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Abstract. We propose on-line/off-line threshold signature schemes, in
which the bulk of signature computation can take place “off-line” during
lulls in service requests [7]. Such precomputation can help systems using
threshold signatures quickly respond to requests. For example, tests of
the Pond distributed file system showed that computation of a threshold
RSA signature consumes roughly 86% of the time required to service
writes to small files [15]. Because a large number of writes in file systems
are for small files [17], threshold signatures form a performance bot-
tleneck in Pond and similar systems. We apply the “hash-sign-switch”
paradigm of Shamir and Tauman [19] and the distributed key generation
protocol of Gennaro et al. [8] to convert any existing secure threshold dig-
ital signature scheme into a threshold on-line/off-line signature scheme.
Our construction is fully distributed and requires no trusted dealers.
We show that the straightforward attempt at proving security of the re-
sulting construction runs into a subtlety that does not arise for Shamir
and Tauman’s construction. We resolve the subtlety and prove our sig-
nature scheme secure against a static adversary in the partially syn-
chronous communication model under the one-more-discrete-logarithm
assumption [2]. The on-line phase of our scheme is efficient: comput-
ing a signature takes one round of communication and a few modular
multiplications in the common case.

Keywords: On-line/Off-line, Signature Schemes, Threshold Cryptogra-
phy, Chameleon Hash Functions, Bursty Traffic.

1 Introduction

We propose on-line/off-line threshold signatures to improve the performance of
threshold signature schemes, and we show how to construct such signatures from
existing threshold signature schemes. In a threshold signature scheme, given a
group of n players, and a threshold t < n, no subset of the players of size at most
t can generate a signature. In other words, unlike standard signature schemes
— in which a single player must protect his or her secret key — at most t of
the n players in a threshold signature scheme may be compromised without
endangering the security of the signature scheme.

Threshold signatures have been applied in several areas to avoid concentrat-
ing trust in any single entity. For example, OceanStore [13, 15] is a large-scale



distributed data storage system that requires the computation of threshold sig-
natures by an “inner ring” of servers for performing a Byzantine agreement when
writing a file. Latency tests in Pond [15], the OceanStore prototype, show that
for a 4 KB write, 77.8 ms out of 90.2 ms total time to service the write operation
is spent on computing Shoup’s RSA threshold signature scheme [20]. Therefore,
computation is the dominant factor; although network communication and local
file system access contributes to the time, the bulk of the contribution to service
time comes from computing the threshold signatures [15].

Optimizing threshold signature computation is particularly important for
distributed file systems because small file writes are common [17]. For example,
Baker et al. found that for a file trace from the Sprite file system, 80% of all
sequential transfers were less than 2300 bytes in length [1]. For larger files in
Pond (2 MB), there is little change in the time spent computing the threshold
signature; instead, the time spent on writing the file dominates the threshold
signature time. Even so, because threshold signature computation takes up 86%
of the time to service a small write in Pond, optimizing this computation im-
proves the common case. Threshold signatures have also been applied as part of
other applications, such as distributed certificate authorities, so increasing their
performance can help these applications as well [22].

Our Approach. In an on-line/off-line scheme [7], servers can perform the bulk
of the computation in an off-line phase before even seeing the message to be
signed. The results of this precomputation are saved and then used in the on-
line phase when a message must be signed. Because distributed systems often
have “bursty” traffic, resources are available for such precomputation. For ex-
ample, during the day and evening, traffic is high, but during the night and
morning, traffic is low. Enabling threshold signatures to be computed off-line
allows systems such as OceanStore to build up a stockpile of precomputed val-
ues while traffic is low. These values can be used to quickly sign messages later
when traffic is high. Furthermore, other distributed file systems have been ob-
served to have bursty traffic [18, 21], and so they can enjoy the benefits of our
on-line/off-line threshold signature scheme.

The main idea of our scheme is to apply the “hash-sign-switch” paradigm of
Shamir and Tauman [19] to a threshold signature scheme. In this paradigm, we
make use of a chameleon hash function, which is a special type of two-argument
hash function CHHK(m, r) endowed with a public and secret key [11]. Knowl-
edge of the public key HK allows one to evaluate the hash function, while knowl-
edge of the secret key allows one to find collisions. Shamir and Tauman show that
any standard signature scheme can be converted to an on-line/off-line scheme
as follows: for the off-line phase, compute a standard signature on CHHK(a, r),
where a and r are chosen randomly. Then, at the on-line phase, given the mes-
sage m, use the secret key to find an r′ such that CHHK(m, r′) = CHHK(a, r).
The signature on CHHK(a, r) together with r′ then forms a signature on the
message m; in a sense, we “switch” m for the random value a. We refer to the
signed value of CHHK(a, r) as the signature stamp. If finding a collision in the



chameleon hash is more efficient than signing the message directly (as is the case
for several chameleon hash functions), this is a net performance win.

Overview of Our Construction. For our work, we focus on the specific
chameleon hash function CHHK(m, r) = grhm mod p with public key HK =
(p, g, h) and the secret key y is the discrete logarithm of h to the base g. We
show how to use the discrete logarithm distributed key generation algorithm of
Gennaro et al. [8] to perform chameleon hash key generation and computation
of the signature stamp. We then show an efficient distributed algorithm for find-
ing collisions with low overhead per player. We stress that no trusted dealer is
required by our scheme; given an underlying threshold signature scheme with
distributed key generation and distributed signing algorithms, we obtain a fully
distributed signature scheme.

We also show methods for guaranteeing the robustness of our scheme us-
ing zero-knowledge proofs for verification. We provide two variants. The first is
non-interactive and secure in the Random Oracle Model. The second uses an
observation of Damg̊ard and Dupont to obtain robustness at the cost of limited
interaction but is secure without random oracles [5]. In both cases, instead of
running verification each time a signature must be generated, we decide to forego
this step and be optimistic because, as observed in [5], the signature shares will
be correct almost always. If the signature created is not valid, then we can run
the verification procedure in order to expose the corrupted players. The full
details for our signature scheme appear in Section 3.

