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Abstract
A secret sharing scheme starts with a secret and then derives from it certain shares

(or shadows) which are distributed to users. The secret may be recovered only by
certain predetermined groups. In case of compartmented secret sharing, the set of
users is partitioned into compartments and the secret can be recovered only if the
number of participants from any compartment is greater than a fixed compartment
threshold and the total number of participants is greater than a global threshold.

In this paper we present a new compartmented secret sharing scheme by extending
the Brickell’s construction [4] to the case that the global threshold is strictly greater
than the sum of the compartment thresholds and we indicate how to use the threshold
secret sharing schemes based on the Chinese remainder theorem in order to decrease
the size of shares.
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1 Introduction and Preliminaries

A secret sharing scheme starts with a secret and then derives from it certain shares (shad-
ows) which are distributed to users. The secret may be recovered only by certain predeter-
mined groups. The initial applications of secret sharing were safeguarding cryptographic
keys and providing shared access to strategical resources. Threshold cryptography (see,
for example, [7]) and some e-voting schemes (see, for example, [6]) are more recent appli-
cations of the secret sharing schemes.

In the first secret sharing schemes only the number of the participants in the recon-
struction phase was important for recovering the secret. Such schemes have been referred
to as threshold secret sharing schemes. We mention Shamir’s threshold secret sharing
scheme [20] based on polynomial interpolation, Blakley’s geometric threshold secret shar-
ing scheme [3], Mignotte’s threshold secret sharing scheme [15] and Asmuth-Bloom thresh-
old secret sharing scheme [1], both based on the Chinese remainder theorem. Ito, Saito,
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and Nishizeki [14], Benaloh and Leichter [2] give constructions for more general secret
sharing schemes.

In case of compartmented secret sharing, the set of users is partitioned into com-
partments and the secret can be recovered only if the number of participants from any
compartment is greater than a fixed compartment threshold, and the total number of
participants is greater than a global threshold.

In this paper we present a new compartmented secret sharing scheme by extending
the Brickell’s construction [4] to the case that the global threshold is strictly greater than
the sum of the compartment thresholds and we indicate how to use the threshold secret
sharing schemes based on the Chinese remainder theorem in order to decrease the size of
shares.

The paper is organized as follows. The rest of this section is dedicated to some prelim-
inaries on number theory, focusing on the Chinese remainder theorem. In Section 2, after
a brief introduction to secret sharing, we present the threshold secret sharing schemes
based on the Chinese remainder theorem. In Section 3 we indicate how to use the thresh-
old secret sharing schemes based on the Chinese remainder theorem in order to realize
compartment secret sharing. The last section concludes the paper.

In the rest of this section we present some basic facts on number theory. For more
details, the reader is referred to [5].

Let a, b ∈ Z, b 6= 0. The quotient of integer division of a by b will be denoted by a div b
and the remainder will be denoted by a mod b.

Let a1, . . . , an ∈ Z such that a2
1 + · · ·+ a2

n 6= 0. The greatest common divisor (gcd) of
a1, . . . , an will be denoted by (a1, . . . , an).

Let a1, . . . , an ∈ Z such that a1 · · · an 6= 0. The least common multiple (lcm) of
a1, . . . , an will be denoted by [a1, . . . , an].

Let a, b, m ∈ Z. We say that a and b are congruent modulo m, and we use the notation
a ≡ b mod m, if m|(a− b). Zm denotes the set {0, 1, . . . ,m− 1}

The Chinese remainder theorem has many applications in computer science (see, for
example, [8]). We only mention its applications to the RSA decryption algorithm as
proposed by Quisquater and Couvreur [18], the discrete logarithm algorithm as proposed
by Pohlig and Hellman [17], and the algorithm for recovering the secret in the Mignotte’s
threshold secret sharing scheme [15] or in the Asmuth-Bloom threshold secret sharing
scheme [1]. Several versions of the Chinese remainder theorem have been proposed. The
next one is called the general Chinese remainder theorem [16]:

Theorem 1 Let k ≥ 2, m1, . . . ,mk ≥ 2, and b1, . . . , bk ∈ Z. The system of equations
x ≡ b1 mod m1

...
x ≡ bk mod mk

has solutions in Z if and only if bi ≡ bj mod (mi,mj) for all 1 ≤ i, j ≤ k. Moreover, if the
above system of equations has solutions in Z, then it has an unique solution in Z[m1,...,mk].



