1. For allj ≤ l andk ≤ mj , σyjk is a variable access
zjk[Mj1, . . . ,Mjqj

], with zjk ∈ S. We definezjk =
varImL(yjk,M).

H′3.1.1. All definitions ofzjk in Q0 are of the form
new zjk[. . .] : Tjk, and for allk ≤ mj , they oc-
cur under the same replications (but they may oc-
cur under different replications for different val-
ues ofj).
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H′3.1.2. Whenj 6= j′ or k 6= k′, zjk 6= zj′k′ .
H′3.1.3. The sequence of array indicesMj1, . . . ,Mjqj

is the same for allk ≤ mj (but may depend
on j). We denote byindexj(M) a substitu-
tion that maps the current replication indices at
the definition ofzjk to Mj1, . . . ,Mjqj respec-
tively. If ml = 0, indexl(M) is not set by
the previous definition, so we setindexl(M)
to map the current replication indices atM
to themselves. For eachj < l, there exists
a substitutionρj(M) such thatindexj(M) =
indexj+1(M) ◦ ρj(M) and the image ofρj(M)
does not contain the current replication indices at
M . We denote byim indexj(M) the sequence
image byindexj(M) of the sequence of current
replication indices at the definition ofzjk (so,
im indexj(M) = (Mj1, . . . ,Mjqj

)). We define
im ρj(M) similarly.

H′3.2. For allj ≤ m, σxj is a term of typeTj .

H′3.3. All occurrences inQ0 of a variable inS are either as
zjk above or at the root of an argument of adefined
test in afind process.

To make it precise which termM each element refers to, we
addM as a subscript, writingyjk,M for yjk, zjk,M for zjk,
Tjk,M for Tjk, xj,M for xj , Tj,M for Tj , NM for N , and
σM for σ. We also definenNewj,M = mj , nNewSeqM =
l, andnInputM = m.

H′4. We say that two termsM,M ′ ∈ M share the firstl′ se-
quences of random variables whenyjk,M = yjk,M ′ and
zjk,M = zjk,M ′ for all j ≤ l′ and k ≤ nNewj,M =
nNewj,M ′ 6= 0. Let l′ be the greatest integer such that
M andM ′ share the firstl′ sequences of random variables.
Then we require:

H′4.1. The sets of variables{zjk,M | j > l′ andk ≤
nNewj,M} and{zjk,M ′ | j > l′ andk ≤ nNewj,M ′}
must be disjoint.

H′4.2. ρj(M) = ρj(M ′) for all j < l′.

H′4.3. If l′ = nNewSeqM and NM = NM ′ , then there
existsM0 such thatM = (indexl′(M))M0, M ′ =
(indexl′(M ′))M0, andM0 does not contain the cur-
rent replication indices atM or M ′.

When these conditions are satisfied, there exists a contextC
such thatQ0 ≈V

0 C[[[L]]].
Terms inM must not occur in conditions offind (Hypothe-

sis H′2) because such terms may refer to variables defined by
find, and by the transformation, these variables might be moved
outside their scope, thus violating Invariant 2. Terms inMmust
not occur in the channel of an input, because otherwise, after the
transformation, the input process might need to perform compu-
tations byfind or let, forbidden by the syntax. (This requirement
is not a limitation in practice, since terms in channels of inputs
are typically the current replication indices, so they do not con-
tain cryptographic primitives.)

In Hypothesis H′3, the sequenceBL(M) indicates which
branch ofL corresponds to the termM .

Hypothesis H′3.2 checks that the values received by inputs in
L are of the proper type. Hypothesis H′3.1.1 checks that vari-
ableszjk,M that correspond to variables defined bynew in L are
of the proper type. The variablesyjk defined bynew in L are
used only in termsN in L. Correspondingly, Hypothesis H′3.3
checks that the corresponding variableszjk,M ∈ S are not used
elsewhere inQ0 and Hypothesis H′1 checks that they cannot be
used directly by the context.

In L, for distinct j, k, the variablesyjk correspond to inde-
pendent random numbers. Correspondingly, Hypothesis H′3.1.2
requires that the variableszjk,M are created by different restric-
tions for distinctj, k. In L, the variablesyjk are accessed with
the same indices for anyk (but a fixedj). Correspondingly, Hy-
pothesis H′3.1.3 requires that the variableszjk,M are accessed
with the same indicesim indexj(M) for anyk. When instances
of N andN ′ both refer toyjk with the same indices, then they
also refer toyj′k′ with the same indices whenj′ ≤ j. Corre-
spondingly, ifM andM ′ refer to the samezjk, by Hypothe-
sis H′4.1, they also refer to the samezj′k′ for j′ ≤ j. More-
over, if indexj(M) and indexj(M ′) evaluate to the same bit-
strings, thenindexj′(M) andindexj′(M ′) also evaluate to the
same bitstrings, sinceindexj′(M) = indexj(M) ◦ ρj−1(M) ◦
. . . ◦ ρj′(M) by Hypothesis H′3.1.3 andρk(M) = ρk(M ′) for
k < j by Hypothesis H′4.2. These conditions guarantee that we
can establish a correspondence from the array cells of variables
of S in Q0 to the array cells of variables defined bynew in L,
and that this correspondence is an injective function, as required
in Section 3.2.

Finally, a termN in L is evaluated at most once for each
value of the indices ofyl1, . . . , ylml

, so N is computed for a
single value of the argumentsx1, . . . , xm. Correspondingly, by
Hypothesis H′4.3, whenM andM ′ share thel = nNewSeqM

sequences of random variables andindexl(M) andindexl(M ′)
evaluate to the same bitstring, thenM andM ′ evaluate to the
same bitstring.

We compute the possible values of the setsS andM by fix-
point iteration. We start withM = ∅ andS containing a single
variable ofQ0 bound by a restriction. (We try all possible vari-
ables.) When a termM of Q0 contains a variable inS, we try to
find a function inL that corresponds toM , and if we succeed,
we addM toM, and add toS variables inM that correspond to
variables bound by restrictions inL. (If we fail, the transforma-
tion is not possible.) We continue until a fixpoint is reached, in
which case all occurrences of variables ofS are in terms ofM.

We now describe how we construct a processQ′0 such that
Q′0 ≈V

0 C[[[R]]].

1. We first move restrictions in the right-hand side of the
equivalence, so that they occur above the reception of the
arguments of functional processes instead of inside func-
tional processes. As explained below, this is necessary
for the correctness of the subsequent transformation ofQ0,
when restrictions appear in the corresponding part of the
left-hand side. More precisely, we transform the right-
hand side of the equivalence,R, as follows: for each
j1, . . . , jl, if extract(L, (j1, . . . , jl)) = (y11 : T11, . . . ,
y1m1 : T1m1), . . . , (yl1 : Tl1, . . . , ylml

: Tlml
), (x1 : T1,

. . . , xm : Tm) → N with ml 6= 0 and extract(R, (j1,

. . . , jl)) = (y′11 : T ′11, . . . , y
′
1m′

1
: T ′1m′

1
), . . . , (y′l1 : T ′l1,
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. . . , y′lm′
l
: T ′lm′

l
), (x1 : T1, . . . , xm : Tm) → FP , for each

new z : T in FP ,

• we addz : T in the sequence of random variables
y′l1 : T ′l1, . . . , y

′
lm′

l
: T ′lm′

l
;

• if z does not occur indefined conditions offind in R,
we removenew z : T from FP ;

• otherwise, we replacenew z : T with let z′ : T = cst

for some constantcst and addz′[M̃ ] to eachdefined

condition ofR that containsz[M̃ ].

This transformation is needed, because in the right-hand
side, a new random number must be chosen exactly for each
different call to the function(x1 : T1, . . . , xm : Tm) →
FP . This would not be guaranteed without that transfor-
mation, because when the left-hand sideN is evaluated at
several occurrences with the same random numbersyl1 :
Tl1, . . . , ylml

: Tlml
(ml 6= 0), these occurrences all corre-

spond to a single call to(x1 : T1, . . . , xm : Tm)→ N , so a
single call to(x1 : T1, . . . , xm : Tm)→ FP , but we create
a copy ofFP for each occurrence. After the transforma-
tion,FP contains no choice of random numbers, so we can
evaluate it several times without changing the result. When
ml = 0, evaluations ofN at several occurrences can cor-
respond to different calls to(x1 : T1, . . . , xm : Tm) → N ,
so the transformation is not necessary.

2. Next, we create fresh variables corresponding to vari-
ables of the right-hand side of the equivalence. For
each M ∈ M, let extract(R,BL(M)) = (y′11,M :
T ′11,M , . . . , y′1m′

1,M : T ′1m′
1,M ), . . . , (y′l1,M : T ′l1,M , . . . ,

y′lm′
l,M

: T ′lm′
l,M

), (x1,M : T1,M , . . . , xm,M : Tm,M ) →
FPM with l = nNewSeqM , m = nInputM and we de-
fine nNew′j,M = m′j . We create fresh variablesz′jk,M =
varImR(y′jk,M ,M) for each j ≤ nNewSeqM , k ≤
nNew′j,M , andM ∈ M, such that ifM andM ′ share the
first l′ sequences of random variables, thenz′jk,M = z′jk,M ′

for j ≤ l′ andk ≤ nNew′j,M . All variablesz′jk,M are oth-
erwise pairwise distinct.

We also create a fresh variablevarImR(xj,M ,M) for each
j ≤ nInputM and eachM ∈ M, and a fresh variable
varImR(z,M) for each variablez defined bylet or new in
FPM and eachM ∈M.

3. We update thedefined conditions offinds, in order to pre-
serve Invariant 2. More precisely, if adefined condition of
a find containszj1,M [M1, . . . ,Ml′ ] for someM , we add
defined(z′jk′,M [M1, . . . ,Ml′ ]) for all k′ ≤ nNew′j,M to
this condition. (So that accesses toz′jk′,M [M1, . . . ,Ml′ ]
created when transforming termM satisfy Invariant 2,
since accesses tozj1,M [M1, . . . ,Ml′ ] occur inM and sat-
isfy Invariant 2.)

4. We update restrictions corresponding to restrictions of the
left-hand side of the equivalence: we either remove them
or replace them with restrictions corresponding to the
right-hand side of the equivalence. More precisely, when
x ∈ S occurs at the root of a termMk in a condition

defined(M1, . . . ,Ml), we replace its definitionnew x :
T ;Q with let x : T = cst in Q for some constantcst; when
it does not occur indefined tests, we remove its definition.
If x = zj1,M for someM , we addnew z′jk,M : T ′jk,M for
eachk ≤ nNew′j,M wherenew x : T was.

5. Finally, we transform the termsM ∈ M corresponding to
functions of the left-hand side of the equivalence into their
corresponding functional process in the right-hand side.
For each termM ∈ M, let PM = CM [M ] be the smallest
process containingM . (Note thatM never occurs in an in-
put, soPM is an output process.) Letl = nNewSeqM . We
replacePM with (new z′lk,M : T ′lk,M ; )k≤nNew′

l,M
P ′M if

nNewl,M = 0 andnNew′l,M > 0, and withP ′M otherwise,
where

– P ′M = (let varImR(xk,M ,M) : Tk,M = σMxk,M

in)k≤nInputM
transfφ0,CM

(FPM ).

– φ0 is defined as follows:

φ0(xj,M [i1, . . . , il]) = varImR(xj,M ,M)[i′1, . . . , i
′
l′ ]

φ0(z[i1, . . . , il]) = varImR(z,M)[i′1, . . . , i
′
l′ ]

φ0(y′jk,M [i1, . . . , ij ]) =

varImR(y′jk,M ,M)[im indexj(M)]

where i1, . . . , il are the current replication indices at the
definition ofxj,M in R, i′1, . . . , i

′
l′ are the current replica-

tion indices atM in Q0, andz is a variable defined bylet
or new in FPM .

– A functionφ from array accesses to array accesses is ex-
tended to terms as a substitution, byφ(f(M1, . . . ,Mm)) =
f(φ(M1), . . . , φ(Mm)).

– transfφ,CM
(FP) is defined recursively as follows:

transfφ,CM
(M ′) = CM [φ(M ′)]

transfφ,CM
(new z : T ;FP ′) =

new varImR(z,M) : T ; transfφ,CM
(FP ′)

transfφ,CM
(let z : T = M ′ in FP ′) =

let varImR(z,M) : T = φ(M ′) in transfφ,CM
(FP ′)

transfφ,CM
(find(

⊕m

j=1
FB j) else FP ′) =

find(
⊕m

j=1
transfφ,CM

(FB j)) else transfφ,CM
(FP ′)

and forfind branchesFB , transfφ,CM
(FB) is defined as

follows:

transfφ,CM
(suchthat M ′ then FP ′) =

suchthat φ(M ′) then transfφ,CM
(FP ′)

transfφ,CM
(ũ ≤ ñ suchthat

defined(zk[Mk1, . . . ,Mkl′k
]1≤k≤l) ∧M1 then FP ′) =⊕

M ′∈M′
ũ′ ≤ ñ′ suchthat

defined(φ′(zk[Mk1, . . . ,Mkl′k
])1≤k≤l) ∧

im indexj1(M
′){ũ′/ĩ′} = im indexj1(M) ∧

φ′(M1) then transfφ′,CM
(FP ′)
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wherel 6= 0; j1 is the length of the prefix of the current
replication indices that occurs inMk1, . . . ,Mkl′k

(by
Hypothesis H7);M′ is the set ofM ′ ∈ M such that
varImR(zk,M ′) is defined fork ≤ l and M ′ and M

share the firstj1 sequences of random variables;ĩ′ is
the sequence of current replication indices atM ′; ũ′ is a
sequence formed with a fresh variable for each variable
in ĩ′; ñ′ is the sequence of bounds of replications above
M ′; φ′ is an extension ofφ with φ′(zk[Mk1, . . . ,Mkl′k

]) =
varImR(zk,M ′)[im indexj(M ′){ũ′/ĩ′}] if zk = y′jk′,M ′

for some k′, and φ′(zk[Mk1, . . . ,Mkl′k
]) =

varImR(zk,M ′)[ũ′] if zk is defined by let or by a
function input. Optimizations for the definition of
transfφ,CM

(FB) are presented in Appendix D.2.1.

The two essential parts of the transformation are the last two
ones, numbered 4 and 5. In step 4, we add the restrictions to
create random variables that correspond to random variables of
R. We create the variablesz′jk,M at the place wherezj1,M was
created in the initial game (We could have chosenzjk′,M for
anyk′.), or when there is nozj1,M , we havej = nNewSeqM

and we createz′jk,M just before evaluatingM . In step 5, we
transform the termM itself into the corresponding functional
process ofR, FPM . The only delicate part for evaluatingFPM

is the case offind: instead of looking up arrays ofR, we look up
the corresponding arrays ofQ′0 given by the mappingφ.

D.2 Extensions

D.2.1 Optimizations for transfφ,CM
(FB)

We can apply two optimizations to the definition of
transfφ,CM

(FB):

• When im indexj1(M
′) is a prefix of ĩ′,

im indexj1(M
′){ũ′/ĩ′} is a prefix of ũ′, so the equality

im indexj1(M
′){ũ′/ĩ′} = im indexj1(M) defines the

value of a prefix ofũ′. We simply substitute the fixed
elements of̃u′ with their value, and remove them from the
sequence of variables to be looked up byfind.

• When all variableszk areyjk′,M ′ for somej, k′, andM ′,
with max j = j0, we use the following definition instead:

transfφ,CM
(̃i ≤ ñ suchthat

defined(zk[Mk1, . . . ,Mkl′k
]1≤k≤l) ∧M1 then FP ′) =⊕

M ′∈M′
ũ′ ≤ ñ′ suchthat

defined(φ′(zk[Mk1, . . . ,Mkl′k
])1≤k≤l)∧

im (ρj0−1(M ′) ◦ . . . ◦ ρj1(M
′)){ũ′/ĩ′} =

im indexj1(M) ∧ φ′(M1) then transfφ′,CM
(FP ′)

wherej1 is the length of the prefix of the current repli-
cation indices that occurs inMk1, . . . ,Mkl′k

(by Hy-
pothesis H7);M′ is the set ofM ′ ∈ M such that
varImR(zk,M ′) is defined fork ≤ l and M ′ and M

share thej1 first sequences of random variables;ĩ′ is
the sequence of current replication indices at the defini-
tion of zj0k,M ′ ; ũ′ is a sequence formed with a fresh

variable for each variable iñi′; ñ′ is the sequence of
bounds of replications above the definition ofzj0k,M ′ ;
φ′ is an extension ofφ with φ′(zk[Mk1, . . . ,Mkl′k

]) =
varImR(zk,M ′)[im (ρj0−1(M ′) ◦ . . . ◦ ρj(M ′)){ũ′/ĩ′}]
if zk = y′jk,M ′ .

The compositionρj0−1(M ′) ◦ . . . ◦ ρj(M ′) computes the
indices ofz′jk′,M ′ for anyk′ from the indices ofz′j0k′′,M ′

for anyk′′.

When several termsM ′ ∈ M share the firstj0 sequences
of random variables, they generate the sameφ′, so only one
find branch needs to be added for all of them, which can
reduce considerably the number offind branches to add.

An optimization similar to the first one above also applies
to this case, whenim (ρj0−1(M ′)◦. . .◦ρj1(M

′)) is a prefix
of ĩ′.

D.2.2 Guiding the Application of Equivalences

We introduce a small extension to the equivalences(G1, . . . ,
Gm) ≈ (G′1, . . . , G

′
m) described in Section 3.2. These equiva-

lences become(G1 mode1, . . . , Gm modem) ≈ (G′1, . . . , G
′
m),

wheremodej is either empty or[all ]. The mode[all ] is an indi-
cation for the prover, to guide the application of the equivalence
without changing its semantics. Whenmodej = [all ],M must
contain all occurrences in the initial gameQ of the root function
symbols of termsM insideGj . Whenmodej is empty, at least
one variable defined bynew in Gj must correspond to a variable
in S.

The following hypotheses guarantee the good usage of modes:

H8. At most onemodej can be empty. (Otherwise, when
several sets of random variables can be chosen for each
Gj , there are many possible combinations for applying the
transformation.)

H9. If Gj is of the form!i≤n(x1 : T1, . . . , xl : Tl)→ FP with-
out any restriction, thenmodej = [all ]. (A restriction is
needed in the definition of empty mode.)

D.2.3 Relaxing Hypothesis H6

Hypothesis H6 requires that for all restrictionsnew y : T that
occur above a termN in the left-hand side of an equivalence,y
occurs inN . We can relax this hypothesis, by allowing that some
random variablesy do not occur inN , provided that the miss-
ing variables can be determined using Hypothesis H′4.1: when
some termM shares some variabley in thel′-th sequence of ran-
dom variables with some other termM ′, we know that it must
also share withM ′ all random variables in sequences above and
including thel′-th sequence; so, knowing the random variables
associated toM ′, we can determine some of those associated
to M . The transformation simply fails when the algorithm de-
scribed above cannot fully determine the random variables asso-
ciated to some termM .

D.2.4 Relaxing Hypothesis H′2

Hypothesis H′2 requires that no termN transformed by
the equivalence occurs in the condition part of afind
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(defined(M1, . . . ,Ml) ∧M ). We can relax this hypothesis by
allowingN to occur inM (but not in thedefined test), provided
the variables̃u bound by thisfind do not occur in the following
terms in the transformed expression ofN :

• N ′ in processes of the formlet x : T = N ′ in . . .;

• N ′jk andN ′j in processes of the formfind (
⊕m

j=1 uj1 [̃i] ≤
nj1, . . . , ujmj

[̃i] ≤ njmj
suchthat defined(N ′j1, . . . ,

N ′jlj
) ∧N ′j then . . .) else . . ..

(If the variablesũ bound byfind occurred in such terms, the
transformation would move them outside the scope of their def-
inition.)

D.2.5 Eliminating Useless Branches offind

A random oracleh can be modeled in our prover using the fol-
lowing equivalence:

!i≤n(x : bitstring)→ h(x) [all ]
≈0

!i≤n(x : bitstring)→
find u ≤ n suchthat defined(x[u], r[u]) ∧

x = x[u] then r[u] else new r : T ; r

This allows the prover to replace calls toh with a lookup in the
arguments passed to other calls toh. If the same argument was
already given toh, we return the same result as in the previ-
ous call with the same argument. Otherwise, we return a fresh
random numberr.

When there are several calls toh, each call is replaced with
a lookup in all arguments of all calls toh. However, in some
cases, some of these lookups are useless. For instance, ifh is
used in a checkh(x) = y, whenh(x) is a fresh random number,
the check always fails up to negligible probability (whenT is a
large type), so the random number will not be used. We can then
ignore the case in whichh(x) returns a fresh random number,
and avoid the lookup inx.

To implement this reasoning in the prover, we add an optional
conditionotheruses(M1, . . . ,Mm) to find, where eachMi is of
the formr[M ′1, . . . ,M

′
k] andr is defined only by restrictions.

The random oracle is then modeled as follows:

!i≤n(x : bitstring)→ h(x) [all ]
≈0

!i≤n(x : bitstring)→
find u ≤ n suchthat defined(x[u], r[u]) ∧

otheruses(r[u]) ∧ x = x[u] then r[u]
else new r : T ; r

The additional conditionotheruses(r[u]) allows the prover to
remove the consideredfind branch whenr is used only in terms
r[u] underotheruses(r[u]).

More generally, let Q be a process that usesr in
two ways: in terms r[M ′1, . . . ,M

′
k] under a condition

otheruses(r[M ′1, . . . ,M
′
k]), and for sending it just after its

choice bynew r : T on a channel on whichQ does not re-
ceive after this output. The conditionsotheruses(r[. . .]) are
correct inQ when, for all setsS, for all contextsC that ig-
nore the message containingr[i1, . . . , ik] for (i1, . . . , ik) ∈
S, we haveC[Q] ≈V

0 C[Q′] where Q′ is obtained from
Q by replacing conditionsotheruses(r[M ′1, . . . ,M

′
k]) with

(M ′1, . . . ,M
′
k) /∈ S. (Informally, C[Q] does not use

r[i1, . . . , ik] for (i1, . . . , ik) ∈ S. In that case, the branches of
find with conditionotheruses(r[M ′1, . . . ,M

′
k]) can be removed

when(M ′1, . . . ,M
′
k) ∈ S.)

