
Loud and Clear: Human-Verifiable Authentication Based on Audio

Michael T. Goodrich, Michael Sirivianos, John Solis, Gene Tsudik, and Ersin Uzun
Department of Computer Science
University of California, Irvine�

goodrich,msirivia,jsolis,gts,euzun � (at)ics.uci.edu

Abstract

Secure pairing of electronic devices that lack any previous association is a challenging problem which has been
considered in many contexts and in various flavors. In this paper, we investigate the use of the audio channel for human-
assisted authentication of previously un-associated devices. We develop and evaluate a system we call Loud-and-Clear
(L&C) which places very little demand on the human user. L&C involves the use of a text-to-speech (TTS) engine for
vocalizing a robust-sounding and syntactically-correct (English-like) sentence derived from the hash of a device’s public
key. By coupling vocalization on one device with the display of the same information on another device, we demonstrate
that L&C is suitable for secure device pairing (e.g., key exchange) and similar tasks. We also describe several common
use cases, provide some performance data for our prototype implementation and discuss the security properties of L&C.

Index Terms: Human-assisted authentication, Man-in-the-middle attacks, Audio, Text-to-speech, Public key, Personal
device, Wireless networks.

I. Introduction

The proliferation of many types of inexpensive personal devices, such as PDAs, cellphones, smart watches, and MP3

players, has been accompanied by the need to secure these devices and their communication with the “outside world.”

Common applications involve securely connecting one’s personal device to an unfamiliar printer, fax machine, wireless

projector, network access point or another personal device. Of course, establishing such secure connections is straightfor-

ward if there exists a pervasive global security infrastructure, such as a public key infrastructure (PKI) or a trusted online

third party (TTP). However, in many (even most) application scenarious involving heterogeneous personal devices, neither

a PKI nor a TTP can be assumed. Thus we are faced with the with the problem of peer device authentication or secure

device pairing.

While the general problem of secure pairing of devices with no prior context is difficult and remains partially unsolved,

there has been progress in scenarios involving personal devices. Precisely because these devices are personal, the presence

of the human user (owner) is assured and techniques have been proposed to engage the human user in the process of

establishing secure communication. Therefore, human assistant authentication represents a very timely, important and

popular research topic.

2
In this paper, we focus on application settings where devices are physically present and near but their communication

channel is not visible or ascertainable by their owners or users. The most obvious example is whenever nearby devices

communicate over a wireless channel, e.g., 802.11a/b/g, Bluetooth, or Infrared. Such channels offer no physical evidence

of direct connection between devices.1 To address ad hoc secure pairing of devices over such communication channels,

we develop a system called Loud-and-Clear (L&C) which uses the audio channel to attain human-assisted (but not

burdensome) device authentication.

Organization. This paper is organized as follows: The next section overviews related work. It is followed by the discussion

of our motivation and the summary of our contributions in Section III. Then, Section IV describes the key elements of

L&C. Sections V and VI discuss related topics of unidirectional authentication and presence confirmation, respectively.

L&C prototype implementation and its performance are discussed in Section VII and security issues are considered in

Section VIII.

II. Related Work

There has been a considerable amount of prior work in the general area of secure device pairing. As mentioned earlier, PKI-

oriented solutions involve rigid hierarchies and require the existence of trusted off-line Certification Authorities (CAs) [1].

Unstructured certification techniques such as PGP [2] assume a certain small degree of separation among certified entities

(i.e., a web of trust). An alternative is an online trusted third party (TTP), such as Kerberos [3], [4]. However, such

solutions require constant presence and availability of an online TTP which is not realistic in our envisaged scenarios. For

this reason, the remainder of this section focuses on closely related prior research.

The well-known Diffie-Hellman key exchange protocol [5] allows two entities, with no prior secrets or secure asso-

ciation, to agree on a common secret key. However, precisely because no prior secrets are assumed, man-in-the-middle

(MITM) attacks are possible [6], [7], [8]. A number of enhancements to Diffie-Hellman protocol have been developed.

Bellovin and Merrit proposed the encrypted key exchange (EKE) protocol [9] to prevent MITM attacks. However, it

requires both parties to possess a secret password a priori. Although many EKE refinements have been proposed [10],

[11], [12], all involve a pre-shared secret password. This is clearly inapplicable in our targeted environment.

Secondary channels offer another means to defend against MITM attacks. A secondary channel can be used to verify

that the keys computed at both devices are identical. A number of efforts have been made to involve a human user in

the secondary channel in order to manually verify/compare keys (or hashes thereof). Unfortunately, since a numerically-

represent hash can be long and cumbersome, comparing hashes is an arduous process. To ease the burden, visual metaphors

to represent hash values have been devised, including the use of fractal snowflakes [13], [14], random art [15] and flag

1Although we use wireless communication as a running motivation throughout this paper, the difficulty of peer device authentication is not confined
to wireless links. For example, if the communication between the two devices is via wired Ethernet, a similar problem arises. Only a fully visible
point-to-point physical connection would alleviate the peer authentication problem we study in this paper.

3
representation [16]. These representations allow for human users to do rough similarity checking of strings, but they do

not allow for fine-grained comparisons, as required in many security applications.

One notable recent result is the Seeing-is-Believing (SiB) system proposed by McCune, et al. [17]. SiB takes advantage

of the visual channel – since a human user is assumed capable of visually identifying the target device – to provide human-

assisted authentication. This is done by requiring the human user to take a picture (with a personal camera-equipped mobile

phone) of the 2D barcode affixed to, or displayed by, a target device and having the phone interpret the barcode and extract

the cryptographic material identifying the device’s public key. Meanwhile, the target device is supposed to communicate

to the user’s phone the (presumably) same cryptographic material via some wireless channel, e.g., Bluetooth. If the two

versions of the cryptographic material match, the user’s phone concludes that the target device’s public key is authentic.

SiB provides a reasonable level of security, commensurate with what is realistic under the circumstances. Circumventing

SiB requires the adversary to: (1) either hack into the target device and cause it to display wrong barcodes or physically

plaster fake barcodes on the device, and, (2) mount a man-in-the-middle attack on the wireless channel. SiB is also quite

practical particularly because it places very little burden upon the human user: visual identification of the target device

and taking a picture of the barcode.

Another research direction similar to the one taken in this paper is the textual representation of cryptographic strings.

For example, the S/KEY One-Time-Password [18] system represents an MD5 hash as a series of six short (up to four-

letter) words. S/KEY was designed for the automatic generation of pass-phrases, and the pass-phrases are not necessarily

auditorially robust nor syntactically-correct. That is, S/KEY pass-phrases were not meant to be spoken, and there are

some similar-sounding words in the S/KEY word list. The word encoding for PGPfone [19], on the other hand, uses an

auditorially robust word list. Still, it does not produce syntactically-correct string encodings, which makes it harder for

human users to parse PGPfone phrases or even to read along with a spoken version of a PGPfone phrase. Our L&C

system produces phrases that are syntactically-correct and auditorially robust; hence, they are more suitable for human

verification of phrase similarity.

Also of interest are schemes for constructing syntactically-correct pass-phrases from random passwords, e.g., see [20].

Such techniques essentially allow users to remember long passwords using the first letters of the words in an easy-to-

memorize pass-phrase. While syntactically-correct, they are not necessarily auditorially robust.

For peer device authentication, Stajano and Anderson proposed a method for establishing keys by means of a link

created through physical contact [21]. However, due to the diversity in personal devices, it is impractical to expect all

devices to have suitable physical connection interfaces. Likewise, it may also be infeasible to lug around connection

interfaces and or interface converters for various devices. Balfanz, et al. [22] extended this approach to location-limited

channels through the use of short-range wireless Infrared communication. Capkun et al. [23] proposed a further extension

to allow two previously unassociated devices to establish a key utilizing one-hop transitive trust.