When (mi,mj) = 1, for all 1 ≤ i < j ≤ k, one gets the standard version of the Chinese
remainder theorem. Garner [10] found an efficient algorithm for this case and Fraenkel [9]
extended it to the general case.

2 Threshold Secret Sharing Schemes Based on the Chinese
Remainder Theorem

We present first some basic facts about secret sharing schemes. Suppose we have n users
labeled with the numbers 1, . . . , n and consider a set of groups A ⊆ P({1, 2, . . . , n}). An
A-secret sharing scheme is a method of generating (S, (I1, . . . , In)) such that

• for any A ∈ A, the problem of finding the element S, given the set {Ii | i ∈ A} is
”easy”;

• for any A ∈ P({1, 2, . . . , n}) \A, the problem of finding the element S, given the set
{Ii | i ∈ A} is intractable.

The set A will be referred to as the authorized access structure or simply as the access
structure, S will be referred to as the secret and I1, . . . , In will be referred to as the shares
(or the shadows) of S. The elements of the set A will be referred to as the authorized
groups.

A natural condition is that an access structure A is monotone, i.e.,

(∀B ∈ P({1, 2, . . . , n}))((∃A ∈ A)(A ⊆ B) ⇒ B ∈ A)

Any monotone access structure A is well specified by the set of the minimal authorized
groups, i.e., the set Amin = {A ∈ A|(∀B ∈ A \ {A})(¬B ⊆ A)}. Also, the unauthorized
access structure A, A = P({1, 2, . . . , n}) \ A, is well specified by the set of the maximal
unauthorized groups, i.e., the set Amax = {A ∈ A|(∀B ∈ A \ {A})(¬A ⊆ B)}.

An important particular class of secret sharing schemes is that of the threshold secret
sharing schemes. In these schemes, only the cardinality of the sets of shares is important
for recovering the secret. More exactly, if the required threshold is k, 2 ≤ k ≤ n, the
minimal access structure is Amin = {A ∈ P({1, 2, . . . , n}) | |A| = k}. In this case, an
A-secret sharing scheme will be referred to as a (k, n)-threshold secret sharing scheme.

We briefly present next the most important threshold secret sharing schemes based on
the Chinese remainder theorem.

2.1 Mignotte’s Threshold Secret Sharing scheme

Mignotte’s threshold secret sharing scheme [15] uses special sequences of integers, referred
to as the Mignotte sequences.

Definition 1 Let n be an integer, n ≥ 2, and 2 ≤ k ≤ n. An (k, n)-Mignotte sequence is a
sequence of positive integers m1 < · · · < mn such that (mi,mj) = 1, for all 1 ≤ i < j ≤ n,
and mn−k+2 · · ·mn < m1 · · ·mk.



Given an (k, n)-Mignotte sequence, the scheme works as follows:

• The secret S is chosen as a random integer such that β < S < α, where α = m1 · · ·mk

and β = mn−k+2 · · ·mn;

• The shares Ii are chosen by Ii = S mod mi, for all 1 ≤ i ≤ n;

• Given k distinct shares Ii1 , . . . , Iik , the secret S is recovered using the standard Chi-
nese Remainder Theorem, as the unique solution modulo mi1 · · ·mik of the system


x ≡ Ii1 mod mi1

...
x ≡ Iik mod mik

A generalization of Mignotte’s scheme by allowing modules that are not necessarily
pairwise coprime was proposed in [13], by introducing generalized Mignotte sequences.

Definition 2 Let n be an integer, n ≥ 2, and 2 ≤ k ≤ n. A generalized (k, n)-Mignotte
sequence is a sequence m1, . . . ,mn of positive integers such that

max1≤i1<···<ik−1≤n([{mi1 , . . . ,mik−1
}]) < min1≤i1<···<ik≤n([{mi1 , . . . ,mik}])

It is easy to see that every (k, n)-Mignotte sequence is a generalized (k, n)-Mignotte
sequence. Moreover, if we multiply every element of an (k, n)-Mignotte sequence by a
fixed element δ ∈ Z, (δ,m1 · · ·mn) = 1, we obtain a generalized (k, n)-Mignotte se-
quence. Generalized Mignotte’s scheme works like Mignotte’s scheme, except for the fact
α = min1≤i1<···<ik≤n([{mi1 , . . . ,mik}]) and β = max1≤i1<···<ik−1≤n([{mi1 , . . . ,mik−1

}]).
Moreover, in this case, the general Chinese Remainder Theorem must be used for recov-
ering the secret.