A Subtlety In The Proof. Surprisingly, the straightforward adaptation of
the proof of Shamir and Tauman for non-threshold on-line/off-line signature
schemes fails to establish security for our new on-line/off-line threshold scheme.
The subtlety is that in our scheme, the “signature stamp” value CHHK(m, r)
is disclosed to all parties at the close of our off-line threshold phase, including
the adversary. While m and r are not disclosed, the output of the chameleon
hash must be broadcast to allow for “black-box” use of the underlying threshold
signature scheme in creating the stamp. As a result, any attempt at simulating
the adversary’s view of a signature query is “pinned down” by the value of the
chameleon hash encoded in the stamp. In contrast, Shamir and Tauman do not
reveal any chameleon hash values associated with a message to the adversary
until after a signing query for that message is made. Therefore, their reduction
is not “pinned down” in the same way and can easily answer adversary sign-
ing queries by simply evaluating the chameleon hash function on the queried
message. While this is not an attack on the threshold on-line/off-line scheme, it
shows that a new idea appears necessary to prove the scheme secure.

We resolve this subtlety by first introducing a new assumption for chameleon
hash functions, which we call the one-more-r assumption. Informally, the new
assumption says that given a sequence of random “challenge” outputs v1, . . . , vn

of the chameleon hash function, the adversary may adaptively pick values vi,
provide messages mi, and then learn ri such that CHHK(mi, ri) = vi. Then,



even given this extra information, the adversary has negligible advantage at
inverting the chameleon hash on any challenge value not picked. We show that
this new assumption is sufficient to prove security of our scheme. Then we justify
the assumption in the case of the grhm mod p chameleon hash by showing it is
implied by the one-more discrete logarithm assumption of Bellare et al [2]. This
establishes the security of our scheme based on a standard assumption. The
details for showing our scheme is existentially unforgeable and robust against a
static adversary are in Section 5 and the Appendix.

Performance Results. We analyze the performance of our scheme in Sec-
tion 6. We show the cost of our off-line phase is dominated by the cost of the
distributed discrete logarithm key generation protocol. While our off-line phase
in consequence requires several rounds of communication and computation, we
argue that this overhead uses resources that would otherwise sit idle. If a new
request arrives at a server during a busy time, the servers can simply fall back
to directly computing a threshold signature.

Finally, we show that our optimistic on-line phase obtains a factor of O
(

k
t

)
improvement in computation compared to Shoup’s RSA threshold signature
scheme, where k is a security parameter, while also requiring only one round
of communication [20]. For example, with the parameters suggested for Pond,
this is a factor of 1024 improvement. Therefore, we believe our scheme will yield
in many cases much improved performance for any distributed system that cur-
rently uses threshold signature schemes.

1.1 Previous Work

The first on-line/off-line signature scheme was developed by Even, Goldreich,
and Micali [7]. This scheme allowed for the conversion of any standard signature
scheme into a one-time on-line/off-line signature scheme. Their result, however,
increased the size of the signature by a quadratic factor. In order to mitigate
this, Shamir and Tauman [19] applied the results of Krawczyk and Rabin [11],
using chameleon hash functions to construct a one-time on-line/off-line signature
scheme that only increases the size of the signature by a factor of two. Although
smart cards appear to be an important application of on-line/off-line signatures
as noted in [7, 19], the application to bursty traffic has received little attention.

The origins of threshold signatures and threshold cryptography can be traced
back to Desmedt and Frankel [6]. Some examples of threshold signatures include
a robust threshold DSS signature scheme by Gennaro, et al. [9], and a robust,
non-interactive threshold RSA signature scheme by Shoup [20]. The latter con-
struction is the signature scheme implemented in Pond [15], a prototype version
of the OceanStore [13] design, and partly our motivation for this paper.

1.2 Our Results

We compare our optimistic on-line/off-line threshold signature scheme with that
of Shoup’s signature scheme [20]. Shoup describes two variants of an RSA thresh-



Threshold Sig. Schemes: Shoup’s RSA Scheme Our On-line/Off-line Scheme

Key Generation O(k2nt log t + k3) + KRSA KOn/Off + KDKG

Off-line Phase None 3KDKG +O(k2) + τ

On-line Player O(k3) O(k2)

On-line Reconstruction O(tk3) O(t2k2)

On-line Rounds of Comm. 1 1

Table 1. Comparison between Shoup’s Threshold RSA and our On-line/Off-line
Threshold Scheme.

old signature scheme, and it is the first variant that we compare our scheme
against. In both schemes, let n be the number of players, t < n

3 be the thresh-
old1, and k ∈ N be a security parameter. Our construction requires 2t+1 players
to construct a signature and tolerates the participation of at most t corrupted
players. We analyze the bit complexity of both schemes using the following met-
rics and show the results in Table 1:

– Key Generation Complexity — Work done to perform key generation and
distributing private key shares among the players. Let KRSA denote the bit
complexity for generating the RSA public and private keys, let KOn/Off de-
note the bit complexity for generating public and private keys in our scheme,
and let KDKG denote the bit complexity for distributed key generation.

– Off-line Phase Complexity — Work done to perform precomputation, mean-
ing the computation performed for a signature before a message arrives.
Furthermore, let τ be the bit complexity for generating a standard threshold
signature.

– On-line Player Complexity — Work done by a player in computing its sig-
nature share when a message arrives. Note that all players compute their
signature share in parallel.

– On-line Reconstruction Complexity — Work done by the players in combin-
ing all of the signature shares and creating a signature.

– On-line Rounds of Communication — Number of rounds the players need to
generate a signature.

Note that Shoup’s RSA signature scheme, as well as other threshold signature
schemes, is not considered to be an on-line/off-line scheme because no precompu-
tation is performed. Furthermore, an optimistic version of Shoup’s scheme does
not reduce its asymptotic complexity in the on-line phase. Finally, referring to
Table 1, we see that both schemes only require one round of communication be-
cause all of the members of the group do not have to wait for each other when a
message m arrives; instead, they can immediately compute their signature shares
for m. Because we can set the modulus in both schemes to be of the same size,
we can compare fairly based on the bit complexity. A more complete analysis
that includes robustness can be found in Section 6.
1 Shoup’s RSA threshold signature scheme can actually tolerate a threshold of t < n

2

and only needs t + 1 players to generate a signature.



