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Abstract. Most of block cipher based iterated hash functions are based
on block ciphers with different input, output and key modes. We put for-
ward a new type of iterated hash function, whose compression function
is build from modified Feistel Structure and block cipher’s round func-
tion, we call the compression function ”FL-Cipher” and call the iterated
hash function ”FL-Construction hash function”. The FL-Construction
and FL-Cipher are designed to be secure and its security relies much on
the security of known block cipher algorithm and Feistel structure. We
also prove that FL-Cipher is a good function for build compression func-
tion and FL-Construction is a OWHF and CRHF, in black box model.
We also describe an specific instance of FL-Construction named Dolly,
which has same round function and key schedule algorithm as Rijndael
and its security relies much on the security of Rijndael and the security
of Feistel Structure.

1 Introduction

A hash function is a function H : {0, 1}∗ → {0, 1}n for a fixed positive integer
n and with the property that H(x) is easy to compute for all x ∈ {0, 1}∗ for
any person. A cryptographic hash function is a hash function with collision
resistant. A hash function uses a secret parameter (the key) then called a Message
Authentication Code or MAC.

Almost all known hash functions are based on a compression function with
fixed size input and called an ”iterated” hash function. The iterated hash func-
tions have been divided into four classes[2]: hash function based on a block
cipher, hash functions based on modular arithmetic, hash functions based on a
knapsack and dedicated hash functions.

The main idea of hash function based on block cipher construction is limited
in changing the input, output and key modes of block cipher to build a hash
function, it rarely considers the block cipher algorithm used in dedicated hash
function construction.

In this paper, We present a new type of iterated hash function, whose com-
pression function has modified Feistel Structure and block cipher’s round func-
tion, we call the compression function ”FL-Cipher” and call the iterated hash
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function ”FL-Construction hash function”. We prove that FL-Cipher is a good
function for build compression function and FL-Construction is a OWHF and
CRHF, in black box model. We also describe an specific instance of FL-Construction
named Dolly, which has same round function and key schedule algorithm as Ri-
jndael.

The paper is organized as follows. The mathematical preliminaries and no-
tation employed are described in section2. Specification of FL-Cipher and FL-
Construction are given in section3. The hash function Dolly is presented in
section4 and section5 is our conclusion.

2 Definition

2.1 The Feistel Like Structure

A Feistel structure is a general way of constructing block ciphers from simple
functions. The original idea was used in the block cipher, invented by Horst
Feistel. Let Feistel structure be adopted in a block cipher with round function f .
Let xL

(r), x
R
(r) be the left and the right halves of the r round inputs, The Feistel

structure of block cipher is written as:

xL
(r+1) = xL

(r) ⊕ f(xR
(r), k(r)) (1)

xR
(r+1) = xL

(r) (2)

The security of the Feistel structure is not obvious, but analysis of DES[3]
has shown that it is a good way to construct ciphers. And some new ciphers
based on Feistel structure of SPN function have been discussed recently and no
weakness is found in Feistel structure itself. In this section we give a modified
structure of Feistel named Feistel like structure and call FL-structure.

Definition 1. Let f be round function, x(r) be the rth round inputs, x(1) be the
input sequence, then the FL-Structure is defined as Eq.(3), Eq.(4).

x(2) = f(x(1), k(1)) (3)

x(r+1) = x(r−1) ⊕ f(x(r), k(r)) (4)

Put simply, the standard Feistel network takes a function from n bits to n bits
and produces an invertible function from 2n bits to 2n bits. FL-Structure takes
a function from n bites to n bites and produces a one-way function from n bits
to n bites. Figure illustration is given in Fig.1.

