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Abstract

We describe a general technique for building authentication systems that resist compromises
at the client side. We derive this resistance by storing key information on hardware fast enough
for valid use but too slow for an intruder (e.g., a virus) to capture much of the key before being
detected and removed. We give formal models for two types of protocols: user authentication
and authenticated session-key generation. The first can be used for physical authentication
tokens, e.g., used for gaining access to a building. The second can be used for conducting secure
remote sessions on laptops that are occasionally infected by viruses. We present and analyze
protocols for each of these tasks and describe how they can be implemented. With one example
setting of parameters, in the case of user authentication, we are able to guarantee security for
6 months using a device storing 384MB, and in the key generation protocol, a 128GB drive
guarantees that an adversary would need 700 days to compromise the key information.

The model for intrusion resilience considered in this paper was first introduced by Dagon et
al. [DLL05] and motivated by the bounded storage model for cryptography [Mau92]. Recently
Dziembowski [Dzi05] independently developed this model, and studied the same problems as the
ones addressed in this paper. Our user authentication protocol is essentially the same as that
of [Dzi05], while our authenticated session-key generation protocol builds on that of [Dzi05].

1 Introduction

Robust systems for network security must guarantee resilience to successful compromises and in-
trusions. Company laptops, for example, often fall prey to Trojan horse viruses that users inad-
vertently “install” when they travel (without the protection of their company’s firewalls). These
viruses can persist until a sysadmin removes them, and then all credentials stored on the laptop
must be replaced. A malicious virus could steal a user’s credentials with a key logger and erase
itself, compromising all future use of the credentials until they are replaced.

The threat of such compromises is currently parried by a few general techniques. An adminis-
trator can install a software suite that regularly scans the entire system and inspects new software
being installed. These systems are not perfect, however, and there is always the possibility that
more clever viruses will be designed to get around the software protection. A second technique is
to severely limit the functionality of the system, allowing users to only run a few approved appli-
cations. For example, a popular and feature-rich Web browser is often not permitted on company
computers because of the large number of vulnerabilities it contains. In this situation a user is
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prevented from using devices, like laptops, to their full capacity and is losing productivity to the
threat of viruses.

In this paper, we construct efficient symmetric-key authentication protocols secure against suc-
cessful intrusion in a model where an adversary is allowed to break into a user’s machine, read
all the data stored on the user’s machine, perform efficient (i.e. polynomial-time) computation on
the data, and yet can only transmit a limited amount of information back to the adversary’s host
machine. We refer to this model as the limited communication model. As the adversary is able
to break in and access all secret information of a user, it is clear with a moment’s thought that
achieving security is impossible unless the size of the secret information is large relative to the
communication bandwidth of the adversary. Thus, to defeat such an adversary, a long secret key is
employed in the model. Bounding the communication complexity of the adversary and employing
a long secret key allows one to construct symmetric-key systems where removing an adversary from
a machine also removes his ability to impersonate a user.

Although its name is coined here, the limited communication model was first introduced by
Dagon et al. [DLL05] in a study of protection of secret data from break-ins. Recently, independent
of [DLL05] and this work, the model and some of the results of this paper were also obtained by
Dziembowski [Dzi05], who studied the same authentication problems as the ones addressed in this
paper.

We find practical applications which realize the limited communication model in an efficient and
secure way. Specifically, we observe that special hardware can restrict access to the large key to a
rate that is sufficient for valid use but too slow for an attacker to learn enough of the key to mount
an attack. We will describe the hardware we employ for each protocol later, but in general we only
need a storage device with a governor, that, for example, guarantees the device only answers one
query for bits every few seconds. The devices we envision will take the form of a hand-held memory
stick for physical authentication or a hard drive on a computer for secure remote sessions.

The limited communication model was partly motivated by, and its technical tools are based
on those developed in the bounded storage model [Mau92] for cryptography. This model assumes
that the adversary is space-bounded, and that a long stream of random bits is publicly available.
In recent years very strong results have been achieved in the bounded storage model for private-key
encryption [Mau92, CM97, AR99, ADR02, DR02, DM04, Lu04, Vad04] and two-party protocols
[CM97, CCM98, Din01, DHRS04, MST04]. See some recent work (c.f. [Vad04, DHRS04, Din05])
for a good account of the model and a survey of the results in the model. More recently, Rabin
has given the first implementation of (a close variant of) the bounded storage model by use of a
network of servers serving random bits [Rab05].

1.1 Our Results

User Authentication. We first consider the problem of symmetric-key based user authentica-
tion, where a user wishes to authenticate himself to a server who shares a secret key with him. The
adversary attacking the protocol can break into the user’s machine or the server, read the secret
information stored there, record the execution of the protocol many times, but can only send a
limited amount of information back to the adversary’s host machine. At some point in time, the
adversary exits the user’s machine1 and attempts to impersonate the user using the information

1If the adversary is inside the user’s machine at this time, then clearly security is impossible as with all the
information on the user’s machine the adversary can simply simulate the user.
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collected at the adversary’s host machine.
We construct a very simple user authentication protocol which is secure in our model. Essentially

the same protocol was independently constructed by Dziembowski [Dzi05]. We give the first detailed
analysis with efficient parameters that are calculated in Section 5. Our protocol requires little
computation from the user or the server, and furthermore is information-theoretically secure (i.e.
secure without computational assumptions).

We note that since in the symmetric-key setting one long secret key is needed between every pair
of communicating parties, this model may be most suitable in the case where the authentication is
between a user whose machine is susceptible to intrusion, and a highly secured server that cannot
be broken into. In this case, one may use a pseudorandom generator G and a short random seed s
to generate a pseudorandom string G(s). The user stores (very long) G(s), and the secure server,
who authenticates many users, stores just the (short) seed s. Using a pseudorandom string instead
of a truly random string only degrades the security of the protocol negligibly, provided that the
adversary is computationally bounded. The server can generate small portions of the pseudorandom
string (as opposed to the entire string) as needed without significant computation.