4
Manual peer device authentication has also been studied in [24], [25], [26] and [27]. The common element of these

solutions is that the user is required to compare short numerical check values, which are generated by hashing or taking

the MAC of the authentication object. Their limitation is that sufficient security dictates that the check values need to be

relatively lengthy (substantially more than the 4-digit hex vector [24] suggests) rendering their comparison a cumbersome

and error-prone task for humans. [25] improves on [24] by shortening the required length of the check value, yet the user is

burdened with the task of typing a short 2-4 hex digit key using the non-user-friendly input interface of a personal device.

[27] also proposes a solution to reduce the length requirement for the check values. However, it requires a temporary

shared secret between the two peers, thus it is not applicable for devices with no prior association. More recently, Cagalj et

al [28] tackled the problem of user-friendly mutual authentication with three commitment-based [29] techniques. The first

requires the user to compare approximately half the number of bits of the previous solutions. The other two techniques

rely on the specifics of the radio channel; they use distance bounding and integrity codes.

III. Overview and Motivation

In this paper, we investigate the use of the audio channel for human-assisted authentication of unfamiliar devices. We

develop and evaluate a system called Loud-and-Clear (L&C), which, like Seeing-is-Believing (SiB), places relatively

little demand on the human user. L&C uses spoken natural language for human-assisted authentication; hence, it is suitable

for secure device pairing (e.g., key exchange) and similar tasks, such as secure configuration.

The motivation for our work is three-fold:

1) While some mobile phones include a built-in photo (and even video) camera, many other types of personal devices

are not similarly equipped. For example, a camera is not standard equipment on most PDAs (e.g., Treos, Blackberries,

IPAQs and PalmPilots). It is also not present on digital music players and smart watches. Furthermore, even for

mobile phones, an on-board camera results in a certain price differential, as compared to a similar camera-less

phone.

2) The use of cameras is appropriate for most people, except for those who are visually impaired (e.g., legally blind).

One possibility is to print barcodes in Braille, ask the visually-impaired user to identify the target device’s barcode

by touch and then take the picture (with the camera phone) at very close range. Albeit, the associated burden would

be higher than in plain SiB.

3) Barcodes and cameras can be used in many normal everyday settings, such as offices, hotels and airports. However,

there are two important underlying assumptions: (1) ample ambient light, and, (2) sufficient proximity between the

two devices. In other words, in the presence of light-inhibiting environmental factors, such as darkness, smoke or

heavy fog, SiB would not be applicable.

By relying on the use of spoken natural language to provide human-verifiable secure communication, L&C alleviates all

5
of the above shortcomings of SiB. Moreover, the L&C system encodes authentication strings using auditorially-robust,

syntactically-correct “MadLib” phrases, which allows human users to easily verify the authentication strings between peer

devices. To construct auditorially-robust text sequences, we produce a number of word lists of appropriate parts of speech,

with the words in each list being as phonetically distant from each other as possible.

Indeed, we describe in this paper implementations of the L&C system applied to several peer device authentication

scenarios. We also describe performance data for our implementation and security issues related to L&C. That is, we

show that L&C provides an effective solution to many peer device authentication problems.

Nevertheless, the use of the audio channel for human-assisted authentication has its own drawbacks and limitations,

which we readily admit from the outset:

1) Ambient noise is clearly an inhibiting factor for audio-based authentication. Whether comparing two audible se-

quences or comparing one such sequence to a displayed textual representation of the same sequence, noise makes

authentication difficult. By the same token, the audio channel is not suitable for hearing-impaired human users.

2) As discussed later in this paper, L&C requires for at least one of the two devices to have a speaker (or an audio-out

interface). The other device must either have a display or a speaker. While such interfaces are more common than

cameras (as most personal devices are equipped with a speaker or a display, and often have both), we note that SiB

does not require the use of a speaker or audio-out signal (it requires a camera/scanner and a display).

3) L&C places an alternate burden from SiB on the human user. In SiB, the user is asked to visually identify the target

device and to take a picture of the device’s barcode. In contrast, L&C requires the user to either compare two audio

sequences or compare one audio sequence to a displayed textual representation of the same sequence.

It is apparent from the above that, owing to their respective advantages and limitations, SiB and L&C complement each

other.

IV. Main Elements of L&C

In this section, we describe the main elements of the Loud-and-Clear (L&C) system.

As a first application, let us focus on the authentication of a target device to a personal device, assuming no prior

context between the personal device and target device. We assume that in this, and most use scenarios, identification of

the communicating devices is performed visually or tactilely by the human user.

We consider the most plausible type of authentication object, which is the Target device’s public key. The personal

device receives the target device’s public key over a wireless channel (e.g., Infrared, 802.11a/b/g, Bluetooth) and an audio

signal is used as a means of verifying this public key or the one-way hash of this public key.

6
A. Requirements

The specifics of target device authentication in L&C depend upon several factors, such as the type of authentication objects,

directionality, the number of human users, and the device equipment. The following basic requirements are common to

all use cases:

� There is at least one human user present with a personal device.

� At least one device has an audio interface, e.g. a speaker or a audio out plug (though, as discussed below, for the

sake of completeness, L&C also supports the case of both devices having displays but no audio).

� The two devices must be able to communicate via some multiple-access broadcast medium, e.g., 802.11a/b/g,

Bluetooth, Infrared, or wired Ethernet. We make no assumptions regarding the security of this channel.

Figure 1 depicts some anticipated L&C use scenarios.

Fig. 1. L&C Sample Use Scenarios.

B. Classifying L&C Use Cases

Let us consider in more detail the factors that distinguish uses of L&C, including the type of authentication objects,

directionality, the number of human users, and the device equipment.

The first factor that distinguishes use scenarios for L&C is the directionality of authentication, i.e., whether authentication

is one-way (unidirectional from target to personal device) or mutual (bidirectional between the two devices). For example,

7
in the former, the personal device may need to authenticate the target device’s public key and, in the latter, each device

may need to authenticate the other’s public key authentication object. Since the bidirectional use scenario is a trivial

extension of the unidirectional one, in this paper, we focus only on one-way authentication.

A second factor is the number of human users. One classification has a single user with a personal device and the

target device does not have an online human administrator. Another classification has two users, each with a personal

device. In the former case, if mutual authentication is needed, the burden on the sole human user is essentially doubled.

More than anything else, the equipment available on each device influences the particulars of authentication. Some

devices have both a display and a speaker, while others may have only one of these. Thus, some devices, such as low-end

base stations, may at first appear unsuitable for L&C, since they lack both a speaker and a display. Nevertheless, they can

be accommodated (in a manner similar to the way SiB handles display-less target devices), by affixing a sticker to the

target device, which contains the L&C textual encoding of the target device’s public authentication object, displayed in

print and/or Braille form. In addition, any device, such as a point-of-sale device, with an embedded printer (or a printer

itself) is easily supported by L&C, by having the device print an L&C encoding of the authentication object.

We consider four possible use cases for verifiable authentication of some public key:

TYPE 1: hear and compare two audible sequences, one from each device.

TYPE 2: hear an audible sequence from the target device and compare it to text displayed by the personal device.

TYPE 3: hear an audible sequence from the personal device and compare it to text displayed by target device.

TYPE 4: compare text displayed by the personal device to text displayed by target device.

TYPE 1 is the most taxing on the human user of the four; even if the audio sequences are short, comparing them is

difficult due to different audio characteristics and the need for the human user to temporarily remember one sequence

while waiting to hear the other. However, there is evidence [30] that the two sentences can be compared while being

vocalized simultaneously, reducing the user’s memory requirement, as well as the total L&C session time.

The TYPE 2 and TYPE 3 use cases are similar, but not the same, since the actual user actions are not identical for these

two types. For example, listening to one’s own device at very close range is always possible and convenient. Whereas,

listening to an unfamiliar target device may require attuning to an unexpected volume, pitch, voice, and noise.

