
Constant-Size Hierarchical Identity-Based
Signature/Signcryption without Random Oracles

Abstract. We propose a hierarchical identity-based signature (HIBS) scheme which is provable
without random oracle model. The signature size is independent to the level of the hierarchy.
Combining with existing hierarchical identity-based encryption (HIBE) schemes, we obtain a hi-
erarchical identity based signcryption (HIBSC) scheme which is provable without random oracle
model and whose size is independent of the level of the hierarchy.
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1 Introduction

Identity based cryptosystem [28] is a public key cryptosystem where the public key can be
an arbitrary string such as an email address. A trusted authority (TA) uses a master secret
key to issue private keys to identities that request them. For an Identity Based Encryption
(IBE) scheme, Alice can securely encrypt a message to Bob using Bob’s identity, such as
email address, as the public key. For an Identity Based Signature (IBS) scheme, Alice can
sign a message using her private key that corresponds to an unambiguous name of hers, such
as email address. Then anybody can verify the authenticity of the signature from the name.
An Identity Based SignCryption (IBSC) scheme is the combination of IBE and IBS with a
common set of parameters and keys. With such infrastructure, it can achieve an increase in
efficiency and an improvement in security.

Hierarchical IBE (HIBE) [22, 26] is a generalization of IBE that mirrors the hierarchy
of organizations. An identity at level ` of the hierarchy tree can issue private keys to its
descendant identities, but cannot decrypt messages intended for other identities. In particular,
an IBE is an 1-level HIBE. Combining with Hierarchical IBS (HIBS) originated from the same
idea, [17] proposed the concept of Hierarchical IBSC (HIBSC).

Many reductionist security proofs concerning identity based cryptosystems and other cryp-
tosystems used the random oracle model [3]. Several papers proved that some popular cryp-
tosystems previously proved secure in the random oracle are actually provably insecure when
the random oracle is instantiated by any real-world hashing functions [14, 2]. Therefore iden-
tity based cryptosystems provably secure in the standard model attract a great interest.
Several IBE schemes [15, 4, 25] are proposed which is secure without random oracles under a
weaker “selective-ID” model [15]. Recently, Boneh and Boyen [5] and Waters [29] proposed
IBE schemes which are provably secure without random oracles under the strong model of
[9].

Several recent IBE schemes [4, 5, 29] achieve chosen ciphertext security without random
oracles from their HIBE counterparts. They used the result of [16, 10, 8] that any chosen
plaintext secure (` + 1)-level HIBE scheme can be used to construct a chosen ciphertext
secure `-level HIBE scheme.

It is natural to ask whether other efficient hierarchical identity based cryptosystems are
secure without random oracles. In this paper, we provide an affirmative answer by constructing
an HIBS and HIBSC schemes which can be provably secure without random oracles. Our
approach is motivated by the above-mentioned results concerning HIBE. We construct a `-
level HIBS scheme from a weaker (` + 1)-level HIBS scheme.
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1.1 Our Contribution

We make the following contributions:

– The first constant-size hierarchical identity based signature (HIBS) scheme. It is existen-
tially unforgeable providing the Diffie-Hellman Inversion (DHI) Assumption in the saID
model without random oracles. The saID (sample-ID) model is a slightly weaker model
related to the sID (select-ID) model of [15].

– A transformation theorem in the style of transformation theorems in [24, 16, 10, 8], that
links the security of an (`+1)-level HIBS and the security of an `-level HIBS. A persistent
technical difficulty regarding the use of sID model in the transformation theorem was
overcome by using our saID model.

– The first constant-size identity based signcryption (IBSC) and hierarchical identity based
signcryption (HIBSC) scheme which are provably secure without random oracles.

1.2 Related Results

Most existing practical signature schemes are provably secure in the random oracle model. [21]
proposed a variant of hash-and-sign RSA signature scheme, which is provably secure without
random oracles, by the strong RSA assumption. A different approach is proposed in [18], and
further improvements are proposed in [20]. [11] proposed a signature scheme provably secure
under discrete-log type assumption in the standard model, but the signature size is long.
[6] proposed a short signature scheme secure without random oracles, under the new q-SDH
assumption.

Shamir [28] suggested an identity-based signature scheme. Boneh and Franklin [9] pro-
posed the first practical identity-based encryption scheme, which is provably secure in the
random oracle model. Several IBE schemes [15, 4, 25] are proposed which is secure without
random oracles under a weaker “selective-ID” model [15]. Recently, Boneh and Boyen [5]
and Waters [29] proposed identity based encryption scheme which is provably secure without
random oracles under the model of [9]. Recently [13] proposed an identity based signature
without random oracles, but their reduction is tight only if they use the “selective-ID” model.