Authenticated Session Key Generation. We also consider the problem of authenticated ses-
sion key generation, and our results here build on the work of Dziembowski [Dzi05]. In this problem
Alice and Bob share a long secret key and need to establish a session key for each communication
session in the presence of an active adversary. In addition to reading Alice and Bob’s secret after
breaking in and recording the transcript of the interaction between them, the adversary is also able
to block and modify messages exchanged between Alice and Bob, and inject his own messages into
the network. We defer a precise description of the problem to Section 4.

Using a random oracle2 [FS86, BR93], Dziembowski constructed an efficient protocol for au-
thenticated session key generation that is secure in the limited communication model. It is however
a fact that a protocol secure in the random oracle model may not be secure when the random oracle
is replaced by any secure cryptographic hash functions [CGH04]. An efficient construction without
a random oracle is thus desired.

We construct a variant of Dziembowski’s protocol without using a random oracle. Our protocol
is only slightly less efficient than the original. Our solution is based on non-malleable coin tossing
[DDN00], which can be implemented efficiently in our model, and randomness extractors [NZ96].

Applications. We propose two applications of these protocols. The first is secure physical au-
thentication tokens, which are hand-held devices used to prove one’s identity. Instead of a card
with a computing platform on a chip, the user needs only a small storage device that guarantees a
fixed transfer rate. Our user authentication protocol involves no computation beyond fetching bits
from memory, so currently known powering and timing attacks do not seem to apply. Using our
analysis, we are able to show that any adversary must steal the token for a long period of time (say,
months or years) before he can impersonate the user, and before that period is over, the token will
hopefully be reported missing.

Our second application is for a device that allows laptops to store their key locally, but still
resist virus infection. Here we equip laptops with a hard drive that is so slow that a virus infecting
the laptop is able to access only a small portion of the key before it is removed by anti-virus software
that the user updates (with new signatures) and runs occasionally. The hard drive can be used to

2A random oracle is a publicly available hash function that is assumed to be a truly random function.
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negotiate authenticated session-keys using our protocol, and we are able to show that an adversary
must control the laptop for years before he would be able to impersonate the valid user without
the laptop.

1.2 Related Works

The issue of exposed keys has been explored in a number of models. In so-called exposure-resilient
cryptography, and adversary can directly access most of the original bits of the secret key without
effecting the security of the system, c.f. [CDH+00]. Exposure-resilient cryptography is concerned
with protecting against the problem of hardware leaking the bits of a short key only once, while in
this work we are using large keys that can be accessed for months in an adaptive manner.

Another technique for dealing with key exposure was developed with forward security [And97],
where keys are updated periodically. In this model, an adversary compromises the system at some
point and is unable to break the system for previous time periods that have not been compromised.
The concept has turned out to be powerful, and protocols have been found for digital signatures
[BM99, AR00], public-key encryption [CHK03], private-key cryptography [BY03], and many of
variants of these applications.

One drawback of forward security is that key exposure necessarily invalidates all future use
of that key. An approach to fixing this was taken in key-insulated cryptography [DKXY02], which
updated keys as in forward security models. In this case, however, a user interacted with a physically
secure device storing a master key for updates at the end of each period. Key-insulated schemes
can then give a stronger version of security, where all past and future periods remain secure after a
fixed number of compromises. They also had the interesting property that stealing the master key
alone would not compromise security: an adversary would have to steal the master key and some
temporary keys. This model was later generalized to allow for an arbitrary number of compromises
of temporary keys and master keys, as long as both are not exposed during the same period [IR01].

Recently, Dagon et. al. [DLL05] described a model in which personal information was stored on
a huge database and addressed the following issue. It is standard practice for Internet merchants
to store credit card numbers and protect them with a weak password. This practice exposes users
to the risk that once their encrypted information is stolen, it can be decrypted by a brute force
attack. Since an encrypted credit card number may only be a few bytes, it may be very difficult to
detect when an adversary has stolen a ciphertext.

Dagon et al. suggests a new technique to mitigate the risk of theft: distribute the information
over a large database of random looking entries in a clever way that forces any adversary to steal
most of the database before he has any chance at recovering any of the stored information. If the
database is on the order of a few terabytes, it is easier to monitor the system and prevent anyone
from stealing enough data to do any damage. Valid users, on the other hand, can access their data
quickly using their passwords.

Our model differs from the previous work on key exposure in how we deal with key compromises.
Instead of assuming we are able to coordinate key replacement through one of the methods above,
we assume that there are physical limits on the amount of data an adversary steals and show that
any adversary cannot continue to break the scheme after his access is revoked. We also address
different problems from the [DLL05] work. We are concerned with active protocols for portable
devices, while their application is for a database storing terabytes of information.

The limited communication model and our user authentication protocol were independently
developed in [Dzi05]. There, Dziembowski also presented the first protocol for authenticated session-
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key generation, which we base our variant on.

1.3 Structure of the Paper

In section 2, we present some technical concepts and notation that are needed for the description
and analysis of our protocols. In section 3, we present our protocol for user authentication and state
the security theorem. We defer a detailed proof to Appendix A. In section 4, we give a protocol
for authenticated session-key generation and sketch a proof of its security. In section 5, we present
some applications for our protocols and calculate parameters that accurately estimate the storage
requirements for secure implementations.

2 Preliminaries

This section contains some notations and definitions that will be used throughout the paper. Most
of these are standard.