2.2 Asmuth-Bloom Threshold Secret Sharing Scheme

This scheme, proposed by Asmuth and Bloom in [1], also uses special sequences of integers.
More exactly, a sequence of pairwise coprime positive integers r, m1 < · · · < mn is chosen
such that

r ·mn−k+2 · · ·mn < m1 · · ·mk

Given such a sequence, the scheme works as follows:

• The secret S is chosen as a random element of the set Zr;

• The shares Ii are chosen by Ii = (S + γ · r) mod mi, for all 1 ≤ i ≤ n, where γ is an
arbitrary integer such that S + γ · r ∈ Zm1···mk

;



• Given k distinct shares Ii1 , . . . , Iik , the secret S can be obtained as S = x0 mod r,
where x0 is obtained, using the standard Chinese Remainder Theorem, as the unique
solution modulo mi1 · · ·mik of the system

x ≡ Ii1 mod mi1
...

x ≡ Iik mod mik

The sequences used in the Asmuth-Bloom scheme can be generalized by allowing mod-
ules that are not necessarily pairwise coprime in an obvious manner. We can use any
sequence r, m1, · · · ,mn such that

r ·max1≤i1<···<ik−1≤n([{mi1 , . . . ,mik−1
}]) < min1≤i1<···<ik≤n([{mi1 , . . . ,mik}])

It is easy to see that if we multiply every element of an ordinary Asmuth-Bloom
sequence excepting r with a fixed element δ ∈ Z, (δ,m1 · · ·mn) = 1, we obtain a generalized
Asmuth-Bloom sequence.

The application of the Chinese Remainder Theorem in threshold secret sharing has
been also discussed in [12] and an unitary point of view on the security of the threshold
secret sharing schemes based on the Chinese Remainder Theorem was presented in [19].
Although the threshold secret sharing schemes based on the Chinese Remainder Theo-
rem are not perfect1, by choosing carefully the parameters, these schemes can lead to a
reasonable factor security

size of shares .

3 Compartmented Secret Sharing Based on the Chinese Re-
mainder Theorem

In case of compartmented secret sharing, the set of users is partitioned into compartments
and the secret can be recovered only if the number of participants from any compartment
is greater than a fixed compartment threshold, and the total number of participants is
greater than the global threshold.

The compartmented access structures can be introduced as follows.

Definition 3 Let C = {C1, C2, . . . , Cm} be a partition of {1, 2, . . . , n} and consider a
sequence of compartment thresholds K = {k1, k2, . . . , km}, where 1 ≤ kj ≤ |Cj |, for all
1 ≤ j ≤ m, and a global threshold k,

∑m
j=1 kj ≤ k ≤ n. The (C,K, k)-compartmented

access structure is given by

A = {A ∈ P({1, 2, . . . , n}) | (|A| ≥ k) ∧ (∀j = 1,m)(|A ∩ Cj | ≥ kj)}
1In a perfect secret sharing scheme, the shares of any unauthorized group give no information (in

information-theoretical sense) about the secret.



In this case, anA-secret sharing scheme will be referred to as a (C,K, k)-compartmented
secret sharing scheme.

The compartmented secret sharing has been discussed for the first time by Simmons
in [21]. Brickell [4] proposed an elegant solution for the case k =

∑m
j=1 kj by choosing the

secret S as a combination of m compartment secrets and using a threshold secret sharing
scheme for each compartment. Ghodosi, Pieprzyk, and Safavi-Naini proposed an efficient
scheme for the general case in [11].

We extend Brickell’s construction to the general case as follows.

- The secret is chosen as S = s+s1+ · · ·+sm, where s, s1, . . . , sm are positive integers;

- The shares are chosen as Ii = (gi, ci), for any 1 ≤ i ≤ n, where

– g1, . . . , gn are the shares corresponding to the secret s with respect to an arbi-
trary (k, n)-threshold secret sharing scheme;

– for every 1 ≤ j ≤ m, {ci|i ∈ Cj} are the shares corresponding to the secret sj

with respect to an arbitrary (kj , |Cj |)-threshold secret sharing scheme.