Concerning use case TYPE 4, it clearly does not involve any use of the audio channel and requires non-visually-

impaired users. Nevertheless, we include it among our supported cases, since it may be used as an alternative or fall-back

method when TYPE 1 to 3 use cases are not plausible. This happens when both devices only have displays, in noisy

environments (e.g during a concert) or when silence is required (e.g in a library). If the audio channel is clear, but the

devices have displays and no speakers, human users could perform the role of the text-to-speech engine and manually

carry a TYPE 2 or TYPE 3 L&C session. Apparently, this use TYPE is not plausible under very low luminance conditions

or for visually-impaired users. Hence, L&C is not usable in environments where both the audio and visual channels are

8
unavailable.

Of course, the equipment factor ultimately determines the amount of burden L&C places on the human user. Table I

shows the types of user requirements corresponding to possible personal-target device combinations. Looking at rows 3

and 6, the choice between TYPE 3 or 1 and TYPE 2 or 1, respectively, can be dictated by the certain properties of the

environment. For example, insufficient light, smoke or fog can make TYPE 1 the only viable choice. A visually-impaired

user is also likely to choose TYPE 1 over TYPE 3 or 2, unless one of the two devices has a Braille display or sticker.

Likewise, the TYPE 4 use case is infeasible for a visually-impaired user unless both devices have Braille displays (or a

Braille sticker, in the case of the target device). In row 7, the choice between TYPE 3 or 4 is less clear. One deciding

factor might be the comparative quality of the personal device’s display and speaker.

Personal Device Target Device
Row Use Type Display Speaker Display Speaker

1 1 no yes no yes
2 3 no yes yes no
3 3 or 1 no yes yes yes
4 2 yes no no yes
5 4 yes no yes no
6 2 or 1 yes yes no yes
7 3 or 4 yes yes yes no
8 1,2,3 or 4 yes yes yes yes
9 n.a. no no * *

10 n.a. * * no no

TABLE I. User Requirements for Various Device Combinations. The Use Type column indicates the allowed types of use cases, depending

on the device characteristics indicated for the personal and target devices. We use ’*’ to denote a don’t-care condition, we allow the ’Display’

condition to include the ability to print or have an affixed sticker attached to device, and we allow the ’Speaker’ condition to include any audio-out

interface.

C. Vocalizable and Readable Representations

In L&C the hash of the target device’s public key must be verified by the user(s) of one or both devices. Comparing

long (e.g., 160-bit) hashes is a tedious and cumbersome task for the average user. In order to make the process faster and

less tedious, a hash must be represented in a more convenient form. In L&C we represent the authentication object as a

syntactically-correct text, with the expected use cases being situations (as in TYPE 2 or TYPE 3) where the user reads

along with an audio text-to-speech reading of the text.

The text strings generated in L&C are based on the “MadLib” puzzles commonly used by children2. That is, we

generate a sentence that is a syntactically-correct (but usually non-sensical) from a string of bits.

This string of bits used in L&C will typically be the output from a one-way hash function. Our current implementation

2In a MadLib puzzle, a funny story is created by having blanks in a text filled in with syntactically-appropriate words chosen by the player or his/her
friend.

9
allows users to choose between SHA-1, MD2, or MD5 hash algorithms, which is then collapsed into smaller size using a

technique similar to the “folding” that is done in the S/KEY One-Time Password System [18]. S/KEY partitions an MD5

hash into four 32-bit words, exclusive-ORs the first and third words as well as the second and fourth words. The resulting

64-bit quantity is then used to compute S/KEY phrase-words. L&C collapses the output to a smaller size by first dividing

the hash into 10-bit sections. The sections are then paired off sequentially and XOR-ed. The process is repeated for each

pair until the desired level of entropy is attained. For example if half of the original entropy is needed, the hash output is

collapsed only once. After the hash is collapsed to the desired level, the result is again divided into 10-bit sections. The

number of 10-bit sections becomes the final length of the MadLib sentence. (For example, using SHA-1 with 80 bits of

entropy would result in 8 MadLib keywords.)

Once the size of the binary input string is determined, an appropriately sized MadLib text is constructed. The text is

generated from a template, which consists of a grammatical sentence (or group of sentences) with missing words, each of

which being of various types, such as noun, adjective, adverb, verb, boy-name, girl-name, or animal. Each missing word

is replaced with a word from a dictionary of appropriate words. The word replacing the MadLib keyword is determined

by converting a 10-bit section of the collapsed hash into an integer and using that as the index into the internal dictionary

database. For example, the following is a MadLib encoding produced by our prototype, for encoding a 70-bit string (the

filled-in words/word-phrases are shown in all caps):

DONALD the FORTUNATE BLUE-JAY FRAUDULENTLY CRUSH-ed over the CREEPY ARCTIC-TERN.

Thus, in order to construct auditorially-robust text sequences, we need to produce a number of word lists of appropriate

parts of speech, with the words in each list being as phonetically distant from each other as possible. Using metric for

phonetic distance similar to that used by PGPfone [19], but restricted to words of the appropriate type, we can create

auditorially-robust word lists for each of the word categories used in our MadLib sequences. In particular, we can do this

as follows.

1) Construct a large set
�

of candidate words of the appropriate type. These should be common English words that

can all be used in same place in a MadLib text sequence.

2) Select a random subset � of ��� words from
�

, where � is the number of bits we wish to have this type of word

represent (e.g., � bits for any noun).

3) Repeatedly find the closest pair �	��

��� of words in � (using the phonetic distance metric) and replace � with a word

from
��� � whose distance to any word in � is more than ������

��� , if such a word exists. The resulting set will

be a collection of phonetically well-spread words.

4) Order � so that each pair of consecutive words in � are as far from each other as reasonably possible. Doing this

optimally is NP-hard [31] but we can use a heuristic algorithm based on pairwise swapping of words in � to come

up with a good order for � .

10
5) Assign integer values to the words in � according to a Gray Code, so that consecutive integers differ in exactly

one bit but their respective code words are distant.

This algorithm helps to make the assignment of words to bit sequence auditorially robust—small changes (even to one

bit) in the input should result in noticeably different sounding text strings.

Having described the use types for L&C and the way to produce MadLib text sequences from authentication objects,

we describe some example use cases in more detail in the next few sections.

V. Unidirectional Authentication

Providing one-way authentication between devices that have no prior shared context is a challenging problem. Using L&C,

the human participates in the procedure and she is able to authenticate the public key of the target device. Using L&C in

unidirectional authentication eliminates the need for a trusted party or any pre-shared secret. L&C supports all four types

of use scenarios for unidirectional authentication (see Section 3).

In our first example, we consider a target device without a screen or a speaker, e.g., an 802.11 wireless access point.

Any wireless device connected to the access point can read out the MadLib sentence generated from the received public

key and the user can authenticate the access point by comparing the sentence read out in his machine with the one seen

on the sticker attached to the access point.

Another common example is using a printer in a public place. Similar to the above, a printer could have a sticker

with the sentence corresponding to its public key. However, a printer is capable of visualizing sentences using its printing

functionality. With the help of a button on a printer, it can be asked to print its MadLib sentence and the printer can be

authenticated by the identical sentences that are heard from the computer and seen on the paper.

Sound is one of the main elements that enables visually impaired people to interact with the outer world. In this sense,

L&C could be easily used to help visually impaired people to authenticate devices or even identities. One basic example

could be the authentication scenario of bank ATM’s. A visually impaired person could be given a MadLib sentence when

she opens a bank account. This MadLib sentence is generated from the card number and its expiration date but using a

keyed hash, with a secret key known only by the bank. When the card is inserted in an ATM, the ATM will generate and

read the MadLib sentence corresponding to the account number.