For a finite set S, by a ∈R S we mean that a is chosen from the uniform distribution on S. For
a random variable or probability distribution X, by x← X, we mean that x is chosen according to
the distribution of X. For an integer n, we use Un to denote the uniform distribution on {0, 1}n.
We use the standard notation [n] = {1, . . . , n}. For a string x = (x1, . . . , xn) ∈ {0, 1}n and a subset
S = {i1, . . . , im} ⊂ [n], xS = (xi1 , . . . , xim) is the substring of x at positions {i1, . . . , im}.

Unless otherwise specified, k will be a security parameter. We call a function µ : N→ R negligible
if for every positive polynomial p(·), there exists an n0 such that for all k > n0, µ(k) < 1

p(k) . In other

words, µ(k) is asymptotically smaller than k−c for any constant c > 0. We say that a probability
p(k) is overwhelming if p(k) = 1−µ(k) for some negligible function µ(k). We use poly(k) to denote
an unspecified polynomial in k. We use PPT for the shorthand of probabilistic polynomial time.

Let X and Y be two discrete random variables or distributions on a (countable) set S. The
statistical distance ∆(X,Y ) between X and Y is defined as

∆(X,Y ) =
1

2

∑

α∈S

|Pr[X = α]− Pr[Y = α]|

= max
T⊂S
|Pr[X ∈ T ]− Pr[Y ∈ T ]|.

Thus, the statistical distance between X and Y is the maximum advantage of any unbounded
statistical test for distinguishing between X and Y . We say that X and Y are ε-close if ∆(X,Y ) ≤ ε.

For two ensembles X = {Xk} and Y = {Yk} of random variables or distributions, we say
that X and Y are statistically indistinguishable if for all sufficiently large k, the statistical distance
∆(Xk, Yk) is negligible in k. We say that X and Y are computationally indistinguishable if for every
PPT distinguisher D, for all sufficiently large k, |Pr[D(Xk) = 1] − Pr[D(Yk) = 1]| is negligible in
k. We say that X is pseudorandom if X is computationally indistinguishable from the uniform
distribution ensemble.

An efficiently computable function G is said to be a pseudorandom generator (PRG for short)
if (1) its output length exceeds its input length, and (2) its output distribution is pseudorandom if
its input is chosen uniformly.

The min-entropy H∞(X) of a random variable X is defined as

H∞(X) = min
x∈supp(X)

{− log Pr[X = x]}
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where supp(X) is the support of X. Let X be a random variable taking values in {0, 1}n, and let
k ≤ n. We say that X is a k-source if H∞(X) ≥ k, that is, for every x ∈ supp(X), Pr[X = x] ≤ 2−k.
Therefore, informally speaking, that X has high min-entropy means that the value X takes on is
hard to guess (for an unbounded adversary). For a random variable X taking values in {0, 1}n and
α ∈ [0, 1], we say that X has entropy rate α if X is an αn-source.

3 User Authentication

3.1 The Model

We first precisely describe the problem and the model. A user and a server share a long secret key
X, and engage in a protocol in which the user authenticates himself to the server. Throughout
the paper, N = |X| denotes the length of the secret key. Typically N can be set to be a large
polynomial in the security parameter k. A communication-bounded adversary, who is able to break
into the user’s machine, attacks the protocol in two phases, as follows.

Time is divided into sessions, and during each session one execution of the protocol is completed.
In Phase I, the adversary attacks in t sessions for some t. For each session number i ∈ [t], the
adversary may either break in or not. We call a session during which adversary breaks in a
compromised session. Let Ti denote the transcript of the interaction between the user and the
server in the i-th session. Let Ci denote the information the adversary communicates to its host
machine from the user’s machines in the i-th session. Let Ri denote other secret information stored
on the user’s machine in the i-th session, such as the private randomness used by the user in this
session. If the i-th session is uncompromised, then the adversary is simply an eavesdropper who
records the transcript Ti, and Ci is simply the empty string. If the i-th session is compromised, then
the adversary breaks in and computes a function Ci = A(X,Ri, C1, . . . , Ci−1, T1, . . . , Ti), provided
that |Ci| ≤ βN for some small fraction β << 1, and sends Ci to the adversary’s host. From now
on, we refer to βN as the communication bound, and β the communication rate, of the adversary.

In Phase II, after t sessions of attack in Phase I, the adversary exits the machine of the user, and
based on the information T1, . . . , Tt, C1, . . . , Ct stored on its host machine, attempts to impersonate
the user. We say that the adversary is successful if at the end of Phase II, the server accepts the
adversary as the user with a non-negligible probability.

We note that the adversary considered here is a passive one in the sense that he can only tap
the communication channel and cannot block, modify or inject messages.

3.2 The Protocol and Its Security

We now describe our simple protocol. The server chooses a random subset S ⊂ [N ] of k indices,
and asks the user to reply with the bits of the key X at these k positions. The server accepts if
and only if the user’s answers are correct.

If the server is secure and cannot be broken into, then in order for the server to authenticate
many users, one may use a pseudorandom generator G and a short random seed s to generate the
key X = G(s), with X stored at the user and s stored at the server.

The protocol and its “asymmetric” variant above are presented in Figures 1 and 2 respectively.
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Setup: The User and the Server share random key X ∈R {0, 1}
N

.

Protocol:

1. Server: Choose a random subset S ⊂ [N ] of size |S| = k and send S to
the User.

2. User: Reply with the substring XS with positions in S.

3. Server: Accept if and only if all the k bits sent by the User are correct.

Figure 1: User Authentication Protocol

Setup:

• A PRG G : {0, 1}
k
→ {0, 1}

N
(with k << N) agreed upon once and for

all.

• A short random seed s ∈R {0, 1}
k

is chosen.

• The User stores X = G(s), and the Server stores s.