Zheng [32] proposed that encryption and signature can be combined as “signcryption”
which can be more efficient in computation than running encryption and signature separately.
There are some papers (e.g. [27, 12, 30]) concerning the combination of identity-based signa-
ture and encryption to form identity based signcryption schemes. These papers are provably
secure only in the random oracle model.

Hierarchical identity based cryptography was proposed in [22] and [26] proposed another
hierarchical identity based encryption. HIBE without random oracles are proposed in [4, 5,
29, 7]. Hierarchical identity based signcryption is firstly proposed in [17].

Recently, Boneh et al. [8] (preliminary papers [16, 10]) suggested some methods to obtain
CCA-secure encryption schemes from identity based encryption. In particular, this technique
can be applied to construct CCA-secure hierarchical identity based encryption.

Classic methods of constructing fully secure signatures from combining hierarchical au-
thentication tree and one-time signatures can be found in [24]. Various instantiations and
modifications are also well-known [16, 10, 8]. We observe that some of these hierarchical au-
thentication tree instantiations bear a striking resemblance to the multi-level authentication
tree structure in HIBS. User identity can be authenticated by his parent, by signing an IBS
on the user’s identity. The parent’s identity can be authenticated again by one level higher,
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Type Scheme Security ROM Size

`-HIBS Auth-tree Full ACP No O(`λs)
This paper saID-ACP No O(λs)

IBS Auth-tree Full ACP No O(λs)

Standard Signature [21, 18, 6] ACP No O(λs)

Table 1. Recent results on signatures, IBS, and HIBS. Auth-tree means combining hierarchical authentication
tree and one-time signatures. Full ACP means the scheme is secure against adaptive chosen identity and
adaptive chosen message attack. sa-ID ACP means the scheme is secure against sample identity and adaptive
chosen message attack. ` is the number of hierarchy level and λs is the security parameter. ROM means if the
reductionist security proof is in the random oracle model.

Type Scheme Security ROM Size

`-HIBE [8] + ? Full CCA No O(`λs)
[8] + [7] sID-CCA No O(λs)

IBE [29] Full CCA No O(λs)

Standard Cramer-Shoup/OAEP/ CCA No O(λs)
Encryption [8]+sID-CCA IBE

Table 2. Recent results on encryptions, IBE, and HIBE. Full CCA means the scheme is secure against adaptive
chosen identity and adaptive chosen ciphertext attack. sID-CCA means the scheme is secure against selective
identity and adaptive chosen ciphertext attack. ` is the number of hierarchy level and λs is the security
parameter. ROM means if the reductionist security proof is in the random oracle model. The first row means
that full CCA secure HIBE can be achieved by using [8] and an adaptive chosen identity and chosen plaintext
secure HIBE. However no existing scheme achieves this with a tight security reduction.

and the process repeats up until the root. If in each level, the authentication of user identity
is secure in the standard model, and finally the lowest level user signature is secure against
adaptive chosen message attack in the standard model, then the entire HIBS scheme is Full
ACP secure in the standard model. However this solution will increase the signature size by
the level of hierarchy. To achieve O(λs) size HIBS, we need to lower the security level to
sample ID-ACP (which will be defined later). We can see that the same case applies for HIBE
using sID-CCA. The recent results are summarized in table 1, 2 and 3.

1.3 Organization

In section 2, we give some background knowledges. In section 3, we give the definition for the
security model for HIBS. In section 4, we show that how we obtain a secure HIBS. In section
5, we give an efficient instantiation. In section 6, we describe how our result can be applied
to signcryption schemes. In section 7, we conclude our paper.

2 Preliminaries

2.1 Pairings

Our scheme uses bilinear pairings on elliptic curves. We now give a brief revision on the
property of pairings and some candidate hard problems from pairings that will be used later.

Let G, GT be cyclic groups of prime order p, writing the group action multiplicatively. Let
g be a generator of G.
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Type Scheme Security ROM Size

`-HIBSC [17] Full CCA + ACP Yes O(`λs)
This paper sID-CCA + saID-ACP No O(λs)

IBSC [12], [30], etc. Full CCA + ACP Yes O(λs)
This paper sID-CCA + saID-ACP No O(λs)

Standard [1], [19] CCA + ACP No O(λs)
Signcryption

Table 3. Recent results on signcryption, IBSC, and HIBSC. All notations are defined in table 1 and 2.
ROM means if the reductionist security proof is in the random oracle model. [19] showed that only standard
signcryption scheme of [1] and [19] achieves the strong insider security model. All existing IBSC and HIBSC
schemes are provably secure in the random oracles only.

Definition 1. A map e : G × G → GT is called a bilinear pairing if, for all x, y ∈ G and
a, b ∈ Z, we have e(xa, yb) = e(x, y)ab, and e(g, g) 6= 1.