VI. “Presence” Confirmation

Similar to SiB, L&C can be used to prove the “presence” property of a separate device. A device equipped with a speaker

or display can use L&C to confirm, without the assistance of a human, the presence of some other user-attended device

within a given range.

To detect the presence of a nearby device, the device generates a nonce value, hashes the nonce value, and converts

11
the hash into the correct MadLib. The device then either displays or automatically speaks out the MadLib, noting the time

when the MadLib was displayed or spoken. A user who is in the proximity of the device should be able to read or hear

the MadLib and enter the MadLib sentence into their personal device. The personal device can then simply reverse the

MadLib encoding process by determining the index of the word in its corresponding dictionary and using the bits of the

index as bits of the hash. Once the entire hash has been reverse-computed from the MadLib then the personal device can

broadcast the hash of the nonce over the wireless channel. When the original device receives the hash of the nonce over

the wireless channel, the device knows that a human user has been present at the display’s line-of-sight or within hearing

range of the speaker. We assume here that it is hard for a user to strategically place undetected speech or text recognition

devices that would relay this information to a remote device.

While the “presence” property can be achieved by devices, it is not robust. It is impossible for the device to determine

how many devices are within hearing range or how many are capable of seeing its display. It is also difficult to differentiate

between a user in the proximity and a user that has strategically placed speech or text recognition devices that would relay

the audio or visual signal to a remote device. However we assume, that it is hard and not beneficial enough for a user

to do so undetected. The device is only capable of verifying that the hash received over the wireless channel is the same

as the one generated. If desired, it is possible to determine the time difference between when the nonce hash is received

over the wireless channel and when it was first displayed or spoken.

Even though the “presence” property is not robust, it is not without its own uses. A device can use the “presence”

property to limit the authority to control the device to users located within view or hearing range of the same device. This

property can also be used as a means of triggering the power saving feature of a device, when no user-attended device is

within visual or audio range. Before a device switches to a lower power consumption state, the device displays or speaks

the MadLib. If no response is received over the wireless channel after a certain time period, the device assumes that it is

not needed by a user-attended device in the proximity and that it can safely switch state.

VII. Implementation and Performance

In this section we describe the prototype implementation of L&C and experimentally assess and analyze its performance,

taking into account various cost factors.

A. Implementation Overview

Since L&C is intended for a variety of mobile computing platforms, portability is a key requirement. We built L&C

using the highly portable Ewe Programming System [32] which facilitates the development of Java applications.3 Our

implementation runs on any Pocket PC (iPAQ in our experiments) and any Windows PC.

3Ewe is currently available for the following platforms: Pocket PC (Windows CE), MS SmartPhone, Casio BE-300, HandHeldPC Pro, Sharp Zaurus,
Linux PC, Windows PC and any Java 1.2 VM.

12
As part of its initialization, L&C allows selection between bi-directional and uni-directional public key authentication.

In the uni-directional case, L&C runs on Alice (a user-attended personal device) to verify the public key of Bob, an

un-attended target device, as discussed in Section 3. In the bi-directional case, both devices are user-attended, either by a

single user or two different users. Also at bootstrap time, L&C allows the choice of 802.11 or Infrared communication

channel. One of the participants/devices (say, Bob, the target device) initializes L&C and waits for a TCP connection

on a well-known port over one or both communication channels. Alice’s user physically approaches Bob (particularly

relevant for Infrared communication), initializes its L&C application and connects to Bob. Next, Bob sends its public key

to Alice via the selected communication channel. In case of bi-directional authentication, Alice reciprocates. On Bob, L&C

converts the hash of the local public key into a MadLib sentence (as discussed above) and displays sentence. On Alice,

L&C converts the hash of the received public key and displays the corresponding MadLib sentence. In the bidirectional

case, in addition to the above, Bob converts the hash of Alice’s public key and Alice generates the MadLib of her key.

The user(s) have the option to vocalize the sentences on both devices.

Recall that there are four types of user requirements or settings. In Type 1 setting, the user hears the same MadLib

vocalized by both devices. In Type 2 and Type 3 settings, the user reads the MadLib from one device and compares it to

the same MadLib vocalized by the other devices. Finally, Type 4 involves the user reading and comparing two Madlibs,

one displayed by each device.

Although the main purpose of L&C is to authenticate one (or both) public keys, this process usually serves as a prelude

to a key exchange protocol, i.e., the generation of a session key to be used for subsequent secure communication between

the two devices in question. For this reason, L&C includes two flavors of public-key-based key exchange protocols:

RSA- and DH-based. These are basically standard textbook protocols (e.g., the Station-to-Station protocol) and we do not

elaborate on them further.

B. Implementation Details

Owing to modular software design, L&C can utilize a variety of Text-to-Speech (TTS) engines. However, most C/C++

speech engines are platform-dependent, while those written for mobile devices are mostly proprietary. Furthermore,

Java-based TTS engines are available for specific JVM-s that are unsuitable for resource-constrained devices, such as

smartphones and iPAQ-s. Specifically, Sun offers the JSAPI and FreeTTS Java TTS engine implementations. However,

these run only on Java 1.4. Therefore, we employed existing TTS applications that could be used by L&C—Digit for

PC and Pocket PC by Digalo 4, which is a simple lightweight clipboard reader that uses the Elan Speech Engine. 5 Our

application copies the text to-be-vocalized onto the system clipboard and Digit speaks it out automatically or when the

user presses a button on the application window. Digit is initialized and terminated from within the Ewe program.

4See: www.digalo.com.
5See: www.elantts.com.

13
Ewe does not provide a complete API for low-level cryptographic primitives. Thus, in order to implement DH- and

RSA-based key exchange protocols, we added a lightweight cryptographic API to Ewe’s Java libraries. For this purpose,

we ported the Bouncy Castle crypto package [33] for JDK 1.3. For hashing we used Ewe’s built-in SHA-1.

The FreeTTS and Bouncy Castle crypto package are written solely in Java and do not link to native platform-specific

libraries, facilitating L&C’s platform independence. So far, we tested L&C on Pocket PC and Windows PC. L&C can also

be used with the rest of the Ewe-supported platforms platforms by changing the TTS engine. We are currently porting

Sun’s FreeTTS and JSAPI into Ewe.

NOTE: L&C source code, installation instructions as well as pictures and a video demonstrating L&C can be found at

www.ics.uci.edu/ccsp/lac.

C. L&C Performance

In this section we evaluate L&C performance using a commodity laptop PC as a target device and a low-end iPAQ as a

personal device. The laptop PC is equipped with: Intel Pentium M Centrino 1.7GHz, 400MHz FSB, 2MB Cache and 512

MB RAM running Windows XP. The iPAQ is a Compaq 3650 equipped with: an Intel Strong ARM SA-1110 32-bit RISC

processor operating at 206MHZ, with 31.25 MB RAM, 16 MB ROM running Windows CE version 3.0.9348 (Pocket PC

2002). For the 802.11g channel we configured a wireless subnet consisting of: one wireless router, two iPAQs and a PC.

The channel’s nominal bandwidth for all devices is 54 Mbps. The Infrared ports of all devices operate at 115 Kbps.

As mentioned above, once L&C key authentication completes and after the user or users have verified each other’s

public keys, the two devices proceed with establishing a shared secret. However, the protocol for generating a shared

secret does not require any human involvement. Therefore, it is omitted from the following performance analysis.

We analyze L&C performance for human-verifiable authentication of either Diffie-Hellman (DH) or RSA public keys.

The system-wide known DH parameters ����
�� and ��� (see Appendix) and the RSA public exponent � are neither sent nor

verified by L&C. Furthermore, the DH key pair and the RSA public key are generated off-line and do not contribute to

protocol completion time, regardless of whether they are ephemeral or long-term. L&C can generate a new DH key pair

for the same DH parameters in �������
	 � and �����
	�� ms on the iPAQ and PC, respectively. The corresponding times for the

generation of RSA key pairs is significantly larger, since prime number generation is involved. Note that we use ������� -bit

moduli for both RSA and DH (see Appendix).