Conditionsotheruses are left unchanged by all game trans-
formations except simplification. Simplification looks for uses
of r not in terms of the formr[M ′1, . . . ,M

′
k] under a condition

otheruses(r[M ′1, . . . ,M
′
k]). If no such usage ofr is found, the

branches offind that contain conditionsotheruses(r[. . .]) are re-
moved.

A similar situation arises for block ciphers modeled as super-
pseudo-random permutations, as formalized below.

D.3 Modeling other Primitives

This appendix gives the definition of a number of cryptographic
primitives in our prover.

D.3.1 Super-Pseudo-Random Permutations (SPRP)

Tr large, fixed length;T large, fixed length

e, d : T × Tk → T

kgen : Tr → Tk

∀m : T,∀r : Tr, d(e(m, kgen(r)), kgen(r)) = m

∀m : T,∀r : Tr, e(d(m, kgen(r)), kgen(r)) = m

!i
′′≤n′′

new r : Tr; (

!i≤n(x : T )→ e(x, kgen(r)),

!i
′≤n′

(m : T )→ d(m, kgen(r)))
≈

!i
′′≤n′′

new r : Tr; (

!i≤n(x : T )→
find u ≤ n suchthat defined(x[u], r′[u]) ∧

otheruses(r′[u]) ∧ x = x[u] then r′[u]
⊕ u ≤ n′ suchthat defined(r′′[u],m[u]) ∧

otheruses(r′′[u]) ∧ x = r′′[u] then m[u]
else new r′ : T ; r′,

!i
′≤n′

(m : T )→
find u ≤ n suchthat defined(r′[u], x[u]) ∧

otheruses(r′[u]) ∧m = r′[u] then x[u]
⊕ u ≤ n′ suchthat defined(m[u], r′′[u]) ∧

otheruses(r′′[u]) ∧m = m[u] then r′′[u]
else new r′′ : T ; r′′)

This equivalence expresses that the encryption and decryp-
tion oracles can be replaced with inverse random permutations.

32



These random permutations are built as follows for the encryp-
tion oracle: when we receive an argumentx already passed to
the encryption oracle, we return the previous result; when we
receive the result of a previous call to the decryption oracle, we
return the argument of the decryption oracle in that call; oth-
erwise, we return a fresh random number. (Collisions between
random numbers inTr have negligible probability, so we ob-
tain permutations except in cases of negligible probability.) The
construction is similar for the decryption oracle.

D.3.2 Public-Key Cryptography

UF-CMA Signature

Tr large, fixed length;T ′r fixed length

s, s′ : T × Tsk × T ′r → Ts

c, c′ : T × Tpk × Ts → bool
skgen, skgen′ : Tr → Tsk

pkgen,pkgen′ : Tr → Tpk

∀m : T,∀r : Tr,∀r′ : T ′r,

c(m,pkgen(r), s(m, skgen(r), r′)) = true
∀m : T,∀r : Tr,∀r′ : T ′r,

c′(m,pkgen′(r), s′(m, skgen′(r), r′)) = true
new x : Tr; new y : Tr; f(x) = f(y) ≈ x = y

for f ∈ {pkgen, skgen,pkgen′, skgen′}

!i≤nnew r : Tr; (
()→ pkgen(r),

!i
′≤n′

new r′ : T ′r; (x : T )→ s(x, skgen(r), r′)),

!i
′′≤n′′

(m : T, y : Tpk, si : Ts)→ c(m, y, si) [all ]
≈

1. !i≤nnew r : Tr; (
2. ()→ pkgen′(r),

3. !i
′≤n′

new r′ : T ′r; (x : T )→ s′(x, skgen′(r), r′)),

4. !i
′′≤n′′

(m : T, y : Tpk, si : Ts)→
5. find u ≤ n, u′ ≤ n′ suchthat defined(r[u], x[u, u′])
6. ∧ y = pkgen′(r[u]) ∧m = x[u, u′]
7. ∧ c′(m, y, si) then true else

8. find u ≤ n suchthat defined(r[u])
9. ∧ y = pkgen′(r[u]) then false else

10. c(m, y, si)

The first three lines of each side of the equivalence express
that the generation of public keys and the computation of the
signature are left unchanged in the transformation. The verifi-
cation of a signaturec(m, y, si) is replaced with a lookup in the
previously computed signatures: if the signature is checked us-
ing one of the keyspkgen′(r[u]) (that is, ify = pkgen′(r[u])),
then it can be valid only when it has been computed by the sig-
nature oracles′(x, skgen′(r[u]), r′), that is, whenm = x[u, u′]
for someu′. Lines 5-7 of the right-hand side of the equivalence

try to find such au′ and returntrue when they succeed. Lines 8-
9 of the right-hand side returnsfalse when no suchu′ is found
in lines 5-7, buty = pkgen′(r[u]) for someu. The last line han-
dles the case when the keyy is notpkgen′(r[u]). In this case,
we check the signature as before. (Usingc and notc′ in the last
line of the transformation allows to reapply this transformation
with another value ofr.)

We can model deterministic signatures in a similar way, by
removing the third argument ofs.

IND-CCA2 Public-Key Encryption

Tr large, fixed length;T ′r fixed length

enc, enc′ : T × Tpk × T ′r → Te

dec,dec′ : Te × Tsk → T⊥

skgen, skgen′ : Tr → Tsk

pkgen,pkgen′ : Tr → Tpk

i⊥ : T → T⊥ (poly-injective)

ZT : T

∀m : T,∀r : Tr,∀r′ : T ′r,

dec(enc(m,pkgen(r), r′), skgen(r)) = i⊥(m)
∀m : T,∀r : Tr,∀r′ : T ′r,

dec′(enc′(m,pkgen′(r), r′), skgen′(r)) = i⊥(m)
new x : Tr; new y : Tr; f(x) = f(y) ≈ x = y

for f ∈ {pkgen,pkgen′, skgen, skgen′}

!i≤nnew r : Tr; (
()→ pkgen(r),

!i
′≤n′

(m : Te)→ dec(m, skgen(r))),

!i
′′≤n′′

new r′ : T ′r; (x : T, y : Tpk)→ enc(x, y, r′) [all ]
≈
!i≤nnew r : Tr; (

!i≤n()→ pkgen′(r),

!i
′≤n′

(m : Te)→ find u ≤ n′′ suchthat

defined(m′[u], x[u], y[u]) ∧ y[u] = pkgen′(r)
∧m = m′[u] then i⊥(x[u]) else dec′(m, skgen′(r))),

!i
′′≤n′′

(x : T, y : Tpk)→
find u′ ≤ n suchthat defined(r[u′]) ∧ y = pkgen′(r[u′])
then new r′ : T ′r;

let m′ : Te = enc′(ZT ,pkgen′(r[u′]), r′) in m′

else new r′′ : T ′r; enc(x, y, r′′)

When no decryption is present, this transformation reduces to
IND-CPA public key encryption, described below.

IND-CPA Public-Key Encryption

Tr large, fixed length;T ′r fixed length

enc, enc′ : T × Tpk × T ′r → Te

dec : Te × Tsk → T⊥
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skgen : Tr → Tsk

pkgen,pkgen′ : Tr → Tpk

i⊥ : T → T⊥ (poly-injective)

ZT : T

∀m : T,∀r : Tr,∀r′ : T ′r,

dec(enc(m,pkgen(r), r′), skgen(r)) = i⊥(m)
new x : Tr; new y : Tr; f(x) = f(y) ≈ x = y

for f ∈ {pkgen, skgen, skgen′}

!i≤nnew r : Tr; ()→ pkgen(r),

!i
′≤n′

new r′ : T ′r; (x : T, y : Tpk)→ enc(x, y, r′) [all ]
≈
!i≤nnew r : Tr; ()→ pkgen′(r),

!i
′≤n′

(x : T, y : Tpk)→
find u ≤ n suchthat defined(r[u]) ∧ y = pkgen′(r[u])
then new r′ : T ′r; enc′(ZT ,pkgen′(r[u]), r′)
else new r′′ : T ′r; enc(x, y, r′′)

D.3.3 Hash Functions

Collision Resistant Hash Function

Tk fixed length

h : Tk × bitstring → T

new k : Tk;∀x : bitstring ,∀y : bitstring ,

h(k, x) = h(k, y) ≈ x = y

Hash Function in the Random Oracle Model

T fixed length

h : bitstring → T

!i≤n(x : bitstring)→ h(x) [all ]
≈0

!i≤n(x : bitstring)→
find u ≤ n suchthat defined(x[u], r[u]) ∧

otheruses(r[u]) ∧ x = x[u] then r[u]
else new r : T ; r

Note that the game must include, in parallel with the protocol to
verify, the process!i≤nc(x : bitstring); c〈h(x)〉. Otherwise, the
prover would incorrectly assume that the adversary cannot com-
pute the hash function. This particularity is related to the fact
that a random oracle is unimplementable: otherwise, the adver-
sary could implement it without being explicitly given access to
it.

D.3.4 Xor

xor : T × T → T (commutative)
∀x : T, y : T, xor(x, xor(x, y)) = y.

∀x : T, y : T, z : T, (xor(x, z) = xor(y, z)) = (x = y).

!i≤nnew k : T ; (x : T )→ xor(x, k)
≈0

!i≤nnew k : T ; (x : T )→ k

This modeling ofxor could be improved by taking into account
more equations, in particular associativity.

E Proofs

E.1 Proof of Proposition 1

The proof thatQ′0 satisfies Invariants 1, 2, and 3 is in general
easy, and the proof ofQ0 ≈V

0 Q′0 relies on a correspondence
between traces ofC[Q0] and traces ofC[Q′0], with the same
probability and such that a configuration of the trace ofC[Q0]
executesc〈a〉 immediately if and only if the corresponding con-
figuration of the corresponding trace ofC[Q′0] executesc〈a〉 im-
mediately. This correspondence is obtained by replacing some
internal actions ofQ0 with corresponding internal actions ofQ′0.
We sketch the proof only for the cases ofSArename(x) and
Simplify , and leave the case ofRemoveAssign(x) to the reader.

Proof sketch of Proposition 1 for SArename(x) The pro-
cessQ′0 satisfies Invariant 1 because definitions of variables du-
plicated bySArenameall occur in a different branch of afind.

For Invariant 2, each variable accessxj [M1, . . . ,Ml] in Q′0
comes from a variable accessx[M1, . . . ,Ml] in Q0. SinceQ0

satisfies Invariant 2, either this access is under its definition, in
which caseSArename(x) has replaced this definition ofx with
a definition ofxj , soxj [M1, . . . ,Ml] is under its definition in
Q′0; or this access is in adefined test, in which case it is also in
a defined test inQ′0; or this access is in a branch offind with
a conditiondefined(N1, . . . , Nl′) such thatx[M1, . . . ,Ml] is a
subterm ofNj for somej ≤ l′, in which casex[M1, . . . ,Ml] has
been substituted withxj [M1, . . . ,Ml] in this branch offind, so
xj [M1, . . . ,Ml] is under a suitabledefined condition. Therefore
Q′0 satisfies Invariant 2.

For Invariant 3, the type environmentE ′ for Q′0 is obtained
from the type environmentE for Q0, by settingE ′(x1) = . . . =
E ′(xm) = E(x) andE ′(x) is not defined. (Indeed, all definitions
of x in Q0 have the same typeE(x), which is therefore the type
of the definitions ofxj , j ≤ m in Q′0.) The proof ofE ′ ` Q′0
is obtained from the proof ofE ` Q0, by replacing requests
to E(x) with requests toE(xj) for somej ≤ m, and duplicat-
ing parts of the proof ofE ` Q0 that correspond to duplicated
branches offind.

Finally, let us prove thatQ0 ≈V
0 Q′0. We denote by

SArename(x,Q) the process obtained by applyingSAre-
name(x) to Q. Let j be a partial function froml-tuples of
indicesa1, . . . , al to subscripts1, . . . ,m of variablex. Infor-
mally, j is such thatx[a1, . . . , al] in a trace ofQ0 corresponds to
xj(a1,...,al)[a1, . . . , al] in the corresponding trace ofQ′0. We de-
fine a functionSArenamej that relates configurations in a trace
of Q0 to configurations in a trace of the renamed processQ′0.
Below, we will show that this function maps traces ofQ0 to
traces ofQ′0 of the same probability, which will show the de-
sired equivalenceQ0 ≈V

0 Q′0.
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• We defineSArenamej for terms so thatSArenamej(x,E,
M) replaces occurrences ofx in M with the appropriate
xj . More precisely,

SArenamej(x, E, x[M1, . . . ,Ml]) =
xj(a1,...,al)[SArenamej(x, E,M1), . . . ,

SArenamej(x, E,Ml)]
whenE,Mk ⇓ ak for k ≤ l and

x[a1, . . . , al] ∈ Dom(E);

SArenamej(x, E, y[M1, . . . ,Ml]) =
y[SArenamej(x, E,M1), . . . ,SArenamej(x,E,Ml)]

wheny 6= x;

SArenamej(x, E, f(M1, . . . ,Ml)) =
f(SArenamej(x, E,M1), . . . ,SArenamej(x,E,Ml));

SArenamej(x, E, i) = i

• We define SArenamej for (input and output) pro-
cesses as follows:SArenamej(x,E, P1) first computes
SArename(x, P1) = P2. More precisely, it renames each
definition ofx to the name used when renaming the whole
processQ0; it replaces variable accesses tox with variable
accesses toxj when the definition ofx that caused this re-
placement inQ0 also occurs inP1; it duplicates branches
of find asSArename(x,Q0), renaming variable accesses
to x into variable accesses toxj when thefind that caused
this replacement inQ0 also occurs inP1. (When a variable
access tox is under both a definition ofx andfind, or un-
der several nestedfinds that guarantee that it is defined, it
is important to follow exactly the renaming procedure that
happened inQ0. Formally, this can be done by annotat-
ing each construct in processes with a distinct occurrence
symbol and by reducing annotated processes. When we
performSArename(x, Q0), we can then remember the oc-
currence symbols of the constructs that cause each variable
renaming.) Finally,SArenamej replaces each termM in
P2 with SArenamej(x, E,M).

• We also defineSArenamej for environments: E′ =
SArenamej(x,E) if and only if E′(xj(a1,...,al)[a1, . . . ,
al]) = E(x[a1, . . . , al]) whenx[a1, . . . , al] ∈ Dom(E),
E′(y[a1, . . . , al]) = E(y[a1, . . . , al]) when y 6= x and
y[a1, . . . , al] ∈ Dom(E), andE′(y[a1, . . . , al]) is unde-
fined in all other cases.

• We extendSArenamej to semantic configurations:

SArenamej(x, (E,P,Q, C)) =
(SArenamej(x,E),SArenamej(x,E, P ),
{SArenamej(x, E,Q1) | Q1 ∈ Q}, C)

We also defineSArenamej(x, (E,Q, C)) in the same way.

We first show that ifE,M ⇓ a, then

SArenamej(x, E),SArenamej(x, E,M) ⇓ a

The proof proceeds by induction onM . The only inter-
esting case isM = x[M1, . . . ,Ml]. Since E,M ⇓ a

has been derived by (Var),E,Mk ⇓ ak for all k ≤
l and a = E(x[a1, . . . , al]). By induction hypothesis,
SArenamej(x,E),SArenamej(x,E,Mk) ⇓ ak for all k ≤ l.
Moreover,

SArenamej(x, E, x[M1, . . . ,Ml]) =
xj(a1,...,al)[SArenamej(x,E,M1), . . . ,

SArenamej(x,E,Ml)]

and

SArenamej(x,E)(xj(a1,...,al)[a1, . . . , al]) =
E(x[a1, . . . , al]) = a

soSArenamej(x,E),SArenamej(x,E,M) ⇓ a.
Next, we can show by cases on the reductionE,Q, C  

E′,Q′, C′ that, if E,Q, C  E′,Q′, C′, then

SArenamej(x, (E,Q, C)) SArenamej(x, (E′,Q′, C′)).

Hence

SArenamej(x, reduce(E,Q, C)) =
reduce(SArenamej(x, (E,Q, C)))

Let C be any evaluation context acceptable forQ0, Q′0,
V . We show that for each traceinitConfig(C[Q0]) →η . . .
→η Em, Pm,Qm, Cm, there exists a traceinitConfig(C[Q′0])
→η . . . →η E′m, P ′m,Q′m, Cm with the same proba-
bility, and a function jm such that E′m, P ′mQ′m, Cm =
SArenamejm

(x, (Em, Pm,Qm, Cm)). The proof proceeds by
induction on the lengthm of the trace. For the induction step,
we distinguish cases depending on the last reduction step of the
trace.

• Initial casem = 0: fc(C[Q0]) = fc(C[Q′0]) since the
transformationSArenamedoes not modify channels. Let
j0 be the function defined nowhere. We have,C[Q′0] =
SArenamej0(x, ∅, C[Q0]). Indeed, sincex /∈ V , x /∈
var(C), so

SArenamej0(x, ∅, C[Q0]) = SArename(x,C[Q0]) =
C[SArename(x, Q0)] = C[Q′0]

Therefore,

SArenamej0(x, (∅, {C[Q0]}, fc(C[Q0]))) =
(∅, {C[Q′0]}, fc(C[Q′0]))

Hence we have

SArenamej0(x, reduce(∅, {C[Q0]}, fc(C[Q0]))) =
reduce(∅, {C[Q′0]}, fc(C[Q′0]))

Thus,

SArenamej0(x, initConfig(C[Q0])) =
initConfig(C[Q′0])
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• The last step of the trace is a definition ofx[a1, . . . , al]:
By induction hypothesis, we have a trace of lengthm − 1,
with an associated functionjm−1. SinceC[Q0] satisfies
Invariant 1, the configurationEm−1, Pm−1,Qm−1, Cm−1

satisfies Invariant 4, sox[a1, . . . , al] /∈ Dom(Em−1).
Since P ′m−1 = SArenamejm−1(x,Em−1, Pm−1), the
first instruction ofP ′m−1 is a definition ofxk[a1, . . . , al]
for some k (using the property “ifE,M ⇓ a, then
SArenamej(x,E),SArenamej(x,E,M) ⇓ a” shown
above to prove that the indices ofx, resp. xk, are the
same in the execution ofPm−1 and ofP ′m−1). We define
jm = jm−1[(a1, . . . , al) 7→ k], and show that we obtain a
suitable trace of lengthm with this functionjm.

• The last step of the trace is afind whosedefined condi-
tion refers tox: By induction hypothesis, we have a trace
of lengthm − 1, with an associated functionjm−1. If a
branchFB of thefind in Pm−1 succeeds for certain values
of the variables defined byfind, exactly one of its copies
succeeds inP ′m−1, the copy whosedefined condition refers
to xjm−1(a1,...,al)[a1, . . . , al] when thedefined condition of
the branchFB in Pm−1 refers tox[a1, . . . , al]. If a branch
of thefind fails in Pm−1, all its copies fail inP ′m−1. There-
fore, the number|S| of successful choices of thefind is
the same inPm−1 and inP ′m−1. Hence, the probability
that each successful branch is taken is the same. When
Pm−1 executes a successful branch, we build the corre-
sponding trace ofP ′m−1 by executing the successful copy
of this branch. WhenPm−1 executes theelse branch,P ′m−1

also executes theelse branch. So we obtain a suitable trace
of lengthm with associated functionjm = jm−1 (except
when thefind also definesx[a′1, . . . , a

′
l], in which case the

previous item of the proof must also be applied).

• All other cases are easy: they execute in the same way in
Pm−1 and inP ′m−1.

We also show the converse property, that for each trace
initConfig(C[Q′0]) →η . . . →η E′m, P ′m,Q′m, Cm, there exists
a traceinitConfig(C[Q0]) →η . . . →η Em, Pm,Qm, Cm with
the same probability and

E′m, P ′mQ′m, Cm = SArenamejm(x, (Em, Pm,Qm, Cm)).

The proof is similar to the proof above.
If E′m, P ′mQ′m, Cm = SArenamejm(x, (Em, Pm,Qm, Cm)),

then for all channelsc and bitstringsa, Em, Pm,Qm, Cm exe-
cutesc〈a〉 immediately if and only ifE′m, P ′m,Q′m, Cm executes
c〈a〉 immediately. SoPr[C[Q0]  η c〈a〉] = Pr[C[Q′0]  η

c〈a〉]. ThereforeQ0 ≈V
0 Q′0. �

Proof sketch of Proposition 1 for Simplify The proof of In-
variants 1, 2, and 3 is relatively easy, so we focus on the proof
of Q0 ≈V Q′0.

Let C be any evaluation context acceptable forQ0, Q′0, V .
Let q(η) be the maximum runtime ofC[Q0], whereq is a poly-
nomial. We denote byC0 the initial configuration ofC[Q0],
initConfig(C[Q0]).

We definepmax(η) = max({ 1
|Iη(T )| | T is a large type} ∪

{p(η) associated to user-defined rewrite rules, for an adversary

of runtimeq(η)}). The probabilitypmax(η) is negligible, since
it is the maximum of a constant number of negligible functions.
We shall prove in the following that the probability that a de-
sired fact does not hold is at mostq′(η)pmax(η), whereq′ is a
polynomial, so it is negligible.

The proof follows the structure of the simplification algo-
rithm: we prove the correctness of each component of the al-
gorithm separately.

Correctness of the collection of true facts. We consider a
slightly modified semantics for our calculus, in which each pro-
cess is accompanied with a substitution that defines the values
of the replication indices in that process. For example, the rule
(Repl) becomes in this semantics:

E, {(σ, !i≤nQ)} ] Q, C  
E, {(σ[i 7→ a], Q) | a ∈ [1, Iη(n)]} ] Q, C

When evaluating a termM in a process with substitution(σ,Q)
or (σ, P ), we now useE, σ,M ⇓ a instead ofE,M ⇓ a, with
the ruleE, σ, i ⇓ σi instead of (Cst), and the other rules modi-
fied accordingly.