Remark 1 (Correctness)
Let A be an authorized access group. Thus, |A| ≥ k and, for all j = 1,m, |A ∩ Cj | ≥ kj .
Having at least k of the shares g1, . . . , gn, the value s can be obtained. Then, for any
j = 1,m, having at least kj of the shares {ci|i ∈ Cj}, the value sj can be obtained, and
finally, the secret S can be obtained as S = s + s1 + · · ·+ sm.

Remark 2 (Security)
Let A be an unauthorized access group. There are two possibilities:

- |A| < k - in this case, the value s can not be determined;

- There is an compartment j such that |A ∩ Cj | < kj - in this case the value sj can
not be determined.

In both cases, the secret S can not be reconstructed.

Remark 3
In case k =

∑m
j=1 kj , if all compartment threshold conditions hold then the global threshold

condition holds too. Thus, the component s of the secret can be removed and the shares
can be chosen only as Ii = ci, for any 1 ≤ i ≤ n, thus obtaining Brickell’s construction.

Using perfect threshold secret sharing schemes as building blocks can lead to large
shares. We propose using the threshold secret sharing schemes based on the Chinese
remainder theorem in order to decrease the size of shares, maintaining, in the same time,
a reasonable level of security. For simplicity, we shall only deal with the Mignotte’s scheme,
but we must mention that the technique can be also applied to Asmuth-Bloom scheme.



Example 1 (with artificial small parameters)
Consider n = 6, C = {{1, 2, 3}, {4, 5, 6}}, the compartment thresholds k1 = 2, k2 = 2 and

the global threshold k = 5. The sequence 5, 7, 11, 13, 17, 19 is a (5, 6)-Mignotte sequence,
with α = 85085 and β = 46189 and the sequence 7, 11, 13 is a (2, 3)-Mignotte sequence
α = 77 and β = 13. We choose s = 50000, s1 = 30, and s2 = 40. The secret will be
S = 50070 and the shares I1 = (0, 2), I2 = (6, 8), I3 = (5, 4), I4 = (2, 5), I5 = (3, 7), and
I6 = (11, 1).

Having the shares I1 = (0, 2), I2 = (6, 8), I4 = (2, 5), I5 = (3, 7), and I6 = (11, 1), we
resolve the systems 

x ≡ 0 mod 5
x ≡ 6 mod 7
x ≡ 2 mod 13
x ≡ 3 mod 17
x ≡ 11 mod 19

,

{
x ≡ 2 mod 7
x ≡ 8 mod 11

,

{
x ≡ 7 mod 11
x ≡ 1 mod 13

and obtain, respectively, s = 50000, s1 = 30, s2 = 40, and finally S = 50070.

Further improvements can be obtained by choosing s, s1, . . . , sm such that gi = ci for
some i ∈ {1, 2, . . . , n}. For these cases we can define Ii = gi = ci. For this, we can generate
first s1, . . . , sm and c1, . . . , cn and determining s by solving the system of equations

x ≡ c1 mod m1
...

...
x ≡ ck mod mk

In this case we can choose gi = ci for all 1 ≤ i ≤ k and gi = s mod mi, for all k+1 ≤ i ≤ n.
A compromise between the size of the shares and the level of security must be made.

Example 2 illustrates the reduction of the shares.

Example 2 (with artificial small parameters)
Let reconsider Example 1. We choose s1 = 30 and s2 = 40. We obtain c1 = 2, c2 = 8,

c3 = 4, c4 = 5, c5 = 7, and c6 = 1. The system

x ≡ 2 mod 5
x ≡ 8 mod 7
x ≡ 4 mod 11
x ≡ 5 mod 13
x ≡ 7 mod 17

has the solution s = 32817. The secret will be S = 32887 and the shares I1 = 2, I2 = 8,
I3 = 4, I4 = 5, I5 = 7, and I6 = (4, 1).



4 Conclusions

In this paper we have presented a new compartmented secret sharing scheme. More
exactly, we have extended Brickell’s construction to case that the global threshold is
strictly greater than the sum of the compartment thresholds and we have proposed us-
ing computational-secure threshold secret sharing schemes as building blocks in order to
decrease the size of shares, maintaining, in the same time, a reasonable level of security.
Moreover, using threshold secret sharing schemes based on the Chinese remainder theorem
can lead to further improvements. A compromise between the size of the shares and the
level of security must be made. We shall investigate this subject in our future work.
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