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Abstract

We present the first blind signature scheme that is efficient and provably secure without random
oracles under concurrent attacks utilizing only two rounds of short communication. The scheme is based
on elliptic curve groups for which a bilinear map exists and on extractable and equivocable commitments.
The unforgeability of the employed signature scheme is guarranteed by the LRSW assumption while the
blindness property of our scheme is guarranteed by the Decisional Linear Diffie Hellman assumption.

We prove our construction secure under the above assumptions as well as the DCR and DLOG as-
sumptions in the concurrent attack model of Juels, Luby and Ostrovsky from Crypto '97. Our construc-
tion is the first scheme that instantiates the security definition of Juels et al. with an efficient construction
in the standard model. We consider various modifications to our basic protocol that inlude a blind sig-
nature scheme with revokable blindness as well as a blind signature that incorporates a “public-tagging”
mechanism. The latter extension of our scheme gives rise to a partially blind signature with the same
efficiency and security properties as our basic scheme.
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1 Introduction

Blind signatures were introduced by Chaum@np82 and proved to be a most useful cryptographic scheme

that has been the basis of many complex cryptographic constructions including e-cash systems and e-voting
schemes. Informally, a blind signature is a signature scheme that incorporates a signing protocol that allows
the signer to sign a document submitted by a user blindly, i.e., without obtaining any information about the
document itself.

It was observed early on (at least as earlyl2ah8§, see alsoPW91)) that blind signatures contain an
instance of a secure function evaluation protocol in the following sense: the user possesses a private input
and a public-inpupk which is the verification key of a digital signature algorithm, and the signer possesses
a private inputk which is the signing-key of the digital signature algorithm; with this setup the user and the
signer should execute a probabilistic secure function evaluation protocol that will allow the user to compute
o, a signature omn underpk, without revealingm to the signer and without the signer revealisigto
the user. Given the complexity of general secure function evaluation thodgb8¢ GMW87], in early
work on blind signatures this paradigm was not very motivating. A more motivating paradigm was found
in divertible zero-knowledge proof©[089 Oka92 CDP94 and many blind signatures were subsequently
designed in this line of reasonin§$96 PS97 Poi98 AO00, AO01, Abe0]] as well as the first attempt to
give provably secure constructions (in the random oracle model) was dBS 9§ ]

Regarding provably secure constructions, Pointcheval and &9 presented secure blind signa-
tures with three communication moves (essentially 2-rounds since these protocols have the signer go first
which typically is a server) that were proven secure in the random oracle model under the discrete-logarithm
assumption assuming only logarithmically many messages were transmitted by the user. This result was later
improved to polynomially many messages but 5 communication m&@9§ and the round complexity
was finally decreased to 3 moves (essentially 2 rounds) and polynomially many messaga3limbe0]].

A single round protocol was presented BNPS0] assuming the RSA inversion oracle assumption. We
stress that all these results were proven secure in the random oracle model.

Concurrency in the context of blind signatures was put forth by Juels, Luby and Ostra\sR97
who presented the first security model for blind signatures that takes into account that the adversary may
launch many concurrent sessions of the blind signing protocol (operating as either the user or the signer).
Concurrency is particularly important in the context of blind signatures since in implementations of blind
signatures in e-voting and e-cash schemes, see €ltpBR FOO92 Kim04], the signer is in fact a multi-
threaded server that accepts many concurrent sessions of users that are executing the signing protocol. Thus,
it is of crucial importance to consider the security of blind signatures whea malicious signer attempts
to defeat the blindness of many concurrently joining users(2na coalition of malicious users attempts to
extract information about the signing key of the multi-threaded signer server. Juels #t@87 demon-
strated the feasibility of concurrently secure blind signatures by providing a construction based on generic
secure function evaluation. Naturally, this protocol was not efficient, but it was the first instantiation of a
secure blind signature (and in fact in the concurrent setting) that did not require random oracles. Till today
this (inefficient) construction remains the only blind signature known that is secure in the concurrent setting
without random oracles. More recently, with respect to blind signatures without random oracles Camenisch
et al. [CKWO04] considered a weaker model than that Sit 097 that only allowed sequential attacks and
presented an 8-move blind signature scheme based on the Strong-RSA assumption leaving as open problem
the possibility of achieving concurrent security.