The judgmentE, σ ` F means that a factF holds in en-
vironmentE and substitutionσ. It is defined byE, σ ` M
if and only if E, σ,M ⇓ true; E, σ ` defined(M) if and
only if E, σ,M ⇓ a for somea; E, σ ` elsefind((u1 ≤
n1, . . . , um ≤ nm), (M1, . . . ,Ml),M) if and only if for
all x1 ∈ [1, Iη(n1)], . . . , xm ∈ [1, Iη(nm)], we have
E, σ′, (defined(M1, . . . ,Ml)∧M) ⇓ false whereσ′ = σ[u1 7→
x1, . . . , um 7→ xm]. We extend this definition to sets of facts
naturally. We say thatFP is correct for all P when C0

p−→t

. . .
p′−→t′ E, (σ, P ),Q, C implies E, σ ` FP . Our goal is to

show thatFP is indeed correct for allP .
For occurrences of processesP , Q in C and in the process

start〈〉; 0 used in the initial configuration, we letFP = FQ =
FFut

P = FElseFind
P = FElseFind

Q = ∅.
We show S0: immediately after callingcollectFacts, if

E1, (σ1, P1),Q1, C1
p−→t E, (σ, P ),Q, C then E, σ ` FP .

If the reduced process is inC, the result is obvious since
FP = ∅. Otherwise, we proceed by cases on the reduction
E1, (σ1, P1),Q1, C1

p−→t E, (σ, P ),Q, C. For example, in the
case (Let),E1, σ, M ⇓ a, a ∈ Iη(T ), andE1, (σ, let x[̃i] : T =
M in P ),Q, C 1−→L E = E1[x[σĩ] 7→ a], (σ, P ),Q, C. We
haveFP = {defined(x[̃i]), x[̃i] = M}. SinceE, σ, x[̃i] ⇓ a,
we haveE, σ ` defined(x[̃i]). We also haveE, σ,M ⇓ a, so
E, σ ` x[̃i] = M , soE, σ ` FP . We proceed in a similar way
for the other cases.

We show that, immediately after callingcollectFacts, FP is

correct for allP , that is, ifC0
p−→t . . .

p′−→t′ E, (σ, P ),Q, C then
E, σ ` FP . For the initial configuration, the property is obvious
sinceFP = ∅. For the other configurations, we conclude by
(S0).

We show the invariantS1: FC[Q0] = ∅ and if Q is an input
process andP is the input or output process just aboveQ, then
FQ ⊆ FP . This property is obvious aftercollectFacts since
FQ = ∅, and it is preserved by all updates toFQ (provided the
consequences ofdefined facts are not added inQ before they are
added inP , which we can easily satisfy).

36



We proveS2: if E,Q, C  E′,Q′, C′ and for all(σ,Q) ∈
Q, E, σ ` FQ, then for all (σ,Q) ∈ Q′, E′, σ ` FQ.
The proof is easy by cases on the derivation ofE,Q, C  
E′,Q′, C′, using (S1). Therefore, we haveS2’: if E′,Q′, C′ =
reduce(E,Q, C) and for all(σ,Q) ∈ Q, E, σ ` FQ, then for all
(σ,Q) ∈ Q′, E′, σ ` FQ.

Next, we prove that ifFP is correct for allP , thenF ′P ob-
tained by

F ′P = FP ∪ FP ′ if P is immediately underP ′

is correct for all P . We show that, ifC0
p−→t . . .

p′−→t′

E, (σ, P ),Q, C then for all (σ′, P ′) ∈ {(σ, P )} ] Q, E, σ′ `
F ′P ′ . The proof proceeds by induction on the length of the trace.
For the initial configuration,FC[Q0] = ∅ by (S1), so∅, ∅ `
FC[Q0], and∅, ∅ ` Fstart〈〉, so the property follows immediately
from (S2’). For the inductive step, if the last reduction of the

trace is (Output), we haveE1, (σ1, P1), {(σ,Q)} ]Q1, C1
p′−→t′

E, (σ, P ),Q, C with P1 = c[M1, . . . ,Ml]〈N1, . . . , Nk〉.Q1,
Q = c[M ′1, . . . ,M

′
l ](x1 [̃i] : T1, . . . , xk [̃i] : Tk).P , E =

E1[x1[σĩ] 7→ . . . , . . . , xk[σĩ] 7→ . . .], Q = Q1 ] Q2, and
E1,Q2, C = reduce(E1, {(σ1, Q1)}, C1). If P is in C,F ′P = ∅,
so E, σ ` F ′P . Otherwise,E, σ ` F ′Q by induction hypoth-
esis. MoreoverE, σ ` FP sinceFP is correct for allP , so
E, σ ` F ′P sinceF ′P = FQ ∪ FP ⊆ F ′Q ∪ FP . By induc-
tion hypothesis, for all(σ′, Q′) ∈ Q1, E1, σ

′ ` F ′Q′ . Also by
induction hypothesis,E1, σ1 ` F ′P1

, soE1, σ1 ` F ′Q1
⊆ F ′P1

by (S1). By (S2’), for all(σ′, Q′) ∈ Q2, E1, σ
′ ` F ′Q′ . So for all

(σ′, Q′) ∈ Q = Q1 ] Q2, E1, σ
′ ` F ′Q′ , soE, σ′ ` F ′Q′ since

E is an extension ofE1. If the last reduction is not (Output), it is
of the formE1, (σ, P ′),Q, C p−→t E, (σ, P ),Q, C whereE is an
extension ofE1. By induction hypothesis, for all(σ′, Q′) ∈ Q,
E1, σ

′ ` F ′Q′ , so for all(σ′, Q′) ∈ Q, E, σ′,` F ′Q′ . SinceFP

is correct for allP , E, σ ` FP andE1, σ ` FP ′ , soE, σ ` FP ′ ,
soE, σ ` F ′P = FP ∪ FP ′ .

We show S3: if E, (σ, P ),Q, C p−→t . . .
p′−→t′

E′, (σ′, P ′),Q′, C′ whereP ′ is an output and no process be-
fore P ′ in this trace is an output, thenE′, σ′ ` FFut

P . Since
no process beforeP ′ in this trace is an output, this trace does
not contain the reduction rule (Output). The proof proceeds
by induction onP . If P is an output, the result is obvi-
ous sinceFFut

P = collectFacts(P ) = ∅. Otherwise, let
P1, . . . , Pm be the immediate subprocesses ofP . We have
E, (σ, P ),Q, C p−→t E1, (σ, Pj),Q, C for some extensionE1

of E and somej ∈ {1, . . . ,m}. Moreover, by definition of
collectFacts, FFut

P = collectFacts(P ) =
⋂m

j=1(FPj
∪ FFut

Pj
),

where the value ofFPj
is considered immediately after calling

collectFacts. By (S0),E1, σ ` FPj , soE′, σ′ ` FPj sinceE′

is an extension ofE1 andσ′ = σ since no (Output) reduction
occurs in this trace. By induction hypothesis,E′, σ′ ` FFut

Pj
,

soE′, σ′ ` FPj
∪ FFut

Pj
for somej ∈ {1, . . . ,m}. Therefore,

E′, σ′ ` FFut
P .

We now show that ifFP is correct for allP , andF ′P is ob-
tained by

F ′P = FP ∪

 ⋂
(x[i1,...,im],P ′)∈D


σ′(FP ′ ∪ (FFut

P ′ ∩ FP ))
if P is underP ′

σ′(FP ′ ∪ FFut
P ′ ) otherwise



whereσ′ = {M1/i1, . . . ,Mm/im}, whendefined(M) ∈ FP

and x[M1, . . . ,Mm] is a subterm ofM , andF ′P = FP oth-
erwise, thenF ′P is also correct for allP . We assume that

C0
p−→t . . .

p′−→t′ E, (σ, P ),Q, C and show thatE, σ ` F ′P .
SinceFP is correct for allP , E, σ ` FP . SinceE, σ `
defined(M), E, σ,Mj ⇓ aj for all j ≤ m andx[a1, . . . , am] ∈
Dom(E). Therefore, some definition ofx[a1, . . . , am] has been
executed in the considered trace. Next, we show that, for some
(x[i1, . . . , im], P ′) ∈ D, we haveE, σ1 ` FP ′ ; if P is un-
der P ′ then E, σ1 ` FFut

P ′ ∩ FP ; and if P is not underP ′

then E, σ1 ` FFut
P ′ , whereσ1(i1) = a1, . . . , σ1(im) = am.

The desired result follows. LetE1, (σ1, P1),Q1, C1
p1−→t1

E2, (σ1, P2),Q2, C2 be the reduction that definesx[a1, . . . , am]
in the considered trace. We haveE2, σ1 ` FP2 sinceFP

is correct for allP . So E, σ1 ` FP2 sinceE is an exten-
sion of E2 so all facts that hold inE2 also hold inE. We
have(x[i1, . . . , im], P2) ∈ D. If P is not underP2, the trace

E2, (σ1, P2),Q2, C2
p2−→t2 . . .

p′−→t′ E, (σ, P ),Q, C must ex-
ecute an output, so by (S3),E3, σ3 ` FFut

P2
where the con-

figuration in which the first output afterE2, (σ1, P2),Q2, C2 is
executed isE3, (σ3, P3),Q3, C3, so E, σ1 ` FFut

P2
. (We have

σ3 = σ1, since the substitutionσ is changed only when ex-
ecuting a communication.) IfP is underP2, two cases can

happen. Either the traceE2, (σ1, P2),Q2, C2
p2−→t2 . . .

p′−→t′

E, (σ, P ),Q, C executes an output, and we haveE, σ1 ` FFut
P2

as above, orE2, (σ1, P2),Q2, C2
p2−→t2 . . .

p′−→t′ E, (σ, P ),Q, C
executes no output, soσ = σ1. (The substitutionσ is changed
only when executing a communication.) SinceFP is correct for
all P , E, σ ` FP , henceE, σ1 ` FP . Then, in both cases,
E, σ1 ` FFut

P2
∩ FP .

Next, we showS4: if C0
p−→t . . .

p′−→t′ E, (σ, P ),Q, C then
E, σ ` FElseFind

P . The proof proceeds by induction on the
length of the trace. For the initial configuration, the result is ob-
vious sinceFElseFind

P = ∅. For the inductive step, if the reduced
process is inC, the result is obvious sinceFElseFind

P = ∅. Oth-
erwise, we proceed by cases on the last reduction of the trace.
In the (Output) case, the result is obvious sinceFElseFind

P = ∅.
In the (New), (Let), and (Find1) cases,σ is unchanged,E is
extended with definitions for some variables, andelsefind facts
that claim that these variables are not defined are removed from
FElseFind

P , so we still haveE, σ ` FElseFind
P . In the (Find2)

case forP ′ = find (
⊕m

j=1 uj1 [̃i] ≤ nj1, . . . , ujmj
[̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧ Mj then Pj) else P , E
andσ are unchanged and since (Find2) is executed,∀j ≤ m,
∀a1 ∈ [1, Iη(nj1)], . . . , ∀amj ∈ [1, Iη(njmj )], E[uj1[σĩ] 7→
a1, . . . , ujmj [σĩ] 7→ amj ], σ, (defined(Mj1, . . . ,Mjlj )∧Mj) ⇓
false. FElseFind

P = FElseFind
P ′ ∪ {elsefind((u1 ≤ nj1, . . . ,

umj
≤ njmj

), σj(Mj1, . . . ,Mjlj ), σjMj) | j ∈ {1, . . . ,m}}
whereσj = {u1/uj1 [̃i], . . . , umj

/ujmj
[̃i]}. By induction hy-

pothesisE, σ ` FElseFind
P ′ . Moreover,E, σ ` elsefind((u1 ≤

nj1, . . . , umj
≤ njmj

), σj(Mj1, . . . ,Mjlj ), σjMj) for j ∈
{1, . . . ,m}, soE, σ ` FElseFind

P .

We now show that ifFP is correct for allP , thenF ′P obtained
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by

F ′P = FP ∪ {¬σ′M | elsefind((u1 ≤ n1, . . . , um ≤ nm),

(M1, . . . ,Ml),M) ∈ FElseFind
P ,Dom(σ′) = {u1, . . . , um},

for eachj ∈ {1, . . . , l}, σ′Mj is a subterm ofM ′j and

defined(M ′j) ∈ FP }

is also correct for allP . Assuming thatC0
p−→t . . .

p′−→t′

E, (σ, P ),Q, C, we show thatE, σ ` F ′P . SinceFP is cor-
rect for all P , E, σ ` FP . By (S4), E, σ ` FElseFind

P . As-
sumeelsefind((u1 ≤ n1, . . . , um ≤ nm), (M1, . . . ,Ml),M) ∈
FElseFind

P and for eachj ∈ {1, . . . , l}, σ′Mj is a subterm ofM ′j
anddefined(M ′j) ∈ FP . Letak be such thatE, σ, σ′uk ⇓ ak for
eachk ∈ {1, . . . ,m}. Let σ′′ = σ[u1 7→ a1, . . . , um 7→ am].
SinceE, σ ` defined(M ′j), we haveE, σ,M ′j ⇓ a′j for somea′j
soE, σ, σ′Mj ⇓ a′′j for somea′′j , soE, σ′′,Mj ⇓ a′′j . (This is
proved by induction onMj .) By definition of elsefind facts,
E, σ′′, (defined(M1, . . . ,Ml) ∧ M) ⇓ false so E, σ′′,M ⇓
false, that is, E, σ, σ′M ⇓ false, so E, σ ` ¬σ′M . So
E, σ ` F ′P .

Therefore, we conclude that at the end of the computation,
FP is correct for allP .

Correctness of the local dependency analysis.As above in
the correctness of the collection of true facts, we denote byP
an occurrence of a process, so that we can distinguish identical
subprocesses that occur at several occurrences in a process.

We first show the soundness of the local dependency analy-
sis ignoring modifications in the game performed bydepAnal.
Then we will show the soundness of the game modifications,
that is, that these modifications change the behavior of the game
only with negligible probability. Since the game modifications
do not change the part of the computation ofdepend andindep
performed before the modification, thedepAnal procedure is
equivalent to performing a full dependency analysis without
game modification, performing game modification, redoing the
whole dependency analysis analysis on the modified game, and
so on, until a fixpoint is reached. Therefore, the separate proof
of the dependency analysis and the game modifications outlined
above is sufficient to prove the correctness of thedepAnal pro-
cedure.

We haveS5: if y is defined only by restrictions andy 6= x,
then there exists noM such that(y, M) ∈ dependP (x). This
property is obvious since the only case in which an element
(y, M) is added independP (x) is in the assignmentlet y[̃i] :
T = M ′ in P ′, so such an addition cannot happen wheny is
defined only by restrictions.

For eachσ,depend, indep, we define an equivalence relation
∼σ,depend,indep on environments byE ∼σ,depend,indep E′ if and
only if

• for all M ∈ indep, for all b, E, σ,M ⇓ b if and only if
E′, σ, M ⇓ b;

• if depend 6= >, then for allz[ã] such thatz[ã] 6= x[σĩ] and
there exists no(y, M) ∈ depend such thatz[ã] = y[σĩ],
E(z[ã]) is defined if and only ifE′(z[ã]) is defined and
when they are defined,E(z[ã]) = E′(z[ã]) (̃i denotes the
current replication indices at definition ofx);

• and for all y such thaty 6= x and y is defined only by
restrictions, for allã, E(y[ã]) is defined if and only if
E′(y[ã]) is defined and when they are defined,E(y[ã]) =
E′(y[ã]).

WhenE ∼σ,depend,indep E′, the environmentsE andE′ dif-
fer only by variables that depend onx[σĩ], according to the
information contained independ and indep. That is, terms
in indep have the same value inE andE′ (first item); when
depend 6= >, variables not independ have the same value in
E andE′ (second item); variables defined only by restrictions
have the same value inE andE′ (third item). We abbreviate
∼σ,dependP (x),indepP (x) by∼σ,P .

We showS6: if M ′ does not depend onx at P andE ∼σ,P

E′, then E, σ,M ′ ⇓ b if and only if E′, σ, M ′ ⇓ b. This
property expresses the correctness of the definition of “M ′ does
not depend onx at P ”. We prove that ifE, σ,M ′ ⇓ b then
E′, σ, M ′ ⇓ b, by induction on the derivation thatM ′ does not
depend onx at P . The converse follows immediately by swap-
ping the roles ofE andE′.

• CaseM ′ = f(M ′1, . . . ,M
′
m) and for allj ≤ m, M ′j does

not depend onx at P . SinceE, σ,M ′ ⇓ b, E, σ,M ′j ⇓ bj

andIη(f)(b1, . . . , bm) = b for someb1, . . . , bm. Hence by
induction hypothesis,E′, σ, M ′j ⇓ bj , soE′, σ, M ′ ⇓ b.

• CaseM ′ ∈ indepP (x). The result comes from the defini-
tion of∼σ,P .

• CaseM ′ is a replication index. We haveE, σ,M ′ ⇓ σM ′

andE′, σ, M ′ ⇓ σM ′, so the result holds.

• CaseM ′ = y[M ′1, . . . ,M
′
m], M ′1, . . . ,M

′
m do not de-

pend onx at P ′, y 6= x, and eithery is defined only
by restrictions ordependP (x) 6= > and y 6= y′ for all
(y′,M ′′) ∈ dependP (x). SinceE, σ,M ′ ⇓ b, E, σ,M ′j ⇓
bj andE(y[b1, . . . , bk]) = b for someb1, . . . , bk. Hence
by induction hypothesis,E′, σ, M ′j ⇓ bj . By definition
of ∼σ,P , E′(y[b1, . . . , bk]) = E(y[b1, . . . , bk]) = b, so
E′, σ, M ′ ⇓ b.

Let us consider the following propertyL0:

1. If Pr[C0 →∗ E, (σ, P ),Q, C] > 0, dependP (x) 6= >, and
(y, M) ∈ dependP (x), thenE, σ,M ⇓ E(y[σĩ]) wherẽi
denotes the current replication indices atP ;

2. If Pr[C0 →∗ E, (σ, P ),Q, C] > 0 andM ∈ indepP (x),
thenE, σ,M ⇓ a for somea;

3. For eachb ∈ Iη(T ), for eachσ, for eachE0, Pr[∃E,∃Q,

∃C, C0 →∗ E, (σ, P ),Q, C ∧ E ∼σ,P E0 ∧ E(x[σĩ]) =
b] ≤ 1

|Iη(T )| Pr[∃E,∃Q,∃C, C0 →∗ E, (σ, P ),Q, C ∧
E ∼σ,P E0] wherẽi denotes the current replication indices
at the definition ofx.

We will show that if dependP (x) 6= >, then (L0) holds at
P . This property expresses the correctness of the local depen-
dency analysis atP , whendependP (x) 6= >. (We will consider
the general case below, Property L1.) Item 1 says that, when
(y, M) ∈ dependP (x), M evaluates to the contents ofy. Item 2
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says that, whenM ∈ indepP (x), the value ofM is always de-
fined atP . Finally, the last item is the most important one: it
expresses the independence properties. Essentially, the traces
that differ by the value ofx[σĩ] all have the same probability,
and differ only by the values of variables that depend onx[σĩ],
collected independP (x), so their environments are related by
∼σ,P . When the value ofx[σĩ] is fixed tob, the probability of
reaching an environment related toE0 by ∼σ,P is then 1

|Iη(T )|
times the probability of reaching such an environment for any
value ofx[σĩ].

We first showS7: if (L0) holds atP with indep instead of
indepP (x), for all E, σ such thatPr[C0 →∗ E, (σ, P ),Q, C] >
0, E, σ,M ′ ⇓ a for somea, andM ′ does not depend onx at
P with indep instead ofindepP (x), then (L0) also holds atP
with indep∪{M ′} instead ofindepP (x). Essentially, this prop-
erty means thatM ′ can be added toindepP (x) whenM ′ does
not depend onx at P . Items 1 and 2 of (L0) hold by hypoth-
esis. If E ∼σ,dependP (x),indep E′, by (S6),E, σ,M ′ ⇓ b if
and only ifE′, σ, M ′ ⇓ b, soE ∼σ,dependP (x),indep∪{M ′} E′.
Conversely, we have obviously: ifE ∼σ,dependP (x),indep∪{M ′}
E′, thenE ∼σ,dependP (x),indep E′, so∼σ,dependP (x),indep =
∼σ,dependP (x),indep∪{M ′}. This proves Item 3 of (L0), and con-
cludes the proof of (L0).

Next, we proveS8: if dependP (x) 6= > then (L0) holds at
P , by decreasing induction on the processP . The only cases in
whichdependP (x) 6= > are as follows:

• P occurs inP ′ = new x[̃i] : T ;P whereT is a large
type. We havedependP (x) = ∅ and indepP (x) =⋃

defined(M)∈FP ′ subterms(M). Item 1 of (L0) holds triv-
ially. For all traces of non-zero probability that reachP ,
the last reduction reducesP ′ by (New), so these traces are
all of the formC0 →∗ E′, (σ, P ′),Q, C → E, (σ, P ),Q, C
whereE = E′[x[σĩ] 7→ a′] for somea′ ∈ Iη(T ). Since
FP is correct for allP , E′, σ ` FP ′ , so for all M ′ ∈
subterms(M) such thatdefined(M) ∈ FP ′ , E′, σ, M ′ ⇓ a
for somea, henceE, σ,M ′ ⇓ a since E is an exten-
sion of E′, which proves Item 2 of (L0). By the se-
mantic rule (New), for allb ∈ Iη(T ), Pr[∃E,∃Q,∃C,
C0 →∗ E, (σ, P ),Q, C ∧ E ∼σ,P E0 ∧ E(x[σĩ]) = b] =

1
|Iη(T )| Pr[∃E,∃Q,∃C, C0 →∗ E, (σ, P ),Q, C ∧ E ∼σ,P

E0] since the conditionE ∼σ,P E0 does not use the value
of E(x[σĩ]). (The first item ofE ∼σ,P E0 does not use
the value ofE(x[σĩ]) because the elements ofindepP (x)
are all defined inE′ andE′(x[σĩ]) is not defined. The other
two items never useE(x[σĩ]).) Therefore, we obtain Item 3
of (L0).