Table II, lists processing times only for the operations that involve (or lead to) human-verifiable authentication of public

keys. Tables III(A), III(B), and III(C) show timings for different types of L&C unidirectional authentication sessions. The

corresponding bidirectional sessions can be analyzed in a very similar manner, therefore we do not include it in our

analysis. Operations are listed in the order they take place.

Measurements for operations 1 through 5 are obtained as the average over 20 L&C sessions operated by human users.

The times for other operations are obtained over 300 bulk repetitions of L&C sessions that do not include the above

14
four operations. We use Ewe’s timing function, which offers (only) ��� ms precision. L&C initialization times (row 1) are

obtained after RAM has been reset, so that they include the time to load all the application (Ewe VM, L&C class files and

Digit) into memory. The total time does not reflect any further delays introduced by a human user, hence, it represents a

rough approximation.

No Operation iPAQ Laptop PC
1 Ewe VM and GUI initialization 2430 120
2 Digit initialization 18310 1092
3 L&C setup by user 1502 910
4 TCP Connection est., 802.11g 3.2 0.4
5 TCP Connection est., IR 3.4 -
6 pub. key transmission, 802.11g 5.6 0.1
7 pub. key transmission, IR 6.1 -
8 pub. key MadLib generation 365.6 17.1
9 pub. key MadLib vocalization 4791 4637

TABLE II. Average processing times (in ms) of L&C operations.

Ewe VM and GUI initializations take place while Digit is initialized. For L&C running on a PC, these initializations

complete almost simultaneously, allowing the user to proceed with L&C setup while Digit bootstraps. On an iPAQ, Digit

initialization preempts the processor, not allowing the user to use the GUI to setup the session. Therefore, at this phase

of the L&C session, Digit initialization is the only operation that needs to be considered.

In reality, the time a user spends on L&C setup is comprised of: (1) entering the target device’s network address (IP

address or “infra-red”), pressing “Enter” and “Connect” buttons and, lastly, aligning the devices if the Infrared channel

is used. It also includes the time for the application to reach the accept() or connect() calls. For the experiments, the

Infrared ports were pre-aligned and default network addresses were used. Hence, the user needs only to press two buttons

to initiate the connection.

Connection establishment time (operation 4 or 5 in Table II) is the time required by the TCP socket connect() system

call to connect to the accepting process running on the iPAQ or the PC. (We measured L&C sessions over the IR channel

only between iPAQs.) Times for operations 10 and 11 vary with the length of the Madlib sentence.

Operations 1, 2, 3, 6, 7 and 8 in Table II, take place concurrently on both devices. Therefore, only the lengthier of the

two counts towards the total time. We do not measure the time for reading the Madlib sentence from the device’s display

since it is user-dependent. In all experiments, we use syntactically-correct MadLib sentences consisting of 10 words, of

which 7 are S/KEY-generated. The sentence format is the same with the one presented in Section IV-C.

Table III shows the timings for TYPE 1, 2 and 4 L&C sessions. The row labeled “Initialization” at the top of the

table reflects the sum of rows 1, 2, 3 and 4 (iPAQ column) of Table II. This significant delay – almost 22 seconds – is

induced by all the non-cryptographic software initialization on the iPAQ. Also, this delay is independent of the L&C use

15Initialization 22,245

(A) Type 1
Table II, Row 6 Col. 3 5.6
Table II, Row 8 Col. 3 365.6
TableII, Row 9 Col. 4 4,791
Table II, Row 9 Col. 3 4,637
TOTAL TIME 32,044

(B) Type 2
Table II, Row 6 Col. 3 5.6
Table II, Row 8 Col. 3 365.6
Table II, Row 9 Col. 4 4,637
TOTAL TIME 27,253

(C) Type 4
Table II, Row 6 Col. 3 5.6
Table II, Row 8 Col. 3 365.6
TOTAL TIME 22,616

TABLE III. Timings (in ms) for TYPE 1, 2 and 4 L&C Sessions.

case.

Table III(A) examines the absolute worst case scenario under unidirectional authentication – that involving a user

performing one-way, voice-only (TYPE 1) authentication of the target device’s public key. The user verifies the target

device’s (PC) public key by hearing the corresponding MadLib spoken by the PC and its iPAQ device, in either order. (Our

preliminary user studies indicate that it is preferable for MadLibs to be vocalized simultaneously; otherwise, users have

difficulty understanding the sentences.) This means that our scenario includes two MadLib generations: one per device

which can take place concurrently. In addition, it includes two MadLib vocalizations, which must take place sequentially.

The row labeled “TOTAL TIME” reflects the sum of the times for all individual operations. As the results show, the TYPE

1 unidirectional session between the iPAQ and the laptop PC can complete in approximately � � seconds.

Table III(B) examines the most commonly anticipated use scenario, which corresponds to TYPE 2 of Section 3. It

involves uni-directional audio-based authentication of the target device’s public key. The user-attended iPAQ receives the

public key of the target device (PC), hashes it and generates the corresponding MadLib. Then, the user reads the MadLib

sentence from the iPAQ’s display and compares it to the vocalization by the PC. As can be seen in the table, the time

required by this type of L&C session totals approximately ��� seconds.

Table III(C) shows timings for a uni-directional display-only (TYPE 4) L&C session, assuming 802.11g channel. The

actual time would include that needed by a user to read and compare the two displayed (one on each device) MadLib

sentences. We did not measure TYPE 3 as it is very similar to TYPE 2.

16
D. Performance Analysis

Table II clearly illustrates that the overall cost is dominated by: (1) Ewe VM and GUI initialization and (2) MadLib

vocalization. The first can be omitted if multiple L&C sessions take place after a single initialization or if L&C is pre-

initialized. Naturally, the time to speak out a MadLib sentence is proportional to the word length of the sentence as well

as to the number of syllables in each S/KEY-generated word. Therefore, it can vary for the same word-length sentences.

MadLib generation is approximately 20 times more expensive on Pocket PC. It is also evident that the time for a

typical user to set up L&C is greater on an iPAQ than on a PC. This is due to the rather user-un-friendly GUI and slower

rendering of the GUI components on the Pocket PC.

Communication costs represent only a tiny fraction of the total cost. Transmission of the public keys is an order of

magnitude cheaper on a PC. Since packet traversal of the protocol stack – and not the actual transmission over the physical

medium – is the dominating factor of the communication cost, the difference in communication costs over the 802.11g

and Infrared channels is truly insignificant.

Processing and memory limitations on the iPAQ result in significantly longer delays than on the PC. However, we stress

that we used old and low-end iPAQs in our experiments. Using current state-of-the-art iPAQs or other similar devices

would greatly reduce delay. Experiments suggest that the most plausible way to reduce protocol overhead is to shorten

MadLib sentences and speed up TTS engine initialization time. From the above analysis, we conclude that L&C is a

viable solution on platforms with moderate computation and communication capabilities.

E. Performance Improvements

A US patent addressing a similar problem to ours [24] proposed augmenting the DH key agreement with additional

steps. Upon completion of Diffie-Hellman exchange, both devices one-way hash the agreed-upon session key. Then they

truncate the hash bit sequence to the desired length by taking its leftmost bits. The device(s) can display this bit sequence

(thereafter referred to as check value) allowing the user(s) to compare them and verify that both devices have a common

session key.

The pitfall of hash truncation lies with the number of digits that need to be examined by the user. Reading or typing

a large number of digits using the small interfaces of a personal device without error can be cumbersome. Drastically

truncating the hash-code, e.g. to the first 16 or 32 bits results to a serious security weakness. 6 Based on the assumed

adversarial capabilities (see Appendix and Section VIII-A), ��� ��� and ��� ��� provide the necessary security when

ephemeral public keys and one-year-term keys are used, respectively.