We conclude this brief overview on the blind signature primitive by observing that to dat#icient
blind signature construction is known that is provably secure in the model of Juels et al. without random
oracles; providing an efficient scheme was discussedli®@97 and was left as an open problem. We settle
this open question in this work.



1.1 Our Main Contribution

We present an efficient construction for a blind signature scheme utilizing only two rounds of communication
and a full proof of security of this construction in the concurrent model of Juels eflaD97. The two

round interaction between the user and the signer in the signing protocol requires overall communication
not exceeding 2 Kbytes (about 10.5 Kbits to be precise) for a full signature generation. In the process of
presenting our security proof we in fact reformulate and usedh®97 model in a stronger fashion since

we allow the adversary to select the public-key of the underlying signature in the blindness attack (whereas
in previous work such key was assumed part of the trusted setup). Achieving this level of efficiency while
simultaneously maintaining provability in the strong modelXfQ97 required the careful composition of

a number of cryptographic primitives. As our underlying digital signature scheme (i.e., the type of signature
that is obtained by users) we use the elliptic curve based signature scheme of Camenisch and Lysyanskaya
[CLO4] (henceforth called a CL signature). We also employ a variant of Linear Encryption, an encryption
scheme that was originally introduced in the context of group signatures by Boneh, Boyen and Shacham
[BBS04 for the purpose of designing group signatures. Here we find a novel use of this primitive in the
context of blind signatures. In addition to these primitives, our construction makes essential use of discrete-
logarithm equivocal commitments based on Pedersen commitments and extractable commitments based on
Paillier encryption Pai9g.

The central idea of our construction is to use a variant of Linear Encryption to produce a very efficient
secure function evaluation protocol for CL signatures that proceeds roughly as follows: the user selects
on the fly a key for the encryption scheme and encrypts her message with it. The signer upon receiving
this encryption takes advantage of the homomorphic properties of the encryption to blindly transform the
ciphertext into a randomized encryption of a CL signature and then transmits the resulting rerandomized
ciphertext back to the user. We make an essential use of the homomorphic properties of the underlying
encryption since it is based on those that we manage the efficient generation of non-adversarial randomness
between the mutually distrustful players. Finally, in order to prove security under concurrent attacks the
homomorphic encryption based interaction needs to be paired with an extractable commitment for the user’s
special Linear Encryption ciphertext. Further simulation requirements require an equivocable commitment
to be used for ensuring that no information leakage occurs from the user to the signer.

Note that the resulting signature from the signing protocol is about half the size of an RSA based Chaum
blind signature. Tabl& compares the round complexity of our construction in comparison to previous blind
sighature schemes. The construction is proven to satisfy the two propertik€8f] model as follows: the
blindness property is ensured under the Decisional Composite Residuosity assumpBaid9gfgnd the
Decision Linear Diffie-Hellman assumption dBS04. The unforgeability property is proven under the
LRSW assumption of JRSW99 and the discrete-logarithm assumption over prime order modular groups.

1.2 Extensions and Variants

We present a variant of our construction where the blindness property is strengthened and relies only on the
Decision Linear Diffie-Hellman assumption. The requirement for the DCR assumption is transferred to the
unforgeability property. In this stronger blindness variant of our scheme it is ensured that the message that
is submitted by the user is hidden only with a public-key that is in the control of the user and is short-lived
(i.e., used only for a single signing protocol as opposed to throughout the life-time of the common-reference
string). Thus blindness, while still claimed in the computational sense, it is only based on user-selected
secrets.

The second variant of our scheme we modify the blindness property but in the opposite direction. In this
case, we include a trusted third party in the blind signature setup, that is capable of removing the blindness
of a user given a signing protocol transcript. We call this capability “blindness revocation” and is a useful



paper # of signatures # of moves properties model setting

[PS9§ Log(ploy) 3 plain ROM  sequential
[PS97 Log(poly) 3 plain ROM  sequential
[AOCQQ] Log(poly) 3 partial ROM sequential
[Poi9g ploy 5 plain ROM  sequential
[Abe0]] poly 3 plain ROM  sequential
[AOCOY] poly 4(2-round) fair ROM  concurrent
[BNPSO0] poly 2(1-round) plain ROM  concurrent
[JLO97 poly poly plain plain  concurrent
[CKWO04] poly 8(4-round) plain plain  sequential
Our Scheme poly 4(2-round) plain/partial plain  concurrent

Table 1: Comparison of present work to previous blind signatures

property in cases where for arbitration purposes the confidentiality of a certain signing transcript must be
lifted. The trusted third party operation, provides a type of fairness mechanism for blind signatures, cf.
[SPC9%5.