Definition 2. (`-DHI problem) The `-Diffie-Hellman Inversion problem is that, given g,gα,g(α2),
. . ., g(α`) ∈ G, for unknown α ∈ Z∗

p, to compute g1/α.

Definition 3. (`-DHI* problem) The `-Diffie-Hellman Inversion * problem is that, given
g,gα,g(α2), . . ., g(α`) ∈ G, for unknown α ∈ Z∗

p, to compute g(α`+1).

We say that the (t, ε, `)-DHI* assumption holds in G if no t-time algorithm has advantage
at least ε in solving the `-DHI* problem in G.

Definition 4. (`-wBDHI* problem) The `-weak-Bilinear-Diffie-Hellman Inversion * problem
is that, given g,h,gα,g(α2), . . ., g(α`) ∈ G and T ∈ GT , for unknown α ∈ Z∗

p, decide if T =
ê(g, h)(α

`+1).

We say that the (t, ε, `)-wBDHI* assumption holds in G if no t-time algorithm has advan-
tage at least ε in solving the `-wBDHI* problem in G.

The `-DHI problem and `-DHI* problem are proven equivalent in [31].

3 Security Model: HIBS and HIBSC

We present the security models for HIBS (Hierarchical Identity-Based Signatures) and for
HIBSC (Hierarchical Identity-Based Signcryption).

3.1 HIBS Security Model

In identity based cryptography, the security model for IBE was proposed in [9]. Besides the
decryption oracle, the adversary is also allowed to query the key extraction oracle adaptively
to extract the secret key for any identity except the challenge identity. [15] proposed a weaker
“selective-identity” model, where the adversary selects the challenge identity in advance,
before the public parameter is generated. In this paper, we will introduce its counterpart for
signature scheme, namely a “sample-identity” model.

An `-level HIBS scheme handling identities of length n consists of four algorithms: (Setup,
Der, Sign, Verify). The algorithms are specified as follows:
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– Setup: On input a security parameter 1λs , the TA generates 〈msk, param〉 where msk is the
randomly generated master secret key, and param is the corresponding public parameter.

– Der: On input an identity vector ID = (id1, . . . , idi), where all idj ∈ {0, 1}n and i < `, its
associated secret key SKID, and a string r, it returns the corresponding private key SKID.r

(corresponds to param).
– Sign: On input the private key of the signer ID, SKID and a message M , it outputs a

signature σ corresponding to param.
– Verify: On input the signer identity vector ID, a message M and signature σ, it outputs
> if σ is a valid signature of M corresponding to ID, param. Otherwise, it outputs ⊥.

We make the correctness constraint that if σ ← Sign(SKID,M), then > ← Verify(ID, M , σ).

Sample-ID Existential Unforgeability We define the existential unforgeability against
sample identity and adaptive chosen message attack for HIBS, as in the following game. We
define the following oracles:

– KEO: The Key Extraction Oracle with input ID will output the corresponding secret key
SKID.

– SO: The Signing Oracle with input signer ID and message M will output a signature σ
such that Verify(ID,M, σ) = >.

Game EU-saID(`) for HIBS schemes:
1. (Init. Phase) Simulator S generates polynomially many identity vectors (ID1, · · ·, IDn)

and denotes the set as ˜ID. S generates param and give ( ˜ID, param) to Adversary A.
2. (Probe Phase) A queries KEO(ID) and SO(ID,M), in arbitrary interleave.
3. (End Game) A delivers a signature (IDga, σga,Mga), where IDga ∈ ˜ID. IDga or its prefix

have never been input to a KEO query or a SO query.

A wins if he completes the Game with > = Verify(IDga,Mga, σga). Its advantage is its
probability of winning.

Definition 5. The `-level HIBS scheme is (t, ε, `)-EU-saID secure if no algorithm that runs
in time t has an advantage ε.

In this paper, we will consider a HIBS scheme using with a strong one-time signature
scheme (OTS) in the later section. Let IdGen(1λs , `) Sa→ (Ra)` be a fair random sampling
function, where Ra is the range of the identities. We will drop the 1λs for convenience.
For a OTS scheme, it has (G,SIG,V) protocol for key generation, signing and verification
respectively, where the keys are in Ra. We will define the combined security model here.

Game EU-saID-ACP-wOTS(`) for HIBS schemes with OTS (one-time signature):
1. (Init. Phase) S invokes IdGen(`) to generate polynomially many I1, · · ·, In1 ∈ (Ra)` and

denotes the set as Ĩ. It invokes IdGen(1) to generate polynomially many I1, · · ·, In2 ∈ Ra
and denotes the set as Ĩ. S generates param and give (Ĩ, Ĩ, param) to A.