2 Preliminaries

We first define important terms used in this paper, followed by a review of the
Shamir-Tauman on-line/off-line signature scheme.

2.1 Definitions

Definition 1 (Negligible Function). A function η : N → R is negligible if
for all c > 0, η(k) < 1

kc for all sufficiently large k.

Definition 2 (Negligible Probability). An event E occurs with negligible
probability if its probability of occurring is given by some negligible function.

Definition 3 (Discrete Logarithm Assumption). Let p = 2q+1 be a prime
where q is a random k-bit prime and let g be a generator for a subgroup of Z∗

p

with order q. For all probabilistic polynomial time algorithms A, if x is chosen
uniformly at random from Zq and h = gx (mod p), then Pr[A(p, q, g, h) = x] ≤
η(k), where η is a negligible function.

Definition 4 (Lagrange Interpolating Polynomial). Let F be a field and
let p(x) ∈ F [x] be a degree t polynomial. Given t + 1 distinct points in F2,
(x1, p(x1)), (x2, p(x2)), . . . , (xt+1, p(xt+1)), the goal is to reconstruct p(x). Then
the Lagrange interpolating polynomial passing through these t + 1 points is

f(x) =
t+1∑
i=1

p(xi)fi(x), where fi(x) =
t+1∏
j=1
j 6=i

xj − x

xj − xi

and by uniqueness, f(x) = p(x).

Definition 5 (Chameleon Hash Function). Given a public key HK and a
private key or trapdoor TK, a message m ∈ M, and a random r ∈ R where
M is the message space, and R is some finite space, we denote a chameleon
hash function [11] by CHHK(m, r), which is a hash function with the following
properties:

– Collision Resistance. Given any probabilistic polynomial time malicious
entityA that does not know the private key TK, but only the public key HK,
define its advantage to be the probability of finding (m1, r1) and (m2, r2)
such that CHHK(m1, r1) = CHHK(m2, r2). We require the advantage of A
to be negligible.

– Trapdoor Collisions. There exists a polynomial time algorithm A such
that on inputs the pair (HK,TK), a pair (m1, r1) ∈M×R, and a message
m2 ∈M, then A outputs r2 such that CHHK(m1, r1) = CHHK(m2, r2).

– Uniform Probability Distribution. If r1 ∈ R is distributed uniformly,
m1 ∈M, and (m2, r2) ∈M×R such that CHHK(m1, r1) = CHHK(m2, r2),
then r2 is computationally indistinguishable from uniform over R.



Throughout the rest of this paper, we will work with a particular family
of chameleon hash functions based on discrete logarithms. We do so because
the discrete logarithm-based hash function is best suited for using Lagrange
interpolation. There are also other chameleon hash functions, such as those based
on factoring, for example, but the mathematics involved in the interpolation
would not be as convenient.

We begin by picking a Sophie-Germain prime, p′ ∈ N, which has the property
that p = 2p′ + 1 and p′ are both primes. Although it is not known if there
are infinitely many Germain primes, we will assume that we can find one of
the appropriate size. Let g′ be a generator for Z∗

p. Now let Qp ⊂ Z∗
p denote

the subgroup of quadratic residues generated by g ≡ (g′)2 (mod p), so that
|Qp| = p−1

2 = p′. Finally, pick the private key y ∈ Z∗
p′ . Then we define our

chameleon hash function CHHK : Zp′ × Zp′ → Qp to be

CHHK(m, r) = gr+ym ≡ grhm (mod p)

where h ≡ gy (mod p) and the public key is HK = (p, g, h). The above three
properties are easily verified as follows. If the private key y is not known, then this
family of chameleon hash functions is collision resistant because if there exists a
probabilistic polynomial time algorithm that succeeds with non-negligible prob-
ability in finding pairs (m, r) and (m′, r′) in Zp′×Zp′ such that m 6= m′, then the
discrete logarithm of h to the base g is given by y ≡ (r−r′)(m′−m)−1 (mod p′).
This contradicts the discrete logarithm assumption. With knowledge of the se-
cret key y, it is easy to find r′ such that CHHK(m′, r′) ≡ CHHK(m, r) (mod p)
because given any message m′ and the known pair (m, r), set r′ ≡ r + ym− ym′

(mod p′), and the result follows. This also verifies the uniform probability dis-
tribution property because if r ∈ Zp′ is distributed uniformly at random, then
r′ is also distributed uniformly at random.

Definition 6 (Signature Scheme). A signature scheme S is a triple of ran-
domized algorithms (Key-Gen, Sig, Ver) where:

– Key-Gen: 1∗ → PK × SK is a key generation algorithm such that on input
1k, where k ∈ N is a security parameter, it outputs (PK, SK), such that
PK ∈ PK, the set of all public verification keys, and SK ∈ SK, the set of
all secret keys.

– Sig : SK × M → SIGS is a signing algorithm such that M is the mes-
sage space and SIGS is the signature space. For shorthand, let SSK(m) =
Sig(SK,m) for all m ∈M.

– Ver : PK×M×SIGS → {Reject,Accept} is a verification algorithm such that
Ver(PK, m, σ) = Accept if and only if σ is a possible output of Sig(SK,m).
Again, for shorthand, let VPK(m,σ) = Ver(PK, m, σ) for all m ∈ M and
σ ∈ SIGS.

Definition 7 (Threshold Signature Scheme). Given a signature scheme
S = (Key-Gen, Sig, Ver), a threshold signature scheme T S for S is a triple of
randomized algorithms (Thresh-Key-Gen, Thresh-Sig, Ver) for a set of n players
P = {P1, P2, . . . , Pn} with threshold value t where:



– Thres-Key-Gen is a distributed key generation algorithm used by the players
to create (PK, SK) ∈ PK×SK such that each Pi ∈ P receives a share SKi

of the secret key SK.
– Thresh-Sig is a distributed signing algorithm used by the players to create

a signature for a message m ∈ M such that the output of the algorithm is
SSK(m). This algorithm can be decomposed into two algorithms: signature
share generation and signature reconstruction.