• P occurs inP ′ = new y[̃i] : T ′;P with y 6= x. We
have dependP (x) = dependP ′(x) and indepP (x) =
indepP ′(x) ∪ {y[̃i]}. For all traces of non-zero probabil-
ity that reachP , the last reduction reducesP ′ by (New), so
these traces are all of the formC0 →∗ E′, (σ, P ′),Q, C →
E, (σ, P ),Q, C where E = E′[y[σĩ] 7→ a′] for some
a′ ∈ Iη(T ′). Item 1 of (L0) comes from the induction
hypothesis (atP ′) and the fact thatE is an extension of
E′. Item 2 of (L0) comes from the induction hypothesis (at
P ′), the fact thatE is an extension ofE′, and the fact that

E(y[σĩ]) is defined. LetE′0 = E
0|y[σei] be the environment

E0 restricted to the variables defined atP ′.

Pr
[
∃(E,Q, C), C0 →∗ E, (σ, P ),Q, C
∧ E ∼σ,P E0 ∧ E(x[σĩ]) = b

]
=

1
|Iη(T ′)|

Pr
[
∃(E′,Q, C), C0 →∗ E′, (σ, P ′),Q, C
∧ E′ ∼σ,P ′ E′0 ∧ E(x[σĩ]) = b

]

≤ 1
|Iη(T ′)|

1
|Iη(T )|

Pr

∃(E′,Q, C),
C0 →∗ E′, (σ, P ′),Q, C
∧ E′ ∼σ,P ′ E′0


≤ 1
|Iη(T )|

Pr
[
∃(E,Q, C), C0 →∗ E, (σ, P ),Q, C
∧ E ∼σ,P E0

]
The first step is by the semantic rule (New), the second step
by induction hypothesis, and the last step by the semantic
rule (New) again. Therefore, we obtain Item 3 of (L0).

• P occurs inP ′ = let y[̃i] : T ′ = M in P with y 6= x.
For all traces of non-zero probability that reachP , the last
reduction reducesP ′ by (Let), so these traces are all of the
form C0 →∗ E′, (σ, P ′),Q, C → E, (σ, P ),Q, C where
E′, σ, M ⇓ a′ andE = E′[y[σĩ] 7→ a′]. LetE′0 = E

0|y[σei].
If M does not depend onx atP ′, we havedependP (x) =
dependP ′(x) and indepP (x) = indepP ′(x) ∪ {y[̃i]}. In
this case, by (S6),E′, σ, M ⇓ a′ if and only if E′0, σ, M ⇓
a′ (whereE′ ∼σ,P ′ E′0 are environments atP ′). We can
then show that (L0) holds atP using the induction hypoth-
esis. (We haveE ∼σ,P E0 if and only if E′ ∼σ,P ′ E′0 and
E0 = E′0[y[σĩ] 7→ a′].)

Otherwise, we havedependP (x) = dependP ′(x) ∪
{(y, MdependP ′(x))} andindepP (x) = indepP ′(x). By
induction hypothesis, for all(y′,M ′) ∈ dependP ′(x),
E′, σ, M ′ ⇓ E′(y′[σĩ]), so E, σ,M ′ ⇓ E(y′[σĩ]), hence
E, σ,MdependP ′(x) ⇓ a′ = E(y[σĩ]), so we obtain
Item 1 of (L0). Item 2 of (L0) follows immediately from
the induction hypothesis. Item 3 of (L0) also follows from
the induction hypothesis. (We haveE ∼σ,P E0 if and only
if E′ ∼σ,P ′ E′0.)

• P occurs inP ′ = find (
⊕m

j=1 uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤
njmj

suchthat defined(Mj1, . . . ,Mjlj )∧Mj then Pj) else
P ′′, P is eitherP ′′ or Pj for somej ≤ m, and for all
j, k, Mjk and M ′j do not depend onx at P ′. We have
dependP (x) = dependP ′(x), indepP (x) = indepP ′(x)
if P = P ′′, and indepP (x) = indepP ′(x) ∪ {M ′ |
M ′ ∈ subterms(M) for somedefined(M) ∈ FPj

, M ′

does not depend onx at P ′} if P = Pj . By (S6), we
can show that the same branch of thefind is taken with
the same probability for allE such thatE ∼σ,P ′ E0 for
the sameE0. Using the induction hypothesis, we can
then show that (L0) holds atP with indepP ′(x) instead
of indepP (x). This concludes the proof whenP = P ′′.
When P = Pj , let M ′′1 , . . . ,M ′′l be the termsM ′ such
thatM ′ ∈ subterms(M) for somedefined(M) ∈ FPj

and
M ′ does not depend onx at P ′. SinceFPj is correct and
Pr[C0 →∗ E, (σ, P ),Q, C] = p > 0 thenE, σ ` FPj , so
E, σ,M ′′k ⇓ a for somea. The termM ′′k does not depend
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on x at P with indepP ′(x) ∪ {M ′′1 , . . . ,M ′′k−1} instead
of indepP (x). By (S7) applied atP with indepP ′(x) ∪
{M ′′1 , . . . ,M ′′k−1} instead ofindepP (x), if (L0) holds atP
with indepP ′(x) ∪ {M ′′1 , . . . ,M ′′k−1}, then (L0) holds at
P with indepP ′(x) ∪ {M ′′1 , . . . ,M ′′k }. So (L0) holds atP
with indepP ′(x) ∪ {M ′′1 , . . . ,M ′′l } = indepP (x).

For eachσ, P , we define a special semantics of processes.
This semantics executes the processC[Q0] normally until it
reaches a configurationE′, (σ′, P ′),Q, C such thatP ′ is the
smallest superprocess ofP such thatdependP ′(x) 6= > and
σ′(i) = σ(i) for all i ∈ Dom(σ′). After reaching this con-
figuration, it executes restrictions for all variables defined only
by restrictions inC[Q0] that have not been assigned yet and
executes the not-executed-yet restrictions and the assignments
P1 = let y : T = M in P2 such thatM does not depend on
x at P1 betweenP ′ and P . In the second part of the trace,
a configuration is onlyE′′, (σ′′, P ′′); σ′′ is always set to be
σ restricted to the current replication indices atP ′′. We write
C0→′∗E, (σ, P ) to designate a trace in this special semantics.
(WhendependP (x) 6= >, this semantics executes the process
normally, and finally executes restrictions for all variables de-
fined only by restrictions that have not been assigned yet.)

We will show the following propertyL1:

1. If Pr[C0 →∗ E, (σ, P ),Q, C] > 0, dependP (x) 6= >, and
(y, M) ∈ dependP (x), thenE, σ,M ⇓ E(y[σĩ]) wherẽi
denotes the current replication indices atP ;

2. If Pr[C0 →∗ E, (σ, P ),Q, C] > 0 andM ∈ indepP (x),
thenE, σ,M ⇓ a for somea;

3. For each b ∈ Iη(T ), for each σ, for each E0,
Pr[∃(E,Q, C), C0 →∗ E, (σ, P ),Q, C ∧ E ∼σ,P E0 ∧
E(x[σĩ]) = b] ≤ 1

|Iη(T )| Pr[∃E1, C0→′∗E1, (σ, P ) ∧
E1|Dom(E0) ∼σ,P E0] where ĩ denotes the current repli-
cation indices at the definition ofx.

Property (L1) expresses the correctness of the local dependency
analysis atP . It differs from (L0) by the use of the special
semantics→′ in Item 3. This semantics is necessary when
dependP (x) = >, because in that case the control-flow may
also depend on the value ofx[σĩ], soP may not be reachable
for certain values ofx[σĩ], which breaks the inequality between
probabilities of (L0), Item 3. In contrast, the special semantics
→′ computesE1, (σ, P ) without taking into account the control-
flow, so this problem is avoided.

Property (S7) also holds for (L1), with the same proof as
for (L0).

We show S9: if (L0) holds at P , then (L1) holds atP .
Let E1 be E extended with values for all variables defined
only by restrictions. IfE ∼σ,P E0, the variables defined
only by restrictions are defined for the same indices inE and
in E0, so E1|Dom(E0) = E, henceE1|Dom(E0) ∼σ,P E0.
Therefore,Pr[∃(E,Q, C), C0 →∗ E, (σ, P ),Q, C ∧ E ∼σ,P

E0] ≤ Pr[∃E1, C0→′∗E1, (σ, P ) ∧ E1|Dom(E0) ∼σ,P E0],
which proves (L1).

We show S9’: if (L0) holds at P , then (L1) holds at
P with ∼σ,>,indepP (x) instead of∼σ,P . If E ∼σ,P E′,

then E ∼σ,>,indepP (x) E′. So each equivalence class of
∼σ,>,indepP (x) is a union of equivalence classes of∼σ,P . So we
obtain (L0) with∼σ,>,indepP (x) instead of∼σ,P by adding prob-
abilities. We conclude that (L1) holds atP with ∼σ,>,indepP (x)

instead of∼σ,P using a proof similar to that of (S9).
We showS10: If P is an output process,P ′ is the small-

est output process such thatP is a strict subprocess ofP ′,
(L1) holds atP ′ with ∼σ,>,indepP ′ (x) instead of∼σ,P ′ , and
dependP (x) = >, then (L1) holds atP with indepP ′(x) in-
stead ofindepP (x). The equivalence between environments
for (L1) at P with indepP ′(x) instead ofindepP (x) is also
∼σ,>,indepP ′ (x), sincedependP (x) = >. Item 1 of (L1) holds
trivially at P sincedependP (x) = >. For the proof of Item 3
of (L1), we let p = Pr[∃(E,Q, C), C0 →∗ E, (σ, P ),Q, C ∧
E ∼σ,>,indepP ′ (x) E0 ∧ E(x[σĩ]) = b].

• CaseP ′ = let y[̃i] : T ′ = M in P . In traces of non-
zero probability that reachP , the last reduction of the trace
reducesP ′ by (Let), so these traces are all of the form:

C0 →∗ E′, (σ, P ′),Q, C → E, (σ, P ),Q, C

whereE′, σ, M ⇓ a andE = E′[y[σĩ] 7→ a] and the corre-
sponding trace of→′ is

C0→′
∗
E′1, (σ, P ′)→′ E1, (σ, P )

whereE′1, σ, M ⇓ a′ andE1 = E′1[y[σĩ] 7→ a′]. Let E′0 =
E

0|y[σei] be the environmentE0 restricted to the variables

defined atP ′. For all M ′ ∈ indepP ′(x), E1, σ, M ′ ⇓ b
for someb since (L1) holds atP ′. ThenE, σ,M ′ ⇓ b,
so Item 2 of (L1) holds atP with indepP ′(x) instead of
indepP (x). Since all elements ofindepP ′(x) must be de-
fined atP ′ (by Item 2 of (L1) atP ′), y[σĩ] is not defined
at P ′, andy is not defined only by restrictions, the con-
dition E ∼σ,>,indepP ′ (x) E0 in Item 3 of (L1) atP with
indepP ′(x) instead ofindepP (x) does not use the value
of E(y[σĩ]), henceE ∼σ,>,indepP ′ (x) E0 if and only if
E′ ∼σ,>,indepP ′ (x) E′0, andE1|Dom(E0) ∼σ,>,indepP ′ (x)

E0 if and only if E′1|Dom(E′
0)
∼σ,>,indepP ′ (x) E′0, so the

probabilities that occur in Item 3 of (L1) are the same forP ′

and forP with indepP ′(x) instead ofindepP (x). There-
fore, Item 3 of (L1) holds atP with indepP ′(x) instead of
indepP (x).

• CaseP ′ = new y[̃i] : T ′;P , wherey is not defined only by
restrictions. In traces of non-zero probability that reachP ,
the last reduction of the trace reducesP ′ by (New). This
case is similar to thelet case above.

• CaseP ′ = new y[̃i] : T ′;P , wherey is defined only by
restrictions. In traces of non-zero probability that reachP ,
the last reduction of the trace reducesP ′ by (New). Item 2
is proved as in thelet case above. Let us consider Item 3.
Let E′0 = E

0|y[σei] be the environmentE0 restricted to the

variables defined atP ′. Let ĩ′ be the replication indices at
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the definition ofx. (̃i′ is a prefix of̃i.)

p = Pr

∃(E,E′,Q, C),
C0 →∗ E′, (σ, P ′),Q, C → E, (σ, P ),Q, C
∧ E ∼σ,>,indepP ′ (x) E0 ∧ E(x[σĩ′]) = b


=

1
|Iη(T ′)|

Pr

∃(E′,Q, C), C0 →∗ E′, (σ, P ′),Q, C
∧ E′ ∼σ,>,indepP ′ (x) E′0
∧ E′(x[σĩ′]) = b


≤ 1
|Iη(T ′)|

1
|Iη(T )|

Pr
[
∃E′1, C0→′∗E′1, (σ, P ′) ∧
E′1|Dom(E′

0)
∼σ,>,indepP ′ (x) E′0

]
≤ 1
|Iη(T )|

Pr
[
∃E1, C0→′∗E1, (σ, P )
∧ E1|Dom(E0) ∼σ,>,indepP ′ (x) E0

]
The first step comes from the semantic rule (New), the sec-
ond step from (L1) atP ′, the last step from the assign-
ment of variables defined only by restrictions in the spe-
cial →′ semantics. (Note thatE′1 = E1, but the con-
dition E′1|Dom(E′

0)
∼σ,>,indepP ′ (x) E′0 does not use the

value ofE′1(y[σĩ]).) This inequality proves (L1) atP with
indepP ′(x) instead ofindepP (x).

• Cases in which there is no assignment and no restriction
betweenP andP ′. Everything that is defined atP ′ is also
defined atP , since the environment atP is an extension of
the environment atP ′, so Item 2 of (L1) holds atP since
it holds atP ′. Let us now prove Item 3 of (L1). The final
environmentE′ of the→′ trace is the same forP and for
P ′, so the right-hand side of the inequality is the same for
P and forP ′. The left-hand side decreases fromP ′ to P ,
since all traces that reachP must first have reachedP ′, so
the inequality still holds.

From the previous results, we show that (L1) holds at all out-
put processesP . The proof proceeds by decreasing induction
on P . If dependP (x) 6= >, we have the result using (S8)
and (S9). Otherwise, letP ′ be the smallest output process such
that P is a strict subprocess ofP ′. If dependP ′(x) 6= >,
by (S8) and (S9’), (L1) holds atP ′ with ∼σ,>,indepP ′ (x) instead
of ∼σ,P ′ . If dependP ′(x) = >, by induction hypothesis, (L1)
holds atP ′, that is, (L1) holds atP ′ with ∼σ,>,indepP ′ (x) in-
stead of∼σ,P ′ . In both cases, by (S10), (L1) holds atP with
indepP ′(x) instead ofindepP (x). The only cases in which
indepP ′(x) 6= indepP (x) are as follows:

• CaseP ′ = new y[̃i] : T ′;P , y 6= x, indepP (x) =
indepP ′(x)∪{y[̃i]}. Wheny is defined only by restrictions,
y[̃i] does not depend onx atP with indepP ′(x) instead of
indepP (x), so, by (S7), (L1) holds atP . Otherwise, in
traces of non-zero probability that reachP , the last reduc-
tion of the trace reducesP ′ by (New), so these traces are
all of the form:

C0 →∗ E′, (σ, P ′),Q, C → E, (σ, P ),Q, C

whereE = E′[y[σĩ] 7→ a] for somea ∈ Iη(T ′). So Item 2
of (L1) holds atP . Let E′0 = E

0|y[σei]. Let ĩ′ be the repli-

cation indices at the definition ofx. (̃i′ is a prefix of̃i.) We

prove Item 3 of (L1) as follows:

p = Pr

∃(E,E′,Q, C),
C0 →∗ E′, (σ, P ′),Q, C → E, (σ, P ),Q, C
∧ E ∼σ,>,indepP (x) E0 ∧ E(x[σĩ′]) = b


=

1
|Iη(T ′)|

Pr

∃(E′,Q, C), C0 →∗ E′, (σ, P ′),Q, C
∧ E′ ∼σ,>,indepP ′ (x) E′0
∧ E′(x[σĩ′]) = b


≤ 1
|Iη(T ′)|

1
|Iη(T )|

Pr
[
∃E′1, C0→′∗E′1, (σ, P ′) ∧
E′1|Dom(E′

0)
∼σ,>,indepP ′ (x) E′0

]

≤ 1
|Iη(T )|

Pr

∃(E1, E
′
1),

C0→′∗E′1, (σ, P ′)→′ E1, (σ, P )
∧ E1|Dom(E0) ∼σ,>,indepP (x) E0


The first step comes from the semantic rule (New), the sec-
ond step from (L1) atP ′, the last step from the special→′
semantics ofnew. This inequality proves (L1) atP .

• CaseP ′ = find (
⊕m

j=1 uj1 [̃i] ≤ nj1, . . . , ujmj
[̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧ Mj then Pj) else
P ′′, dependP (x) = dependP ′(x) = >, P = Pj ,
indepP (x) = indepP ′(x) ∪ {M ′ | M ′ ∈ subterms(M)
for somedefined(M) ∈ FPj

, M ′ does not depend onx at
P ′}. For all M ′ such thatM ′ ∈ subterms(M) for some
defined(M) ∈ FPj

andM ′ does not depend onx at P ′,
M ′ does not depend onx at P with indepP ′(x) instead of
indepP (x). SinceFP is correct for allP , for all E, σ such
thatPr[C0 →∗ E, (σ, P ),Q, C] > 0, we haveE, σ ` FP ,
soE, σ,M ′ ⇓ a for somea. So, by (S7), (L1) holds atP .

• CaseP ′ = let y[̃i] : T ′ = M in P , y 6= x, M does not
depend onx atP ′. The termM does not depend onx atP
with indepP ′(x) instead ofindepP (x). By (S7), (L1) holds
atP with indepP ′(x) ∪ {M} instead ofindepP (x). In all
traces (of non-zero probability) considered in (L1), we have
E, σ, y[̃i] ⇓ b if and only if E, σ,M ⇓ b andE1, σ, y[̃i] ⇓
b if and only if E1, σ, M ⇓ b, so (L1) holds atP with
indepP (x) = indepP ′(x) ∪ {y[̃i]}.

This result concludes the proof of soundness of the dependency
analysis.

We now show the soundness ofsimplifyTerm. Essentially,
whenM simplifies toM ′, M andM ′ evaluate to the same value
except in cases of negligible probability. More precisely, we
showS11: for eachP , M , M ′, if M ′ = simplifyTerm(M,P ),
thenPr[∃(E, σ,Q, C), C0 →∗ E, (σ, P ),Q, C ∧ E, σ, (M ′ =
M) ⇓ false] ≤ q′(η)pmax(η) for some polynomialq′.
The proof proceeds by induction on the derivation that
M ′ = simplifyTerm(M,P ). We only consider the case
simplifyTerm(M1 = M2, P ) = false; the other cases are simi-
lar or easy. We show that ifsimplifyTerm(M1 = M2, P ) =
false then p = Pr[∃(E, σ,Q, C), C0 →∗ E, (σ, P ),Q, C ∧
E, σ, (M1 = M2) ⇓ true] ≤ q′(η)pmax(η) for some polyno-
mial q′. WhendependP (x) = >, let M0 = M1; otherwise,
let M0 = M1dependP (x). Let M ′0 and M ′2 be obtained re-
spectively fromM0 andM2 by replacing all array indices that
depend onx atP with fresh replication indices. We assume that
M ′0 characterizes a part ofx[̃i] atP , andM ′2 does not depend on
x atP .
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Let σ andσ′ be fixed, such thatσ′ is an extension ofσ to
the fresh replication indices ofM ′0 andM ′2. We denote byE
equivalence classes for∼σ,P =∼σ′,P . We show that for alla, for
all E, there existsb such that for allE ∈ E, if E, σ′,M ′0 ⇓ a,
thenE, σ′, f1(. . . fk(x[̃i])) ⇓ b.

• Assume that there existsE′ ∈ E such thatE′, σ′,M ′0 ⇓ a.
We define an environmentE′′ by E′′(y[ã]) = E(y[ã])
for all y[ã] ∈ Dom(E) and E′′((αy)[ã]) = E′(y[ã])
for variablesy renamed to fresh variables byα. We
haveE′′((αy)[ã]) = E′(y[ã]) for all y[ã] ∈ Dom(E′),
since whenαy = y, E′(y[ã]) = E(y[ã]) sinceE ∼σ,P

E′. Hence E′′, σ′,M ′0 ⇓ a and E′′, σ′, αM ′0 ⇓ a,
so E′′, σ′, (αM ′0 = M ′0) ⇓ true. So by rewriting,
E′′, σ′, (f1(. . . fk((αx)[̃i])) = f1(. . . fk(x[̃i]))) ⇓ true.
Let b such thatE′′, σ′, f1(. . . fk((αx)[̃i])) ⇓ b. Then
E′′, σ′, f1(. . . fk(x[̃i])) ⇓ b.

• Otherwise, there exists noE ∈ E such thatE, σ′,M ′0 ⇓ a,
so the result holds trivially.

So there exists a functionf such that for alla, for all E, for
all E ∈ E, if E, σ′,M ′0 ⇓ a, thenE, σ′, f1(. . . fk(x[̃i])) ⇓
f(a, σ′, E).