2.2 The FL-Construction

A block cipher is a map E : {0, 1}n × {0, 1}κ → {0, 1}n for each k ∈ {0, 1}κ,
where the round function of E is a map of f : {0, 1}n × {0, 1}κ → {0, 1}n, the
functions Ek(·) = E(·, k) is transformation on {0, 1}n. If E is a permutation
then E−1 is its inverse, where E−1

k (y) is the string x such that Ek(x) = y.
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Fig. 1. Construct Between Feistel Structure and FL-Sreucture

Definition 2 (Block(n, κ)). Let E be block cipher E : {0, 1}n × {0, 1}κ →
{0, 1}n, f be round function, Block(n, κ) is the set of all block cipher with form
of E, where E has form of Eq(5) and its round function f is a permutation.

x(r+1) = f(x(r), k(r)), r = 1, ..., R (5)

Definition 3 (FL-Cipher). Let E ∈ Block(n, κ) be a A block cipher, let f be
round function of E and let R be rounds of E. Then we called F is FL-Cipher
based on E, if y = F (x, k) has the form of that:

x(2) = f(x(1), k(1)) (6)

x(r+1) = x(r−1) ⊕ f(x(r), k(r)), r = 1, ..., R′ (7)

Definition 4 (Feistel Cipher and FL-Cipher). Let F be FL-Cipher hash
function with round function f and rounds R, F : {0, 1}n × {0, 1}κ → {0, 1}n,
Ẽ : {0, 1}2n × {0, 1}κ → {0, 1}2n be Feistel block cipher with round function f

and rounds R, then we call that F is instance of Ẽ.

Definition 5 (No Weak Hash Key). Let F be FL-Cipher, F : {0, 1}n ×
{0, 1}n → {0, 1}n, and F is instance of Ẽ : Ẽk(x‖x′) = (y‖y′), where x, x′, y, y′ ∈
{0, 1}n, if there are no weakness in round function f , key schedule ,Feistel struc-
ture and the key schedule satisfy

Pr[x, x′, y, y′ $← {0, 1}n; k ← {0, 1}n : Ẽk(x‖x′) = y‖y′] ≈ 1/2n (8)

we call the FL-Cipher F has no weak hash key.

In this paper all discussions about FL-Cipher are on condition that the FL-
Cipher has no weak hash key.

Definition 6 (FL-Construction). Let Feist(n, κ) be the set of all FL-Cipher
F : {0, 1}n ×{0, 1}κ → {0, 1}n with no weak hash key. We call the iterated hash
function is a FL-Construction hash function, if the iterated hash function H’s
compression function is a FL-Cipher and denoted HF .

We write x
$← S for the experiment of choosing a random element from the

finite set S and calling it x. An adversary is an algorithm with access to one or
more oracles.
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2.3 Definition of Collision Resistant

There are many kinds of descriptions and notations about hash function, we use
the descriptions given by John Black[7].

To quantify the collision resistance of a hash function HF , we instantiate the
compression function by a randomly chosen F ∈ Feist(n, κ) with round function
f . An adversary A is given oracles for F (·, ·) and wants to find a collision for HF

that is, M, M ′ where M 6= M ′ but HF (M) = HF (M ′). We look at the number
of queries that the adversary makes and compare this with the probability of
finding a collision.

Definition 7 (Collision resistance[7]). Let HF be a FL-Construct hash func-
tion, HF : Feist(n, κ)×D → R, and let A be an adversary. Then the advantage
of A in finding collisions in HF is the real number

Advcoll
HF

(A) = Pr[F $← Feist(n, κ); (M, M ′) ← AF :

M 6= M ′ ∧HF (M) = HF (M ′)].

For q ≥ 1 we write Advcoll
HF

(q) = maxA{Advcoll
HF

(A)} where the maximum is
taken over all adversaries that ask at most q oracle queries. Other advantage
functions are silently extended in the same way.

We use the following measure for the difficulty of inverting a hash function
at a random point.

Definition 8 (Inverting random points[7]). Let HF be FL-Construct hash
function, HF : Feist(n, κ) × D → R, and let A be an adversary. Then the
advantage of A in inverting HF is the real number.

Advinv
HF

(A) = Pr[F $← Feist(n, κ);σ $←R;

M ← AF (σ) : HF (M) = σ].

Definition 9 (Conventional definition of a OWF[7]). Let HF be hash func-
tion, HF : Feist(n, κ)×D → R, and let l be a number such that {0, 1}l ⊆ D. Let
A be an adversary. Then the advantage of A in inverting HF on the distribution
induced by applying HF to a random l-bit string is the real number.

Advowf
HF

(A) = Pr[F $← Feist(n, κ);M $← ({0, 1}n)l;σ $← HF (M);

M ′ ← AF (σ) : HF (M ′) = σ].