Figure 2: Setup for the Asymmetric Variant

3.3 Security of the Protocol

We show that our protocol is secure. The intuition for the security of the protocol is as follows. As
long as the total number of bits the adversary steals and the number of bits of the key X the user
sends in the t sessions of attack in Phase I is small compared to N , the “residual” min-entropy left
in X is still sufficiently high. Say that the residual min-entropy of X is δN for some δ < 1, that is,
conditioned on the information the adversary has by the end of Phase I, the key X has min-entropy
δN . A well known and important result from the theory of pseudorandomness says that taking a
random sample of X essentially preserves the entropy rate. That is, for a random subset S ⊂ [N ]
of size k, the substring XS has min-entropy δ′k for some δ′ related to δ, even conditioned on the
adversary’s information on X. Thus, by the definition of min-entropy, the probability that the
adversary correctly outputs all the bits in XS , given his information, is at most 2−δ′k. Note that in
this analysis, the adversary is allowed to be computationally unbounded, and the only restriction
is a bound on the communication complexity.

The actual proof of the security is a little more delicate, and we leave it in Appendix A. We
state the main result of the section in the theorem below.

Theorem 1. For any adversary A with communication rate β who compromises t̃ of the t sessions
in Phase I, the probability that A succeeds in impersonating the user in Phase II is at most
2−Ω(δk/ log (1/δ)), where δ = 1− t̃β − (t + 1)k/N .

In the asymmetric variant of the protocol, where the key is pseudorandom, under the assumption
that the adversary is PPT bounded and does not steal the seed of a pseudorandom generator, the
adversary’s probability of success increases by at most a negligible fraction.

We now address an efficiency issue in the asymmetric variant of the protocol. Since the server
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authenticates many users, for each user the server only stores a seed s but not the long output of
G(s). The requirement of computing the PRG G(s) while authenticating each user may overburden
a busy server. Note that the authentication protocol requires the server to verify only a small
substring of k << N bits. Thus we would like to use a PRG capable of producing those bits
without computing the entire output.

One way to construct such a PRG is as follows. Let {Fs : {0, 1}m → {0, 1}m}, m = poly(k),
be an ensemble of pseudorandom functions (PRFs) [GGM86]. (See [NR04, NRR02] for efficient
constructions of PRFs. Practical candidates for PRFs also include block ciphers.) It is a basic
fact that a generator G defined as G(s) = (Fs(1), . . . , Fs(ℓ)), ℓ = poly(k), is a PRG. Choosing the
parameters suitably with k << ℓ = poly(k) and N = mℓ, one obtains a PRG with a “locality”
property where computing k bits of the output G(s) requires at most k (as opposed to all ℓ)
evaluations of the basic PRF Fs.

4 Authenticated Session Key Generation

In this section we consider authenticated session key generation in the limited communication
model, building on the work of Dziembowski [Dzi05].

4.1 The Model

We consider a scenario where two parties, Alice and Bob, who share a long secret key X, wish to
establish a secure session key for each communication session between them in the presence of an
active PPT adversary. In each session, in addition to recording the interaction between Alice and
Bob, compromising the session by breaking into the machines of Alice and Bob, and transmitting
a limited amount of information, this adversary is also able to block, modify and inject messages
in the communication channel between Alice and Bob.

We use the same notations as those in Section 3. In particular, N is the length of the key X,
β < 1 is the communication rate (i.e. the adversary can transmit βN bits in each session), t is the
total number of sessions in Phase I, and t̃ is the number of compromised sessions during which the
adversary breaks in. After t sessions in Phase I, the adversary exits the machines of Alice and Bob,
yet is still able to block, modify and inject messages.

We say that the adversary is successful if either of the following occur:

1. During a compromised session, the adversary learns information on the session keys from
some uncompromised session in the past;

2. During an uncompromised session in the future after Phase I, the adversary

(a) learns some information on the session key accepted by Alice or Bob; or

(b) causes Alice and Bob to accept different session keys.

We say that an authenticated session key generation protocol is secure if the success probability of
the adversary is negligible. We omit a formal description of the model and definition of security
here, and will include one in the full version of the paper.
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4.2 A Protocol for Authenticated Session-Key Generation

We present and analyze a protocol for authenticated session key generation that is a variant of
a protocol by Dziembowski [Dzi05]. Unlike the protocol of Dziembowski, our protocol does not
depend on a random oracle [FS86, BR93]. A random oracle is a truly random function that is
publicly available via oracle access. The random oracle model is useful because security can usually
be achieved more efficiently and simply than in the standard model without the oracle. In reality
such a random oracle is impossible to implement, so a cryptographic hash function is used as a
heuristic replacement. However, it has recently been shown that a protocol secure in the random
oracle model may not be secure when the random oracle is replaced by any secure cryptographic hash
functions [CGH04]. While it is unclear whether such a replacement of a random oracle by a hash
function leads to vulnerabilities in real systems, removing the random oracle without significant
loss of efficiency shall always be desired. We do exactly that, at the cost of only slightly increasing
the complexity of the protocol. Two main tools underlying our construction are non-malleable
coin tossing [DDN00] and randomness extractors [NZ96].

Non-Malleable Coin Tossing. Non-malleable coin tossing, introduced by Dolev et. al. [DDN00],
is a primitive that allows two parties, Alice and Bob, to agree on a (public) random string in pres-
ence of an active adversary who can again block, modify and inject messages in the network. Note
that an adversary can always relay messages between Alice and Bob, or completely block the com-
munication channel and execute two independent copies of the protocol, one with Alice and the
other with Bob. Non-malleability means that these are essentially the only two things the adversary
can do. That is, roughly speaking, a coin tossing protocol is non-malleable if with overwhelming
probability, exactly one of the following three events occurs at the end of the protocol:

1. The adversary relays all the messages between Alice and Bob, rA = rB where rA and rB are
the outputs of Alice and Bob respectively, and rA (and thus rB) is a pseudorandom string
from the adversary’s view;

2. (rA, rB) is computationally indistinguishable from a pair (uA, uB) of independent and truly
random strings (i.e. (rA, rB) is pseudorandom) from the adversary’s view;

3. Alice or Bob (or both) rejects and aborts the protocol. If Alice (resp. Bob) accepts while the
other party aborts the protocol, her (resp. his) output rA (resp. rB) is pseudorandom from
the adversary’s view.