In this paper, we assume that T S is simulatable, as defined in Gennaro,
Jarecki et al. [9]. This means that there exists a simulator SIMT S

1 which, on
input PK, simulates the view of the adversary for a run of Thresh-Key-Gen that
fixes the public key to be PK. In addition, there exists a simulator SIMT S

2 for
Thresh-Sig, such that on input: the public key PK, the message v, the signature σ
of v, and the key shares xi1 , xi2 , . . . , xit

of the servers controlled by the adversary,
simulates the view of the adversary for a run of Thresh-Sig on v that produces
the signature σ.

Definition 8 (On-line/Off-line Signature Scheme). An on-line/off-line
signature scheme is a method for signing messages in two phases: an on-line
phase and an off-line phase. Most of the computation is done in the off-line
phase, which happens before seeing the message to be signed. When the mes-
sage m finally arrives, the on-line phase takes the precomputed value from the
off-line phase and uses it to sign m. This particular signature scheme is useful
because it splits the heavy cost of signing (modular exponentiations) from the
actual action of signing, without adding much overhead.

Definition 9 (Signature Stamp). In an on-line/off-line signature scheme, we
call the precomputed signature from the off-line phase a signature stamp.

Definition 10 (Distributed Key Generation). A Distributed Key Gener-
ation (DKG) protocol is often used in threshold signature schemes in order to
construct the public key and private key. In a DKG protocol with n players,
the public key is made known to all players, whereas the private key is known
by none. Instead, each player receives a key share, from which they can — act-
ing in concert — recover the private key. A DKG protocol is, of course, fully
distributed, and requires no trusted dealer.

In this paper, we use a discrete logarithm-based DKG protocol (where the
private key is y and the public key is h = gy for some g), namely the New-DKG
protocol as defined by Gennaro et al. [8]. This protocol has the property that
there exists a simulator SIMDKG that on input h can simulate the interactions
of the DKG protocol with a set B (where |B| ≤ t) of players controlled by
the adversary, such that the resulting public key produced is fixed to be h. In
addition, as a result of this simulation, SIMDKG is able to recover the key shares
held by the adversary’s players, B.

2.2 The Shamir-Tauman On-line/Off-line Signature Scheme

Before discussing how to achieve an on-line/off-line threshold signature scheme,
we review the single-player scheme, as defined by Shamir and Tauman [19],



which introduces the hash-sign-switch paradigm. Let S be an arbitrary signature
scheme. We show how to make S on-line/off-line, which we denote by SOn/Off :

1. Key Generation (done once): On input 1k, where k ∈ N is a security
parameter, run Key-Gen for S to obtain a pair (PK, SK) ∈ PK×SK. As for
our chameleon hash function, we can run its key generation procedure and
obtain a public key HK and trapdoor TK. The secret key is now (SK, TK),
while the public key is (PK, HK).

2. Off-line Phase (done per message): First choose uniformly at random
(m, r) ∈ M×R. Now we sign CHHK(m, r), and we store the pair (m, r),
the hash value CHHK(m, r), and the signature stamp SSK(CHHK(m, r)).
This step corresponds to the traditional hash-sign paradigm.

3. On-line Phase (done per message): We are now given some message
m′ ∈M that we want to sign. To do this, we first recover from memory the
pair (m, r), the hash value CHHK(m, r), and the stamp SSK(CHHK(m, r)).
Since trapdoor collisions can be found efficiently for a chameleon hash func-
tion given the secret key, we can now quickly find an r′ ∈ R such that
CHHK(m, r) = CHHK(m′, r′). The signature for the message m′ is the tu-
ple (SSK(CHHK(m, r)),m′, r′). This introduces the switch step in the new
paradigm.

4. Verification (done per message): In order to verify that (σ,m′, r′) is
indeed a valid signature for m′, where σ ∈ SIGS, simply check the value of
VPK(CHHK(m′, r′), σ) and confirm that it equals to Accept.

Provided that CHHK and the underlying signature scheme S are secure, Shamir
and Tauman [19] proved SOn/Off is secure against adaptive chosen message
attack.

3 An On-line/Off-line Threshold Signature Scheme

We shall construct an optimistic on-line/off-line threshold signature scheme
T SOn/Off = (On/Off-Thresh-Key-Gen, Thresh-Sig-Off-line, Thresh-Sig-On-line,
Ver) that does not require the use of a trusted dealer, and we show how exist-
ing threshold signature schemes, such as Shoup’s threshold RSA [20] or Robust
threshold DSS signatures [9], can be used in performing a threshold computa-
tion of the signature stamp off-line. Furthermore, we use the New-DKG from
Gennaro, et al [8].



3.1 Key Generation (Done once)

On/Off-Thresh-Key-Gen

Inputs: A threshold signature scheme T S = (Thresh-Key-Gen, Thresh-Sig,
Ver), a set of n players P = {P1, P2, . . . , Pn}, a threshold t < n

3 , and a
security parameter k ∈ N.
Public Output: A set of public keys.
Private Output: All players Pi ∈ P receive a set of private keys.

1. Run Thresh-Key-Gen on input 1k to obtain (PK, SK) ∈ PK × SK and
each Pi ∈ P receives the secret key share SKi.

2. Create a random k bit Germain prime p′ ∈ N, where p = 2p′ + 1 is also
a prime, and let g be a generator for Qp.

3. Use the DKG protocol to create h = gy, where y ∈ Zp′ is the secret key
and Pi ∈ P receives the share yi for a degree t polynomial py(x) ∈ Zp′ [x]
such that py(0) = y.

4. Check that n < p′ so that each player Pi ∈ P has index i ∈ Z∗
p′ . Other-

wise abort.
5. Publish the public keys (PK, HK = (p, g, h)). All players Pi ∈ P retain

(SKi, yi).

3.2 Off-line Phase (Done per message)

In the off-line phase, we will show how to construct the chameleon hash function
and create the signature stamp in a distributed manner.