2. (Probe Phase) A queries KEO(I), SO(I,M), for I ∈ (Ra)`, in arbitrary interleave.
3. (End Game) A delivers a signature (Iga, Iga, σga, OTS,Mga), where Iga ∈ Ĩ, Iga ∈ Ĩ. Iga

or its prefix have never been input to a KEO query.

A wins if he completes the Game with (σga, OTS) passes (Verify,V) respectively with
respect to Iga, Iga,Mga. Its advantage is its probability of winning.

Definition 6. The `-level HIBS-with-OTS scheme is (t, ε, `)-EU-saID-ACP-wOTS if no al-
gorithm that runs in time t has an advantage ε.
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3.2 Hierarchical Identity-Based Signcryption (HIBSC)

Chow et al. [17] defined a security model for HIBSC without insider security. We modify it
by adding insider security.

Summarizing [17]’s security model for HIBSC without insider security: The syntax, or-
acles, the correctness, and security notions including unforgeability and indistinguishability
from [17] are adopted without alteration. In particular, the unforgeability game is summarized
as follows:

The Unforgeability Game
1. (Setup Phase) S sets up system parameters and key pairs.
2. (Probe Phase) A queries Key Extraction Oracle KEO, Signcryption oracle SCO, and

Unsigncryption Oracle UO in arbitrary interleave.
3. (End Game) A delivers a signcryption ciphertext C∗ and recipient ID∗

B.

A wins if the following holds: (M∗, ID∗
A, σ∗)← Unsigncrypt(C∗, SKID∗

B
), ID∗

A is never been
queried to the KEO and no SCO request has resulted in a ciphertext Ci, whose unsigncryption
under some SKIDB

is identical to the triple (M∗, ID∗
A, σ∗). A’s advantage is the probability

that he wins. The HIBSC is EU-ACP-secure if no PPT attacker has a non-negligible advantage
in the Unforgeability Game.

The Indistinguishability Game
1. (Setup Phase) S sets up system parameters and key pairs.
2. (Probe 1 Phase) A queries KEO, SCO, and UO in arbitrary interleave.
3. (Gauntlet Phase) A gives two messages M∗

0 , M∗
1 , sender ID∗

A and recipient ID∗
B to S. S

randomly picks a bit b and returns C∗ = Signcrypt(M∗, SKID∗
A
, ID∗

B) to A.
4. (Probe 2 Phase) A queries KEO, SCO, and UO in arbitrary interleave.
5. (End Game) A delivers a guess b̂.

A wins if the following holds: b̂ = b and ID∗
B is never been queried to the KEO. A’s

advantage is its probability that he wins over half. The HIBSC is IND-CCA-secure if no PPT
attacker has a non-negligible advantage in the Indistinguishability Game.

Adding insider security: We say an attacker A wins the IS Game if it plays the Unforge-
ability Game and delivers a signcryption ciphertext, recipient) pair, (C∗, ID∗

B), satisfying the
following condition: Denote (M∗, ID∗

A, σ∗) ← Unsigncrypt(C∗, SKID∗
B
). Then ID∗

A has never
been queried to KEO and no SCO request has resulted in a ciphertext Ci, whose unsign-
cryption under SKID∗

B
is identical to the triple (M∗, ID∗

A, σ∗). A’s advantage is his winning
probability. An HIBSC is EU-IS-secure if no PPT attacker has a non-negligible advantage in
the IS Game.

Definition 7. An HIBSC scheme is secure if it is EU-ACP-secure, IND-CCA-secure. It is
insider-secure provided it is also EU-IS-secure.

4 Generic Hierarchical Identity-Based Signature

Boneh et al. [8] showed that an adaptive CCA-secure `-level hierarchical identity based en-
cryption (HIBE) scheme Π can be constructed from a CPA-secure `-level HIBE scheme Π ′

and a strong one-time signature scheme Sig. The intuition behind their construction is that
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Π ′ uses the key extraction oracle to simulate the decryption oracle of Π. If Π wants to query
the challenge identity, he must have to forge a signature of Sig. We notice that similar tech-
nique can be applied for simulating the signing oracle of hierarchical identity based signature
(HIBS). In particular, we obtain an adaptive CMA secure IBS from a 2-level HIBS scheme.

Unlike its HIBE counterpart in [8], we cannot show how to construct a selective ID, ACP
secure `-level HIBS from a weaker selective ID secure (`+1)-level HIBS. The reason is that A′

does not know in advance the (`+1)-level identity vk∗ returned by A at the end of the game.
Then A′ cannot give the whole challenge identity at the beginning of the selective identity
game. Therefore we define the sample ID model in the previous section and will use it here.
Detailed constructions and proofs are given below.

