
Is it possible to have CBE from CL-PKE?

Bo Gyeong Kang?1 and Je Hong Park2

1 Department of Mathematics, Korea Advanced Institute of Science and Technology,
373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea

snubogus@kaist.ac.kr
2 National Security Research Institute,

161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350, Korea
jhpark@etri.re.kr

November 25, 2005

Abstract. Recently, Al-Riyami and Paterson proposed a generic con-
version from CL-PKE (Certificateless Public Key Encryption) to CBE
(Certificate Based Encryption) and claimed that the derived CBE scheme
is secure and even more efficient than the original scheme of Gentry. In
this paper, we show that their conversion is wrong due to the flaw of
the security proof. Our result supports the impossibility to relate both
notions in any directions. In addition, it leads the new concrete CBE
scheme by Al-Riyami and Paterson to be invalidated.

Keywords: Cryptography; Security analysis; Certificateless Public Key
Encryption;

1 Introduction

The notions of Certificate Based Encryption (CBE) and Certificateless Public
Key Encryption (CL-PKE) are proposed as alternative approaches to overcome
several drawbacks of conventional PKIs and Identity Based Encryption (IBE).
CBE proposed by Gentry [4] provides an implicit certification mechanism for a
conventional PKI and allows a periodical update of certificate status. As con-
ventional PKIs, each user in CBE generates his own public/private key pair and
request a long-lived certificate from the CA. But, CA uses identity based cryp-
tography to generate the long-lived certificate as well as short-lived certificates
(i.e., certificate status). A short-lived certificate can be pushed only to the owner
of the public/private key pair and acts as a partial decryption key. So CBE pro-
vides implicit certification, while it is not subjected to the private key escrow
problem inherent in IBE.

On the other hand, CL-PKE is designed to overcome the key escrow limita-
tion of IBE. As IBE, each user has a unique identifier and the (partial) private
key associated with that identifier is computed by a Key Generation Center
? This work was done while the first author was studying in the University of Mary-

land, USA.



2 B.G Kang and J.H. Park

(KGC), who knows some special master secret, and distributed to the user with
that identifier. However, unlike a traditional IBE scheme, the user also publishes
a public key, based on a secret value which the user alone knows. This user secret
value is also contained in the user’s private key. So the KGC does not know the
user’s private key that implies the escrow freeness. Note that the user’s public
key need not to be certified as in conventional PKIs.

Although CBE and CL-PKE were developed independently, both of them
were motivated to provide alternative scheme with merits of PKI and IBE at
the same time. So a natural question to establish the connection of two con-
cepts arose. After it was briefly recognized in [1], Yum and Lee gave a generic
construction for CL-PKE from IBE [6] and explored the relationships between
IBE, CBE and CL-PKE [7]. However their construction is lack of consideration
about the full security model in [1] by placing a certain extra limitations on the
adversaries [2]. Recently, Al-Riyami and Paterson in [2] presented a generic con-
version of a secure CBE scheme from a secure CL-PKE scheme, also explained
why it is unlikely to be forthcoming in the opposite direction.

In this note, we point out that the claim of Al-Riyami and Paterson about
relationship between CBE and CL-PKE is wrong. More precisely, their conver-
sion from CL-PKE to CBE has a critical flaw in the security proof, which finally
brings the evidence that each concept has its own unique advantage even with
many aspects in common.

This paper is organized as follows. Section 2 and 3 briefly reviews the defini-
tion and security model for CL-PKE and CBE, respectively. Much of the detail
such as a concrete scheme will be omitted, stating only what is needed for our
discussion. Section 4 points out some problems for the generic construction of
PKC 2005 and Section 5 draws conclusions.

2 Certificateless Public Key Encryption

In this section, we review the definition and security model for CL-PKE from
[1].

Definition 1. A certificateless public key encryption scheme is specified by
seven algorithms (CL.Setup, CL.PartialPrivateKey, CL.SetSecret, CL.SetPrivate,
CL.SetPublic, CL.Enc, CL.Dec) such that:

• CL.Setup is a probabilistic algorithm that takes security parameter k as input
and returns the system parameters params and master-key.