When ephemeral DH public keys are used, examining 13 hexadecimal digits is an error prone task for a human. L&C

renders such comparison user-friendlier, because the user compares five-S/KEY-word Madlibs. The time to vocalize a

6The attacker can replace Alice’s transmitted ��� value with ����� , wait for Bob to reply with �
	 and intercept his transmission. Next, the attacker can
perform exhaustive search to find �
	�� such that ��
���������	�������
�������	���� , and relay �
	�� to Alice as Bob’s public key. On average, the attacker needs to
perform �
���� modular exponentiation and hashing operations before a suitable "! value is found.

17
five-S/KEY-word sentence is on average ������� ms on a PC and ������� ms on the iPAQ. Shorter MadLib sentences yield

reduced vocalization time and easier comparison for the user. Indicatively, the TYPE 2 scenario described in Table III(B)

would require a total of approximately � �
	 � seconds to complete.

In [25] the proposed solution prevents attackers from finding second pre-images for long-term public keys, without

requiring the users to examine too long hexadecimal sequences. The schemes of interest are called MANA-I and II and

they employ keyed check-functions that use short (10-20 bit) keys and produce short check-values. These check-functions

are essentially MAC (Message Authentication Code) functions. We denote this check function as ��� � � � �	� � , where � is

a random key, � is the length of the check value and � is the verification object (e.g a public key). The MANA-I-inspired

L&C would operate as follows in the case of unidirectional long-term public key authentication:

1) Bob sends Alice his public key (e.g ��
) using the unprotected wireless channel.

2) Bob generates the random 20-bit key � to use with the check-function. Bob also generates the check-value ��� � � ��
 � ��
 � .
Bob generates the MadLib sentence for the check-value (five words) and a 4 digit hexadecimal sequence for the

random key. Bob displays or vocalizes the MadLib and the 4-digit sequence.

3) The user enters the presented by Bob random key to the device Alice.

4) Alice uses the random key to recompute the check-value on the received ����� , and displays or vocalizes the check

value MadLib.

5) The user completes the process by comparing the values displayed by the two devices. Only if the check-value

MadLibs are the same, the exchange is accepted by the user.

Using MANA-I, the length of the MadLib sentence, when long term public keys are used, is reduced from the

recommended seven S/KEY words to five. However, the user is required to enter a four digit hexadecimal code in

one of the two devices, using a keyboard or a touchscreen, certainly resulting to more time-consuming verification.

To avoid entering the key, we could use MANA-II, in which the random key is transmitted over the wire (becomes

available to the attacker) and is displayed for comparison on both devices. For long term public key verification, it would

still require the user to compare a five S/KEY word sentence plus two S/KEY words for the key, yielding no actual gains.

However, MANA-II can be used to authenticate the agreed upon shared secret, when long-term public keys are used,

without exposing substantial information about it. The use of the random key further masks information about the secret.

In [28], Cagalz et al. proposed the DH-SC protocol for human-verifiable authentication. This protocol uses a commitment

scheme, which transforms a value � into a commitment/opening pair ���

� � . In this pair, � reveals no information about

� (e.g � is public key encyption of �) but � and � (e.g � is the encyption key) reveal � . In an ideal commitment scheme

it is infeasible to find ��� such that ���

��� � open to �������� . Their protocol requires the communicating parties to compare

a string derived from the XOR of two per-session random bit-sequences contributed by the two parties. Hence, unlike

MANA-II, the users do not have to compare a value (the random MAC key), which does not contribute to the uncertainty

18
of the attacker. Hence, DH-SC effectively reduces the length of the compared values for a given level of security. For

example, two-S/KEY-word MadLibs generated from the random bit-sequences provide security almost equivalent to the

one of five-S/KEY-word MadLibs derived from the hash of the ephemeral DH public keys (see Section VIII-A).

The DH-SC protocol proceeds as follows: Both Alice and Bob (� and �) generate their public keys � � and �
 , respec-

tively. Then A and B each generate a � -bit random string ��� and ��� . They use them to calculate commitment/opening

pairs for the concatenations ��� � ���	� � and �
� ��
���� � (� and � are fixed values used to prevent reflection attack). In the first

message, � sends to � the commitment � � and � responds with his commitment � � . In turn, � sends her commitment

key �
� with which B opens �	� and obtains � � � and ��� � . � checks the correctness of the commitment pair �
�

�
� and

verifies that 0 appears at the beginning of the message. If the verification is successful, � sends ��� , with which � opens

� � and obtains �
 � and � � � . A checks the correctness of the commitment and if it is valid, both parties proceed with

generating the verification strings for � � ��� ��� � � � and � � ��� ��� � � � , respectively. Now the users of A and B can

simply compare the verification strings (MadLib sentences for L&C) and accept the exchanged public keys only if they

match.

VIII. Security Analysis

Assuming that all underlying cryptographic primitives, cryptographic hash functions and public key algorithms (RSA and

Diffie-Hellman key agreement) are secure, the security of L&C depends on the adversary’s inability to: (1) interfere with the

audio or visual channel and (2) compromise the target device. In this section, we discuss the security of the cryptographic

primitives and compare the security of the alternative channels. We then discuss some concrete attack scenarios.

A. Cryptographic Primitives

To establish a secure bidirectional channel between communicating devices (as described above), L&C uses either the

ephemeral DH key agreement or RSA-based mutual key agreement (see Appendix). The security of both methods is based

on well-known and believed-to-be-hard computational problems. Both types of key agreement can be protected against

man-in-the-middle (MITM) attacks by verifying the exchanged public keys. Security against MITM attacks can also be

achieved by using L&C to verify the hash of the agreed-upon shared secret and a random value known by both parties.

However, public key verification is preferable because the users can detect the attack early in the process and abandon

it without performing further expensive computations. Also it is common for users to exchanged public keys in order to

establish secure communication at a later time, in which case they do not need to generate the shared secret immediately.

Furthermore, it is wise not to expose any information about the shared secret by using L&C to verify it. 7

In the DH case, the two devices exchange their respective public keys. By verifying that the received DH public key

originates with the intended sender, the user(s) can be certain that the DH session key is the same for the two parties.

7Unless we employ a secure MAC function as is the case with the MANA-II-inspired protocol presented in the previous section.

19
In one variation of the RSA-based scheme, the two devices exchange their public keys, which they use to encrypt session

key contributions. If the user(s) verifies, using L&C the other party’s public key, he can be certain that the encrypted

session key contributions cannot be decrypted by an adversary and the final session key is secure. Even if the adversary

interferes with the transmission of the encrypted key contributions, the result would be failed key agreement which can

be easily detected by both parties.

The devices can optionally use their RSA keys to sign a well-formatted message containing the encrypted partial secrets.

In this way they ensure that the encrypted partial secrets originate with the intended sender and avoid the delay involved

in detecting shared secret inconsistency if an active attack were to occur. Alternatively, they can use displayed or vocalized

Madlibs to verify the established shared secret. Although shared secret verification is sufficient to detect MITM attack at

any stage of the protocol, they can combine it with public key verification to possibly detect an attack earlier.

In L&C the hash function of the transmitted public key is converted to a MadLib sentence. During the conversion, the

length of the MadLib sentence can be set to the desired entropy level. If the adversary can find a second pre-image of the

hash value that encoded in the MadLib sentence, then it can attack the communication channel and replace the transmitted

key with the collided pre-image, causing the two devices to falsely verify the key agreement. However, second pre-image

resistance is a required property for cryptographic hash functions and we assume that it holds.

Although the length of the MadLib sentence can be set to achieve the desired level of security, it is commensurate

with the burden of comparing longer sentences. In many cases, the user is not expected to memorize the sentence, but a

longer sentence still results in a longer verification time. The vulnerability of using short sentences becomes real when

long-term DH public keys are used. In this case, the adversary may have enough time to find a second pre-image via a

brute force attack.