4.1 Hierarchical IBS Construction

For arbitrary ` ≥ 1, let Π ′ = (Setup’, Der’, Sign’, Vfy’) be an (` + 1)-level HIBS scheme
handling identities of length n, and let Sig = (G, SIG, V) be a one-time signature scheme,
in which the verification key has length n. We construct an `-level HIBS scheme Π handling
identities of length n. Π is constructed as follows:

Setup: Setup(1λ, `, n) returns param from Π ′, expect the public parameters used in level
` + 1.

Der: Der(SKv, (v, r)) runs as follows: Run Der’(SKv, v.r) and output the result as SKv.r.

Sign: Sign(SKv,m) first run G to obtain (vk, sk). Then run Extract’(SKv, v.vk) to gener-
ate the key SK∗ = SK ′

v.vk. The algorithm then computes C ← Sign’(SK∗,m) and σ ←
SIG(sk, C). The final ciphertext is 〈vk, C, σ〉.

Verify: Vfy(v,m, 〈vk, C, σ〉) runs as follows: first check whether V(vk, C, σ) = 1. If not, out-
put ⊥. Then output >/⊥ ←Vfy’(v.vk, m,C).

Remark: We regard a signature scheme as a 0-level HIBS scheme. Then we drop Extract for
a standard signature scheme. The master secret key of TA in HIBS will be the secret key in
a standard signature scheme.

4.2 Security Analysis

It can be verified easily that the scheme achieve correctness. The security of the scheme is
analyzed as follows:

Theorem 1. If Π ′ is EU-saID secure and Sig is a strong one-time signature, then Π is
EU-saID-ACP-wOTS secure.

Proof. Given any PPT adversary A attacking the unforgeability of Π in a EU-saID-ACP-
wOTS game. We define an adversary A′ attacking the unforgeability of Π ′ in a EU-saID
game. A′ is defined as follows:
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1. A′(1λ, ` + 1) runs A(1λ, `). When A′ is given ( ˜ID, param), he divides IDj = (Ij , Ij) for all
IDj ∈ ˜ID, where |Ij | = ` and |Ij | = 1. Denote the set of Ijs be Ĩ and the set of Ijs be Ĩ.
He gives (Ĩ, Ĩ, param) to A, excluding the parameter used in the (` + 1)-level HIBS.

2. Oracle queries by A is handled as follows:
(a) When A queries KEO(v), A′ requests the secret key SK ′

v from its own KEO′ and
returns this secret key to A.

(b) When A queries SO(v,M), A′ first runs G to obtain (vk, sk). A′ requests the signa-
ture C for signer v.vk and message M from its own SO′. It then computes one-time
signature σ for C using sk. A′ returns the signature (vk, C, σ) to A.

3. Finally, A outputs a ciphertext 〈vk∗, C∗, σ∗〉 for message m∗ and sender identity I∗ ∈ Ĩ,
such that V(vk∗, C∗, σ∗) = 1 and vk∗ ∈ Ĩ. Then A′ returns the ciphertext C∗ for message
m∗ and sender I∗.vk∗ as the solution.

Let Forge denotes the event that A outputs a ciphertext 〈vk∗, C∗, σ∗〉 with sender identity I∗,
where Vfy(vk∗, C∗, σ∗) = 1; and A has queried SO with sender I∗ and gets vk∗ as part of the
output ciphertext. If Forge occurs, then A′ cannot return C∗ as the solution.

Note that Pr[Forge] is negligible. If A happens to receive a valid ciphertext 〈vk∗, C, σ〉
with sender identity I∗ from the SO before, we must have (C, σ) 6= (C∗, σ∗). By the security
of strong one-time signature scheme, Pr[Forge] is negligible.

Therefore for non-negligible probability, A′ can return C∗ as the solution. ut

Remarks: Our security proof holds for an adaptive chosen ID, ACP secure `-level HIBS
from an adaptive chosen ID, weaker ACP attack secure (`+1)-level HIBS. The proof is similar
and hence omitted.

5 Efficient Instantiation of HIBS

We construct an efficient `-level HIBS scheme which is provably secure without random ora-
cles, based on the `-DHI* assumption. The key system comes from [7].

Let G be a bilinear group of prime order p. Given a pairing: ê : G×G→ GT .

Setup: To generate system parameters, the algorithm selects a random generator g, g2, g3,
g4, g5, h1, . . ., h` ∈ G, picks a random α ∈ Zp, and sets g1 = gα. It chooses an univer-
sial one-way hashing function (UOWHF, [23]) H. Note H is not a random oracle. Any-
one, including the attacker, can compute H in private. The system parameters param =
(g, g1, g2, g3, g4, g5, h1, . . . , h`,H) and the master key is gα

2 .