Finally we provide an extension of our scheme that allows the public-tagging of blindly signed messages,
i.e., all messages that are obtained by the users also contain a publicly known tag that is decided prior
to the signing protocol execution. This extension is essentially equivalent to a partially blind signature
construction, a notion that was formalized &H96]. In a partially blind signature every message is tagged
with a public-string that is produced jointly by the user and the signer. The blindness property is restricted
to hold only for blind signatures with same tag. Partial blindness is important as it allows the signer to reuse
the same public-key for a variety of different blind signature functionalities.

2 Preliminaries

2.1 Bilinear Groups

Let G = (g) is a cyclic group of prime ordey such that : G x G — Gr is a bilinear map, i.e., for all
u,v € G anda, b € Z, it holds thate(u?, v?) = e(u, v)? ande is non-trivial, i.e..e(g, g) # 1.

2.2 Digital Signature

A signature schemeS = (GEN, SIGN, VERIFY) is defined by the three following algorithms:

- The key generation algorith@EN. On inputl1?, the algorithnGEN outputs a paifpk, sk) of matching
public key and secret key.

- The signing algorithn8IGN. Given a message: and a pair of matching public key and secret key
(pk, sk), SIGN generates the corresponding signatuire

- The verification algorithnWVERIFY. Given a message-signature pair, o) and a public keypk,
VERIFY testifo is a valid signature ofn with respect tgk.
2.2.1 Camenisch-Lysyanskaya Signature

Camenisch and Lysyanskay@l[04] constructed a plain signature (call it CL-signature for short) and proved
it secure in the standard model.



- The key generation algorithi@EN“": generate the bilinear group parameterG, Gr, g, ¢); then
chooser, y € Z,, and computeX = ¢* andY = ¢¥; set secret key agk = (z,y) and public key as
pk = (p,G,Gr,g,¢; X,Y).

- The signing algorithn$IGN“~: on input messagen, secret keyk = (z,%), and public keypk =
(p,G,Gr,g,e; X,Y), choose a random € G, and output the signature= (a, a¥, a®*m*Y).

- The verification algorithnVERIFY®Z: on input public keypk = (p,G,Gr,g,e; X,Y), message
m, and signaturer = (a,b,c), check whether the verification equatioa@:,Y) = e(g,b) and
e(X,a)e(X,b)"™ = e(g,c) hold.

We will use the CL-signature to construct blind signatures. The underlying assumption of CL-signatures
is called the LRSW assumption, which was introduced by Lysyanskaya eR&W99. It was also shown,
in the same paper, that this assumption holds for generic groups.

Assumption 2.1 (LRSW Assumption). Given the bilinear group parametdis g, G, Gr,e). Let X, Y €
G,X =¢",Y = ¢gY. LetOx y(.) be an oracle that, on input a value € Z,, outputs a triplga, b, c) such
thatb = a¥, andc = a*+"*¥ wherea < G. Then for all probabilistic polynomial time adversarids

.T,y € ZP7X = g:E’Y :gy;(m7a7b7c) — AOX’Y .

br meéQAMEZ,Am#0Na€GAb=a¥Ac=a"t"V

<e

wheree is a negligible function in security parameterand() is the set of queries that made taOx y (.).

2.3 Public-key Encryption

A public-key encryption schemXE = (GEN, ENCRYPT,DECRYPT) is defined by the three following algo-
rithms:

- The key generation algorith@eN. On inputl1?, the algorithnGEN outputs a paifpk, sk) of matching
public key and secret key.

- The encryption algorithnrENCRYPT. Given a message: and a public keyk, ENCRYPT generates a
ciphertextC' of m.

- The decryption algorithrDECRYPT. Given a ciphertexf and the secret keyk, DECRYPT gives back
the plaintextm.

2.3.1 Linear Encryption

Boneh et al. BBS04 proposed a variant of EIGamal encryption, called, Linear Encryption that is suitable
for groups over which the DDH assumption fails. We call it LE for short.