Thresh-Sig-Off-line

Inputs: The same set of n players P and a threshold t < n
3 .

Private Output: A signature stamp.

1. Use the DKG protocol to create gr, where r ∈ Zp′ so that Pi receives
the share ri for another degree t polynomial pr(x) ∈ Zp′ [x] such that
pr(0) = r.

2. Use the DKG protocol to create hm where m ∈ Zp′ . Each player Pi

receives a share mi for a degree t polynomial pm(x) ∈ Zp′ [x] such that
pm(0) = m.

3. Finally, the DKG protocol is used to generate shares zi for each Pi ∈ P
of a degree 2t polynomial p0(x) ∈ Zp′ [x] such that p0(0) = 0.

4. Now gr and hm are both known to the players, so CHHK(r, m) = grhm

(mod p).
5. Use Thresh-Sig to compute the signature stamp SSK(CHHK(r, m)).



3.3 On-line Phase (Done per message)

Thresh-Sig-On-line

Inputs: A subset P ′ ⊂ P of size 2t + 1 and a message m′ ∈ Zp′ .
Public Output: A signature for m′.

1. For each Pi ∈ P ′, define col-1i = ri− yim
′ and col-2i = yimi + zi, which

are Pi’s share of the trapdoor collision. Then, Pi broadcasts the pair
(col-1i, col-2i) to all of the other players in P ′.

2. Define fi(x) to be fi(x) =
∏

Pj∈P′\{Pi}
j−x
j−i , as in the definition of La-

grange interpolation. Now use Lagrange interpolation on the shares to
compute the trapdoor collision

r′ =
∑

Pi∈P′

(col-1i + col-2i)fi(0)

=
∑

Pi∈P′

(ri + yimi + zi − yim
′)fi(0)

≡ r + ym− ym′ (mod p′).

3. In this way, the signature for message m′ is

(SSK(CHHK(m, r)),m′, r′).

Notice that the definition of col-2i requires adding the share zi. This is nec-
essary because we have to multiply the secrets y and m, so each player computes
yimi which becomes a share of a degree 2t polynomial that is not chosen uni-
formly at random; thus, adding the share zi will make the polynomial random.
Furthermore, this degree 2t polynomial is the reason for requiring t < n

3 .

3.4 Verification (Done per message)

Given the signature (σ,m′, r′), where σ ∈ SIGS, simply check that

VPK(CHHK(m′, r′), σ) = Accept

holds true, as in the standard signature scheme. Notice that verification requires
two modular exponentiations for computing CHHK(m′, r′), as well as any pos-
sible exponentiations for VPK . This burden, however, is placed onto anybody
running VPK and not the players involved in creating a signature. For systems
in which clients make relatively few requests compared to the number served by
threshold signature servers, this is an acceptable tradeoff.

3.5 Signature Share Verification (Performed if necessary)

If VPK(CHHK(m′, r′), σ) = Reject, then some players are sending incorrect
shares. In order to ensure robustness, we must be able to construct a valid



signature. The näıve solution of trying all possible subsets of size 2t + 1 to con-
struct a valid signature is unacceptable because there are an exponential number
of such subsets. Instead, we will identify and remove the corrupted players. To
do so, we have each player in P check the validity of the pair (col-1i, col-2i) for
each player Pi ∈ P ′:

1. Verifying col-1i. Because gri and gyi are known values from the DKG pro-
tocol, we can compute for each Pi ∈ P ′, gri · (gyi)−m′

= gri−yim
′

(mod p)
and confirm that gcol-1i = gri−yim

′
as desired.

2. Verifying col-2i. Although we have access to gzi from the DKG protocol,
we do not have gyimi . Instead, what we will do is confirm that the discrete
logarithm of gcol-2ig−zi = gcol-2i−zi to the base gmi is equal to the discrete
logarithm of gyi to the base g. Now we can apply Chaum and Pedersen’s
ZKP for equality of discrete logarithms [4] with the Fiat-Shamir heuristic:
Let d = gyi , e = gmi , and f = gcol-2i−zi . Player Pi ∈ P ′ chooses r ∈ Zp′

uniformly at random and computes H(g, d, e, f, gr, er) = c, where H is
a random oracle and c is the challenge. Pi computes v = yic + r and
broadcasts the pair (c, v). Finally, all players compute and confirm that
H(g, d, e, f, gvd−c, evf−c) = c.

If any of the shares are deemed incorrect, then broadcast a complaint against
Pi. If there are at least t + 1 complaints, then clearly Pi must be corrupt since
with at most t malicious players, there can be at most t false complaints. Also,
if Pi is corrupt, there will always be enough honest players to generate at least
t + 1 complaints and Pi will surely be disqualified in this case. Once eliminated,
Pi is removed from P ′ and is replaced with a new player, thus resulting in a
new signature. As long as at most t players are corrupted, there will always be
enough honest players to create a valid signature.

3.6 Remarks

First we justify our use of the chameleon hash function CHHK(m, r) ≡ grhm

(mod p). Let us do this by looking at how one would compute the value of h
from g and the shares yi given to each player, if we had a subset P ′ ⊂ P of size
t + 1. If Pi ∈ P ′, then let hi = gyifi(0) and then

h =
∏

Pi∈P′

hi =
∏

Pi∈P′

gyifi(0) ≡ g
∑

Pi∈P′
yifi(0) ≡ gpy(0) = gy (mod p).

The interesting step is the Lagrange polynomial interpolation. Recall that g
has order p′, so in fact we are interpolating over the finite field Zp′ . Thus, the
chameleon hash function CHHK(m, r) has the property that the interpolation
happens in the exponents and succeeds because g has prime order.

Second, observe that the secret key y is never explicitly revealed to the ad-
versary because each Pi ∈ P ′ only makes public col-1i and col-2i. Since ri,mi

and zi are shares that are kept private by each player, it is not possible for the



adversary to uncover the value of yi unless it has corrupted player Pi in order
to have enough shares (at least t + 1) to reconstruct y.