• CL.PartialPrivateKey is a deterministic algorithm that takes params, master-key
and an identifier for entity A, IDA ∈ {0, 1}∗ as inputs and returns a partial
private key DA.

• CL.SetSecret is a probabilistic algorithm that takes params as input and
returns a secret value xA.

• CL.SetPrivate is a deterministic algorithm that takes params, DA, and xA as
input and returns a private key SA.



Is it possible to have CBE from CL-PKE? 3

• CL.SetPublic is a deterministic algorithm that takes params, and xA as input
and returns a public key PA.

• CL.Enc is a deterministic algorithm that takes params, a message M , PA,
and IDA as inputs and returns either a ciphertext C or the null symbol ⊥
indicating an encryption failure.

• CL.Dec is a deterministic algorithm that takes params, C, and SA as inputs
and returns a message M or a message ⊥ indicating a decryption failure.

2.1 Security Model for CL-PKE

Here we list the actions that an IND-CCA adversaryA against a CL-PKE scheme
may carry out and discuss how each action should be handled by the challenger
C for that adversary.

1. Extract Partial Private Key of Entity A: C responds by running algo-
rithm CL.PartialPrivateKey to generate DA for entity A.

2. Extract Private Key for Entity A: If A’s public key has not been re-
placed then C can respond by running algorithm CL.SetPrivate to generate
the private key SA for entity A. It is assumed that the adversary does not
make such queries for entities whose public keys have been changed.

3. Request Public Key of Entity A: C responds by running algorithm
CL.SetPublic to generate the public key PA for entity A. If necessary, first
runs algorithm CL.SetSecret.

4. Replace Public Key of Entity A: A can repeatedly replace the public
key PA for any entity A with any value P ′A of its choice. The current value
of an entity’s public key is used by C in any computations or responses to
A’s requests.

5. Decryption Query for Ciphertext C and Entity A: If A has not re-
placed the public key of entity A, then C responds by running algorithm
CL.SetPrivate to obtain the private key SA, then running CL.Dec on cipher-
text C and private key SA and returning the output to A. It is assumed that
C should properly decrypt ciphertexts, even for those entities whose public
keys have been replaced.

The IND-CCA security model distinguishes two types of adversary. A Type I
adversary is able to change public keys of entities at will, but does not have
access to the master-key. A type II adversary is equipped with master-key but
is not allowed to replace public keys. This adversary models security against
an eavesdropping KGC. The security game proceeds in three phases; in the
middle challenge phase, the adversary selects a challenge identifier IDch and
corresponding public key Pch, and is given a challenge ciphertext C∗. We provide
a detailed description of the two adversary types and the security game next.

CL-PKE Type I IND-CCA Adversary: Adversary AI does not have access to
master-key. However, AI may request public keys and replace public keys with
values of its choice, extract partial private and private keys and make decryption



4 B.G Kang and J.H. Park

queries, all for identities of its choice. AI cannot extract the private key for IDch

at any point, nor request the private key for any identifier if the corresponding
public key has already been replaced. AI cannot both replace the public key for
the challenge identifier IDch in some phase. Furthermore, in Phase 2, AI cannot
make a decryption query on the challenge ciphertext C∗ for the combination
(IDch, Pch) that was used to encrypt Mb.

CL-PKE Type II IND-CCA Adversary: Adversary AII does have access to
master-key, but may not replace public keys of entities. Adversary AII can com-
pute partial private keys for itself, given master-key. It can also request public
keys, make private key extraction queries and decryption queries, all for identi-
ties of its choice. The restrictions on this type of adversary are that it cannot
replace public keys at any point, nor extract the private key for IDch at any point.
Additionally, in Phase 2, AII cannot make a decryption query on the challenge
ciphertext C∗ for the combination (IDch, Pch) that was used to encrypt Mb.