- The key generation algorith@EN’”: the public keypk is a triple of generators, v, w € G and the
secret keyk is the exponents, y € Z, such that” = v¥ = w.

- The encryption algorithrBNCRYPTZ#: to encrypt a message € G, choose random valuesb € Lo,
and output the tripl¢u®, v°, m - w+?).

- The decryption algorithrdbECRYPT¥: given an encryptioi, V, W), we recover the plaintext, =

DECRYPTLE(U, V, W) = 2%



The Linear encryption is based on Decision Linear Diffie-Hellman assumption, which first introduced
by Boneh et al. BBS04. With g € G as above, along with arbitrary generatars, andw of G, consider
the following problem:

Definition 2.2 (Decision Linear Diffie-Hellman Problem inG). Givenu, v, w,u®,v?, wY € G as input,
outputl if o + 8 = -y and0 otherwise.

It is believed that DLDH is a hard problem even in bilinear groups where DDH is easy. Now we define
the advantage of an algorithiin deciding the DLDH problem ifz as

Pr[l « A(u, v, w,u®, 0%, w*P) : u,v,w € G, a, B € Z,)]

AdVéLDH: a 0
—PI‘{]_ <—A(U,’U,U),U aU 7X) : u,v7w7x,€ Gvaaﬁ GZP}

Assumption 2.3 (Decision Linear Diffie-Hellman Assumption).We say that the Decision Linear Diffie-
Hellman assumption holds i if no PPT algorithmA has non-negligible advantadelvy), oy

2.3.2 Paillier Encryption

In our scheme we will employ the public-key encryption introduced by Pailerd9:
- The key generation algorith@EN"*: let p andq be random primes for which,q > 2, p # q,
lp| = |al and gedpa, (p — 1)(q — 1)) = 1;letn = pg, 7 = lem(p — 1,9 — 1), K = 7' mod n,
andg = (1 + n); the public key ik = (n, g) while the secret key isk = (p, q).
- The encryption algorithnENCRYPT?%!: the plaintext set iZ,; given a plaintextmn, choose a
random(¢ € Z;, and let the ciphertext b&/ = ENCRYPT/*(m, () = g™(¢" mod n?.
- The decryption algorithnDECRYPT?*: given a ciphertextV/, observe that\/™% = gm K .
ntK _ sm-(Kmodn  snnwK modnr _ smmodn  ~Omodnm _ zm __ 2 i
¢ = g _C I HQT,% ¢ = g™ =1+ mn mod n®. Thus, itis
possible to recoven = ~—— —"—
The cryptosystem above has been proven semantically secure if and only if the Decisional Composite

Residuosity (DCR) assumption is true.

mod n.

Assumption 2.4 (Decisional Composite Residuosity Assumption).here is no PPT distinguisher forth
residues modul®?. In other words, there is no PPT adversary that can distindtlistfrom Z,, where

YA % {z€ZH|IyeZy: z=y" mod n?}.

2.4 Commitment

A commitment scheme is a two-stage interactive protocol between two partiespriimaitterholding a
messagen and a random string, and thereceiver In the first stage, called the commit-stage, the committer
gives some information derived from,  to the receiver such that (1) the receiver can not obtain any
information abouin, i.e. the commitment iiding and (2) the committer cannot change his mind about
later, i.e. the commitment isinding In the second stage, called the open-stage, the committer sgnds

to the receiver, who verifies that, » match the communication of the first stage. In general, the committer
will use an algorithmcommit ;. which is keyed by a public keyk to computec < commit i, (m, ), and
sendc to the receiver; to open the commitment, the committer just sendsto the receiver who checks

if ¢ = commit,,(m,r). The hiding property means giverthe receiver does not learn, and the binding
property means the committer cannot change his mind by computing such that: = commit i (m’, r’)
andm’ # m.



2.4.1 Extractable Commitment

In an extractablecommitment, there is a trapdoor informatien,;, is associated to each public key

which allows the trapdoor owner to computefrom any commit,,(m,r). In our bind signature scheme,

the user sends:, the blinded form of his message to the signer, and the signer manipulatesnto a
scrambled signature. When the user gets, he will transforma into a blind signature for the message

m. The user should also committe when sendingn, by sending the signer a corresponding commitment
commit,i(m,r) for m. Obviously, the user should be restricted to choose botnd commit i, (m, r)
consistently over same. When we prove the unforgeability of the scheme, the adversary controls a mul-
titude of users that run concurrent blinding sessions with the signer. In this case, we want to be able to
simulate the adversary and attack the unforgeability of the underlying signature. While it is possible to use
rewinding to extractn from the commitment and then simulate the remaining part with sutis solution

is not suitable in the concurrent setting. Using an extractable commitment properly paired with the remain-
ing components of our scheme we extractvithout rewinding (by setting things up such that the simulator
knows the trapdootz,,y,).