We omit a formal definition of a non-malleable coin tossing here. Good formal definitions based on
a simulation paradigm can be found in [DDN00, Bar02].

We now remark on the efficiency of non-malleable coin tossing protocols. In the plain model
without any setup assumption, the original construction of Dolev et al [DDN00] involves many
rounds of interactions. Barak [Bar02] showed that in principle, a constant-round protocol can be
constructed in the plain model. However the construction of [Bar02], based on sophisticated non-
blackbox techniques, is not practically efficient. We observe that in the model considered here, non-
malleable coin tossing protocols can be constructed efficiently by using protocols for non-interactive
non-malleable commitment in the common reference string (CRS) model [DIO98, CKOS01] in a
standard way. For the sake of completeness, we describe a construction in Appendix B. We note
that since in our model the two parties share a secret key, there is no need to set up an extra CRS,
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and part of the secret key can be used in place of a CRS. We however do note a drawback of the
latter approach, namely, the standard method and the existing simulation proof paradigm yields
a provably secure protocol with a slightly non-constant round complexity. The round complexity
can be reduced to a small constant at the expense of allowing the adversary’s advantage to be
inverse polynomial for an arbitrary fixed polynomial, rather than negligibly small. We discuss
this issue further in Appendix B, and leave it an open problem to construct a practically efficient
constant-round protocol for non-malleable coin tossing where the adversary’s advantage is provably
negligible.

Randomness Extractors. A randomness extractor, introduced by Nisan and Zuckerman [NZ96],
is a procedure that converts a string from weak random source (i.e. a random variable which is
not perfectly random but has sufficient min-entropy) into a (shorter) almost truly random string,
using a short random seed.

Definition 4.1 ([NZ96]). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is an (α, ε)-extractor if
for every random variable X taking values on {0, 1}n with min-entropy rate at least α (i.e. with
H∞(X) ≥ αn), ∆((Ud,Ext(X,Ud)), (Ud, Um)) < ε.

We say that an extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m is ℓ-local if the output of Ext(x, y)
depends only on ℓ bits of the input x ∈ {0, 1}n. Local extractors have been a fundamental building
block in bounded storage cryptography (c.f. [Lu04, Vad04, DHRS04]). We note that Definition 4.1
requires that the output of an extractor be almost uniform even if the seed is exposed.3

In [Vad04], Vadhan constructed asymptotically optimal local extractors, that is, O(m)-local
(α, ε)-extractors for any constant α with seed length d = log n + O(log m + log (1/ε)). In [DM04],
Dziembowski and Maurer constructed a O(m log (1/ε))-local (α, ε)-extractor with a seed length
of O(log n · log (1/ε)), which is slightly suboptimal asymptotically. The Dziembowski and Maurer
construction is however computationally extremely efficient, involving only XOR operations, and
thus in practice may be the most useful.

In addition to a non-malleable coin tossing protocol and a local extractor, we also use, as in
[Dzi05], a semantically secure public-key encryption (PKE) scheme [GM84] and a message authen-
tication code (MAC) secure against adaptive chosen message attacks [GMR88]. The definitions of
a semantically secure PKE and a secure MAC are standard and are omitted here.

We now present our protocol in Figure 3.

Remark: Steps 1 and 2 in our protocol replace the first 3 steps of Dziembowski’s protocol, and in
particular, removes the random oracle employed in that protocol. Steps 3-6 are the same as the last
4 steps of Dziembowski’s protocol. We note that the PKE is used to guarantee that the adversary
who compromises a session does not learn information about session keys from past uncompromised
sessions. Without this requirement, a non-malleable coin tossing protocol, a local extractor and a
MAC would be sufficient.

4.3 Security of Our Protocol

We outline a sketch for the proof of security in this subsection. Our proof is similar to that of
Dziembowski’s protocol at a high level, but some care must be taken where the proofs differ.

3Such an extractor is usually referred to as a strong extractor in the literature on randomness extractors.
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Setup:

• X ∈R {0, 1}N : The secret key shared between Alice and Bob.

• NMCT: A non-malleable coin tossing protocol between Alice and Bob.

• Ext : {0, 1}N × {0, 1}d → {0, 1}m: A local extractor.

• PKE = (Gen, Enc, Dec): A semantically secure public-key cryptosystem.

• (MAC, Verify): A MAC secure against chosen message attacks.

Protocol:

1. Alice and Bob participate in NMCT to generate rA and rB respectively.

2. Alice and Bob compute the local extractor Ext on the key X , using rA

and rB as seeds, and obtain KA = Ext(X, rA) and KB = Ext(X, rB)
respectively.

3. Alice generates a public-key/secret-key pair (pk, sk)← Gen(1k) for Enc.
She computes tagA ← MACKA

(pk) and sends (pk, tagA) to Bob.

4. Bob checks that VerifyKB
(pk, tagA) = 1. If not, Bob rejects and aborts.

If VerifyKB
(pk, tagA) = 1, Bob chooses a K ′ ∈R {0, 1}l uniformly, en-

crypts it by C ← Encpk(K ′), and tags C by tagB ← MACKB
(C). Bob

sends (C, tagB) to Alice, outputs K ′, and accepts.

5. Alice checks that VerifyKA
(C, tagB) = 1. If not Alice rejects and aborts.

If VerifyKA
(C, tagB) = 1, Alice decrypts K ′ ← Decsk(C), outputs K ′,

and accepts.

6. The string K ′ is used as the session key for the current session. After
using the session key K ′ is used, both Alice and Bob erase k′ and all the
private randomness used.