According to our experimental results, the DH public key exchange in L&C requires only a few milliseconds (around �
ms) even in resource-constrained PDAs. The attacker would need to perform on average � ��� � modular exponentiation and

hashing operations to determine ��� such that
�
� � � � � � �

�
� � � � � , where

�
� � � denotes the collapsed to t bits one-way hash.

For � � � � the attack requires roughly � � � million trials. Under our adversarial model (see Appendix) and assuming that

the key exchange “times out” after at most 100 ms, the attacker is able to perform 100 million trials. Therefore, � � ���

(five-S/Key-word MadLib) should suffice to ensure that, in the case of ephemeral DH, the attacker can succeed only with

probability roughly equal to ������� . Once a session key is established, finding the collision on the MadLib sentences does

not give the adversary any advantage. The public key generation for RSA is significantly costlier rendering the above

attack infeasible even for smaller values of � .

The attacker may resort to off-line pre-computation of public keys that hash to all possible � -bit hash values, opting to

derive second pre-images by an efficient table lookup at key exchange time. He can compute the MadLibs for � � public

keys and store these values. He can repeat this process with new public keys until he derives second pre-images for more

20
� -bit hash values increasing his probability of success. Taking into account the indexing information and that table entries

consist of the � -bit hash values and at least two public keys that hash to the same value, the storage required is more than

� ��� �
bytes. Based on our assumptions (see Appendix), a powerful attacker can perform roughly � ��� trials per year, thus

for � � ��� he can succeed with significant probability after a year of computations. The actual limitation is the storage

requirements which would be as high as eighteen petabyte. In order for the attacker to succeed with probability higher

than � � ��
 , he would need to store more than � ��� bytes. Still, the table lookup operation would be unlikely to complete

in a few milliseconds, even if we assume very efficient indexing and lookup algorithms and very fast disk and memory

access times.

Given the assumed adversarial capabilities, if one-year-term DH public keys are used, � � ��� �
��� (seven S/Key

generated words) is sufficient to prevent an attacker from finding second pre-images with significant probability.

If L&C uses the DH-SC protocol, generating MadLib sentences from the verification bit-strings � �
 � � , the attacker can

succeed only by guessing correctly the random values � �
 � � . He can use � �
 � � to create commitments for his public

keys, which can in turn be used to mount an active attack. Since he has only one opportunity to send fake commitments,

the probability of success, given
� � � �

�
� � � �

� � , is � ��� . Hence, � � ��� (two-S/KEY-word MadLib) provides security

roughly equivalent to the one achieved using five-S/KEY-word MadLib derived from the hash of the ephemeral DH public

keys. The security of DH-SC is discussed thoroughly in [28].

B. Alternative Channels

Authentication of communicating parties without the assistance of a trusted party requires a communication channel that

is secure against active attacks. In this section, we discuss several alternative channels and their security compared to that

of L&C.

Wired channels between two devices, such as cross-over Ethernet, direct USB or serial connection, can be considered

secure against active attacks since both ends of the cable are directly connected to the intended devices and the entire

cable is visible to the human user. However, lugging around different types of wires in order to to communicate with

different types of devices is quite cumbersome.

Wireless alternatives, such as 802.11a/b/g, Infrared and Bluetooth, are not secure against MITM attacks. A human user

is essentially incapable of identifying which two devices are actually communicating over a wireless channel. The only

way to be sure that the intended devices are communicating without interference is through status indicators on devices,

which is prone to errors and attacks. Among wireless alternatives, Infrared is considered most secure since it requires

a direct line-of-sight between devices (which can be visually inspected). However, it is still possible for a well-placed

adversary in a device-crowded setting to interfere with communication, since the human user cannot determine the exact

direction of an infrared signal.

As discussed in Section I, the visual channel – exemplified by SiB is a very viable alternative. However, many devices

21
lack cameras as well as large-enough displays and powerful-enough CPUs to perform necessary image processing (e.g., to

extract the barcode). Furthermore, environmental factors inhibiting the use of cameras as well as sight-impaired users limit

the applicability of the visual channel. Other hash visualization techniques [34], [35], [16], [13] are also viable alternatives

for verifying public and/or session keys. They can detect MITM attacks as long as the comparison is done very carefully

and the environment is well-illuminated.

C. Attacks Against L&C

Using L&C, the man in the middle adversary is easily detected. When the personal device’s user asks for the target device

to read its MadLib sentence loud, if she is far enough, an adversary device close to the target device could impersonate

the target device. A human user however, can trivially determine whether it is the target device talking by checking the

screen or sensing the origin of the sound. Furthermore, the user(s) can detect the active attack if the adversary generates

sound without previously asking the device(s) to do so.

An adversary may attempt to attack L&C by using malicious software surreptitiously installed on the target device.

Malicious software might tamper unnoticed with the input and output of the desired application. This problem is sometimes

referred to as secure windowing or establishment of a trusted path to system window [36]. Such attacks can be prevented

by using a good system window policy, e.g., displaying application windows in predetermined locations or, as proposed in

[37], using predetermined window backgrounds known only to the user. A malicious application may also try to process

the MadLib sentence from screen pixels and redisplay it, which would appear legitimate to the user. This can be prevented

by limiting the screenshot and copy operations to the application that is on top at the time. EROS, a trusted window

system, proposed by Shapiro, et al. [36] provides further details on how to achieve this type of protection.

An adversary may also emit interference in the form of ambient noise in order to alter L&C audio. However, this attack

can be easily detected by a human user since two different sound sources would be involved. Moreover, the adversary

would need near-perfect synchronization, a-priori knowledge of the MadLib sentence and plenty of computational power

to be able to produce correct sounds that will make the sentence sound like a MadLib sentence corresponding to some

public key picked by the adversary.

Excessive ambient noise could also prevent the user(s) from hearing each other’s devices, but the source of the noise

would be obvious. Even if it cannot be avoided, ambient noise would at best result in denial of service. In such cases,

user(s) can fall back to comparing MadLib sentences displayed or printed on the screens (or stickers) of the respective

devices.

IX. Conclusions

This paper discussed the design of the Loud-and-Clear (L&C) system for human-assisted device authentication. L&C

places relatively little burden on the human user, since it is based on the audio channel and uses a text-to-speech engine to

22
read an auditorially-robust, syntactically-correct sequence derived from an authentication string. We also discussed some

anticipated common use cases and provided experimental performance data for a prototype implementation.

References

[1] Loren M. Kohnfelder., “Towards a practical public-key cryptosystem.” 1978, b.sc thesis, MIT Department of Electrical Engineering.

[2] P. Zimmermann, The Official PGP User’s Guide. MIT Press, 1995.

[3] S.P. Miller, C. Neuman, J.I. Schiller, and J.H. Saltzer., “Kerberos authentication and authorization system.” in Project Athena Technical Plan, 1987,

p. pg section E.2.1.

[4] Jennifer G. Steiner, Clifford Neuman, and Jeffrey I. Schiller., “Kerberos: An authentication service for open network systems.” March 1998,

Manuscript.

[5] W. Diffie and M. E. Hellman., “New directions in cryptography.” in IEEE Transactions on Information Theory, November 1976, pp. IT–22(6):644–

654.

[6] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone., Handbook of Applied Cryptography, ser. CRC Press Series on Discrete

Mathematics and its Applications. CRC Press, 1997.

[7] D. Kugler, “Man in the middle attacks on bluetooth,” In Financial Cryptography ’03, Long Beach, 2003. Lecture Notes in Computer Science,

Springer-Verlag.

[8] M. Jakobsson and S. Wetzel, “Security weaknesses in bluetooth,” Lecture Notes in Computer Science, vol. 2020, pp. 176+, 2001.