Der: To generate a private key for ID = (id1, . . . , idk). where k ≤ `, the algorithm picks a
random r ∈ Zp and computes:

SKID =
(
gα
2 · (h

id1
1 · · ·h

idk
k · g3)r, gr, hr

k+1, . . . , h
r
`

)
= (a0, a1, bk+1, . . . , b`)

The private key for ID can also be generated by its parent ID|k−1 = (id1, . . . , idk−1). Details
refer to [7].
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Sign: For a user with identity ID and private key SKID, he signs a message M as follows. He
picks a random t ∈ Zp, and computes:

C1 = gt C2 = (hid1
1 · · ·h

idk
k · g3)t h = H(C1, C2, ID,M, param)

C3 = a0
hgt

4 C4 = a1
hgt

5

The signature σ is (C1, C2, C3, C4).

Verify: The verifier receives a signature σ =(C1, C2, C3, C4) for message M and signer ID, he
computes h = H(C1, C2, ID,M, param). The verifier checks if:

ê(g, C3) · ê(g5, C2)
?= ê(g1, g2)h · ê(C1, g4) · ê(C4, h

id1
1 · · ·h

idk
k · g3)

The verifier outputs > if it is true. Otherwise, he outputs ⊥.

5.1 Security Analysis

The correctness of the scheme is shown as follows:

ê(g, C3) · ê(g5, C2) = ê(g, gα
2 · (h

id1
1 · · ·h

idk
k · g3)r)h · ê(g, g4)t · ê(g5, h

id1
1 · · ·h

idk
k · g3)t

= ê(gα, g2)h · ê(gr, hid1
1 · · ·h

idk
k · g3)h · ê(C1, g4) · ê(gt

5, h
id1
1 · · ·h

idk
k · g3)

= ê(g1, g2)h · ê(C1, g4) · ê(C4, h
id1
1 · · ·h

idk
k · g3)

Then we show that our HIBS scheme achieves existential unforgeability.

Theorem 2. Our `-level HIBS scheme is (t, ε, `)-EU-saID secure assuming the ((t+O(τ`q)),
ε/n1, `)-DHI* assumption holds, where n1 are the number of sample identities given in the
game, q is the total number of query to KEO and SO, τ is the maximum time for an expo-
nentiation in G.

Proof. Suppose a dealer gives the `-DHI* tuple (g, y1, . . . , y`) to a simulator, where yi = g(αi).
The sample identity games begins with a simulator randomly picks ID1, · · ·, IDn1 ∈ (Zp)` and
denotes the set as ˜ID. The simulator picks a ID∗ ∈ ˜ID. Denote ID∗ = (id∗1, . . . , id

∗
`).

The simulator picks a random γ ∈ Zp and assigns g1 = y1, g2 = y` · gγ . The simulator
picks random γ1, . . . γ` ∈ Zp and sets hi = gγi/y`−i+1 for 1 ≤ i ≤ `. It also picks a random
δ ∈ Zp and sets g3 = gδ ·

∏`
i=1 y

id∗i
`−i+1. The simulator picks random ω1, ω2 ∈ Zp and sets

g4 = gω1 , g5 = gω2 . The simulator gives the adversary A the public parameters param =
(g, g1, g2, g3, g4, g5, h1, . . . , h`) and ˜ID. The corresponding (unknown) master secret key is gα

2 =
gα(α`+γ) = y`+1y

γ
1 .

Key Extraction Oracle: Simulate as in [7]. For input identity ID = (id1, . . . , idu), if ID is
ID∗ or a prefix of it, the simulator declares failure and exits. Otherwise there exists a k ≤ u
such that idk 6= id∗k. We set k be the smallest such index. To answer the query, the simulator
derives a secret key for the identity (id1, . . . , idk) from which it then constructs a private key
for ID = (id1, . . . , idk, . . . , idu).
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To generate the secret key for the identity (id1, . . . , idk), the simulator chooses a random
r̃ ∈ Zp. Denote r = αk

(idk−id∗k) + r̃ and compute:

a0 = yγ
1 · Z · y

r̃(id∗k−idk)
`−k+1 where Z =

(
gδ+

∑k
i=1 idiγi ·

∏̀
i=k+1

y
id∗i
`−i+1

)r

a1 = gr = y
1/(idk−id∗k)
k gr̃

Refer to [7] for the well-formedness of the secret key. The remaining hr
k+1, . . . , h

r
` can be

computed by the simulator since they do not involve a y`+1 term.

Signing Oracle: For the signer ID , if ID is ID∗ or a prefix of it, the simulator declares failure
and exits. Otherwise, the simulator extracts the secret key dID as in the key extraction oracle,
and then computes the signature.