We also define the advantage of an adversary in finding collisions in a FL-
Cipher. Naturally (k, m) and (k′,m′) collide under F if they are distinct and
F (k, m) = F (k′,m′).
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Definition 10 (Collision resistance of FL-Cipher). Let F be a FL-Cipher
F : {0, 1}n × {0, 1}κ → {0, 1}n, and let A be an adversary. Then the advantage
of A in finding collisions in F is the real number.

Advcoll
F (A) = Pr[F $← Feist(n, κ); ((m, k), (m′, k′)) ← AF :

(m 6= m′ ∨ k 6= k′) ∧ Fk(m) = Fk′(m′)].

Definition 11 (One Way of FL-Cipher). Let F be FL-Cipher hash function,
F : {0, 1}n × {0, 1}κ → {0, 1}n, and let A be an adversary. Then the advantage
of A in inverting F on the distribution induced by applying F is the real number.

Advowf
F (A) = Pr[F $← Feist(κ, n); k $← {0, 1}κ;m $← {0, 1}n;σ $← Fk(m);

m′ ← AF (σ) ∨ k′ ← AF (σ) : Fk(m) = Fk(m′) ∨ Fk(m) = Fk′(m)].

Definition 12 (Inverting random points of FL-Cipher). Let F be FL-
Cipher hash function, F : {0, 1}n×{0, 1}κ → {0, 1}n, and let A be an adversary.
Then the advantage of A in inverting F is the real number.

Advinv
F (A) = Pr[F $← Feist(κ, n);σ $← {0, 1}n;

(m, k) ← AF (σ) : Fk(m) = σ].

2.4 The Specification of Rijndael

Rijndael is a substitution-linear transformation network with 10 ∼ 14 rounds,
depending on the plaintext and key size. A data block to be processed using
Rijndael is partitioned into an array of bytes, and each of the cipher operations
is byte-oriented. For Rijndael, the block length and the key length can be inde-
pendently specified to any multiple of 32 bits, with a minimum of 128 bits, and
a maximum of 256 bits.

Rijndael’s round function consists of four layers. In the first layer an 8 × 8
S-box is applied to each byte called ’ByteSub’. The second and third layers are
linear mixing layers , in which the rows of the array are shifted, and the columns
are mixed, called ’ShiftRow’ and ’MixColumn’ respectively. In the fourth layer,
subkey bytes are XORed into each byte of the array called ’AddRoundKey’ by
EXOR of Sub-key ki where i = 1, ..., Nr. In the last round, the column mixing
is omitted, where Nr are 10 ∼ 14 when key size κ are (Nk = 4 ∼ 8) × 32 bits
and block size n are (Nb = 4 ∼ 8)× 32 bits.

The ByteSub Transformation is a non-linear byte substitution, operating on
each of the State bytes independently. The substitution table (or S-box ) is in-
vertible and is constructed by the composition of two transformations: First, tak-
ing the multiplicative inverse in GF (28), then, applying an affine (over GF (2))
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transformation.



y0

y1

y2

y3

y4

y5

y6

y7




=




1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1







x0

x1

x2

x3

x4

x5

x6

x7




+




1
1
0
0
0
1
1
0




(9)

In ShiftRow, the rows of the State are cyclically shifted over different offsets.
Row 0 is not shifted, Row 1 is shifted over C1 bytes, row 2 over C2 bytes and row 3
over C3 bytes. The C1 = 1,C2 = 2,C3 = 3, when the block length Nb = 4 ∼ 6, the
C1 = 1,C2 = 2,C3 = 4, when the block length Nb = 7, the C1 = 1,C2 = 3,C3 = 4,
when the block length Nb = 8.

In MixColumn, the columns of the State are considered as polynomials over
GF (28) and multiplied modulo x4 + 1 with a fixed polynomial c(x), given by
c(x) =′ 03′x3 +′ 01′x2 +′ 01′x +′ 02′. This polynomial is coprime to x4 + 1
and therefore invertible. This can be written as a matrix multiplication. Let
b(x) = c(x)⊗ a(x). 



b0

b1

b2

b3


 =




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02







a0

a1

a2

a3


 (10)

In AddRoundKey, a Round Key is applied to the State by a simple bitwise
EXOR. The Round Key is derived from the Cipher Key by means of the key
schedule. The Round Key length is equal to the block length Nb.