Third, notice that new signature stamps must be computed for every message
to be signed, and hence this is a one-time threshold signature scheme. If a stamp
is reused, then for any two messages m1 and m2 along with their respective
r1 and r2, then CHHK(m1, r1) = CHHK(m2, r2), and one can immediately
compute the secret y ≡ (r1−r2)(m2−m1)−1 (mod p′). Since we are assuming a
bursty traffic model throughout this paper, we can run the off-line phase during
periods of low traffic to compute more stamps.

Finally, we note two extensions to our scheme. One is that we can use batch-
ing techniques in order to improve performance. For instance, Krohn et al. ex-
plore this in the context of verifying erasure codes authenticated with a similar
hash function [12]. A second extension is that the random oracle can be elim-
inated from the verification procedure. We further discuss these extensions in
Appendix D.

4 Security Model

4.1 Security Definitions

Definition 11 (Random Oracle Model). In the random oracle model [3],
all players, including the adversary, have access to a random oracle H, which
implements a truly random function. In practice, an algorithm such as SHA-1 is
used in constructions designed to approximate a random oracle.

We define two assumptions that we will use in our proof. The first is the
one-more-discrete-logarithm assumption introduced by Bellare et al. [2]

Definition 12 (One-More-Discrete-Logarithm Assumption). Let p =
2q + 1 be a prime where q is a random k-bit prime and let g be a gener-
ator for a subgroup of Z∗

p with order q. We let n : N → N be a function
of k. Now let {x1, x2, . . . , xn(k), xn(k)+1} be elements of Zq chosen uniformly
at random, and for each i ∈ {1, 2, . . . , n(k) + 1}, define zi = gxi (mod p).
Now let the adversary A have access to a discrete log oracle DLog such that
if x ∈ Zq, z = gx (mod p), then DLog(g, z) = x. In the one-more discrete-
logarithm problem [2], ADLog is given {z1, z2, . . . , zn(k)+1} and must output
{x1, x2, . . . , xn(k)+1} by querying DLog at most n(k) times. The assumption
is that Pr[ADLog(g, z1, z2, . . . , zn(k)+1) = (x1, x2, . . . , xn(k)+1)] ≤ η(k), where η is
a negligible function.

We define a similar assumption that is related to finding collisions in a
chameleon hash function. We will use this assumption to show our new scheme
is secure. In Appendix C, we show that this assumption is implied by one-more-
discrete-logarithm for the chameleon hash function we use.

Definition 13 (One-More-R Assumption). As above, we let g be a gener-
ator for a subgroup of Z∗

p with order q, a k-bit prime. In addition, we let k′ be



randomly chosen from Zq and let h = gk′ . We let n : N → N be a function of
k. Now let {v1, v2, . . . , vn(k), vn(k)+1} be randomly chosen elements in the range
of CHHK(·). Now we give the adversary A access to a Get-An-R(v,m) oracle,
such that if r = Get-An-R(v,m), then CHHK(m, r) = v. In the One-More-R
problem, AGet-An-R is given {v1, v2, . . . , vn(k)+1} and with at most n(k) queries to
Get-An-R, must output {(m1, r1), (m2, r2), . . . , (mn(k)+1, rn(k)+1)} such that vi =
CHg,k(mi, ri). The assumption is that Pr[AGet-An-R(g, h, v1, v2, . . . , vn(k)+1) =
{(m1, r1), (m2, r2), . . . , (mn(k)+1, rn(k)+1)}] ≤ η(k), where η is a negligible func-
tion.

4.2 Adversarial Model

We assume that there is a static adversary A that corrupts some subset of the
players in P before beginning the threshold signature scheme. Furthermore, we
can analyze two different types of static adversaries: one that compromises before
the off-line phase and the other compromises after the off-line phase terminates.
We assume the former case in our proof of existential unforgeability. As for
the communication model, we assume that all players are connected by secure
point-to-point channels. Furthermore, we will assume a partially synchronous
communication model during the key generation and off-line phases for the pur-
pose of using the DKG protocol of Gennaro et al. [8]

5 Proof of Security

5.1 Robustness

Theorem 1. Suppose that an adversary corrupts at most t < n
3 players. Then,

our on-line/off-line threshold signature scheme is robust.

Proof. The full details of the proof appear in Appendix B. ut

5.2 Existential Unforgeability

Theorem 2. Suppose that a static adversary corrupts at most t players before
beginning the off-line phase. Then our threshold signature scheme is existen-
tially unforgeable assuming that the underlying signature scheme S is also
existentially unforgeable.

Proof. The full details of the proof appear in Appendix C. ut

6 Evaluation

We analyze the number of bit operations required by our scheme, as previously
shown in Table 1. First, in our scheme, is the threshold key generation. The bit
complexity of Thresh-Key-Gen for T S, as well as generating a Germain prime is



Our On-line Phase Complexity Additions Multiplications Exponentiations

Player Signature Share 2 2 0

Signature Reconstruction 4t2 + 6t + 1 4t2 + 4t + 1 0

Signature Share Verification 0 3 6

Table 2. Our On-line Phase Computational Complexity.

included in KOn/Off . Afterwards, we invoke the DKG protocol once, so this costs
KDKG, so the entire threshold key generation phase takes KOn/Off +KDKG bit
operations.

Next, we analyze our off-line phase. First, we invoke the DKG protocol three
times, so this gives 3KDKG. Next, we have gr and hm, so we multiply both
terms to get CHHK(r, m). Moreover, a single multiplication requires O(k2) bit
operations over Zp. Finally, the signature stamp SSK(CHHK(m, r)) requires τ
bit operations. Thus the off-line phases requires a total of 3KDKG +O(k2) + τ
bit operations.