Finally, the adversary A returns a signature σ∗ for message M∗ and signer ˆID ∈ ˜ID,
where ˆID or its prefix is never been queried to KEO or SO. For probability 1/n1, ˆID = ID∗.
Otherwise the simulator declares failure and exits. We denote σ∗ = (C∗

1 , C∗
2 , C∗

3 , C∗
4 ). Then

we compute h = H(C1, C2, ID
∗,M, param) and we have:

C∗
1 = gt C∗

3 = ah
0gt

4 = ah
0gω1t C∗

4 = ah
1gt

5 = ah
1gω2t

Then we can compute a0 = (C∗
3/C∗

1
ω1)1/h and a1 = (C∗

4/C∗
1

ω2)1/h. Therefore for ID∗, we can
set a1 = gr̄ for some r̄ ∈ Zp. Then:

a0 = gα
2 (g3

k∏
i=1

h
id∗i
i )r̄

= gα
2 (gδ

∏̀
j=1

y
id∗j
`−j+1

k∏
i=1

(
gγi

y`−i+1
)id

∗
i )r̄

= gα
2 (gδ

k∏
i=1

gγiid
∗
i )r̄

= gα
2 (gδ+

∑k
i=1(γiid

∗
i ))r̄

Therefore the simulator returns y`+1 = gα
2 /yγ

1 = a0/(aδ+
∑k

i=1(γiid
∗
i )

1 yγ
1 ) as the solution. ut

5.2 An ACP-secure HIBS

By the result of Theorem 1, we can show that we obtain ACP-secure HIBS scheme in the
standard model. We use the signature scheme in [6] to replace the strong one-time signature
scheme in section 4.

We have the following instantiation for (` − 1)-level HIBS scheme using the signature
scheme in [6] and the `-level HIBS in the above section.
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Setup: To generate system parameters, the algorithm selects a random generator g, g2, g3, g4,
g5, h1, . . ., h` ∈ G, picks a random α ∈ Zp, and sets g1 = gα. It chooses an universial one-way
hashing function H. The system parameters param = (g, g1, g2, g3, g4, g5, h1, . . . , h`,H) and
the master key is gα

2 .

Der: To generate a private key for ID = (id1, . . . , idk). where k ≤ `, the algorithm picks a
random r ∈ Zp and computes:

SKID =
(
gα
2 · (h

id1
1 · · ·h

idk
k · g3)r, gr, hr

k+1, . . . , h
r
`

)
= (a0, a1, bk+1, . . . , b`)

The private key for ID can also be generated by its parent ID|k−1 = (id1, . . . , idk−1). Details
refer to [7].

Sign: For a user with identity ID = (id1, . . . , idk) and private key SKID = (a0, a1, bk+1, . . . , b`),
he signs a message M as follows. He randomly picks x, y ∈ Z∗

p. Denote idk+1 = H0(gx, gy,
param) ∈ Z∗

p and ID′ = (id1, . . . , idk+1). He picks a random r0, r1, t ∈ Zp, and computes:

a′
0 = a0 · b

idk+1

k+1 · (h
id1
1 · · ·h

idk+1

k+1 · g3)r0 a′
1 = a1 · gr0

C1 = gt C2 = (hid1
1 · · ·h

idk+1

k+1 · g3)t h = H(C1, C2, ID
′,M, param)

C3 = a′
0
h
gt
4 C4 = a′

1
h
gt
5

h′ = H1(C1, C2, C3, C4) ∈ Z∗
p σ = g1/(x+h′+yr1)

The signature σ is (gx, gy, C1, C2, C3, C4, r1, σ).

Verify: The verifier receives a signature (gx, gy, C1, C2, C3, C4, r1, σ) for message M and signer
ID = (id1, . . . , idk), he computes idk+1 = H0(gx, gy, param), sets ID′ = (id1, . . . , idk+1), com-
putes h = H(C1, C2, ID

′,M, param) and h′ = H1(C1, C2, C3, C4). The verifier checks if:

ê(g, C3) · ê(g5, C2)
?= ê(g1, g2)h · ê(C1, g4) · ê(C4, h

id1
1 · · ·h

idk+1

k+1 · g3)

ê(g, g) ?= ê(σ, gx · gh′ · (gy)r1)

The verifier outputs > if it is true. Otherwise, he outputs ⊥.

By theorem 1, 2 and the security of the signature scheme in [6] (which is provably secure
under the q-SDH assumption), we can see that the above HIBS scheme is EU-saID-ACP
secure under the q-SDH and `-DHI* assumptions.