3 Collision Resistance of FL-Construction

3.1 Collision Resistance of FL-Cipher

In this section we discuss the hash properties of FL-Cipher with no weak hash
key, there are some notations which will be used in following descriptions. Let
Pr(x|f(x) = y) be the probability of that a randomly selected x satisfies the
equation of f(x) = y for any given y, (m1‖m2) be concatenate of m1 and m2,
Ri(m,n) is the right n bits of sequence m and ∆,∆′ be ∆ = Ẽk(m‖fk(m)),∆′ =
Ẽk(m′‖fk(m′)).

Theorem 1 (Inverting random points of FL-Cipher). Let F be FL-Cipher
hash function, F : {0, 1}n × {0, 1}κ → {0, 1}n, and let A be an adversary. Then
the advantage of A in inverting F is Advinv

F (q) = q/2n−1.

Proof. Let an adversary A for F , adversary A takes oracle F and input σ and,
when successful, it outputs k, m and have

F (m, k) = σ ⇔ Ri(Ẽk(m‖fk(m)), n) = σ
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Since we have

Pr[σ $← {0, 1}n;m, k ← {0, 1}n : Ri(∆,n) = σ] ≈ 1/2n (11)

Pr[σ $← {0, 1}n;m, k, y ← {0, 1}n : Ẽ−1
k (y‖σ) = (m|fk(m)] ≈ 1/2n (12)

So we have Advowf
F (q) ≤ q/2n−2. ut

Theorem 2 (One Way Property of FL-Cipher). Let F be FL-Cipher with
round function f , F : {0, 1}n × {0, 1}n → {0, 1}n, then Advowf

F (q) ≤ q/2n−1.

Proof. Let an adversary A for F : adversary A takes oracle F and input m, k, σ
and, when successful, it outputs m′ or k′ such that F (m, k) = F (m′, k) or
F (m, k) = F (m, k′). If adversary A find m′ such that F (m, k) = F (m′, k) then

F (m, k) = F (m′, k)

⇔ Ri(Ẽk(m‖fk(m)), n) = Ri(Ẽk(m′‖fk(m′)), n)

For block cipher Ẽ,

Pr[m, k
$← {0, 1}n;m′ ← {0, 1}n : Ri(∆,n) = Ri(∆′, n)] = 1/2n (13)

Pr[m, k
$← {0, 1}n; y ← {0, 1}n : Ẽ−1

k (y‖Ri(∆,n)) = m′‖fk(m′)] = 1/2n (14)

For any i ∈ [1..q], let Ci be the event that the randomly selected mi from {0, 1}n,
where mi 6= mj such that F (m, k) = F (mi, k). Since Pr(Ci) ≤ 1/(2n − i). we
thus have Pr(c1 ∨ ... ∨ cq) ≤ q/2(n−1).

If adversary A find k′ such that F (m, k′) = F (m, k) then

F (m, k) = F (m, k′)

⇔ Ri(∆,n) = Ri(Ẽk′(m‖fk′(m)), n)

For block cipher Ẽ, since there is no weak key, then

Pr[m, k
$← {0, 1}n; k′ ← {0, 1}n : Ri(∆,n) = Ri(Ẽk′(m‖fk′(m)), n)] ≈ 1/2n

(15)

Pr[m, k
$← {0, 1}n; k′, y ← {0, 1}n : Ẽ−1

k′ (y‖Ri(∆,n)) = m‖fk′(m)] ≈ 1/2n

(16)
Similar as description of F (m, k) = F (m′, k), we get Advowf

F (q) ≤ q/2n−1. ut
Theorem 3 (Collision resistance of FL-Cipher). Let F be a FL-Cipher
F : {0, 1}n × {0, 1}κ → {0, 1}n, then Advcoll

F (q) ≤ q/2n−2

Proof. Let an adversary A for F , adversary A takes oracle F and , when suc-
cessful, it outputs k, m and k′,m′ such that F (m, k) = F (m′, k′)