Figure 3: Authenticated Session Key Generation Protocol

First it is clear that in a compromised session, the adversary learns nothing about the session
keys from past uncompromised sessions. This follows from the semantic security of PKE, and Step
6 of the protocol where the session key of each session is erased once it is used.

We now show that in an uncompromised session in the future, Alice and Bob cannot be fooled
into accepting different session keys, and any accepted session key is pseudorandom (i.e. indistin-
guishable from a uniformly random string) from the view of the adversary. If Alice or Bob aborts
the NMCT protocol in Step 1, then it is easy to show the security of protocol. We thus assume
that neither party aborts during NMCT in Step 1.

The basic idea is as follows. After non-malleable coin tossing in Step 1 of the protocol, if both
Alice and Bob accept, then either (1) rA = rB , and rA (thus rB) is pseudorandom, or (2) (rA, rB)
is indistinguishable from an independent and uniform pair (uA, uB). In Case (1), clearly in Step 2
of the protocol KA = KB . As in the analysis in Section 3.3, after t sessions with t̃ compromised
sessions in Phase I, the residual min-entropy of X is at least δN for some δ.4 Thus by using a

4Here δ = 1 − t̃β − (t + 1)k/N as before.
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local extractor with suitably chosen parameters, from the definition of an extractor and that of
pseudorandomness, it follows that KA = Ext(X, rA) = Ext(X, rB) = KB is pseudorandom.5 It is
not difficult to see that in Case (1), given that KA = KB and is pseudorandom, if the adversary
relays the messages exchanged between Alice and Bob during the rest of the protocol, then by
the security of PKE, it follows that Alice and Bob will accept the same session key K ′ which is
pseudorandom and thus yields essentially no information to the adversary; if the adversary modifies
a message or injects a message, then by the security of MAC, either Alice or Bob will detect and
reject.

Now consider Case (2), where (rA, rB) is indistinguishable from an independent and uniform
pair (uA, uB). Then similar to the argument used in Case (1), from the definition of an extractor
and that of computational indistinguishability, (KA,KB) is indistinguishable from a uniform pair
(UA, UB).6 Given this, it is not difficult to see, from the security of MAC, that in Step 4 of the
protocol, Bob will reject and abort the protocol. Further, since KA is pseudorandom from the
adversary’s view, it follows again from the security of MAC that in Step 5 of the protocol, Alice
will reject no matter what message the adversary sends at the end of the previous step. Thus in
Case (2) both Alice and Bob will reject.

There is however one more subtle issue we must address, namely, the non-malleable coin tossing
protocol NMCT is only guaranteed to be secure when it is executed alone. But here it is used as
a subprotocol in our protocol, and subtlety may arise as the adversary can block in the middle,
execute two concurrent copies of the protocol, one with Alice and one with Bob, and schedule them
arbitrarily. We must argue that NMCT cannot broken by an adversary who uses information from
later in the protocol to his advantage in the NMCT stage.

Fortunately, it is not hard to show that NMCT remains secure when used as a subprotocol in
our protocol. First, suppose that the adversary concludes NMCT with Bob first, and intends to
use information from later to break NMCT against Alice. In this case, the adversary must send a
message of the form (pk, tagA) to Bob, who will either reject or accept and respond with (C, tagB).
We claim that Bob rejects with overwhelming probability in this case. Since the coins rB output
by Bob at the end of NMCT are guaranteed to pseudorandom, using the argument as above, we
have that the string KB is pseudorandom in the view of the adversary. Thus generating a message
(pk, tagA) on which Bob accepts is equivalent to forging a tag in MAC, and this happens with only
negligible probability by the security of MAC.

Next, suppose the adversary concludes the NMCT protocol with Alice first and attempts to
break NMCT against Bob. We will show that if the adversary succeeds in breaking NMCT in this
case, then he could have broken NMCT when it was executing alone. After concluding NMCT with
Alice first, the adversary receives a message of the form (pk, tagA) from Alice. Using the property
of Ext, KA is indistinguishable from uniform from the view of the adversary and Bob, thus the
message (pk, tagA), in the view of the adversary and Bob, is just a random public key and a MAC

tag of pk under a key that is indistinguishable from uniform. This means that the adversary could
generate the message pair himself and break NMCT without using any other help. This contradicts
the security of NMCT.

5If a rA = rB were a truly random seed, then the output of the extractor is statistically close to uniform. Since
rA = rB is pseudorandom, a standard reducibility argument shows that the output KA = KB is pseudorandom. We
note that here the strong property of an extractor requiring that the output remains close to uniform even if the seed

is exposed, is used in an essential way.
6Here again the strong property of an extractor requiring that the output remains close to uniform even if the

seed is exposed, is used in an essential way.
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This concludes a proof sketch. A formal proof of security is based on a rather complicated
simulation argument. We leave a precise statement of the theorem and a full proof to the full
version of the paper.

5 Efficient Realizations in Applications

In this section we describe some example applications for which our protocols are useful. We
calculate the constants in our asymptotic statements above to determine some example settings for
parameters.

5.1 Physical Authentication Tokens

Our first application is for what we term physical authentication tokens. These are small devices that
are used to authenticate a user in any situation where the subsequent sessions cannot be hijacked.
These tokens can be used to unlock secured doors or perform logins when a user is physically at
the machine, but they are not suitable for remote authentication because a malicious adversary can
always take over a session after the initial authentication. The scenario we are concerned with is
where an adversary nearby can eavesdrop, perform analysis, and attempt to learn the stored key.

Our protocol for user authentication can be implemented on physical authentication tokens by
storing the long string X on the token and storing the short seed s at the server. We can realize the
bounded communication requirement of the model by designing the device to respond to queries
for bits of X only once every few seconds. This will be quick enough for a valid user to authenticate
without waiting, but an adversary attempting to learn much of X will be severely restricted in how
much of X he can access.