Finally, for our on-line complexity, we can separate a player’s computational
complexity for generating a signature share from the signature reconstruction
complexity. Each player Pi ∈ P ′ performs only two addition and two multipli-
cations when computing col-1i and col-2i. The on-line signature reconstruction
requires computing fi(0), which is 2t multiplications, and this is done for all
Pi ∈ P ′, so we have a total of (2t + 1)2 multiplications when we compute r′.
Only addition of the 2(2t+1) shares as well as performing 2t subtractions when
computing fi(0) is required giving a total of (2t)(2t+1)+2(2t+1)−1 = 4t2+6t+1
additions. Furthermore, each addition over Zp requires O(k) bit operations. Al-
ready we see that the number of multiplications in the on-line phase is substan-
tially fewer than k since the threshold t is quite small when compared to a k
bit prime. If verification of the signature shares is required, then each signature
share requires six modular exponentiations. A summary of the number of op-
erations performed in the on-line phase, as well as signature share verification
complexity, appears in Table 2.

We also review the complexity of Shoup’s RSA threshold signature scheme [20],
which was also shown in Table 1. The key generation phase of Shoup’s signature
scheme requires a trusted party, but asymptotically the computation cost is the
same as our distributed key generation. In Shoup’s on-line phase, the reconstruc-
tion complexity, once again, can be separated from the share verification com-
plexity. The reconstruction of the signature requires t modular exponentiations,
t−1 modular multiplications, and one invocation of the extended Euclidean algo-
rithm. Finally, verifying an individual signature share also requires six modular
exponentiations and three modular multiplications. Although both Shoup’s and
our threshold signature schemes have approximately the same signature share
verification complexity, we have managed to avoid any modular exponentiations
in the reconstruction complexity of our signature scheme.
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B Proof of Robustness

Proof. We need to show completeness, soundness, and zero knowledge simu-
latability of the signature share verification protocol when verifying col-2i from
player Pi ∈ P ′.

– Completeness: An honest player Pi ∈ P ′ should convince any verifier that
the protocol was followed with high probability. In fact, if the signature share
verification protocol is correctly followed, then the verifier will accept with
probability 1.

– Soundness: No corrupted player Pi ∈ P ′ should be able to fool any verifier
into accepting incorrect shares with high probability. Using the definitions
for e, d, and f from Section 3.5, we require that both

gvd−c ≡ gr (mod p)
evf−c ≡ hr (mod p) .

Therefore, gvd−c ≡ gv−yic ≡ gr (mod p) if and only if v ≡ yic+ r (mod p′).
In addition, evf−c ≡ gmivg(col-2i−zi)(−c) ≡ (gmi)r (mod p), which implies
that miv − c(col-2i − zi) ≡ mir (mod p′). By using evf−c ≡ hr (mod p)
from above, we see that miyic ≡ c(col-2i − zi) (mod p′). If c 6≡ 0 (mod p′),
then clearly col-2i is the correct share. If c ≡ 0 (mod p′), then col-2i may be
incorrect. By the Discrete Logarithm Assumption, no probabilistic polyno-
mial time adversary can produce such a v with non-negligible probability.

– Zero Knowledge Simulatability: No cheating verifier should learn any-
thing useful after running the protocol. We can easily construct a simulator
S which simulates the view of the verifier when verifying Pi’s col-2i. To do so,
S selects c and v uniformly at random and fixes H(g, d, e, f, gvd−c, evf−c)
to be c, since we are working in the Random Oracle model. Thus, S has
recreated the view of the verifier without knowing Pi’s secret key share yi,
so the signature share verification protocol has zero knowledge.

As a result, our on-line/off-line threshold signature scheme is robust. We sketch
an alternative approach without random oracles in Appendix D ut



C Proof of Existential Unforgeability

The proof of existential unforgeability will be in a similar style to the proof in
Shamir and Tauman [19]. First we make use of the following Lemma to show
that our One-More-R assumption is implied by a standard assumption:

Lemma 1. Suppose that there exists an adversary B that breaks the One-More-
R assumption for the discrete logarithm chameleon hash with advantage ε. We
show how to construct an algorithm A that breaks the One-More-Discrete-Log
assumption with advantage ≥ ε.

Proof. We let A respond to B’s queries in the One-More-R problem. A is given
as input g and {z1, z2, . . . , zn(k)+1}. Let A be described as follows:

1. Pick y uniformly in Zp′

2. Let h = gy, and initialize B with g and h.
3. For 1 ≤ i ≤ n(k) + 1, pick mi uniformly in Zp′ and let vi = zih

mi .
4. Send B the set {v1, v2, . . . , vn(k)+1}.
5. Whenever B makes a Get-An-R(v,m) query, receive t = Dlog(g, v). Return

the value t− ym to B.
6. If B successfully outputs {(m′

1, r
′
1), (m

′
2, r

′
2), . . . , (m

′
n(k)+1, r

′
n(k)+1)} such that

CHHK(m′
i, r

′
i) = vi for all i, A returns {x1, x2, . . . , xn(k)+1} where xi =

r′i + y(m′
i −mi). Otherwise, abort.

Clearly, we have Adv B ≤ Adv A. ut

Using the One-More-R assumption, we can prove that our on-line/off-line
threshold signature scheme is secure in the adaptive chosen message attack
model.

Theorem 3. Let T S = (Thresh-Key-Gen, Thresh-Sig, Ver) be a given simulat-
able threshold signature scheme. Then we let T SOn/Off = (On/Off-Thresh-Key-
Gen, Thresh-Sig-Off-line, Thresh-Sig-On-line, Ver) be the resulting On-line/Off-
line Threshold Signature scheme. If T SOn/Off is existentially forgeable by an
q-adaptive chosen message attack with success probability ε, then one of the fol-
lowing must hold:

1. There exists a probabilistic algorithm that breaks the One-More-R assumption
with probability at least ε/2.

2. The underlying threshold signature scheme T S is existentially forgeable by a
n-chosen message attack with probability ε/2.

Proof. Suppose that an adversary A forges a signature in the T SOn/Off scheme
with a q-chosen message attack with probability ε. Now let {m1,m2, . . . ,mq}
be the q messages chosen by A to be signed by the T SOn/Off scheme. Let
{(σ1,m1, r1), . . . , (σq,mq, rq)} be the signatures produced in this fashion by the
T SOn/Off scheme. Then our assumption is that A outputs a signature forgery



(σ,m, r), where VPK(CHHK(m, r), σ) = Accept and m 6= mi for all i, with prob-
ability ε. Then either there exists an i such that CHHK(mi, ri) = CHHK(m, r)
or there does not exist such an i. One of these cases occurs with probability at
least ε/2.