6 Efficient HIBSC without Random Oracles

Motivated by [1]’s generic composition of SignCryption from Encrypt and Sign, we present
a generic composition of HIBSC from HIBE and HIBS. Its security is argued below. Then
we present a concrete instantiation by composing a HIBSC from [7]’s HIBE and our HIBS in
Section 5. The security of this specific HIBSC is reduced to a combination of the securities
of respective components. The result is a provable HIBSC with size O(λs) bits which is
independent of the levels in the HIBSC. Its security is provable without random oracles, albeit
in a weaker model concerning assumptions on the attacker’s ability to maneuver identities in
the oracles.
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6.1 Generic composition from HIBE and HIBS

The generic composition of signcryption from a CCA-secure encryption and an ACP-secure
signature is proposed by [1]. They show the security of the outcome without insider attacks.
They also give the guidelines of whenever signing include receiver identity in message and
whenever encrypting include sender identity in plaintext, and argued the result would be
secure against insider attacks. Motivated by their result, we present a generic composition of
HIBSC from HIBE and HIBS.

In [1], a secure signcryption can be composed of a secure signature Sig and a secure
encryption Enc via the sign-then-encrypt paradigm as follows:

σ = EncR(SigS(m, IDR), IDS)

where S is the sender and R is the recipient. We observe that such composition can be
applied to HIBE and HIBS by treating Enc as the HIBE encryption algorithm and Sig as the
HIBS signing algorithm. If [1]’s security theorem for multi-user signcryption is valid, and the
hierarchical key derivation system does not cause any problems, then we are likely to have
security for the composed HIBSC.

Remarks: In [1], their security is actually for generalized CCA (gCCA), which is a slight
relaxation of CCA security. For simplicity, we only mention the CCA security here.

6.2 Concrete Instantiation

We give a concrete instantiation of HIBSC from our proposed HIBS and the constant size
HIBE from [7]. As a result, we obtain a constant size HIBSC secure without random oracles.
The instantiation is given below:

Setup, Der: same as section 5.

Signcrypt: For a user with identity IDA = (id1, . . . , idk) and private key SKIDA
, he signcrypts

a message M to recipient IB = (I1, . . . , Ij) as follows. He picks a random t ∈ Zp, and computes:

C1 = gt C2 = (hid1
1 · · ·h

idk
k · g3)t h = H(C1, C2, IDA, IB,M, param)

C3 = a0
hgt

4 C4 = a1
hgt

5

C5 = ê(g1, g2)t ⊕ 〈M, IDA, C2, C3, C4〉 C6 = (hI1
1 · · ·h

Ij

j · g3)t

The ciphertext σ is (C1, C5, C6).

Unsigncrypt: The recipient IB with private key SKIB
= (a0, a1, bj , . . . , b`) receives a cipher-

text σ is (C1, C5, C6), he computes:

W = ê(C1, a0)/ê(a1, C6) 〈M, IDA, C2, C3, C4〉 = C5 ⊕W h = H(C1, C2, IDA, IB,M, param)

Denote IDA = (id1, . . . , idk). The recipient checks if:

ê(g, C3) · ê(g5, C2)
?= ê(g1, g2)h · ê(C1, g4) · ê(C4, h

id1
1 · · ·h

idk
k · g3)

The recipient outputs M if it is true. Otherwise, he outputs ⊥.
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Security Analysis We can prove our HIBSC scheme without random oracles. In particular,
it can also imply a secure identity based signcryption scheme without random oracles.

Theorem 3. Our HIBSC scheme is insider-secure assuming the wBDHI* assumption, DHI*
assumption and SDH assumption holds in the saID model for HIBS and the sID model for
HIBE.

Proof. (Sketch) For the Indistinguishability Game, suppose a simulator S is given the deci-
sional `-wBDHI* tuple (g, h, y1, . . . , y`, T ) where yi = g(αi). A gives the challenge identity id∗

to S. S setups the game as in the proof in [7]. He simulates the key extraction oracle as in
Theorem 2. All signcryption or unsigncryption query for users, which are not equal to the chal-
lenge ID or its prefix, can be computed by extracting the private key of the sender/recipient.
Other settings and A’s answer are handled as in [7].

For the Unforgeability Game, suppose a simulator S is given the `-DHI* tuple (g, y1, . . . , y`)
where yi = g(αi). S setups the game as in the proof in [7]. He simulates the key extraction
oracle as in Theorem 2. All signcryption or unsigncryption query for users which are not
equal to the challenge ID or its prefix can be computed by extracting the private key of the
sender/recipient. Other settings and A’s answer are handled as in Theorem 2.

By using one-time signature scheme, our HIBSC instantiation can be converted to sID-
CCA and saID-ACP secure HIBSC in the standard model, by using Theorem 1 and the
theorem in [16, 10, 8].

7 Conclusions

We presented the first constant-size HIBS (resp. HIBSC) provable without random oracles.
The sID model and the saID models were used in the reductionist security proofs. It is an
open problem to avoid these models.

Acknowledgements to Jin Li and Kenny Paterson for pointing out an aspect of random
oracles, and to Hong Kong Earmarked Grants 4232-03E and 4328-02E for financial support.
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