Definition 2. A CL-PKE scheme is said to be IND-CCA secure if no polyno-
mially bounded adversary A of Type I or Type II has a non-negligible advantage
in the following game:

• Setup: Challenger C takes a security parameter k as input and runs the
CL.Setup algorithm. It gives A the resulting system parameters params. If A
is of Type I, then C keeps master-key to itself, otherwise, it gives master-key
to A.

• Phase 1: A issues a sequence of request described above. These queries
may be asked adaptively, but are subject to the rules on adversary behavior
defined above.

• Challenge Phase: Once A decides that Phase 1 is over it outputs the
challenge identifier IDch and two equal length plaintexts M0,M1. C now picks
a random bit b ∈ {0, 1} and computes C∗, then encryption of Mb under the
current public key Pch for IDch. Then C∗ is delivered to A.

• Phase 2: Now A issues a second sequence of requests as in Phase 1, again
subject to the rules on adversary behavior above.

• Guess: Finally, A outputs a guess b′ ∈ {0, 1}. The adversary wins the game
if b = b′. We define A’s advantage in this game to be Adv(A) := 2|Pr[b =
b′]− 1

2 |.

3 Certificate Based Encryption

In this section, we briefly review the definition and security model for CBE from
[2].

Definition 3. A certificate based encryption scheme is defined by six algorithms
(CBE.Setup, CBE.SetKeyPair, CBE.Certify, CBE.Consolidate, CBE.Enc, CBE.Dec)
such that:



Is it possible to have CBE from CL-PKE? 5

• CBE.Setup is a probabilistic algorithm that takes a security parameter k
as input and returns skCA and public parameters params that include the
description of a string space Λ.

• CBE.SetKeyPair is a probabilistic algorithm that takes params as input and
returns a public key pk and a private key sk.

• CBE.Certify is a deterministic certification algorithm that takes an input
〈skCA, params, τ, λ ∈ Λ, pk〉 and returns Cert′τ , which is sent to the client.
Here τ is a string identifying a time period, while λ contains other informa-
tion needed to certify the client such as the client’s identifying information,
and pk is a public key.

• CBE.Consolidate is a deterministic certificate consolidation algorithm that
takes 〈params, τ, λ, Cert′τ 〉 as input and optionally Certτ−1. It returns Certτ ,
the certificate used by a client in time period τ .

• CBE.Enc is a probabilistic algorithm that takes 〈τ, λ, params, pk,M〉 as input,
where M is a message. It returns a ciphertext C for the message M .

• CBE.Dec is a deterministic algorithm that takes 〈params, Certτ , sk, C〉 as in-
put in time period τ . It returns either a message M or the special symbol ⊥
indicating a decryption failure.

3.1 Security Model for CBE

Here we also list the actions that an IND-CCA adversary A against a CBE
scheme may carry out and discuss how each action should be handled by the
challenger C for that adversary.

• Extract Certificate of Entity A: C responds by running CBE.Certify on
input 〈skCA, params, τ, λ, pk〉 to generate Cert′τ for entity A.

• Decryption Query for Ciphertext C and Entity A: C responds by
running CBE.Certify and CBE.Consolidate on input 〈skCA, params, τ, λ, pk〉 to
obtain Certτ , then running CBE.Dec on ciphertext C, private key sk, and
Certτ and returning the output to A.

In [4, 2], security for CBE is defined using two different games and the adversary
chooses which game to play. In Game 1, the adversary models an uncertified
entity and in Game 2, the adversary models the certifier in possession of the
master-key skCA attacking a fixed entity’s public key. Let A1 be a Game 1 IND-
CCA adversary and let A2 be a Game 2 IND-CCA adversary.

CBE Game 1 IND-CCA Adversary: A1 does not have access to skCA. However,
A1 may request public keys, extract certificate and make decryption queries, all
for public keys of its choice. A1 must provide a private key sk along with the
corresponding public key pk in all of its queries. This enables the challenger to
handle decryption queries.