If E, σ, (M1 = M2) ⇓ true andE ∈ E, E, σ,M1 ⇓ a and
E, σ,M2 ⇓ a for somea. ThenE, σ,M0 ⇓ a by Item 1 of (L1).
So there exists an extensionσ′ of σ to the fresh replication in-
dices ofM ′0 andM ′2 such thatE, σ′,M ′0 ⇓ a andE, σ′,M ′2 ⇓ a.
ThenE, σ′, f1(. . . fk(x[̃i])) ⇓ f(a, σ′, E). SinceE, σ′,M ′2 ⇓ a
and M ′2 does not depend onx at P , by (S6), we havea =
f ′(σ′, E) for some functionf ′, henceE(x[σĩ]) ∈ Sx(σ′, E) =
(Iη(f1) ◦ . . . ◦ Iη(fk))−1(f(f ′(σ′, E), σ′, E)). Let T1, . . . , Tk

be the types of the arguments off1, . . . , fk respectively; let
T0 = T ′ be the type of the result off1; Tk = T . We have
|Sx(σ′, E)| ≤ |Iη(T1)|

|Iη(T0)| × . . .× |Iη(Tk)|
|Iη(Tk−1)| = |Iη(Tk)|

|Iη(T0)| = |Iη(T )|
|Iη(T ′)| ,

sincef1, . . . , fk are uniform. Let̃i′ = Dom(σ) be the current
replication indices atP .

p = Pr
[
∃(E, σ,Q, C), C0 →∗ E, (σ, P ),Q, C
∧ E, σ, (M1 = M2) ⇓ true

]
≤

∑
E

∑
σ′

Pr

[
∃(E,Q, C), C0 →∗ E, (σ′|ei′ , P ),Q, C
∧ E ∈ E ∧ E(x[σ ′̃i]) ∈ Sx(σ′, E)

]

≤
∑
E

∑
σ′

∑
b∈Sx(σ′,E)

Pr

∃(E,Q, C),
C0 →∗ E, (σ′|ei′ , P ),Q, C
∧ E ∈ E ∧ E(x[σ ′̃i]) = b


≤

∑
E

∑
σ′

∑
b∈Sx(σ′,E)

1
|Iη(T )|

Pr

[
∃E′, C0→′∗E′, (σ′|ei′ , P )
∧ E′|Dom(E)

∈ E

]

by Item 3 of (L1). (Dom(E) denotes the domain of an element
of E, for instance the smallest one.)

p ≤ 1
|Iη(T ′)|

∑
σ′

∑
E

Pr

[
∃E′, C0→′∗E′, (σ′|ei′ , P )
∧ E′|Dom(E)

∈ E

]

≤ q1(η)
|Iη(T ′)|

whereq1(η) is the number of possibleσ′, which is polynomial
in η.

We now show the correctness of the game simplifications
performed in depAnal. If Q0 is the process before sim-
plification andQ′0 the process after simplification, we show
that Q0 ≈V Q′0. For simplicity, we consider one trans-
formation at a time, and use transitivity of≈V to conclude
when several transformations are applied. For each trace
initConfig(C[Q0]) →∗ Em, Pm,Qm, Cm, except in cases of
negligible probability, we show that there exists a corresponding
traceinitConfig(C[Q′0]) →∗ E′m′ , P ′m′ ,Q′m′ , C′m′ with E′m′ =
Em, P ′m′ is obtained fromPm by the same transformation asQ′0
from Q0,Q′m′ is obtained fromQm by the same transformation
asQ′0 from Q0, C′m′ = Cm, with the same probability. The proof
proceeds by induction onm. The casem = 0 is obvious, since
the game simplifications do not change input processes. For the
inductive step, we reason by cases on the last reduction step of
the trace ofC[Q0]. We consider only the cases in which the
transition may be altered by the game simplification.

• Case 1: WhensimplifyTerm(M,P ) = M ′, we replaceM
with M ′ in P . We exclude traces such thatE, σ 6` M =
M ′. (They have negligible probability by (S11).) In the
remaining traces,E, σ ` M = M ′. SoE, σ,M ⇓ a if and
only if E, σ,M ′ ⇓ a, and the transformed process reduces
in the same way as the initial process.

• Case 2: WhenMj = false, we remove thej-th branch
of find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj suchthat

defined(Mj1, . . . ,Mjlj )∧Mj then Pj) else P ′ In all traces
E, σ, (defined(Mj1, . . . ,Mjlj ) ∧ Mj) ⇓ false, so in the
reduction rule (Find1), the setS never contains(j, ṽ) for
any ṽ, hence by (Find1) or (Find2), the process takes the
same branch of thefind with the same probability, whether
or not thej-th branch is present.

• The other cases are similar.

We also show the converse property: for each trace ofC[Q′0], ex-
cept in cases of negligible probability, there exists a correspond-
ing trace ofC[Q0] with the same probability. Moreover, for
all channelsc and bitstringsa, Em, Pm,Qm, Cm executesc〈a〉
immediately if and only ifE′m′ , P ′m′ ,Q′m′ , C′m′ executesc〈a〉
immediately, soPr[C[Q0]  η c〈a〉] = Pr[C[Q′0]  η c〈a〉],
which yields the desired equivalenceQ0 ≈V Q′0.

Correctness of the equational prover. We say thatE, σ `
(F ,R) when E, σ ` F and for all (M1 → M2) ∈ R,
E, σ ` M1 = M2. For eachP , the equational prover rewrites
pairs F ,R starting from (FP , ∅) according to a certain se-
quence. We denote by(Fj ,Rj)(P ) thej-th element of this se-
quence. So we have(F0,R0)(P ) = (FP , ∅), and for allj, we
have (Fj−1,Rj−1)(P )

(Fj ,Rj)(P ) . Let pm′(P ) = Pr[∃(E, σ,Q, C), C0 →∗

E, (σ, P ),Q, C ∧ E, σ 6` (Fm′ ,Rm′)(P )]. We showS12: for
eachP , pm′(P ) ≤ q′(η)pmax(η) for some polynomialq′. The
proof proceeds by induction onm′. Form′ = 0, this is an imme-
diate consequence of the property thatE, σ ` (F0,R0)(P ) =
(FP , ∅) sinceFP is correct for allP , with q′(η) = 0. For the
inductive step,

pm′(P ) ≤ pm′−1(P )
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+ Pr

∃(E, σ,Q, C), C0 →∗ E, (σ, P ),Q, C
∧ E, σ ` (Fm′−1,Rm′−1)(P )
∧ E, σ 6` (Fm′ ,Rm′)(P )


By induction hypothesis,pm′−1(P ) ≤ q′(η)pmax(η) for some
polynomial q′. So we just have to show that ifF,R

F ′,R′ then
Pr[∃(E, σ,Q, C), C0 →∗ E, (σ, P ),Q, C ∧ E, σ ` (F ,R) ∧
E, σ 6` (F ′,R′)] ≤ q′(η)pmax(η) for some polynomialq′. We
proceed by cases on the derivation ofF,R

F ′,R′ .

• The cases (2), (5), (7), as well as the cases (1) and (6) when
the reduction uses a rule ofR, are obvious and there is no
loss of probability (that is,q′(η) = 0.)

• Cases (1) and (6) when the reduction uses a user-defined
rewrite rule new y1 : T ′1, . . . , new yl : T ′l ,∀x1 :
T1, . . . ,∀xm : Tm,M1 → M2, with associated probabil-
ity p(η): Assuming this user-defined claim is correct, when
E, σ ` (F ,R) but E, σ 6` (F ′,R′), for at least one value
of the indices of restrictions that correspond toy1, . . . , yl,
the processC[Q0] provides an adversary that satisfies the
conditions of the definition of the corresponding user claim.
(The proof of Proposition 2 below details a similar argu-
ment in a more complicated case.) So the probability that
E, σ ` (F ,R) andE, σ 6` (F ′,R′) is at mostp(η) times
the number of possible values for the indices of restrictions
that correspond toy1, . . . , yl, which is polynomial inη, so
the result holds withq′(η) equal to the number of possi-
ble values for the indices of restrictions that correspond to
y1, . . . , yl.

• Case (3): Assume thatE, σ ` (F ,R) and E, σ 6`
(F ′,R′). So for all j ≤ m, E, σ,Mj ⇓ aj ,
E, σ,M ′j ⇓ a′j , (a1, . . . , am) 6= (a′1, . . . , a

′
m), and

E(x[a1, . . . , am]) = E(x[a1, . . . , am]). Since for each
a1, . . . , am, x[a1, . . . , am] is chosen randomly with uni-
form probability among|Iη(T )| values, the probability that

this happens is smaller thanq
′′(η)(q′′(η)−1)

2|Iη(T )| whereq′′(η) is
the number of possible values ofa1, . . . , am, which is a
polynomial inη.

• Case (4): We first show that, ifM characterizes a part ofx
with Sdef , Sdep, then for allM0 obtained fromM by sub-
stituting variables ofSdef with their definition, there exist
a tuple of terms̃M , a large typeT , and uniform functions
f1, . . . , fk such thatT is the type of the result off1 (or of
x whenk = 0) and for eacha, E0, andσ, there existsb
such that for allE such thatE equalsE0 on variables not
in Sdep, if E, σ,M0 ⇓ a thenE, σ, f1(. . . fk(x[M̃ ])) ⇓ b.
Indeed,M0 = {αM0 = M0} is rewritten into a set that
containsf1(. . . fk((αx)[M̃ ′])) = f1(. . . fk(x[M̃ ])). Due
to the form of rewrite rules,(αx)[M̃ ′] is a subterm ofαM0

andx[M̃ ] is a subterm ofM0. Moreover, the variables in
Sdep do not occur inM̃ or M̃ ′.

– If a is such that there existsE′ such thatE′ equals
E0 on variables not inSdep, E′, σ, αM0 ⇓ a
and E′ defines variables ofαM0, let b such that
E′, σ, f1(. . . fk((αy)[M̃ ′])) ⇓ b. Then for all E

such thatE equalsE0 on variables not inSdep and
E, σ,M0 ⇓ a, we can define theE′′ that maps
variables ofM0 as E and variables ofαM0 as E′.
ThenE′′, σ, (αM0 = M0) ⇓ true, so by rewriting
E′′, σ, f1(. . . fk((αx)[M̃ ′])) = f1(. . . fk(x[M̃ ])) ⇓
true, soE, σ, f1(. . . fk(x[M̃ ])) ⇓ b.

– Otherwise, there is noE such thatE equalsE0 on
variables not inSdep andE, σ,M0 ⇓ a, so the result
holds trivially.

So there exists a functionf such that for eacha, σ, E,
if E, σ,M0 ⇓ a then E, σ, f1(. . . fk(x[M̃ ])) ⇓ f(a, σ,

E|Sdep
). Since the variables inSdep do not occur inM̃ ,

there exists a tuple of functions̃f such thatE, σ, M̃ ⇓
f̃(σ,E|Sdep

). So E, σ, f1(. . . fk(x[f̃(σ,E|Sdep
)])) ⇓

f(a, σ,E|Sdep
).

Let us now consider the three cases of Rule (4). In
each case, we show thatp = Pr[∃E,∃σ,∃Q,∃C, C0 →∗
E, (σ, P ),Q, C ∧ E, σ ` M1 = M2] ≤ q′(η)pmax(η) for
some polynomialq′ and forM1,M2 that satisfy the hypoth-
esis of Rule (4).

– First case:M ′1 is obtained fromM1 by replacing all array
indices that are not replication indices with fresh replication
indices,x occurs inM ′1, x is defined by restrictionsnew x :
T ′, T ′ is a large type,M ′1 characterizes a part ofx, and
M2 is obtained by optionally applying function symbols to
terms of the formy[M̃ ′] wherey is defined by restrictions
andy 6= x.

Let M ′2 be obtained fromM2 by replacing all array indices
that are not replication indices with fresh replication in-
dices. LetSindep be the set of variables defined only by
restrictions, excludingx. SinceM ′1 characterizes a part of
x, there exist a large typeT , functionsf and f̃ , and uni-
form functionsf1, . . . , fk such thatT is the type of the
result off1 (or of x whenk = 0) and for eacha, E, andσ,
if E, σ,M1 ⇓ a thenE, σ, f1(. . . fk(x[f̃(σ,E|Sindep)])) ⇓
f(a, σ,E|Sindep).

If E, σ ` M1 = M2 then we haveE, σ,M1 ⇓ a and
E, σ,M2 ⇓ a for somea. Then there exists an exten-
sion σ′ of σ to the fresh replication indices ofM ′1 and
M ′2 such thatE, σ′,M ′1 ⇓ a and E, σ′,M ′2 ⇓ a. So
E, σ′, f1(. . . fk(x[f̃(σ′, E|Sindep)])) ⇓ f(a, σ′, E|Sindep)
and since only the variables ofSindep occur inM ′2, there
is a functionf ′ such thata = f ′(σ′, E|Sindep). So

E(x[f̃(σ′, E|Sindep)]) ∈ Sx(σ,E|Sindep) = (Iη(f1) ◦
. . . ◦ Iη(fk))−1(f(f ′(σ′, E|Sindep), σ

′, E|Sindep)).

Let T1, . . . , Tk be the types of the arguments off1, . . . , fk

respectively; T0 = T , Tk = T ′. We have
|Sx(σ,E|Sindep)| ≤

|Iη(T1)|
|Iη(T0)| × . . .× |Iη(Tk)|

|Iη(Tk−1)| = |Iη(Tk)|
|Iη(T0)| =

|Iη(T ′)|
|Iη(T )| sincef1, . . . , fk are uniform. LetEindep be an en-

vironment giving values to variables ofSindep. Let ĩ′ =
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Dom(σ) be the current replication indices atP .

p ≤
∑
σ′

∑
Eindep

Pr

∃(E,Q, C), C0 →∗ E, (σ′ei′ , P ),Q, C
∧ E|Sindep = Eindep ∧
E(x[f̃(σ′, Eindep)]) ∈ Sx(σ′, Eindep)


≤

∑
σ′

1
|Iη(T )|

∑
Eindep

Pr

∃(E,Q, C),
C0 →∗ E, (σ, P ),Q, C
∧ E|Sindep = Eindep


≤ q1(η)
|Iη(T )|

whereq1(η) is the number of possibleσ′, which is polyno-
mial in η. So the result follows withq′(η) = q1(η).

– Second case:x occurs inM1, x is defined by restrictions
new x : T ′, T ′ is a large type,M1 characterizes a part ofx,
only dep(x) = S, and no variable ofS occurs inM2.

We consider traces ofC[Q0] that differ by the choices of
values ofx. Sinceonly dep(x) = S, these traces differ
only by the values of variables inS, after excluding excep-
tional traces in which we haveE, σ, (M1 = M2) ⇓ true for
M1,M2 considered in Rule (4) or for some testM1 = M2

or M1 6= M2 in Q0 such thatM1 characterizes a part ofx
with S \ {x}, S, and no variable inS occurs inM2.

In the considered traces, the value ofM2 is the same
a, which is therefore a function ofσ and E|S , so a =
f ′(σ,E|S). Assume thatE, σ, (M1 = M2) ⇓ true. Then
E, σ,M1 ⇓ a. Then there is someM0 obtained fromM1 by
substituting variables inS \ {x} with their definition such
thatE, σ,M0 ⇓ a. (We choose the definition of these vari-
ables used to set them in environmentE.) WhenM1,M2

come from Rule (4), we setM0 = M1. The number of
choices ofM0 is independent ofη: it can be bounded know-
ing the number of different definitions of variables inS and
the number of occurrences of these variables in the terms
M1.

Due to the properties of “characterize”, there exist a
large typeT , functionsf and f̃ , and uniform functions
f1, . . . , fk such thatT is the type of the result off1 (or
of x whenk = 0) and for eacha, σ, E, if E, σ,M0 ⇓ a
then E, σ, f1(. . . fk(x[f̃(σ,E|S)])) ⇓ f(a, σ,E|S). So

E(x[f̃(σ,E|S)]) ∈ Sx(σ,E|S) = (Iη(f1) ◦ . . . ◦
Iη(fk))−1(f(f ′(σ,E|S), σ, E|S). Let T1, . . . , Tk be the
types of the arguments off1, . . . , fk respectively;T0 = T ,
Tk = T ′. We have|Sx(σ,E|S)| ≤ |Iη(T1)|

|Iη(T0)| × . . . ×
|Iη(Tk)|
|Iη(Tk−1)| = |Iη(Tk)|

|Iη(T0)| = |Iη(T ′)|
|Iη(T )| sincef1, . . . , fk are uni-

form.

The probability thatE, σ, (M1 = M2) ⇓ true is at
most the sum for all choices ofM0 of the probabil-
ity that E(x[f̃(σ,E|S)]) ∈ Sx(σ,E|S), so it is at most∑

M0

1
|Iη(T )| . (Note thatT may depend on the choice of

M0.) Therefore, the probability of excluded traces is at
most

∑
M1,M2

∑
M0

q1(η)
|Iη(T )| where the number of possible

σ, that is, the number of executions of the testM1 = M2

or M1 6= M2 is at mostq1(η), polynomial inη.

For traces that have not been excluded,E, σ, (M1 =
M2) ⇓ false, so the result follows withq′(η) =∑

M1,M2

∑
M0

q1(η).

– Third case:simplifyTerm(M1 = M2, P ) = false. The
result follows immediately from the correctness of the local
dependency analysis, Property (S11).

Similarly, we also haveS12’: For each Q′, Pr[∃(E,
σ, P,Q, C, c, M1, . . . ,Ml, N1, . . . , Nk, Q′′, σ′,Q′, C′), C0 →∗
E, (σ, P ),Q, C ∧ P = c[M1, . . . ,Ml]〈N1, . . . , Nk〉.Q′′ ∧
E, {(σ,Q′′)}, C  ∗ E,Q′, C′ ∧ (σ′, Q′) ∈ Q′ ∧ E, σ′ 6`
(Fm′ ,Rm′)(Q′)] ≤ q′(η)pmax(η) for some polynomialq′.

We have FQ′ = FP , hence (Fm′ ,Rm′)(Q′) =
(Fm′ ,Rm′)(P ), and σ′ is an extension ofσ, so E, σ `
(Fm′ ,Rm′)(P ) impliesE, σ′ ` (Fm′ ,Rm′)(Q′). So the result
follows from (S12).

Correctness of game simplification. For simplicity, we con-
sider one transformation at a time, and use transitivity of≈V

to conclude when several transformations are applied. For
each traceinitConfig(C[Q0]) →∗ Em, Pm,Qm, Cm, except in
cases of negligible probability, we show that there exists a cor-
responding traceinitConfig(C[Q′0]) →∗ E′m′ , P ′m′ ,Q′m′ , C′m′

with E′m′ = Em, P ′m′ is obtained fromPm by the same trans-
formation asQ′0 from Q0, Q′m′ is obtained fromQm by the
same transformation asQ′0 from Q0, C′m′ = Cm, with the same
probability. The proof proceeds by induction onm.

For the casem = 0, the only simplification that can be applied
to input processes is the simplification of terms in input chan-
nels. Moreover, ifQ′ is the transformed process,FQ′ = ∅ since
FC[Q0] = ∅ andQ′ is obtained fromC[Q0] by , which re-
duces only input processes. So(F0,R0)(Q′) = (∅, ∅). No rule
of the equational prover applies on(∅, ∅), so(Fm′ ,Rm′)(Q′) =
(∅, ∅), hence no rewrite rule ofRm′ can be applied. So one can
only simplify terms in the input channel ofQ′ by a user-defined
rewrite rule. The proof then proceeds exactly as in Case 1 below.

For the inductive step, we reason by cases on the last reduction
step of the trace ofC[Q0]. We consider only the cases in which
the transition may be altered by the game simplification.

• Case 1:M reduces intoM ′ by a user-defined rewrite rule,
and we replaceM with M ′ in the smallest (input or output)
processPM = CM [M ] that containsM . If E, σ,M ⇓ a
thenE, σ,M ′ ⇓ a′ (since the variable accesses inM ′ are
included in those ofM and M and M ′ are well-typed).
Whena 6= a′, the game provides an adversary that satisfies
the conditions of the definition of the corresponding user
claim (as in the item “Cases (1) and (6) when the reduction
uses a user-defined rewrite rule” above) so this situation
has negligible probability and can be excluded. Otherwise,
a = a′, andCM [M ′] reduces in the same way asPM =
CM [M ].

• Case 2:M reduces intoM ′ by a rule ofR, and we re-
placeM with M ′ in the smallest processPM = CM [M ]
that containsM , whereR is the set of rewrite rules ob-
tained by the equational prover fromFPM

. We first as-
sume thatPM is an output process. We exclude traces
such thatE, σ 6` (Fm′ ,Rm′)(PM ). (They have negli-
gible probability by (S12).) In the remaining traces, for
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all (M1 → M2) ∈ R = Rm′ , E, σ ` M1 = M2,
so E, σ ` M = M ′. So E, σ,M ⇓ a if and only if
E, σ,M ′ ⇓ a, andCM [M ′] reduces in the same way as
PM = CM [M ]. When we reduce a term in the channel
of an input, we have a similar proof with an input process
QM = CM [M ] instead ofPM and using (S12’) instead
of (S12).

• Case 3:P = find (
⊕m

j=1 uj1 [̃i] ≤ nj1, . . . , ujmj
[̃i] ≤

njmj
suchthat defined(Mj1, . . . ,Mjlj ) ∧ Mj then Pj)

else P ′, FPj
yields a contradiction, and we remove the

j-th branch of thefind. We exclude traces in which
E, σ, (defined(Mj1, . . . ,Mjlj ) ∧ Mj) ⇓ true. Let S we
the set defined in the reduction rule (Find1). We have
|S| ≤

∑m
j=1

∏mj

l=1 njl = q(η) for some polynomialq,

and among(S) = 2k+f(η) div |S|
2k+f(η) wherek is the smallest

integer such that2k ≥ |S|, so among(S) ≥ 2f(η)

2k+f(η) ≥
1
2k ≥ 1

2|S| ≥
1

2q(η) . By (Find1), P reduces intoPj

with probability at leastamong(S), so at least 1
2q(η) , when

E, σ, (defined(Mj1, . . . ,Mjlj ) ∧Mj) ⇓ true. Therefore

Pr
[
∃(E, σ,Q, C), C0 →∗ E, (σ, P ),Q, C
∧ E, σ, (defined(Mj1, . . . ,Mjlj ) ∧Mj) ⇓ true

]
≤ 2q(η) Pr [∃(E, σ,Q, C), C0 →∗ E, (σ, Pj),Q, C]

≤ 2q(η) Pr
[
∃(E, σ,Q, C), C0 →∗ E, (σ, Pj),Q, C
∧ E, σ 6` (Fm′ ,Rm′)(Pj)

]
sinceE, σ 6` (Fm′ ,Rm′)(Pj) is always true sinceFPj

yields a contradiction. So the excluded traces have neg-
ligible probability by (S12). In the remaining traces,
E, σ, (defined(Mj1, . . . ,Mjlj ) ∧Mj) ⇓ false, so the setS
never contains(j, ṽ) for anyṽ, hence by (Find1) or (Find2),
the process takes the same branch of thefind with the same
probability, whether or not thej-th branch is present.