A token implementing our protocol has two desirable properties that are not found in current
devices providing user authentication. First, the token is just a simple storage device and does
not perform any calculations beyond fetching bits. Most known side channel attacks do not apply
here because these timing and powering attacks usually exploit the irregular nature of advanced
computations in cryptographic protocols. The only meaningful attack against our devices would
be one that stole more bits of X.

Second, aside from the security of the pseudorandom generator, our security is information
theoretic, meaning that we make no complexity assumptions to reach our security guarantee and
that the security of an implementation of our protocol will not degrade as faster attacking algorithms
are designed.

We can use a detailed analysis of the calculations in Appendix A to determine the constants
hidden in the asymptotic notation and compute the actual parameters for our tokens. The relevant
constants can be computing using the lemmata of [Vad04] and [DHRS04].

One possible setting of gives the following:

1. |X| = 384 · 223, meaning the tokens store 384MB of pseudorandom data.

2. k = 512, so each query is for 512 bits.

3. The device answers one query every 10 seconds.

4. βt̃ = 1/4, which means the adversary gets to query the device once every 10 seconds for 6
months.
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5. t = 10, 000, so the device can be used for that many authentications.

6. The chance that an adversary successfully impersonates a user is at most 2−20.

Of course, the adversary’s attack duration can be changed by increasing the storage of the
device or increasing the amount of time it will wait between queries.

5.2 Secure Sessions on Laptops

We also propose an application for our authenticated session-key generation protocol. Here we can
realize the stated model by equipping a client computer (e.g., a desktop or a laptop) with a slow
hard drive to store the random data X and meter it out at a rate sufficient for valid users, but
nearly useless for malicious adversaries. Then the client can participate in our protocol using the
drive to access the pseudorandom bits of X.

By using this configuration we gain some resistance to virus infection. We are concerned with
the scenario where a virus infects a computer and steals and transmits the stored secret key to a
remote computer controlled by an adversary. Then the adversary tries to impersonate the user of
the infected computer. Using our protocol and rate provided by the drive, we determine how long
a virus would need to control the machine before it could gain any significant information about
the generated session keys. This ensures us that even if a virus goes undetected, there is no lasting
effect as long as it is not present for more than the allowed time, which will be on the order of
years. Typically, anti virus companies are able to produce a signature of a new virus within a few
days of the first few instances of virus surfacing in the wild. We assume that the user updates the
virus signature database and runs an antivirus program on her computer occasionally, e.g., at least
once a year.

We can accurately compute the amount of time an adversary will need to successfully attack
the system by setting the parameters for each of the underlying primitives to their current industry
standards, and then analyzing the error from the extractor.

The analysis of the extractor given in [DM04] can easily be used to calculate our parameters for
authenticated session key generation. We must use the more general theorem given there because
we are not using the extractor for key expansion, and our extractor output will usually be much
shorter than the extractor seed computed by NMCT. Still, the calculations are not complicated and
we get the following example parameters:

1. |X| = 240, so the drive must store 128 GB of data.

2. Set the MAC key length to 256 bits.

3. The drive responds with 16K of information once every 10 seconds.

4. The virus gets to query the drive for bits for 700 days.

5. Then the probability that an adversary can distinguish the MAC key from a truly uniform
key is less than 2−30.

These parameters provide extremely high security. If the size of the drive is a restricting factor,
it is possible to work with a smaller drive, at a reasonable cost in either the security parameter or
the amount of time the adversary gets to attack the system.
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6 Conclusions and Future Work

We have described a new technique to harden portable devices against compromises that expose
secret key information, and defined a formal model for analyzing protocols implementing our tech-
nique. We are also able to show that this method is practical and presented some of its realistic
applications.

Our user authenticated protocol is very efficient and can be readily implemented. The efficiency
of our authenticated session key generation protocol relies on the efficiency of non-malleable coin
tossing, and we leave it an open problem to construct a more efficient protocol for non-malleable
coin tossing than the one described here.

The next step in cultivating our model is finding protocols for other cryptographic tasks. Au-
thenticated session-key generation, as we have stated it, is an interesting “catch all” for symmetric-
key cryptography, as many protocols can be derived using it. Practically speaking, however, these
derived protocols are only a proof of concept because they require interaction between the user and
server. It would be interesting to find non-interactive protocols for other tasks, and extend the
model to asymmetric-key cryptography. It would also be interesting if these protocols could use
very small storage devices, on the order of a few megabytes.
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Appendix A: Proof of Theorem 1

In this appendix we prove Theorem 1. Let t be the total number of sessions, and t̃ the number of
compromised sessions in Phase I of the attack. In each of the t̃ compromised sessions the adversary
sends βN bits to its host machine. In each of the t sessions, the user sends k original bits of the
key X to its host. Define κ = k/N . Thus, at the end of Phase I, the adversary has at most
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t̃βN + tk = (t̃β + tκ)N bits of information of X.7 We now recall the following basic yet important
lemma.

Lemma 1 (c.f. [NZ96]). Let Y and Z be any two (correlated) random variables. Suppose that
Y is a m-source, and Z takes values in {0, 1}ℓ. Then for every ν > 0, with probability at least 1−ν
over z ← Z, Y |Z=z is a (m− ℓ− log (1/ν))-source.

Informally the lemma says that if Y has m bits of min-entropy, then for any ℓ-bit long Z that
is arbitrarily correlated to Y , Y has roughly m− ℓ bits of residual min-entropy even if Z is given.

Let random variable W denote the (t̃β + tκ)N bits of information on X the adversary has at
the end of Phase I. Applying Lemma 1 to X and W , letting ν = 2−k, we have that with probability
at least 1− 2−k over w ←W , X|W=w is a (1− t̃β − (t + 1)κ)N -source. Suppose that such a good
w occurs and fix such a good w.