6 B.G Kang and J.H. Park

CBE Game 2 IND-CCA Adversary: A2 does have access skCA, but does not
get to choose a challenge public key to attack. Instead, it is given a specific
public key from C at the start of the game. So A2 can compute Cert′τ for any
public key pk, given skCA. In [2], it is restricted to work with the fixed value of
params, while A2 in [4] is allowed to work with multiple values of params. But
this restriction is sufficiently reasonable because CA does not change its public
parameters frequently. Furthermore, it is required to connect the notions of CBE
and CL-PKE [2].

Definition 4. A CBE scheme is said to be IND-CCA secure if no polynomially
bounded adversary A of Type I or Type II has a non-negligible advantage in the
following game:

• Setup: Challenger C takes a security parameter k as input and runs the
CBE.Setup algorithm. It gives A the resulting system parameters params. If
A is of Game 1, then C keeps skCA to itself, otherwise, it gives skCA and
〈pkch, skch〉 obtained by running CBE.SetKeyPair to A.

• Phase 1: A issues a sequence of requests described above. These queries
may be asked adaptively, but are subject of the rules on adversary behavior
defined above.

• Challenge Phase: Once A decides that Phase 1 is over it outputs the
challenge time period τch, certifying information λch and two equal length
plaintexts M0,M1. If A is of Game 1, then C additionally gives 〈pkch, skch〉
to A. C now picks a random bit b ∈ {0, 1} and computes C∗, then encryption
of Mb under the current public key pkch. Then C∗ is delivered to A.

• Phase 2: Now A issues a second sequence of requests as in Phase 1, again
subject of the rules on adversary behavior above.

• Guess: Finally, A outputs a guess b′ ∈ {0, 1}. The adversary wins the game
if b = b′. we define A’s advantage in this game to be Adv(A) := 2|Pr[b =
b′]− 1

2 |.

4 CBE from CL-PKE at PKC 2005

At PKC 2005, Al-Riyami and Paterson provided a conversion method construct-
ing a CBE scheme ΠCBE using the algorithms of a generic CL-PKE scheme ΠCL

as components [2]. They claimed that ΠCBE is secure based on the security of
ΠCL. The main aspect of their method is to define the identifier of the user used
in ΠCL to include a certain public key of ΠCBE and short-lived certificates in the
ΠCBE are obtained from the partial private keys in the ΠCL.

Let ΠCL be a CL-PKE scheme with algorithms (CL.Setup, CL.PartialPrivateKey,
CL.SetSecret, CL.SetPrivate, CL.SetPublic, CL.Enc, CL.Dec). Then a CBE scheme
ΠCBE can be defined as follows:

• CBE.Setup: On input a security parameter k, first run CL.Setup(k) to obtain
master-key and paramsCL. Then set skCA = master-key and Λ be any subset
of {0, 1}∗. Define paramsCBE by extending paramsCL to include a description
of Λ.



Is it possible to have CBE from CL-PKE? 7

• CBE.SetKeyPair: On input paramsCBE of an entity A, extract paramsCL then
run CL.SetSecret(paramsCL) = xA and CL.SetPublic(paramsCL, xA) = PA.
The output 〈pk, sk〉 = 〈PA, xA〉.

• CBE.Certify: On input 〈skCA, paramsCBE, τ, λ, pk〉, extract paramsCL. Set ID′A =
paramsCBE‖τ‖λ‖pk and run CL.PartialPrivateKey(paramsCL, skCA, ID′A) = DA.
The output Cert′τ = DA.

• CBE.Consolidate: On input 〈paramsCBE, τ, λ, Cert′τ 〉, outputs Cert′τ .
• CBE.Enc: On input 〈τ, λ, paramsCBE, pk,M〉, extract paramsCL and set ID′A =

paramsCBE‖τ‖λ‖pk. The output C = CL.Enc(paramsCL, M, pk, ID′A).
• CBE.Dec: On input 〈paramsCBE, Certτ , sk, C〉 in time period τ , extract paramsCL

and set DA = Certτ , xA = sk then run CL.SetPrivate(paramsCL, DA, xA) =
SA. The output is CL.Dec(paramsCL, C, SA).