• Case 4:P0 = find (
⊕m

j=1 uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤
njmj

suchthat defined(Mj1, . . . ,Mjlj )∧Mj then Pj) else
P ′, x[N1, . . . , Nl] is a subterm ofMjk, and none of the fol-
lowing conditions holds: a)P0 is under a definition ofx in
Q0; b) Q0 containsQ1 | Q2 such that a definition ofx oc-
curs inQ1 andP0 is underQ2 or a definition ofx occurs
in Q2 andP0 is underQ1; c) Q0 containslp + 1 replica-
tions above a processQ that contains a definition ofx and
P0, wherelp is the length of the longest common prefix be-
tweenN1, . . . , Nl and the current replication indices at the
definitions ofx. Thej-th branch of thefind is removed.

We show thatx[N1, . . . , Nl] cannot be defined atP0 as fol-
lows. We say that the formulaφ(E, (σ, P ),Q, C) is true
when one of the following condition holds:

A. x[a1, . . . , am] ∈ Dom(E), (σ′′, P ′′) ∈ Q]{(σ, P )},
P0 is under P ′′, and σ′′i′′k = ak for all k ≤
min(lp, |Dom(σ′′)|), wherei′′k is thek-th replication
index atP ′′;

B. {(σ′, P ′), (σ′′, P ′′)} ⊆ Q ] {(σ, P )} (multi-
set inclusion), P ′ contains a definition ofx,
P0 is under P ′′, σ′i′k = σ′′i′′k for all k ≤

min(lp, |Dom(σ′)|, |Dom(σ′′)|) wherei′k is thek-th
replication index atP ′ andi′′k is thek-th replication
index atP ′′;

C. (σ′, P ′) ∈ Q ] {(σ, P )} where

C.a. P0 is under a definition ofx in P ′;

C.b. orP ′ containsQ1 | Q2 such that a definition of
x occurs inQ1 andP0 is underQ2 or a definition
of x occurs inQ2 andP0 is underQ1;

C.c. orP ′ containslp + 1 − |Dom(σ′)| replications
above a processQ that contains a definition ofx
andP0.

Next, we show that if a configuration in the trace satisfies
φ, then the previous configuration also satisfiesφ.

More precisely, we first show that ifφ(E, (σ, P ),Q′′ ]
Q′, C′) andE,Q, C  E,Q′, C′, thenφ(E, (σ, P ),Q′′ ]
Q, C). The proof is by cases on the reduction rule of .
Case (Nil) is obvious. For rule (Par), if we are in case B
and both processesP ′ andP ′′ are generated by (Par), then
before applying (Par), we are in case C.b. In all other cases,
we remain in the same case of the definition ofφ before ap-
plying (Par). For rule (Repl), if we are in case B and both
processesP ′ andP ′′ are generated by (Repl), then before
applying (Repl), we are in case C.c. In all other cases, we
remain in the same case before applying (Repl). For rules
(NewChannel) and (Input), we remain in the same case.

Therefore, ifφ(E, (σ, P ),Q′′ ] Q′, C′) and E,Q′, C′ =
reduce(E,Q, C), thenφ(E, (σ, P ),Q′′ ]Q, C).
We also show that, if φ(E′, (σ′, P ′),Q′, C′) and
E, (σ, P ),Q, C p−→t E′, (σ′, P ′),Q′, C′, then φ(E,
(σ, P ),Q, C). The proof is by cases on the reduction rule
of

p−→t. For rule (Find2), we remain in the same case
of the definition ofφ. For rules (New), (Let), (Find1),
if we are in case A after applying the reduction and the
reduction definesx[a1, . . . , am], then we are in case
C.a before the reduction if(σ′′, P ′′) is (σ, P ) and in
case B otherwise. Otherwise, we remain in the same

case. For rule (Output),E, (σ, c[M̃ ]〈N1, . . . , Nk〉.Q′′),
{(σ′, c[ã](x1[ã′] : T1, . . . , xk[ã′] : Tk).P )} ] Q, C
is transformed into E′, (σ′, P ),Q ] {(σ,Q′′)}, C,
where E′ = E[x1[ã′] 7→ . . . , . . . , xk[ã′] 7→ . . .],
then we reduce E′, {(σ,Q′′)}, C by the function
reduce. By the property shown forreduce, we have
φ(E′, (σ′, P ),Q ] {(σ,Q′′)}, C). If we are in case A
and the input definesx[a1, . . . , am], then before (Output),
we are in case C.a if(σ′′, P ′′) is (σ, P ) and in case B
otherwise. Otherwise, we remain in the same case.

Next, we show that if thej-th branch of thefind is taken by
(Find1) when evaluatingP0, then the last configuration of
the trace satisfiesφ. In this case,x[a1, . . . am] ∈ Dom(E)
in a configurationE, (σ, P0),Q, C such thatσik = ak for
all k ≤ lp, whereik is thek-th replication index atP0. So
φ(E, (σ, P0),Q, C) (case A).

Therefore, by the previous proof,φ holds for the initial con-
figuration, so we haveφ(∅, (∅, start〈〉), {(∅, C[Q0])}, ∅).
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Case A cannot happen becauseE is empty; case B cannot
happen becausestart〈〉 contains neitherP0 nor a definition
of x and(σ′, P ′) and(σ′′, P ′′) cannot be the same process
(∅, C[Q0]). So we are in case C withP ′ = C[Q0] and
σ′ = ∅. SinceC contains neitherP0 nor a definition ofx,
we obtain that one of the conditions a), b), c) holds, which
contradicts the hypothesis. So thej-th branch of thefind
cannot be taken, and can be removed.

• The other cases can be handled in a way similar to cases
1–3.

We also show the converse property: for each trace ofC[Q′0], ex-
cept in cases of negligible probability, there exists a correspond-
ing trace ofC[Q0] with the same probability. Moreover, for
all channelsc and bitstringsa, Em, Pm,Qm, Cm executesc〈a〉
immediately if and only ifE′m′ , P ′m′ ,Q′m′ , C′m′ executesc〈a〉
immediately, soPr[C[Q0]  η c〈a〉] = Pr[C[Q′0]  η c〈a〉],
which yields the desired equivalence.

We leave the proof of the additional transformationsMove-
New, RemoveAssign(useless), and SArename(auto) to the
reader. The proof technique is similar to that forSArename(x).

�

E.2 Proving the Last Hypothesis of Proposition 5

In this section, we show how to prove the last hypothesis of
Proposition 5. We use the notations of Proposition 5 and of the
proof ofSimplify in the previous section.

For each definitionP of x in Q, we definedefRestrP (x[̃i]) as
follows:

defRestrP (x[̃i]) =
x[̃i] if P = new x[ĩ′] : T ;P ′

z[M1, . . . ,Ml]{̃i/ĩ′}
if P = let x[ĩ′] : T = z[M1, . . . ,Ml] in P ′

Let FP [̃i] denote the facts that hold atP with current replica-
tion indices renamed tõi, that is,FP [̃i] = FP {̃i/ĩ′} where the
replication indices atP areĩ′.

For each pair of definitions ofx, P, P ′, we check that, if
defRestrP (x[̃i]) = z[M1, . . . ,Ml] and defRestrP ′(x[ĩ′]) =
z[M ′1, . . . ,M

′
l ], then FP [̃i] ∪ FP ′ [ĩ′] ∪ {̃i 6= ĩ′,M1 =

M ′1, . . . ,Ml = M ′l} yields a contradiction. That is,̃i 6=
ĩ′∧M1 = M ′1∧ . . .∧Ml = M ′l is false except in cases of negli-
gible probability, taking into account the facts that are known to
hold atP andP ′. When this check succeeds, the last hypothesis
of Proposition 5 holds, as shown by the next proposition.

Proposition 7 Assume that, for all pairsP , P ′ of defini-
tions of x in Q, if defRestrP (x[̃i]) = z[M1, . . . ,Ml] and
defRestrP ′(x[ĩ′]) = z[M ′1, . . . ,M

′
l ], thenFP [̃i]∪FP ′ [ĩ′]∪{̃i 6=

ĩ′,M1 = M ′1, . . . ,Ml = M ′l} yields a contradiction (with local
dependency analysis disabled).

ThenPr[∃(T , ã, ã′), C[Q] reduces according toT ∧ ã 6= ã′∧
defRestrT (x[ã]) = defRestrT (x[ã′])] is negligible.

The local dependency analysis is disabled because it gives infor-
mation valid only at a certain process occurrence, and here we
combine facts obtained at two occurrencesP andP ′.

Proof Consider a traceT of C[Q] and ã 6= ã′ such that
defRestrT (x[ã]) = defRestrT (x[ã′])]. Let P andP ′ be the
processes that definex[ã] andx[ã′], respectively, in this trace.
Let σ be mapping the replication indices atP to ã, σ′ be map-
ping the replication indices atP ′ to ã′, andσ′′ be mapping̃i to
ã andĩ′ to ã′. Let E′′ be the environment at the end ofT .

Just before the definition ofx[ã] is executed, the configura-
tion of T is of the formE, (σ, P ), . . ., so, sinceFP is cor-
rect for all P , E, σ ` FP , so E′′, σ′′ ` FP [̃i]. Similarly,
E′′, σ′′ ` FP ′ [ĩ′]. Since ã 6= ã′, E′′, σ′′ ` ĩ 6= ĩ′. Since
defRestrT (x[ã]) = defRestrT (x[ã′])], defRestrP (x[̃i]) =
z[M1, . . . ,Ml], defRestrP ′(x[ĩ′]) = z[M ′1, . . . ,M

′
l ], for some

z,M1, . . . ,Ml,M
′
1, . . . ,M

′
l , and E′′, σ′′ ` M1 = M ′1, . . . ,

E′′, σ′′ ` Ml = M ′l . So E′′, σ′′ ` FP,P ′ , whereFP,P ′ =
FP [̃i] ∪ FP ′ [ĩ′] ∪ {̃i 6= ĩ′,M1 = M ′1, . . . ,Ml = M ′l}.

Hence Pr[∃(T , ã, ã′), C[Q] reduces according toT ∧
ã 6= ã′ ∧ defRestrT (x[ã]) = defRestrT (x[ã′])] ≤∑

P,P ′ Pr[∃(E′′, σ′′), C0 →∗ E′′, . . . ∧ E′′, σ′′ ` FP,P ′ ].
When the local dependency analysis is disabled, the proof of

correctness of the equational prover (S12) shown in the previous
section also shows that, ifF,R

F ′,R′ , then

Pr
[
∃(E′′, σ′′), C0 →∗ E′′, . . .
∧ E′′, σ′′ ` F ,R∧ E′′, σ′′ 6` F ′,R′

]
is negligible. Moreover, for allP and P ′ definitions
of x in Q, since FP,P ′ yields a contradiction,FP,P ′ , ∅
is transformed intofalse,R′ by the equational prover, so
Pr [∃(E′′, σ′′), C0 →∗ E′′, . . . ∧ E′′, σ′′ ` FP,P ′ ] is negligible,
which shows the desired result. �

E.3 Proof of Proposition 2

Proof of Proposition 2 The idea of the proof is to show that
if an adversary (represented by a contextC) distinguishes[[L]]
from [[R]], then we can build an adversaryAa against the security
of the mac for the keymkgen(r[a]), for somea ∈ Iη(n′′).

Let C be an evaluation context acceptable for[[L]], [[R]], ∅.
We define a probabilistic polynomial Turing machineAa, for

a ∈ [1, Iη(n′′)], as follows. Aa uses oraclesmac(., k) and
check(., k, .). Aa simulatesC[[[L]]] except that:

• for a′ < a, in copies corresponding toi′′ = a′ of L,
Aa computesfind u ≤ n suchthat defined(x[u]) ∧ (m =
x[u]) ∧ check(m,mkgen(r),ma) then true else false in-
stead ofcheck(m,mkgen(r),ma), and

• in the copy corresponding toi′′ = a, Aa does not choose
a random numberr[a], it calls the oraclemac(., k) on x
instead of computingmac(x, mkgen(r)), and instead of
computingcheck(m,mkgen(r),ma), it computesb1 =
check(m, k, ma) using the oraclecheck(., k, .) andb2 =
find u ≤ n suchthat defined(x[u])∧ (m = x[u])∧ b1 then
true else false; if b1 6= b2, the execution of the Turing ma-
chine stops, with result(m,ma); otherwise, the execution
continues using valueb1 = b2.
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WhenAa has not stopped due to the last item above, it returns
⊥ when the simulation ofC[[[L]]] terminates.

WhenAa returns(m, t), b1 6= b2. Moreover, ifb1 = 0, then
b2 = 0 by definition ofb2. Sob1 = 1 andb2 = 0. Therefore,
there is nou such thatm = x[u], henceAa has not called the
oraclemac(., k) on m. Moreover, there exists a polynomialq
such that for alla, Aa runs in timeq(η). So by Definition 1,
maxa pa(η) is negligible, where

pa(η) = Pr

[
r

R← Iη(Tmr); k ← mkgenη(r); (m, t)← Aa :
checkη(m, k, t)

]

Since Iη(n′′) is polynomial in η,
∑

a∈[1,Iη(n′′)] pa(η) ≤
maxa pa(η)× Iη(n′′) is also negligible.

On the other hand, letc be a channel anda′ be a bitstring. We
need to evaluate|Pr[C[[[L]]] η c〈a′〉]−Pr[C[[[R]]] η c〈a′〉]|.
We consider three categories of pairs of traces(T , T ′) whereT
andT ′ are traces ofC[[[L]] andC[[[R]]] respectively:

1. TracesT andT ′ have the same configurations except for
the replacement ofL with R in processes, they terminate,
and none of their configurations executesc〈a′〉 immedi-
ately.

2. TracesT andT ′ have the same configurations except for
the replacement ofL with R in processes up to a point
at which their corresponding configurations both execute
c〈a′〉 immediately.

3. TracesT andT ′ have the same configurations except for
the replacement ofL with R in processes up to a point
at which their configurations differ because for somea ∈
[1, Iη(n′′)], for some messagesm, ma received on chan-
nel c2[a] (wherec2 is the channel used in[[L]] and[[R]] for
the second parallel process ofL andR), the result returned
by [[L]] differs from the one returned by[[R]]. In this case,

the simulating Turing machine that runsr
R← Iη(Tmr); k ←

mkgenη(r) and executesAa will return (m,ma), by con-
struction.

All traces ofC[[[L]]] fall in one of the above categories, and sim-
ilarly for traces ofC[[[R]]]. Traces of the first category have
no contribution toPr[C[[[L]]]  η c〈a′〉] and toPr[C[[[R]]]  η

c〈a′〉]; traces of the second category cancel out when computing
Pr[C[[[L]]] η c〈a′〉]− Pr[C[[[R]]] η c〈a′〉]. So

|Pr[C[[[L]]] η c〈a′〉]− Pr[C[[[R]]] η c〈a′〉]|
≤ Pr[(T , T ′) is in the third category]

≤
∑

a∈[1,Iη(n′′)]

Pr[r
R← Iη(Tmr); k ← mkgenη(r); (m, t)← Aa]

≤
∑

a∈[1,Iη(n′′)]

pa(η)

Hence|Pr[C[[[L]]] η c〈a′〉]−Pr[C[[[R]]] η c〈a′〉]| is neg-
ligible, so[[L]] ≈ [[R]]. �

E.4 Proof of Proposition 3

Let us first introduce some notations. We denote by
Lj0,...,jk

the subtrees ofL defined as follows by induc-
tion on k. We define L1, . . . , Lm′ such that L =
(L1, . . . , Lm′). The functional processLj0,...,jk

being defined,
we defineLj0,...,jk,1, . . . , Lj0,...,jk,m′ to be the immediate sub-
functional-processes ofLj0,...,jk

, so that Lj0,...,jk
is of the

form !i≤nnew y1 : T1; . . . ; new ym : Tm; (Lj0,...,jk,1, . . . ,
Lj0,...,jk,m′).

When Lj0,...,jk
= !i≤nnew y1 : T1; . . . ; new ym :

Tm; (Lj0,...,jk,1, . . . , Lj0,...,jk,m′), we define ij0,...,jk
= i,

nj0,...,jk
= n, y(j0,...,jk),k′ = yk′ , andnNewj0,...,jk

= m.
When Lj0,...,jl

= (x1 : T1, . . . , xm : Tm) → FP , we say
that Lj0,...,jl

is a leaf ofL, and we definex(j0,...,jl),k′ = xk′ ,
T(j0,...,jl),k′ = Tk′ , andnInputj0,...,jl

= m.
In order to prove Proposition 3, we define a contextC such

thatQ0 ≈V
0 C[[[L]]] andC[[[R]]] ≈V

0 Q′0. While Q0 evaluates
the terms inM directly, the contextC will send messages to[[L]]
in order to evaluate these terms inC[[[L]]]. Similarly, the process
Q′0 contains inlined versions of the functional processes inR,
while C[[[R]]] computes the same result by sending messages to
[[R]].

In order to defineC, we first define a processrelay(L) as
follows:

relay((G1, . . . , Gm)) = relay(G1)1 | . . . | relay(Gm)m

relay(!i≤nnew y1 : T1; . . . ; new yl : Tl; (G1, . . . , Gm))
ejei =

!i≤ndej [̃i, i](); cej [̃i, i]〈〉; cej [̃i, i](); dej [̃i, i]〈〉;
(relay(G1)

ej,1ei,i | . . . | relay(Gm)
ej,mei,i |

!i
′≤n′

dej [̃i, i](); dej [̃i, i]〈〉)
relay((x1 : T1, . . . , xl : Tl)→ FP)

ejei =

dej [̃i](x1 : T1, . . . , xl : Tl); cej [̃i]〈x1, . . . , xl〉;

cej [̃i](r : bitstring); dej [̃i]〈r〉;
!i
′≤n′

dej [̃i](x1 : T1, . . . , xl : Tl); dej [̃i]〈r〉
where ĩ = i1, . . . , il′ and j̃ = j0, . . . , jl′ . The relay process
corresponding to replicated restrictions relays messages sent on
channeldej to channelcej (used in[[L]] and[[R]]) so that the corre-
sponding random numbersy1, . . . , yl are chosen by[[L]]. When
those random numbers have already been chosen, the process ac-
cepts messages ondej but yields control back to the sending pro-
cess without executing anything by outputting ondej . Thus, the
caller of the relay process can harmlessly ask several times for
choosing the same random numbers. Similarly, the relay process
corresponding to a function relays the arguments of the function
received on channeldej to channelcej , so that[[L]] replies on chan-
nel cej with the resultr of the function, which is forwarded to
channeldej . The relay process also allows calling several times

the same function with the same values ofj̃ and̃i, in which case
it always returns the same resultr. (We make sure in the follow-
ing that when a function is called several times, the calls all use
the same arguments.) SinceL andR are required to have the
same structure by Hypothesis H2,relay(L) = relay(R).
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We introduce the following auxiliary definitions, which allow
us to define the correspondencemapIdxM from replication in-
dices atM in Q0 to replication indices atNM in L:

• For eachM ∈ M and k ≤ nNewSeqM , we define
countη(k,M) as follows. Letn1, . . . , nl be the sequence
of bounds of replications above the definition ofzkk′,M for
anyk′. Let l′ be the length of the longest common prefix
of im indexk(M) and im indexk0(M) for k0 < k. We
definecountη(k,M) = Iη(nl′+1) × . . . × Iη(nl). We
define parameterscountk,M such thatIη(countk,M ) =
countη(k,M).

We define function symbolsnumk,M : [1, n1] × . . . ×
[1, nl] → [1, countk,M ] such thatIη(numk,M )(a1, . . . ,
al) = 1+(al′+1−1)+Iη(nl′+1)×((al′+2−1)+Iη(nl′+2)×
. . .+ Iη(nl−1)× (al− 1)). Thennumk,M establishes a bi-
jection between the lastl − l′ components of its argument
and its result.

• We define tot countη(j0, . . . , jk) as the sum of
countη(k + 1,M ′′) for all M ′′ such that the first
k + 1 elements ofBL(M ′′) are equal toj0, . . . , jk,
counting only once termsM ′′ that share the firstk + 1
sequences of random variables.

We set Iη(nj0,...,jk
) = tot countη(j0, . . . , jk), where

nj0,...,jk
is the bound of the replication at the root of

Lj0,...,jk
in L. The value ofIη(nj0,...,jk

) is then large
enough so that there is always an available copy of the de-
sired replicated process when we need to execute one.

The replication at the root ofrelay(Lj0,...,jk
)j0,...,jk

i1,...,ik
is

also bounded bynj0,...,jk
. The other replication of

relay(Lj0,...,jk
)j0,...,jk

i1,...,ik
is bounded byn′, whereIη(n′) is

the sum for allM ∈ M of Iη(n1) × . . . × Iη(nl) where
n1, . . . , nl is the sequence of bounds of replications above
M in Q0.

• We order the term occurrences inM arbitrarily, with a to-
tal ordering. Letstartη(k, M) be defined as follows. Let
M ′ the smallest (in the chosen ordering ofM) term oc-
currence ofM that shares the firstk sequences of ran-
dom variables withM . Thenstartη(k, M) is the sum of
countη(k,M ′′) for all M ′′ smaller thanM ′ such that the
first k elements ofBL(M ′′) are equal to the firstk ele-
ments ofBL(M ′), counting only once termsM ′′ that share
the firstk sequences of random variables.