We now use a fundamental lemma proved in [NZ96] and refined in [Vad04], which states that
taking a random sample of bits from a random variable essentially preserves its entropy rate.
The lemma presented below, which suffices in our case, is a special case of the lemma proven in
[NZ96, Vad04] where the samples are uniform (c.f. [DHRS04]).

Lemma 2. For every N ≥ k and δ > 0, for every δN -source Y over {0, 1}N , for at least a
1 − ε fraction of subsets S ⊂ [N ] with |S| = k, YS is ε-close to some δk/2-source, where ε =
2−Ω(δk/ log (1/δ)).

Applying Lemma 2 to δ = 1− t̃β − (t + 1)κ and Y = X|W=w, we have that for at least a 1− ε
fraction of subsets S ⊂ [N ] with |S| = k, where ε is defined in Lemma 2, there is a δk/2-source
which is ε-close to XS |W=w. Suppose that such a good subset S of k indices is chosen, and let Z
be a δk/2-source which is ε-close to XS |W=w. By the definition of min-entropy the probability that
an adversary can guess the correct value of Z is at most 2−δk/2. It follows from the definition of
statistical distance that the probability that the adversary outputs the correct value of the substring
XS , given W and S, is at most ε + 2−δk/2.

Thus, accumulating all the errors in the analysis, we conclude that the probability that the
adversary succeeds in impersonating the user, that is, the probability that the adversary outputs the
correct value of XS at the end of Phase II, is at most ν+ε+ε+2−δk/2 = 2−k+2−δk/2+2−Ω(δk/ log (1/δ)).

Appendix B: Non-Malleable Coin Tossing in Our Model

We first briefly describe a non-malleable coin tossing protocol in our model based on non-interactive
non-malleable commitment in the common reference string (CRS) model [DIO98, CKOS01]. The
construction is based on standard techniques. Again we note that in our model, there is no need
to set up an extra CRS. Part of the secret key can be used in place of a CRS, and results in the
CRS model apply here.

We first briefly and informally describe non-malleable commitment that was also introduced
in [DDN00]. Non-malleable commitment is a primitive whereby a sender commits a value v to a
receiver in such a way that

7It is possible to give a better analysis on the total number of original bits of X the user sends to the server in
the t sessions, as the k-element subsets may overlap. However, since this part of the communication is supposedly
dominated by t̃βN , the amount of information the adversary steals, we omit a refined analysis here.

19



1. The commitment hides all partial information of v until decommitment.

2. The sender cannot cause the receiver to open the commitment as a different value v′ 6= v
during decomitment.

3. An active adversary, who is a man-in-the-middle, can not cause the receiver to open the
commitment as a different value ṽ that is related to v in a meaningful way. More precisely,

(a) Either they adversary relays all messages between the sender and receiver so that the
receiver receives the original value v during decomitment;

(b) Or for every polynomial-time computable relation R, R(v, ṽ) = 0, where v is the original
value the sender commits to and ṽ is value the receiver outputs during decomitment.

In [DIO98, CKOS01] it was shown that in the CRS model non-malleable commitment can be
constructed efficiently and non-interactively, requiring that only a single message be sent from the
sender to the receiver in both the commitment and decommitment phases.

Given such a non-interactive non-malleable commitment protocol, a 4-message non-malleable
coin tossing protocol can be constructed as described in Figure 4.

Setup:

• X ∈R {0, 1}N : The secret key shared between a Alice and a Bob.

• NMC = (Commit, Decommit): A non-interactive non-malleable commit-
ment protocol in the CRS model, using part of X as the CRS.

Protocol:

1. Alice chooses random x ∈R {0, 1}
m

, computes the commitment cx =
Commit(x), and sends cx to Bob.

2. Bob chooses random y ∈R {0, 1}
m

, computes the commitment cy =
Commit(y), and sends cy to Alice.

3. Alice sends decommitment information dx to Bob, who opens x′ =
Decommit(cx, dx). If x′ =⊥ (that is, if Decommit rejects), then Bob
rejects and aborts. Otherwise, Bob accepts and outputs x′ ⊕ y.

4. Bob sends decommitment information dx to Alice, who opens y′ =
Decommit(cy, dy). If y′ =⊥, then Alice rejects and aborts. Otherwise,
Alice accepts and outputs x⊕ y′.

Figure 4: Non-Malleable Coin Tossing Protocol

However, based on the existing simulation proof paradigm, the security of such a protocol can
only be proven when m = O(log k), where m is the number of coins tossed. The case that m
is super-logarithmic can be handled by sequentially repeating the protocol but at the expense of
yielding a non-constant number of rounds. In fact, it was proven in [KO04] that even for proving
the security in the blackbox model of standard (malleable) tossing of super-logarithmically many
coins, five rounds are necessary. Thus the above protocol cannot be proven secure for m = ω(log k)
within the standard proof paradigm.
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In our case, m is the seed length of the local extractor, and it is sufficient yet also necessary
to have m = O(log N + log (1/ε)) = O(log k + log (1/ε)), where ε is the maximum advantage of
the adversary allowed. In the standard setting where the advantage ε is required to be negligibly
small, m = ω(log k), thus a non-constant number of rounds would be required. In principle, at least
asymptotically, a slightly super-logarithmic m is sufficient in order for ε to be non-negligible. Thus
this approach yields an almost constant-round protocol. We note that if we relax the requirement
and allow ε to be inverse polynomial in k for an arbitrary fixed polynomial, then m = O(log k)
sufficies and the above non-malleable coin tossing protocol is provably secure. In certain applications
such a relaxation might not be serious when concrete parameters are plugged in. However, it is still
more desirable to construct an efficient protocol with a small constant number of rounds where the
advantage of the adversary is provably negligible. We leave this as an open problem.
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