F (m, k) = F (m′, k′)

⇔ Ri(∆,n) = Ri(Ẽk′(m′‖fk′(m′)), n)
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For block cipher Ẽ, since there is no week key, we have

Pr[m, k,m′, k′ ← {0, 1}n : Ri(∆,n) = Ri(Ẽk′(m′‖fk′(m′)), n)] ≈ 1/2n (17)

Pr[m, k,m′, k′, y ← {0, 1}n : E−1
k′ (y‖Ri(∆,n)) = m′‖fk′(m′)] ≈ 1/2n (18)

So we have Advcoll
F (q) ≤ q/2n−1 ut

3.2 Collision Resistance of FL-Construction

In this section we discuss the security of FL-Construction.

Theorem 4. If F : Feist(n, n)× ({0, 1}n × {0, 1}n) → {0, 1}n is a FL-Cipher,
if F is one way and collision resistant function, then the FL-Construction hash
function HF is OWHF and CRHF.

Lemma 1 (Damg̊ard-Merkle[8]). Let F be a compression function of FL-
Construction hash function HF , F : Feist(n, n)× ({0, 1}n ×{0, 1}n) → {0, 1}n.
Then Advcoll

HF
(q) ≤ Advcoll

F (q) for all q.

Proof. Let A be a collision-finding adversary for HF that take oracles F . We
construct from A a collision-finding adversary B for F . Adversary B also takes
oracle F . Let B run A. When A makes a F query, B forwards it to F and
returns to A the result. For i ∈ [1..q], we say that the ith triple is (xi, ki, yi) if
A’s ith oracle query was an F -query of (ki, xi) and this returned yi. Algorithm
B records the list of triples. Eventually A halts with an output (M, M ′) =
(m1 · · ·ma,m′

1 · · ·m′
b).

Have B compute HF (M) and HF (M ′). According to our conventions, all of
the necessary queries for B to use in this computation are already recorded in B’s
list of triples, so no new oracle calls are needed to compute H(M) and H(M ′).

Adversary B inspects its list of triples to see if there exists distinct (x, k, y)
and (x′, k′, y′). If so, B outputs this pair of points. Otherwise, B inspects its list
of triples to see if there exists a triple (x, k, h0). If so, B outputs (k, x), (k, x).

We claim that B succeeds whenever A succeeds. By symmetry, we can as-
sume without loss of generality that a ≤ b. If HF (M) = HF (M ′) then ha =
F (ha−1,ma) = F (h′b−1,m

′
b) = h′b. If ha−1 6= h′b−1 or ma 6= m′

b then we
are done, otherwise check ha−1 = F (ha−2,ma−1) = F (h′b−2,m

′
b−1) = h′b−1.

Again, if ha−2 6= h′b−2 or ma−1 6= m′
b−1, then we are done. proceeding in

this way, we must find some values α ∈ [1, a] and β ∈ [1, b] such that either
hα = F (hα−1,mα) = F (h′β−1,m

′
β) = h′β , where hα−1 6= h′β−1 or mα 6= m′

β or
hα = h0 ut

Lemma 2 (Lai-Massey[13]). Let FL-Cipher F be a compression function of
FL-Construction hash function HF , F : Feist(n, n) × ({0, 1}n × {0, 1}n) →
{0, 1}n. Then AdvOWF

HF
(q) ≤ AdvOWF

F (q) for all q.
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Proof. Let A be an adversary for HF : adversary A takes oracles F and an input
σ and, when successful, it outputs M such that HF (M) = σ. We construct
an adversary B for F : adversary B takes oracles F and an input σ and, when
successful, it outputs (h,m) such that F (h,m) = σ. Adversary B works as
follows. It runs A on σ. When A makes an F query, adversary B forwards the
query to its F oracle and returns to A the result. During this process, for each
i ∈ [1..q], we say that the ith triple is (xi, ki, yi) if A’s ith oracle query was an
F -query of (ki, xi) and this returned yi. Adversary B records the list of triples.
Eventually A halts with an output M = m1 · · · ma. At that point we have
B compute HF (M): for i ← 1 to a set hi ← F (hi−1,mi). According to our
conventions, all of the necessary F (k, x) values that B needs will already be in
Bs list of triples no new oracle calls are needed to compute HF (M). Now if
Ha = F (h(a− 1),ma) = σ then B outputs (ha−1,ma) and wins its experiment;
otherwise it outputs (h0,m1) and does not win. Clearly B succeeds whenever A
succeeds.