We define function symbolsaddstartk,M : [1,
countk,M ] → [1, nj0,...,jk

] whereBL(M) = (j0, . . . , jk,
. . .), such thatIη(addstartk,M )(a) = startη(k,M) + a.

• Let us defineconvindex(k,M) as the sequence of terms

convindex(k,M) =
(addstart1,M (num1,M (im index1(M))),

. . . , addstartk,M (numk,M (im indexk(M))))

This sequence of terms implements the functionmapIdxM

mentioned in the explanation of the transformation,
in Section 3.2. More precisely,mapIdxM (ã) =

convindex(l, M){ã/̃i}, wherẽi is the sequence of current
replication indices atM andl = nNewSeqM .

Then we defineC = (newChannel cej ; newChannel dej ; )ej([ ] |
relay(L) | Q′′0) where the processQ′′0 is defined fromQ0 as
follows:

• Whenx ∈ S, we replace its definitionnew x : T ;Q with
let x : T = cst in Q for some constantcst.

• For each M ∈ M, let PM = CM [M ] be the
smallest subprocess ofQ0 containing M . Let l =
nNewSeqM and m = nInputM . Let BL(M) =
(j0, . . . , jl). Let dM = dj0,...,jl

[convindex(l,M)] and
for all k ≤ l, dM,k = dj0,...,jk−1 [convindex(k,M)].
We replacePM with dM,1〈〉; dM,1(); . . . dM,l〈〉; dM,l();
dM 〈σMx1,M , . . . , σMxm,M 〉; dM (y : bitstring);CM [y]
wherey is a fresh variable.

Instead of evaluating the termsM ∈ M directly as inQ0, Q′′0
sends messages to the relay processrelay(L), which will then
forward them to[[L]] in C[[[L]]] and to[[R]] in C[[[R]]].

Lemma 11 Q0 ≈V
0 C[[[L]]]

Proof The bounds of replications of[[L]] andrelay(L) have
been defined above. As outlined in the proof of Proposition 6,
the length of all bitstrings manipulated byQ0 is polynomial inη.
We can therefore definemaxlenη(cej) to be a polynomial large
enough so that messages sent oncej by C[[[L]]] are never trun-
cated. We definemaxlenη(dej) = maxlenη(cej); then messages
ondej are never truncated.

Let C ′ be any evaluation context acceptable forQ0, C[[[L]]],
V . We relate traces ofC ′[Q0] and ofC ′[C[[[L]]]] as follows.

We assume that the channelscej anddej do not occur inC ′

andQ0, and that during reductions (NewChannel), these chan-
nels are substituted by themselves. (This is easy to guarantee by
renaming; this assumption simplifies notations in the proof.)

We write M =E M ′ whenE,M ⇓ a andE,M ′ ⇓ a for
some bitstringa. We denote byk-th(̃i) thek-th component of
the tuplẽi, and by|̃i| the number of elements of the tupleĩ.

We define a relation between variables ofS in Q0

and variablesy defined by new in [[L]]: we say that
y[a1, . . . , aj ]

var−−→E varImL(y, M)[ã′] when for all
k′ ≤ j, E, addstartk′,M (numk′,M (im (ρj−1(M) ◦ . . . ◦
ρk′(M)){ã′/̃i})) ⇓ ak′ , wherẽi ≤ ñ are the current replication
indices at the definition ofvarImL(y, M) with their associated
bounds, and for alll ≤ |̃i|, l-th(ã′) ∈ [1, Iη(l-th(ñ))]. (Note
that

var−−→ depends onη.)
We show that the relation

var−−→E is a (partial) function, that
is, if y[a1, . . . , aj ]

var−−→E MV and y[a1, . . . , aj ]
var−−→E M ′V

thenMV = M ′V . Assume thaty[a1, . . . , aj ]
var−−→E z′[ã′] and

y[a1, . . . , aj ]
var−−→E z′′[ã′′]. Then

• we havez′ = varImL(y, M ′) and

E, addstartk′,M ′(numk′,M ′(im (ρj−1(M ′) ◦

. . . ◦ ρk′(M ′)){ã′/ĩ′})) ⇓ ak′ for all k′ ≤ j
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whereĩ′ ≤ ñ′ are the current replication indices at the defi-
nition of z′ with their associated bounds, and for alll ≤ |ĩ′|,
l-th(ã′) ∈ [1, Iη(l-th(ñ′))],

• we havez′′ = varImL(y, M ′′) and

E, addstartk′,M ′′(numk′,M ′′(im (ρj−1(M ′′) ◦

. . . ◦ ρk′(M ′′)){ã′′/ĩ′′})) ⇓ ak′ for all k′ ≤ j

where ĩ′′ ≤ ñ′′ are the current replication indices at the
definition of z′′ with their associated bounds, and for all
l ≤ |ĩ′′|, l-th(ã′′) ∈ [1, Iη(l-th(ñ′′))].

For all terms M ′′, we have either startη(k′,M ′′) ≤
startη(k′,M ′) or startη(k′,M ′′) ≥ startη(k′,M ′) +
countη(k′,M ′) since startη(k′,M ′′) is computed by adding
countη(k′,M3) for some termsM3 in a fixed order. Moreover,
numk′,M ′(. . .) evaluates to a bitstring in[1, countη(k′,M ′)].
Therefore, startη(k′,M ′′) ≤ startη(k′,M ′). By sym-
metry, startη(k′,M ′′) ≥ startη(k′,M ′). So we have
for all k′ ≤ j, startη(k′,M ′) = startη(k′,M ′′) and
numk′,M ′(im (ρj−1(M ′) ◦ . . . ◦ ρk′(M ′)){ã′/ĩ′}) =E

numk′,M ′′(im (ρj−1(M ′′) ◦ . . . ◦ ρk′(M ′′)){ã′′/ĩ′′}). Since
startη(j, M ′) = startη(j, M ′′), by definition of startη, M ′

shares the firstj sequences of random variables withM ′′.
Sincey hasj indices,y is defined underj replications inL,
so varImL(y, M ′) = varImL(y, M ′′), that is, z′ = z′′. So
|ã′| = |ã′′|. By Hypothesis H′4.2,ρk′(M ′) = ρk′(M ′′) for all
k′ < j. By definition ofnum, Iη(numk′,M ′) = Iη(numk′,M ′′)
for all k′ ≤ j.

We show by induction onk′ that if for all k′′ ≤ k′,
numk′′,M ′(im (ρk′−1(M ′) ◦ . . . ◦ ρk′′(M ′)){ã′/ĩ′}) =E

numk′′,M ′(im (ρk′−1(M ′) ◦ . . . ◦ ρk′′(M ′)){ã′′/ĩ′}), where
ĩ′ ≤ ñ′ are the current replication indices at the definition of
zk′ ,M ′ with their associated bounds, andl-th(ã′), l-th(ã′′) ∈
[1, Iη(l-th(ñ′))], thenã′ = ã′′.

• For k′ = 1, we assumenum1,M ′(ã′) =E num1,M ′(ã′′).
The longest common prefix ofindex1(M ′) and
indexj′′(M ′) for j′′ < 1 is empty, sinceindexj′′(M ′)
is defined only forj′′ ≥ 1. So num1,M ′ establishes a
bijection between the tuples̃a′ smaller than the current
replication bounds at definition ofz1 ,M ′ and the interval
[1, countη(1,M ′)]. Soã′ = ã′′.

• For k′ > 1, we assume thatnumk′′,M ′(im (ρk′−1(M ′) ◦
. . . ◦ ρk′′(M ′)){ã′/ĩ′}) =E numk′′,M ′(im (ρk′−1(M ′) ◦
. . . ◦ ρk′′(M ′)){ã′′/ĩ′}) for all k′′ ≤ k′. Let k′ind <

k′. Let E, im (ρk′−1(M ′) ◦ . . . ◦ ρk′ind
(M ′)){ã′/ĩ′} ⇓

ã′ind andE, im (ρk′−1(M ′) ◦ . . . ◦ ρk′ind
(M ′)){ã′′/ĩ′} ⇓

ã′′ind. By hypothesis, we have for allk′′ ≤
k′ind, numk′′,M ′(im (ρk′ind−1(M ′) ◦ . . . ◦ ρk′′(M ′))
{ã′ind/ĩ′ind}) =E numk′′,M ′(im (ρk′ind−1(M ′) ◦ . . . ◦
ρk′′(M ′)){ã′′ind/ĩ′ind}) where ĩ′ind ≤ ñ′ind are
the current replication indices at the definition of
zk′ind ,M ′ with their associated bounds. By induc-

tion hypothesis, ã′ind = ã′′ind, so for all k′′ <

k′, im (ρk′−1(M ′) ◦ . . . ◦ ρk′′(M ′)){ã′/ĩ′} =E

im (ρk′−1(M ′) ◦ . . . ◦ ρk′′(M ′)){ã′′/ĩ′}. For k′′ = k′,
we havenumk′,M ′(ã′) =E numk′,M ′(ã′′).

Let l be the length of the longest common prefix of
im indexk′(M ′) andim indexk′′0

(M ′) for k′′0 < k′. Since
indexk′′0

(M ′) = indexk′(M ′)◦ρk′−1(M ′)◦. . .◦ρk′′0
(M ′),

the firstl components ofim (ρk′−1(M ′) ◦ . . . ◦ ρk′′0
(M ′))

are then the firstl components of̃i′, so the firstl compo-
nents ofã′ and ã′′ are equal. Moreovernumk′,M ′ estab-
lishes a bijection between the last|ã′|− l components of its
argument and the interval[1, countη(k′,M ′)]. So the last
|ã′|− l components of̃a′ andã′′ are equal. Hencẽa′ = ã′′.

Therefore, we conclude that̃a′ = ã′′, soz′[ã′] = z′′[ã′′].
Next, we show that the function

var−−→E is injective. If
y′[a′1, . . . , a

′
j′ ]

var−−→E z[a1, . . . , aj ] andy′′[a′′1 , . . . , a′′j′′ ]
var−−→E

z[a1, . . . , aj ], then z = varImL(y′,M ′) and z =
varImL(y′′,M ′′). By Hypothesis H′4.1, M ′ and M ′′ share
at least the firstj′ = j′′ sequences of random variables and
y′ = y′′. By Hypothesis H′4.2,ρk′(M ′) = ρk′(M ′′) for all k′ <
j′ = j′′. By definition ofaddstart andnum, startη(k′,M ′) =
startη(k′,M ′′) and Iη(numk′,M ′) = Iη(numk′,M ′′) for all
k′ ≤ j′ = j′′. Hencea′k′ = a′′k′ for all k′ ≤ j′ = j′′. So
y′[a′1, . . . , a

′
j′ ] = y′′[a′′1 , . . . , a′′j′′ ].

For each traceinitConfig(C ′[Q0]) → . . . → Em, Pm,Qm,
Cm of C ′[Q0] of probability pm, we show that there exists a
traceinitConfig(C ′[C[[[L]]]]) → . . . → E′m′ , P ′m′ ,Q′m′ , C′m′ of
C ′[C[[[L]]]] of probabilityp′m′ such that

• For all z /∈ S, E′m′(z[a′1, . . . , a
′
j′ ]) = Em(z[a′1, . . . , a

′
j′ ]);

for all z ∈ S, z[a′1, . . . , a
′
j′ ] is in Dom(Em) if and only

if it is in Dom(E′m′); if y is defined bynew in L and
y[a1, . . . , aj ] ∈ Dom(E′m′) then there existsMV such that
y[a1, . . . , ak] var−−→Em MV andMV ∈ Dom(Em) and for
all suchMV , E′m′(y[a1, . . . , aj ]) = Em(MV ).

• P ′m′ is obtained fromPm as Q′′0 from Q0 (transforming
only the occurrences that appear inPm), Q′m′ = Q1

m′ ]
Q2

m′ ] Q3
m′ , whereQ1

m′ is obtained fromQm asQ′′0 from
Q0 (transforming only the occurrences that appear inQm),
Q2

m′ is what remains ofrelay(L) after partial execution,
andQ3

m′ is what remains of[[L]] after partial execution.
More precisely, let

relay(La1,...,ak

j0,...,jk
) =

relay(Lj0,...,jk
)j0,...,jk

i1,...,ik
{a1/i1, . . . , ak/ik}

[[La1,...,ak

j0,...,jk
]] = [[Lj0,...,jk

]]j0,...,jk

i1,...,ik
{a1/i1, . . . , ak/ik}

where i1, . . . , ik are the replications indices ofL above
Lj0,...,jk

. These processes correspond respectively to the
relay process and to the translation of the subtreeLj0,...,jk

of L, for the value of the replication indicesa1, . . . , ak.
Let redRepl(a, !i≤nP ) = P{a/i}. ThenQ2

m′ andQ3
m′

are formed as follows:

– for eachj0, . . . , jk−1, a1, . . . , ak such that

y(j0,...,jk−1),k′ [a1, . . . , ak] ∈ Dom(E′m′),
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Q2
m′ contains

dj0,...,jk−1 [a1, . . . , ak](); dj0,...,jk−1 [a1, . . . , ak]〈〉

possibly several times.

– for eachj0, . . . , jk−1, a1, . . . , ak such that

y(j0,...,jk−2),k′′ [a1, . . . , ak−1] ∈ Dom(E′m′) and

y(j0,...,jk−1),k′ [a1, . . . , ak] /∈ Dom(E′m′),

Q2
m′ contains redRepl(ak, relay(La1,...,ak−1

j0,...,jk−1
)) and

Q3
m′ containsredRepl(ak, [[La1,...,ak−1

j0,...,jk−1
]]).

– for eachj0, . . . , jl, a1, . . . , al such that

y(j0,...,jl−1),k′ [a1, . . . , al] ∈ Dom(E′m′)

and Lj0,...,jl
is a leaf of L, either Q2

m′ contains
relay(La1,...,al

j0,...,jl
) and Q3

m′ contains [[La1,...,al

j0,...,jl
]], or

Q2
m′ contains

dj0,...,jl
[a1, . . . , al](x(j0,...,jl),1 : T(j0,...,jl),1, . . . ,

x(j0,...,jl),l′ : T(j0,...,jl),l′); dj0,...,jl
[a1, . . . , al]〈r〉

with l′ = nInputj0,...,jl
, possibly several times,

and there existM ′ ∈ M and ã′ such that
Em, convindex(l,M ′){ã′/ĩ′} ⇓ a1, . . . , al,
Em,M ′{ã′/ĩ′} ⇓ r, and BL(M ′) = (j0, . . . , jl),
whereĩ′ is the sequence of replication indices atM ′.

where for eachk, ak is a bitstring in[1, tot countη(j0, . . . ,
jk−1)].

• C′m′ = Cm ∪ {cej , dej | j̃}.
• p′m′ = pm ×

∏
z,a′1,...,a′

j′
|Iη(T )| whereT is the type of

z and z ∈ S, a′1, . . . , a
′
j′ are such thatz[a′1, . . . , a

′
j′ ] ∈

Dom(Em) and there exists noy[a1, . . . , aj ] ∈ Dom(E′m′)
such thaty[a1, . . . , aj ]

var−−→Em
z[a′1, . . . , a

′
j′ ].

Note that the same trace ofC ′[C[[[L]]]] corresponds to∏
z,a′1,...,a′

j′
|Iη(T )| traces ofC ′[Q0] that differ only by the val-

ues ofEm(z[a′1, . . . , a
′
j′ ]) for z ∈ S, a′1, . . . , a

′
j′ as defined in

the last item above.
The proof proceeds by induction on the lengthm of the trace

of C ′[Q0]. For the induction step, we distinguish cases depend-
ing on the last reduction step of the trace.

• For the initial case, we show by induction onC ′′ that for all
C ′′,Q, C, σ such thatσ substitutes channel names for chan-
nel names without touchingcej anddej , there existQ′, C′, σ′
such thatσ′ substitutes channel names for channel names
without touchingcej and dej , ∅, {C ′′[σQ0]} ] Q, C  ∗
∅, {σ′Q0} ] Q′, C′, and ∅, {C ′′[σC[[[L]]]]} ] Q, C  ∗
∅, {σ′C[[[L]]]} ] Q′, C′. This is obvious whenC ′′ = [ ],
with σ′ = σ,Q′ = Q, andC′ = C. We show this result by
applying (Par) whenC ′′ = C1 | Q1 or C ′′ = Q1 | C1, and
(NewChannel) whenC ′′ = newChannel c;C1.

So we can apply this result toC ′′ = C ′, σ = Id,
Q = ∅, and C = fc(C ′[Q0]). We havefc(C ′[Q0]) =

fc(C ′[C[[[L]]]]), since fc(Q0) = fc(Q′′0) = fc(C[[[L]]]).
Therefore, there existQ, C, σ such thatσ substitutes chan-
nel names for channel names without touchingcej anddej ,
∅, {C ′[Q0]}, fc(C ′[Q0]) ∗ ∅, {σQ0} ] Q, C, and

∅, {C ′[C[[[L]]]]}, fc(C ′[C[[[L]]]]) ∗ ∅, {σC[[[L]]]} ] Q, C

 ∗ ∅, {σQ′′0 , relay(L), [[L]]} ] Q, C ∪ {cej , dej | j̃}
by (NewChannel) and (Par)

 ∗ ∅, {σQ′′0} ] Q2
0 ]Q3

0 ]Q, C ∪ {cej , dej | j̃}
by (Par) and (Repl)

where Q2
0 = {redRepl(a, relay(Lj0)

j0) | j0, a ∈
[1, tot countη(j0)]} is what remains fromrelay(L) after
expansion of parallel compositions and replications and
Q3

0 = {redRepl(a, [[Lj0 ]]
j0) | j0, a ∈ [1, tot countη(j0)]}

is what remains of[[L]] after expansion of parallel compo-
sitions and replications.

Moreover,σQ′′0 is obtained fromσQ0 asQ′′0 from Q0, and
Q does not contain any occurrence modified when trans-
forming Q0 into Q′′0 , so {σQ′′0} ] Q is obtained from
{σQ0} ] Q asQ′′0 from Q0.

Reducing{σQ′′0} ] Q and {σQ0} ] Q by  until they
are in normal form, we obtain thatreduce(∅, {C ′[Q0]},
fc(C ′[Q0])) = (∅,Q0, C′) and reduce(∅, {C ′[C[[[L]]]]},
fc(C ′[C[[[L]]]])) = (∅,Q1

0 ] Q2
0 ] Q3

0, C′ ∪ {cej , dej | j̃}),
whereQ1

0 is obtained fromQ0 as Q′′0 from Q0. There-
fore initConfig(C ′[Q0]) and initConfig(C ′[C[[[L]]]]) sat-
isfy the desired invariant.

• When the trace ofC ′[Q0] executesnew x[a1, . . . , al] : T
by (New) for x ∈ S at stepm, the corresponding trace
of C ′[C[[[L]]]] executeslet x[a1, . . . , al] : T = cst in by
(Let) at stepm′. This yields|Iη(T )| traces ofC ′[Q0], one
for each value ofEm(x[a1, . . . , al]), each with probability
pm = pm−1/|Iη(T )|. In contrast, this yields a single trace
of C ′[C[[[L]]]], with probabilityp′m′ = p′m′−1.

Moreover, there exists noy[a′1, . . . , a
′
l′ ] ∈ Dom(E′m′)

such thaty[a′1, . . . , a
′
l′ ]

var−−→Em x[a1, . . . , al]. Other-
wise, by the first point of the invariant, before the def-
inition of x[a1, . . . , al], there would existMV such that
y[a′1, . . . , a

′
l′ ]

var−−→Em−1 MV and MV ∈ Dom(Em−1).
SinceEm is an extension ofEm−1, y[a′1, . . . , a

′
l′ ]

var−−→Em

MV . Since
var−−→Em

is injective, MV = x[a1, . . . , al].
This yields a contradiction, sinceMV ∈ Dom(Em−1)
but x[a1, . . . , al] /∈ Dom(Em−1) by Invariant 4. (The ar-
ray cell x[a1, . . . , al] cannot be defined several times in a
trace.)

It is then easy to see that the invariant is satisfied.

• When the trace ofC ′[Q0] executesσiPM for M ∈ M, the
corresponding trace ofC ′[C[[[L]]]] executes

σi(dM,1〈〉; dM,1(); . . . dM,l〈〉; dM,l();

dM 〈σMx1,M , . . . , σMxm,M 〉; dM (y : bitstring);CM [y])

whereσi = {ã/̃i}, ĩ is the sequence of current replication
indices atPM , andBL(M) = (j0, . . . , jl).

50



Fork ≤ l, let ak be such that

Em, addstartk,M (numk,M (σi(im indexk(M))))) ⇓ ak

and letb̃k be such thatEm, σi(im indexk(M)) ⇓ b̃k.

Let m′k be the step of the trace ofC ′[C[[[L]]]]
after executing σidM,k〈〉;σidM,k(), where dM,k =
dj0,...,jk−1 [convindex(k,M)]. We show by induction on
k that for allk′, y(j0,...,jk−1),k′ [a1, . . . , ak] ∈ Dom(E′m′

k
)

and that the invariant is satisfied at stepm′k except that
σi(dM,1〈〉; dM,1(); . . . ; dM,k〈〉; dM,k()) has been removed
from P ′m′

k
. Let zkk′ = varImL(y((j0,...,jk−1),k′ ,M). We

havey(j0,...,jk−1),k′ [a1, . . . , ak] var−−→Em
zkk′ [b̃k]. More-

over,zkk′ [b̃k] ∈ Dom(Em) sincezkk′ [σi(im indexk(M))]
occurs inσiM , andσiM is successfully evaluated in the
trace ofC ′[Q0]. We distinguish two cases:

– 1) y((j0,...,jk−1),k′ [a1, . . . , ak] ∈ Dom(E′m′
k−1

).

By the invariant at stepm′k−1, Q2
m′

k−1
contains

dj0,...,jk−1 [a1, . . . , ak](); dj0,...,jk−1 [a1, . . . , ak]〈〉.
So we can executeσidM,k〈〉;σidM,k() by two
(Output) steps, without changing the environment,
so y(j0,...,jk−1),k′ [a1, . . . , ak] ∈ Dom(E′m′

k
) and

the invariant is satisfied at stepm′k except that
σi(dM,1〈〉; dM,1(); . . . dM,k〈〉; dM,k()) is removed
from P ′m′

k
.