If the first case holds with probability at least ε/2, then we define a simulator
S that breaks the One-More-R assumption. S is given as input the public bases
g and h, as well as the set of challenges {v1, v2, . . . , vn(k)+1}.

S then simulates the On/Off-Thresh-Key-Gen phase with A. When the simu-
lation gets to the point where h is to be generated by using the DKG protocol,
S uses SIMDKG(h), the DKG simulator, to “fix” the result of the DKG run to
be h.

On the ith run of the Thresh-Sig-Off-line phase, S simulates the phase as
normal. However, when it reaches the point where hm is to be generated using
the DKG protocol, it uses SIMDKG(vi/gr) to fix the value of hm so that the
resulting chameleon hash grhm equals the given vi value. S then simulates the
rest of the phase as normal.

On the jth run of the Thresh-Sig-On-line phase, with input m′
j specified by A,

S simulates the phase as normal. Suppose that the players involved are P ′ ⊂ P.
Of the players in P ′, without loss of generality let {P1, P2, . . . , Pt} ⊂ P ′ be the
players controlled by the adversary A. Since S “controls” more than t players,
it is able to reconstruct the values of ri, yi,mi, and zi for 1 ≤ i ≤ t from its own
shares, since all were generated by the DKG protocol. Hence S is able to recover
col-1i and col-2i for all 1 ≤ i ≤ t. Now S fixes Pn. For each Pi, t < i < n, S
picks col-1i and col-2i uniformly at random and broadcasts them. In addition, S
queries the Get-An-R oracle on mj and vj to receive r′j . With this information S
can simply fix the value of (col-1n, col-2n) such that the interpolation of all the
col-1i + col-2i values comes out to be r′j .

At the end, A produces (σ,m, r) such that VPK(CHHK(m, r), σ) = Accept
and there exists an i such that CHHK(m, r) = vi and vi was not used by S in
a run of Thresh-Sig-On-line. But if this is the case, S has produced One-More-R
value, namely r.

If the second case holds with probability at least ε/2, then we define a simula-
tor S that existentially forges a signature on the underlying threshold signature
T S. In addition, we let SIMT S

1 and SIMT S
2 be defined as in Definition 7.

S simulates the On/Off-Thresh-Key-Gen phase as normal, except during Thresh-
Key-Gen. In this case, S uses SIMT S

1 to fix the public key for T S to be the public
key for the signing oracle SigT S

On the ith run of the off-line phase, let S simulate it as normal up until the
point where it needs to perform Thresh-Sig on vi = CHHK(mi, ri). When this
occurs, S queries the signing oracle SigT S to get σi, the signature of vi. S then
uses SIMT S

2 to simulate a run of Thresh-Sig with S on input vi, such that the
output is fixed to σi. We can do this because our assumption is that Thresh-Sig
is simulatable.

Each run of the on-line phase is simulated as normal by S.



At the end, A produces (σ,m, r) such that VPK(CHHK(m, r), σ) = Accept
and for all i, vi 6= CHHK(m, r). But in this case, S has forged a signature σ on
a message CHHK(m, r) not queried to the signing oracle SigT S . ut

D Extensions

D.1 Using Merkle Trees for Batching

We explained earlier that computing a threshold signature when performing
writes for small files in Pond [15] is expensive, while for large files, the time spent
computing the threshold signature is negligible compared to the actual write. In
the event that a threshold signature must be quickly computed on demand, our
scheme immediately becomes attractive over other known signature schemes.
This is especially true for Pond when computing threshold signatures for small
writes.

One way of improving performance is to batch messages using Merkle hash
trees [14]. Instead of signing messages one by one, we wait for n messages to
arrive and then build a Merkle tree over these messages. After computing the
hash hr on the root node, we sign hr using our on-line/off-line threshold signature
scheme. To verify the validity of any message m that was included in the batch,
we hash m and using hashes from sibling nodes as well as other internal nodes,
we can compute hr. We then verify that hr is in fact the hash that was signed.
If there are a total of n messages and the batch size is B, then a total of

⌈
n
B

⌉
signature stamps are needed. This approach does trade latency for throughput,
and it depends on how much time can be spent waiting for messages to arrive
on-line. In fact, Merkle trees for batching has been applied to Shoup’s scheme
in OceanStore in order to increase throughput for small updates [16].

D.2 Eliminating Random Oracles

Our signature share verification algorithm requires the use of a random oracle
H because it allows the verification to be non-interactive. Moreover, the random
oracle can actually be eliminated, but at the cost of interaction. This is done
by using the techniques in [5], which eliminates the random oracle from the
verification step in Shoup’s RSA threshold scheme, and can be easily adapted
to our scheme.

E Further Work

– Other On-line/Off-line threshold signature schemes. Our signature scheme
uses a Chameleon Hash function because of its elegant property for allowing
interpolation in the exponents. An interesting extension would be to consider
elliptic curves over a finite field Fp. Moreover, do there exist other kinds
of families of Chameleon Hash functions that can successfully be used for
constructing an on-line/off-line threshold signature scheme?



– Optimality. In the on-line phase, our optimistic threshold signature scheme is
an order of magnitude faster than Shoup’s RSA threshold signature scheme.
Can our signature scheme be further optimized or is it optimal? Furthermore,
both schemes require modular exponentiations for ensuring robustness. Can
this be avoided?

– Proactive threshold signatures. A useful extension of threshold signatures is
making them proactive [10]. This requires that the secret key shares held by
each player are periodically refreshed such that the old shares can no longer
be used and the public and private keys remain unchanged. Making our on-
line/off-line threshold signature scheme be proactive can be useful because
OceanStore’s design [15] calls for the use of proactive threshold signatures.

– Bursty traffic analysis. Our threshold signature schemes becomes useful only
if enough signature stamps can be created off-line. In order to better under-
stand when on-line/off-line threshold signatures are beneficial, can we create
a suitable traffic model?