The security proof of ΠCBE provided in [2] is only restricted to Game 1. For
the security proof of the Game 2, the authors in [2] only claimed that similar
ideas of the proof for Game 1 may be applied. However we provide a serious
observation so that it does not seem to be clear the security of their conversion
can be proven also in Game 2. First, we briefly introduce the idea used in the
proof of Game 1. Let A1 be a Game 1 IND-CCA adversary against ΠCBE with
advantage ε. Using A1 as a black-box, a Type I IND-CCA adversary BI against
ΠCL can be constructed as follows:

BI simulates CBE.Setup of ΠCBE by setting Λ to be an arbitrary subset of
{0, 1}∗ and paramsCBE to be an extension of paramsCL which includes a description
of Λ. BI then gives paramsCBE to A1. To handle a sequence of queries issued by
A1, BI sets an identifier ID′A = paramsCBE‖τ‖λ‖pk of the entity A using the
information τ, λ and pk included in the query of A1 and replaces the public key
with the value pk. In Game 1, it is always possible because BI is permitted to
replace public keys with values of its choice. Then BI makes some queries to C
for the identifier ID′A and relays C’s response to A1.

But this approach for A1 cannot be applied to the Game 2 adversary directly.
Let A2 be a Game 2 IND-CCA adversary against ΠCBE with advantage ε.
To construct a Type II IND-CCA adversary BII against ΠCL using A2, BII

should simulate CBE.Setup of ΠCBE as BI and then give paramsCBE and skCA to
A2. Furthermore, a specific key pair 〈pkch, skch〉 should be given to A2 before
launching it. To perform this, BII requests a public key for any ID and returns
it to A2 as the challenge public key pkch, then sets ID′A = paramsCBE‖τ‖λ‖pkch.
Note that BII working in Game 2 is not allowed to replace a public key for ID′A
with pkch. This implies the public key for ID′A cannot be set as desired. So even
BII makes decryption queries on input 〈C, ID′A〉 to C, the response can never
be expected to be the correct answer for 〈τ, λ, pkch, skch, C〉 requested by A2.
Thus, we can conclude that a secure CBE scheme is not possibly obtained from
a secure CL-PKE, at least using the conversion that Al-Riyami and Paterson
constructed. This is somehow surprising result compared to how much it seems
likely to be related.



8 B.G Kang and J.H. Park

5 Conclusion

We show that the generic construction of a CBE scheme from a secure CL-PKE
scheme proposed by Al-Riyami and Paterson does not satisfy the security model
for CBE. Based on the observation for the opposite conversion by [2], we clarify
that it is still an open problem to relate these two concepts.

References

1. S.S. Al-Riyami and K.G. Paterson. Certificateless public key cryptography. Ad-
vances in Cryptology - ASIACRYPT 2003, Lecture Notes in Comput. Sci., vol.
2894, pp. 452–473, 2003.

2. S.S. Al-Riyami and K.G. Paterson. CBE from CL-PKE: A generic construction and
efficient schemes. Public Key Cryptography - PKC 2005, Lecture Notes in Comput.
Sci., vol 3386, pp. 398–415, 2005.

3. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM
J. Comput., vol. 32(3): 586–615 (2003).

4. C. Gentry. Certificate-based encryption and the certificate revocation problem.
Advances in Cryptology - EUROCRYPT 2003, Lecture Notes in Comput. Sci., vol.
2656, pp. 272–293, 2003.

5. B.G. Kang, J.H. Park and S.G. Hahn. A certificate-based signature scheme. Topics
in Cryptology - CT-RSA 2004, Lecture Notes in Comput. Sci. 2964, pp. 99–111,
2004.

6. D.H. Yum and P.J. Lee. Generic construction of certificateless encryption. Com-
putational Science and Its Applications - ICCSA 2004, Lecture Notes in Comput.
Sci., vol. 3043, pp. 802–811, 2004.

7. D.H. Yum and P.J. Lee. Identity-based cryptography in public key management.
Public Key Infrastructure - EuroPKI 2004, Lecture Notes in Comput. Sci. 3093,
pp. 71–84, 2004.