– 2) y(j0,...,jk−1),k′ [a1, . . . , ak] /∈ Dom(E′m′
k−1

). By

induction hypothesis,y(j0,...,jk−2),k′ [a1, . . . , ak−1] ∈
Dom(E′m′

k−1
). By the invariant at stepm′k−1,

redRepl(ak, relay(La1,...,ak−1
j0,...,jk−1

)) ∈ Q2
m′

k−1
and

redRepl(ak, [[La1,...,ak−1
j0,...,jk−1

]]) ∈ Q3
m′

k−1
.

By (Output) twice, we send an empty message on
dj0,...,jk−1 [a1, . . . , ak] and oncj0,...,jk−1 [a1, . . . , ak].
By (New), we definey(j0,...,jk−1),k′ [a1, . . . , ak] for

each k′. We chooseEm(zkk′ [b̃k]) as value of
y(j0,...,jk−1),k′ [a1, . . . , ak] (with probability 1

|Iη(T )|
where T is the type of y(j0,...,jk−1),k′ ). Finally,
by (Output) twice, we send an empty message on
cj0,...,jk−1 [a1, . . . , ak] and ondj0,...,jk−1 [a1, . . . , ak].
Then the invariant is satisfied at stepm′k except that
σi(dM,1〈〉; dM,1(); . . . dM,k〈〉; dM,k()) is removed
from P ′m′

k
. (Note that the probability of the trace

of C ′[C[[[L]]]] is divided by
∏

k′ |Iη(T(j0,...,jk−1),k′)|
whereT(j0,...,jk−1),k′ is the type ofy(j0,...,jk−1),k′ [a1,
. . . , ak]. This is what is required by the invariant since
y(j0,...,jk−1),k′ [a1, . . . , ak] is defined at stepm′k but
was not at stepm′k−1.)

So y(j0,...,jk−1),k′ [a1, . . . , ak] ∈ Dom(E′m′
l
) for all k ≤

l and k′, and the invariant is satisfied at stepm′l ex-
cept thatσi(dM,1〈〉; dM,1(); . . . dM,l〈〉; dM,l()) is removed
from P ′m′

l
. Let a be such thatEm, σiM ⇓ a. Let

m′′ be the step of the trace ofC ′[C[[[L]]]] after executing

σi(dM 〈σMx1,M , . . . , σMxl′,M 〉; dM (y : bitstring)) with
l′ = nInputM . By the invariant, we have two cases:

– 1) relay(La1,...,al

j0,...,jl
) ∈ Q2

m′
l

and[[La1,...,al

j0,...,jl
]] ∈ Q3

m′
l
.

The processσidM 〈σMx1,M , . . . , σMxl′,M 〉 sends
the value of σiσMxk′,M for k′ ≤ l′ on chan-
nel dj0,...,jl

[a1, . . . , al]. By (Output), this mes-
sage is received byrelay(La1,...,al

j0,...,jl
), which for-

wards it by (Output) again to[[La1,...,al

j0,...,jl
]] on chan-

nel cj0,...,jl
[a1, . . . , al]. On reception of this mes-

sage by[[La1,...,al

j0,...,jl
]], E′m′′(x(j0,...,jl),k′ [a1, . . . , al]) is

set to the received value, soEm, σiσMxk′,M ⇓
E′m′′(x(j0,...,jl),k′ [a1, . . . , al]) for eachk′ ≤ l′. For
all k ≤ l and k′, since y(j0,...,jk−1),k′ [a1, . . . ,

ak] var−−→Em
zkk′ [b̃k], by the invariant we have

E′m′
l
(y(j0,...,jk−1),k′ [a1, . . . , ak]) = Em(zkk′ [b̃k]), so

E′m′′(y(j0,...,jk−1),k′ [a1, . . . , ak]) = Em(zkk′ [b̃k]).
Moreover,σMykk′,M = zkk′ [im indexk(M)], so

Em, σiσMykk′,M ⇓ E′m′′(y(j0,...,jk−1),k′ [a1, . . . , ak])

Therefore, for all variablesx of NM defined under
k replications,Em, σiσMx ⇓ E′m′′(x[a1, . . . , ak]).
Since M = σMNM , we haveEm, σiσMNM ⇓
a, so E′m′′ , NM{a1/i1, . . . , al/il} ⇓ a, where
i1, . . . , il are the replication indices ofL above
Lj0,...,jl

. Hence[[La1,...,al

j0,...,jl
]] sends backa on channel

cj0,...,jl
[a1, . . . , al] by (Output), which is forwarded

on channeldj0,...,jl
[a1, . . . , al] by relay(La1,...,al

j0,...,jl
) by

(Output) again, soa is stored iny[ã] by Q′′. Thus
E′m′′(y[ã]) = a.
In order to show that the invariant still holds after this
step, we remark that, after these outputs, the relay
process makes available the following process

dj0,...,jl
[a1, . . . , al](x(j0,...,jl),1 : T(j0,...,jl),1, . . . ,

x(j0,...,jl),l′ : T(j0,...,jl),l′); dj0,...,jl
[a1, . . . , al]〈a〉

and we haveEm, convindex(l,M){ã/̃i} ⇓ a1, . . . ,

al, Em,M{ã/̃i} ⇓ a, andBL(M) = (j0, . . . , jl).

– 2) dj0,...,jl
[a1, . . . , al](x(j0,...,jl),1 : T(j0,...,jl),1, . . . ,

x(j0,...,jl),l′ : T(j0,...,jl),l′); dj0,...,jl
[a1, . . . , al]〈r〉 ∈

Q2
m′

l
and there existM ′ ∈ M and ã′ such

that Em, convindex(l,M ′){ã′/ĩ′} ⇓ a1, . . . , al,
Em,M ′{ã′/ĩ′} ⇓ r, and BL(M ′) = (j0, . . . , jl),
whereĩ′ is the sequence of current replication indices
atM ′.
We haveEm, convindex(l,M){ã/̃i} ⇓ a1, . . . , al by
definition ofa1, . . . , al. So

convindex(l,M ′){ã′/ĩ′} =Em

convindex(l,M){ã/̃i}

so, as shown in the proof that
var−−→E is a function,

indexl(M ′){ã′/ĩ′} =Em
indexl(M){ã/̃i} =Em

b̃l

andM ′ andM share the firstl sequences of random
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variables, that is, all sequences of random variables,
or ml = 0 and M = M ′. Moreover,BL(M) =
BL(M ′) = (j0, . . . , jl), soNM = NM ′ .

If ml = 0 andM = M ′, ã′ = ã, soEm, σiM ⇓ r, so
r = a.
Otherwise, by Hypothesis H′4.3, there exists a term
M0 such that M = (indexl(M))M0, M ′ =
(indexl(M ′))M0, andM0 does not contain the cur-
rent replication indices atM or M ′. Thena =Em

M{ã/̃i} =Em
M0{b̃l/ĩ′′} =Em

M ′{ã′/ĩ′} =Em
r

whereĩ′′ is the sequence of current replication indices
at definition ofzlk′,M for anyk′.

Therefore, in all cases, we obtainE′m′′(y[ã]) = a, so
σiCM [y] in the trace ofC ′[C[[[L]]]] executes in the same
way asσiCM [M ] in the trace ofC ′[Q0], which yields the
desired invariant.

• The other cases are easy: both sides reduce in the same
way.

Conversely, we show that all traces ofC ′[C[[[L]]]] correspond to
a trace ofC ′[Q0] with the same relation as above. The proof
follows a technique similar to the previous proof.

So
∏

z,a′1,...,a′
j′
|Iη(T )| traces ofC ′[Q0], each of probabil-

ity pm, correspond to one trace ofC ′[C[[[L]]]] with probability
p′m′ = pm ×

∏
z,a′1,...,a′

j′
|Iη(T )|. Moreover, for all channels

c and bitstringsa, Em, Pm,Qm, Cm executesc〈a〉 immediately
if and only if E′m′ , P ′m′ ,Q′m′ , C′m′ executesc〈a〉 immediately.
So Pr[C ′[Q0]  η c〈a〉] = Pr[C ′[C[[[L]]]]  η c〈a〉]. Hence
Q0 ≈V

0 C[[[L]]]. �

Lemma 12 Q′0 ≈V
0 C[[[R]]]

Proof sketch The proof uses the same technique as the proof
of Lemma 11. The main addition is that, in contrast toL, R
may contain functional processes that are more complex than
just terms. In order to handle them, we need to define a re-
lation between variables ofQ′0 and variables ofR defined by
let or new in functional processes: wheny is such a variable,
y[a1, . . . , al]

var−−→E varImR(y, M)[ã′] where for allk ≤ l,
E, addstartk,M (numk,M (im indexk(M){ã′/̃i})) ⇓ ak and ĩ
is the sequence of current replication indices atM . The relation
var−−→E is not a function for these variables, but we can show that
wheny[a1, . . . , al] is related to several variables, these variables
hold the same value at runtime.

The most delicate case is that offind functional processes

FP = find (
⊕m

j=1 ũj ≤ ñj suchthat defined(zj1[ũj1], . . . ,

zjlj [ũjlj ]) ∧Mj then FP j) else FP ′

where for eachk, ũjk is the concatenation of the prefix of the
current replication indices of lengthl′0 and of a non-empty pre-
fix of ũj . When executing such afind process,[[R]] tests the
value ofzjk[a1, . . . , al′1

] for all indices ofa1, . . . , al′1
such that

a1, . . . , al′0
correspond to a prefix of the current replication in-

dices. Correspondingly,transfφ,CM
(FP) tests the values of all

variables that are related tozjk[a1, . . . , al′1
] by

var−−→. �

Lemma 13 ProcessQ′0 satisfies Invariant 1.

Proof ProcessQ′0 satisfies Invariant 1 since all newly created
definitions concern fresh variables; for variables ofQ′0 that cor-
respond to variables defined bynew or by an input inR, there
is a single definition for each of them inQ′0; for variables ofQ′0
that correspond to variables defined bylet in R, there are several
definitions only when there are several definitions of these vari-
ables inR, and since[[R]] satisfies Invariant 1, these definitions
are in different branches offind (or if) in R, so also inQ′0. �

Lemma 14 ProcessQ′0 satisfies Invariant 2.

Proof The only variable accesses created inQ′0 come from
transfφ0,CM

(FP). We show by induction onFP that the only
variable accesses created bytransfφ,CM

(FP) and not guarded
by a correspondingfind are inim φ. (We do not consider vari-
able accesses inCM , which already existed inQ0.) So the
only variable accesses created bytransfφ0,CM

(FPM ) and not
guarded by a correspondingfind are inim φ0. Moreover, vari-
able accesses inim φ0 are of three kinds:

1. varImR(xj,M ,M)[i′1, . . . , i
′
l′ ] which are defined inP ′M ,

just abovetransfφ0,CM
(FPM ).

2. varImR(y′jk,M ,M)[im indexj(M)] where

(a) eithernNewj,M > 0 and zj1,M [im indexj(M)] is
guaranteed to be defined, since it occurs at this point
in the initial processQ0 which satisfies Invariant 2.
By the addition ofdefined conditions infind and the
fact thatz′jk,M = varImR(y′jk,M ,M) is defined in
Q′0 wherezj1,M was defined inQ0, this implies that
varImR(y′jk,M ,M)[im indexj(M)] is also defined.

(b) or nNewj,M = 0, then im indexj(M) is the se-
quence of current replication indices atM , and
varImR(y′jk,M ,M)[im indexj(M)] is defined just
aboveP ′M .

3. varImR(z,M)[i′1, . . . , i
′
l′ ] where z is defined by

let in FPM . Since [[R]] satisfies Invariant 2, ac-
cesses to z[i1, . . . , il] in FPM occur under the
definition of z[i1, . . . , il] in FPM , so accesses to
varImR(z,M)[i′1, . . . , i

′
l′ ] = φ0(z[i1, . . . , il]) also occur

under their definition intransfφ0,CM
(FPM ).

Therefore,Q′0 satisfies Invariant 2. �

Lemma 15 ProcessQ′0 satisfies Invariant 3.

Proof The only newly added variable definitions are
let varImR(xj,M ,M) : Tj,M = σMxj,M and new z′jk,M :
T ′jk,M . Each variablevarImR(xj,M ,M) has at most one def-
inition in Q′0. For variablesz′jk,M , when several of these def-
initions are added for the same variablez′jk,M , they are added
in place of the definition(s) ofzj1,M , so by Hypothesis H′3.1.1,
they occur under the same replications, so they all have the same
type. Therefore, the type environment forQ′0 is well-defined.

Assume thatM ∈ M and PM = CM [M ] is the small-
est process containingM . Let EL be the type environment at
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PM = CM [M ] in Q0; let ER be the type environment atP ′M
in Q′0; let E ′L be the type environment atNM in L; let E ′R be
the type environment atFPM in R. We know thatEL ` PM ,
and show thatER ` P ′M . It is then easy to see thatQ′0 is well-
typed knowing thatQ0 is well-typed. We note thatER is an
extension ofEL with types for variablesvarImR(y′jk,M ′ ,M ′),
varImR(xj,M ′ ,M ′), and varImR(z,M ′) when z is defined
by let in FPM ′ , for eachM ′ ∈ M. By Hypothesis H′3.2,
EL ` σMxj,M : Tj,M , so ER ` σMxj,M : Tj,M , sinceER
is an extension ofEL. Then, in order to showER ` P ′M , it is
enough to showER ` transfφ0,CM

(FPM ).
We say thatφ is well-typed whenz[M̃ ] ∈ Dom(φ) andE ′R `

z[M̃ ] : T ′ impliesER ` φ(z[M̃ ]) : T ′.
First, it is easy to show by induction onM ′ that for all well-

typedφ, for all M ′ such thatE ′R ` M ′ : T , we haveER `
φ(M ′) : T .

Next, we show that for all well-typedφ, if E ′R ` [[FP ′]]
ejei

and the type of the result ofFP ′ is the type ofNM , then
ER ` transfφ,CM

(FP ′), by induction onFP ′.

• If FP ′ = M ′, we have to show thatER ` CM [φ(M ′)]. Let
T such thatEL `M : T .

We haveM = σMNM , so if NM contains a function sym-
bol, E ′L ` NM : T . If NM = xj,M , M = σMxj,M

is of type Tj,M by Hypothesis H′3.2, so T = Tj,M ,
hence we also haveE ′L ` NM : T . If NM = yjk,M ,
M = σMyjk,M = zjk,M [im indexj(M)] is of typeTjk,M

by Hypothesis H′3.1.1, soT = Tjk,M and we also have
E ′L ` NM : T .

By hypothesis, we have thenE ′R ` M ′ : T , so ER `
φ(M ′) : T . SinceEL ` CM [M ] with EL ` M : T , by
a substitution lemma, we conclude thatER ` CM [φ(M ′)].

• The inductive cases follow easily usingE ′R ` [[FP ′]]
ejei and

the property proved above to type terms.

In the case of afind branch with non-emptydefined condi-
tions, we extendφ into φ′ as follows. Let̃i′ be the sequence
of current replication indices atM ′ and ũ′ be a sequence
formed with a fresh variable for each variable inĩ′.

– If zk = y′jk′,M ′ for somek′, then

φ′(zk[Mk1, . . . ,Mkl′k
]) =

varImR(zk,M ′)[im indexj(M ′){ũ′/ĩ′}].

Since varImR(zk,M ′) is defined wherezj1,M ′ is
defined, the indices ofvarImR(zk,M ′) are the in-
dices of zj1,M ′ , so im indexj(M ′) is of the suit-
able type. Moreover,̃u′ and ĩ′ have the same types,
so by a substitution lemma,im indexj(M ′){ũ′/ĩ′}
is of the suitable type. Moreoverzk in R and
varImR(zk,M ′) in Q′0 are both declared of type
T ′jk′,M ′ , soE ′R ` zk[Mk1, . . . ,Mkl′k

] : T ′jk′,M ′ and

ER ` varImR(zk,M ′)[im indexj(M ′){ũ′/ĩ′}] :
T ′jk′,M ′ .

– If zk is defined by let or by a function in-
put, φ′(zk[Mk1, . . . ,Mkl′k

]) = varImR(zk,M ′)[ũ′].

varImR(zk,M ′) is declared under the same replica-
tions asM ′, soũ′ is of the suitable type. The variables
zk in R andvarImR(zk,M ′) in Q′0 are declared of
the same type, so ifE ′R ` zk[Mk1, . . . ,Mkl′k

] : T ′

thenER ` varImR(zk,M ′)[ũ′] : T ′.

Soφ′ is well-typed.

Moreover, we show thatER ` im indexj1(M
′){ũ′/ĩ′} =

im indexj1(M) : bool . We havezj1k,M = zj1k,M ′ since
M and M ′ share thej1 first sequences of random vari-
ables, soim indexj1(M

′) and im indexj1(M) are of the
same type, since they are both used as indices ofzj1k,M .
Since ũ′ and ĩ′ are of the same type, by a substitution
lemma,im indexj1(M

′){ũ′/ĩ′} andim indexj1(M) are of
the same type, which yields the desired result.

It is easy to see thatφ0 is well-typed. MoreoverE ′R ` [[FPM ]]
ejei

and the type of the result ofFPM is the type ofNM by Hypoth-
esis H0, soER ` transfφ0,CM

(FPM ). �

Proof of Proposition 3 Invariants 1, 2, and 3 have been
proved in Lemmas 13, 14, and 15 respectively. Finally, we
show thatQ0 ≈V Q′0. After renaming variables so thatV
andC do not contain variables ofL andR, by Lemmas 1, 11,
and 12,Q0 ≈V

0 C[[[L]]] ≈V C[[[R]]] ≈V
0 Q′0, so by transitivity

Q0 ≈V Q′0. �

E.5 Proofs for Section 4

Proof of Proposition 4 Let C be an acceptable context for
Q | Qx, Q | Q′x, ∅. We relate the traces ofC[Q | Qx] and
C[Q | Q′x] as follows:

• If a trace ofC[Q | Qx] never executes the subprocess
c〈x[u1, . . . , um]〉 of Qx, then we obtain a trace ofC[Q |
Q′x] with the same probability, by just replacingQx with
Q′x and subprocesses ofQx with the corresponding sub-
process ofQ′x.

• Otherwise, the considered trace ofC[Q | Qx] executes
the subprocessc〈x[u1, . . . , um]〉 of Qx exactly once, with
E(u1) = a1, . . . , E(um) = am, andE(x[a1, . . . , am]) =
a, whereE is the environment whenc〈x[u1, . . . , um]〉 is
executed. By hypothesis, the definition ofx[a1, . . . , am] in
this trace is either a restrictionnew x[a1, . . . , am] : T , or
an assignmentlet x[a1, . . . , am] : T = z[M1, . . . ,Ml] with
E,Mk ⇓ a′k for all k ≤ l, and the definition ofz[a′1, . . . , a

′
l]

in this trace isnew z[a′1, . . . , a
′
l] : T .

We build |Iη(T )| traces of C[Q | Q′x] from this
trace, by choosing any value ofIη(T ) for the restriction
new x[a1, . . . , am] : T or new z[a′1, . . . , a

′
l] : T defined

above, and the valuea for the restrictionnew y : T of Q′x.
By definition ofS, these traces are the same as the trace of
C[Q | Qx] except perhaps for values of variables inS, and
for the processQ′x instead ofQx. The probability of each
of these traces is1/|Iη(T )| times the probability of the con-
sidered trace ofC[Q | Qx], since these traces choose one
more random number inIη(T ) than the trace ofC[Q | Qx].
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Moreover, all traces ofC[Q | Q′x] are obtained by the previous
construction. (To show that, we rebuild a trace ofC[Q | Qx]
from the trace ofC[Q | Q′x] by the reverse construction of the
one detailed above.)

For each configurationEm, Pm,Qm, Cm of the trace ofC[Q |
Qx], and corresponding configurationE′m′ , P ′m′ ,Q′m′ , C′m′ of
the trace ofC[Q | Q′x], for all channelsc and bitstrings
a, Em, Pm,Qm, Cm executesc〈a〉 immediately if and only if
E′m′ , P ′m′ ,Q′m′ , C′m′ executesc〈a〉 immediately.

ThereforePr[C[Q | Qx]  η c〈a〉] = Pr[C[Q | Q′x]  η

c〈a〉], soQ | Qx ≈0 Q | Q′x. �

Proof sketch of Proposition 5 Let C be an acceptable con-
text forQ | Qx, Q | Q′x, ∅.

We first exclude tracesT such thatdefRestrT (x[ã]) =
defRestrT (x[ã′]) and ã 6= ã′. These traces have negligible
probability by hypothesis, sinceC[ | Qx] is an acceptable con-
text forQ, 0,{x}. So this removal does not change the result.

For the remaining traces, wheña 6= ã′, defRestrT (x[ã]) 6=
defRestrT (x[ã′]), so the definitions ofx[ã] and x[ã′] do not
come from a single execution of the same restriction. (Sox[ã]
andx[ã′] are independent random numbers.) Then we can apply
a proof similar to that of Proposition 4, except that we replace
each tested value ofx[ã′] with independent random numbers in-
stead of single one. �

Proof of Lemma 2 Let us prove the result for one-session
secrecy. (The proof is essentially the same for secrecy.) The
contexts[ ] | Qx and[ ] | Q′x are acceptable contexts forQ, Q′,
{x} (after renamingu1, . . . , um, y so that they do not occur in
Q andQ′). We haveQ ≈{x} Q′. So, by Lemma 1,Q | Qx ≈
Q′ | Qx andQ | Q′x ≈ Q′ | Q′x. SinceQ preserves the one-
session secrecy ofx, Q | Qx ≈ Q | Q′x. So, by transitivity of
≈, Q′ | Qx ≈ Q′ | Q′x. ThereforeQ′ preserves the one-session
secrecy ofx. �
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