Let adversary A takes oracles F and an input M , when successful, it outputs
M ′ such that HF (M) = HF (M ′). We construct an adversary B for F : adversary
B takes oracles F and an input M and, when successful, it outputs (h,m) and
(h′,m′) such that F (h,m) = F (h′,m′). Let B run A. When A makes a F query,
B forwards it to F and returns to A the result. For i ∈ [1..q], we say that the
ith triple is (xi, ki, yi) if A’s ith oracle query was an F -query of (ki, xi) and this
returned yi. Algorithm B records the list of triples. Eventually A halts with an
output (M, M ′) = (m1 · · ·ma,m′

1 · · ·m′
b).

Have B compute HF (M) and HF (M ′). According to our conventions, all of
the necessary queries for B to use in this computation are already recorded in B’s
list of triples, so no new oracle calls are needed to compute H(M) and H(M ′).

Adversary B inspects its list of triples to see if there exists distinct (x, k, y)
and (x′, k′, y′). If so, B outputs this pair of points. Otherwise, B inspects its list
of triples to see if there exists a triple (x, k, h0). If so, B outputs (k, x), (k, x).

We claim that B succeeds whenever A succeeds. By symmetry, we can as-
sume without loss of generality that a ≤ b. If HF (M) = HF (M ′) then ha =
F (ha−1,ma) = F (h′b−1,m

′
b) = h′b. If ha−1 6= h′b−1 or ma 6= m′

b then we
are done, otherwise check ha−1 = F (ha−2,ma−1) = F (h′b−2,m

′
b−1) = h′b−1.

Again, if ha−2 6= h′b−2 or ma−1 6= m′
b−1, then we are done. proceeding in

this way, we must find some values α ∈ [1, a] and β ∈ [1, b] such that either
hα = F (hα−1,mα) = F (h′β−1,m

′
β) = h′β , where hα−1 6= h′β−1 or mα 6= m′

β , or
hα = h0 and hβ = h0 ut

4 The Hash Function Dolly

4.1 The Specification of Dolly

Dolly is an FL-Construction with Rijndael as underlying block cipher. As Ri-
jndael supports (4 ∼ 8) × 32 bits of outputs and key bytes, Dolly is a hash
function of (4 ∼ 8)×32 bits outputs and with the message blocks of same length
as output blocks. Let n be the length of output bits of Dolly, and Nb be n/32.
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Let F : {0, 1}n×{0, 1}n → {0, 1}n be the compression function of Dolly, and
f be round function of F , we have:

f(x, k) = MixColumn(ShiftRow(SubByte(x)))⊕ k (19)
4
= MC(SR(SB(x)))⊕ k. (20)

Let x be the input block, y be the output block, k be the key, n be block
length, R be the round number and k1, k2, ..., kR be round key from k using
Rijndael key schedule.Then compression function y = F (x, k) be as follow and
illustrated in Fig2.

x1 = x, x2 = f(x1, k1) (21)

xr = xr−1 ⊕ f(xr, kr), r = 2, ..., R (22)

y = xR, Nb = n/32, R = Nb + 7 (23)

Let HF be the Hash function Dolly, let hi(mi, hi−1) be round function of
HF , let M be the message to hash and assume that it includes padding bits
and the message length. Let M = m1,m2, ..., mq, where each mi is n bits. Let
IV =′ 123456789ABCDEF123456789ABCDEF ′ be initial value, then the hash
function Dolly is given as, Dolly is illustrated in Fig3:

h0 = left(IV, Nb × 32), Nb = n/32 (24)

hi(mi, hi−1) = F (hi−1,mi) for i = 1, ..., q. (25)

HF (h0,M) = hq (26)

In the algorithm of Dolly we can distinguish a number of steps is similar to
Pelican[11]-an improved design of ALPHA-MAC[6].