[9] Steven Bellovin and Michael Merrit., “Augmented encrypted key exchange: a password-based protocol secure against dictionary attacks and

password file compromise.” in First ACM Conference on Computer and Communications Security CCS-1, 1993, pp. 244–250.

[10] V. Boyko, P. MacKenzie, and S. Patel., “Provably secure password authentication and key exchange using diffie-hellman.” Advances in Cryptology–

EUROCRYPT, vol. 1807 of Lecture Notes in Computer Science, pp. 156–171, 2000.

[11] P. MacKenzie, S. Patel, and R. Swaminathan., “Password authenticated key exchange based on RSA.” in Advances in Cryptology – ASIACRYPT,

2000, pp. 599–613.

[12] T. Wu., “The secure remote password protocol.” in Network and Distributed System Security Symposium, February 1999.

[13] Ian Goldberg., “Visual key fingerprint code.” 1996, Available at http://www.cs.berkeley.edu/iang/visprint.c.

[14] Ralph Levien, “PGP snowflake,” 1996, source code available at: http://packages.debian.org/testing/graphics/snowflake.html.

[15] Adrian Perrig and Dawn Song., “Hash visualization: A new technique to improve real-world security.” in Proceedings of the 1999 International

Workshop on Cryptographic Techniques and E-Commerce (CrypTEC ’99), July 1999, pp. 131–138.

[16] C. Ellison and S. Dohrmann, “Public-key support for group collaboration,” ACM Trans. Inf. Syst. Secur., vol. 6, no. 4, pp. 547–565, 2003.

[17] Jonathan M. McCune, Adrian Perrig, Michael K. Reiter, “Seeing-Is-Believing: Using Camera Phones for Human-Verifiable Authentication,” in

2005 IEEE Symposium on Security and Privacy, 2005, pp. pp. 110–124.

[18] N. Haller, “Available at RFC1760: The S/KEY One-Time Password System,” February 1995.

[19] P. Juola and P. Zimmermann, “Whole-word phonetic distances and the pgpfone alphabet,” in Proceedings of the Fourth International Conference

on Spoken Language Processing (ICSLP), vol. 1, 1996, http://www.asel.udel.edu/icslp/cdrom/vol1/005/a005.pdf.

[20] M. J. Atallah, C. J. McDonough, V. Raskin, and S. Nirenburg, “Natural language processing for information assurance and security: An overview

and implementations,” in Proceedings of New Security Paradigm Workshop, 2000, pp. 51–65.

[21] Frank Stajano and Ross Anderson., “The resurrecting duckling: Security issues for ad-hoc wireless networks.” in Security Protocols, 7th International

Workshop, 1999.

[22] Dirk Balfanz, D.K. Smetters, Paul Stewart, and H. Chi Wong., “Talking to strangers: Authentication in ad-hoc wireless networks.” in Symposium

on Network and Distributed Systems Security (NDSS ’02), February 2002.

23
[23] S. Capkun, J. Hubaux, and L. Buttyan., “Mobility helps security in ad hoc networks.” in Proceedings of the ACM Symposium on Mobile Ad Hoc

Networking and Computing(MobiHoc 2003), June 2003.

[24] D. P. Maher, “Secure communication method and apparatus,” U.S. Patent Number 5,450,493 September 1995. Filed on 29th December 1993.

[25] C. M. C. Gehrmann and K. Nyberg, “Manual authentication for wireless devices,” RSA Cryptobytes, Vol. 7, No. 1, pp. 2937, 2004.

[26] C. Gehrmann and K. Nyberg, “Security in personal area networks,” In C. J. Mitchell, editor, Security for Mobility, pages 191230. IEE, London,

2004.

[27] J.-O. Larsson, “Higher layer key exchange techniques for bluetooth security,” Open Group Conference,Amsterdam, October 2001.

[28] M. Cagalj, S. Capkun, and J. Hubaux, “Key agreement in peer-to-peer wireless networks,” Proceedings of the IEEE (Special Issue on Cryptography

and Security), 2006.

[29] S. Vaudenay, “Secure communications over insecure channels based on short authenticated strings.” in CRYPTO, 2005, pp. 309–326.

[30] D. L. Greg Kochanski and C. Shih, “A reverse turing test using speech,” in Proceedings of the Seventh International Conference on Spoken

Language, September 2002, denver, Colorado. [Online]. Available: http://kochanski.org/gpk/papers/2002/rtt.pdf

[31] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman

& Co., 1990.

[32] M. Brereton, “Ewe java vm for pocketpc,” available at http://www.ewesoft.com/.

[33] “Bouncy Castle Crypto APIs,” Available at: http://www.bouncycastle.org/index.html.

[34] P. D. MacKenzie, S. Patel, and R. Swaminathan, “Password-authenticated key exchange based on rsa,” in Proceedings of the 6th International

Conference on the Theory and Application of Cryptology and Information Security. London, UK: Springer-Verlag, 2000, pp. 599–613.

[35] A. Perrig and D. Song, “Hash visualization: A new technique to improve real-world security,” in Proceedings of the 1999 International Workshop

on Cryptographic Techniques and E-Commerce (CrypTEC ’99), July 1999, pp. 131–138.

[36] J. S. Shapiro, J. Vanderburgh, E. Northup, and D. Chizmadia, “Design of the eros trusted window system.” in USENIX Security Symposium, 2004,

pp. 165–178.

[37] R. Dhamija and J. Tygar, “The battle against phishing: Dynamic security skins,” in SOUPS ’05: Proceedings of the 2005 symposium on Usable

privacy and security. ACM Press, 2005, pp. 77–88.

[38] W. Mao, Modern Cryptography: Theory and Practice. Prentice Hall Professional Technical Reference, 2003.

[39] A. K. Lenstra and E. R. Verheul, “Selecting cryptographic key sizes,” Journal of Cryptology: the journal of the International Association for

Cryptologic Research, vol. 14, no. 4, pp. 255–293, 2001. [Online]. Available: citeseer.ist.psu.edu/article/lenstra01selecting.html

APPENDIX

Below we discuss our assumptions regarding the threat model and the cryptographic operations used in L&C.

We adopt the Dolev-Yao threat model [38], under which the attacker controls the communication channel; he can

acquire any message transmitted over the radio channel and can send messages to any user sharing the channel. We

assume however, that the adversary is computationally bounded. Specifically the attacker can perform at most one million

modulo a � � ��� -bit number exponentiations and hashing operations per second. We further assume that two authenticated

parties involved in the communication trust each other (e.g an authenticated party will not disclose secret information to

a third party).

All the Diffie-Hellman key agreement operations are performed over the multiplicative group � , which is a subset of
���� , where � is a large prime � . � is the generator of � with order � , where � is a large prime s.t. � � � � � . A DH key pair

24
is generated as � � � ��� � ��
 � � , where ��� � �� is the secret key corresponding to the DH public key � � . The Decisional

Diffie-Hellman problem is assumed to be hard in � .

The RSA-based key agreement operations are performed over
� �� , where � is a composite such that � � ��� � where

��

� are large primes. The RSA public key is �
 � and the secret key is � such that �	� � � � � ��� ����� . The factorization

of � is known only to the holder of the secret � and is assumed to be hard.

As commonly done the values ��
 �
 � are both system-wide and long-term. The same is true for the RSA public exponent

� in the case of RSA-based key agreement: we assume that it is constant (e.g., � or � � ��
 �) and known in advance.

However, the device-specific DH key pairs � ����
�� � or the RSA composite modulo � and secret key � can be ephemeral

(different for each each key agreement). The DH public key ��� or the RSA modulo � are the authentication objects.

It is generally accepted that, for any � , factoring � -bit integers requires about the same amount of time as computing

discrete logarithms in �	� �
� � -bit fields, where
�

is a small constant, roughly around � � [39]. Therefore, in our experimental

and security analysis we use ������� -bit moduli for both RSA and DH.