Message Padding: pad the message by appending a single 1 bit followed by
the minimum number of 0 bits so that the resulting length is a multiple of
n = Nb×32 bits. Split the message M in n-bit message words m1,m2, ..., mq.

Chaining: get the fist message word as state h0, applying the compression
function F to the state hi and using the mi as key.

Finalization: the last round output of compression function are the tag.

4.2 Security Claims

The security of Dolly depend on the security of FL-Construction, FL-Cipher and
Rijndael. Since the fist two factors have been discussed in previous section, the
inner security of Dolly’s compression function F is discussed in this section.
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Fig. 2. Encryption procedure of Dolly’s Compression function F

Design Motivation The hash function is far more sensitive to defects on de-
signing than that of block cipher, for finding a weak key does not results in failure
of that block cipher, but finding a collision in hash function always means the
failure of hash function. Rijndael is expected, for all key and block lengths de-
fined, to behave as good as can be expected from a block cipher with the given
block and key lengths[10]. The most efficient key-recovery attack for Rijndael
is exhaustive key search. Obtaining information from given plaintext-ciphertext
pairs about other plaintext-ciphertext pairs cannot be done more efficiently than
by determining the key by exhaustive key search. The rationale for this is that a
considerable safety margin is taken with respect to all known attacks. All those
design principles are needed for compression function of FL-Construction.
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Fig. 3. Hashing Procedure of Dolly

Weak keys The key schedule of Compression function F (m, k) uses that of
Rijndael, for which the non-linearity of the key expansion practically eliminates
the possibility of equivalent key, and there are no week keys find in rijndael.

Differential and linear cryptanalysis The Rijndael’s minimum number of
active S-boxes in any 4-round differential or linear trail is 25. The minimum
number of active S-boxes in F (m, k) is larger that that of Rijndael, when the
round number is more that 4 round. This gives a maximum prop ratio of 2−150

for any 4-round differential trail and a maximum of 2−75 for the correlation for
any 4-round linear trail for F (m, k).
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Differential and linear cryptanalysis The Rijndael’s minimum number of
active S-boxes in any 4-round differential or linear trail is 25. The minimum
number of active S-boxes in F (m, k) is larger that that of Rijndael, when the
round number is more that 4 round. This gives a maximum prop ratio of 2−150

for any 4-round differential trail and a maximum of 2−75 for the correlation for
any 4-round linear trail for F (m, k).

The Square attack The ”Square” attack is a dedicated attak on Square[14]
that exploits the byte-oriented structure of Square cipher and was published in
the paper presenting the Square cipher itself. This attack is valid for Rijndael.
Since the active byte diffusion speed of compression function F (m, k) is faster
that Rijndael, we conclude it is immune against square attack.

4.3 Performance

The performance of Dolly is similar to that of Rijndael, can express the per-
formance in terms of Rijndael operations, more particularly, the Rijndael key
schedule and the Rijndael encryption operation. This allows to use Rijndael
benchmarks for software implementations on any platform or even hardware
implementations to get a pretty good idea on the performance of Dolly.

One iteration of Dolly corresponds roughly to one more round encryption
than that of Rijndael encryption, hence roughly 1 + 1/R of an Rijndael encryp-
tion, where R is the round number of Rijndael. Using this rough approximation,
we can state that hashing a message M = m1, ..., mq requires: q(1 + 1/R) times
Rijndael key schedule and q(1+1/R) times Rijndael encryption. Hence, the per-
formance of the Dolly can be estimated at q(1 + 1/R) times the performance of
Rijndael encryption.

5 Conclusion

In this paper we present a new way to construct hash function. Security of
FL-Construction relies on the security of FL-Cipher, the security of FL-Cipher
relies on the security of the block cipher which is based and the security of
Feistel structure. Security requirement of FL-Cipher is more stronger than that
of based block cipher. Therefore if we construct a good FL-Cipher, that means
we get a good block cipher, but a good block cipher does not always mean a good
hash function. The efficiency of Dolly relies on that of Rijndael, since Rijndael
is fast in 8-bit and 32-bit platform, the performance of Dolly is also fast in 8-bit
and 32-bit platform, that is also the principle of Message expansion algorithm.
Further analysis of the security of this primitive is underway.
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