2.4.2 Equivocal Commitment

In an equivocablecommitment, there is a trapdoor informatiedq,; that is associated to each public key

pk which allows the committer to change his mind. As mentioned before, in our blind signature scheme,
we need a sound proof to guarantee that the blinded farmnd the commitmentommit,(m,r) are
corresponding to the same messagdn the blindness attack against the scheme the signer is controlled by
the adversary and engages concurrent user sessions with the aim to extract information about the employed
messages. It follows that all interactions of the user during the signing protocol should be zero-knowledge.
We will employ Damgrd’s techniquepam0(Q over a 3-moveX-protocol to ensure zero-knowledge: we

use the equivocable variant of a Pedersen multi-commitni&add] to “wrap up” a general 3-move proof

of knowledge that the blinded form and the commitment are over same message.

3 Formal Model for Blind Signatures

In this section, we revisit in detail the formal model for blind signatures as introducdd @o[7.

3.1 Blind Signature Scheme

Definition 3.1 (Blind Signature Scheme).A blind digital signature scheme is a four-tuple, consisting of
two interactive Turing machinesS(/) and two algorithms@EN,VERIFY). HereS denotes the signer, and
U the user.

e GEN(1%) is a probabilistic polynomial time key-generation algorithm which takes as an input a security
parametei* and outputs a paifpk, sk) of public and secret keys.

e S(pk,sk) andU(pk, m) are a pair of polynomially time bounded probabilistic interactive Turing
machines, where both machines have the following tapes: read-only input tape, write-only output
tape, a read/write work tape, a read-only random tape, and two communication tapes, a read-only and
a write-only tape. They are both given on their input tapes as a common ingupeoduced by a
key generation algorithm. Additionall§ is given on his input tape a corresponding secret &ey
andi/ is given on his input tape a message where the length of all inputs must be polynomial in
the security parametdr* of the key generation algorithm. Bothh andS engage in the interactive



protocol of some polynomial number of rounds. Atthe end of this protSaaltputs eithecompleted
or not-completedndi/ outputs eithet or 1.

e VERIFY(m, o, pk) is a deterministic polynomial time algorithm, which outpitsr 0.

The correctness requirement for the above is that for any messaged for all random choices of
the key generation algorithm, if both andi/ follow the protocol therS always output€ompleted
and if the output of the user isthen theVERIFY(m, o, pk) = 1.

3.2 Blindness and Unforgeability

The security properties for blind signatures definedJinQ97 are blindnessandunforgeability. Below
we revisit their model and we give more detailed definitions for blindness and unforgeability.

We stress that our formal model is stronger compared to thal. 697 as it does allow for adversarial
selection of the public-key of the signing algorithm in a blindness attack; on the confla®97 assumed
a trusted selection for public and signing k&y, sk in their formulation of the blindness attack.

The two players of the signing protocol will have an additional inptitat will include two components,
ComlInfo and CRS. ComlInfo will include some joint information that has been decided in advance, e.g.,
some modular group that the players wish to use, or other public-information. The ERifigvill contain
some public-elements that will be used in the scheme. The two compafients:fo and CR.S that will be
jointly denoted byt will be generated by a procedukethat will produce the values, 7. The valuer will
be contain possibly some trapdoor information and will only be available to the simulator of the protocol.

Definition 3.2 (Blindness). Let ¢ < {0,1} (note: ¢ will be a random bit which is kept secret from the
adversary). We define an oradlé which simulates two user instantiatiol’é andz/”* (note: an adversary
A will be communicating with this oracle trying to predig}).

e Given (challenge, mg, m1, pk), the oracleZ? simulates/” (resp. U*) with public-key pk and
messagen,, (resp.mj_g4). The oracleZ? keeps a database with the state of each user instantiation;
the state includes all coin tosses of the user instantiation and the contents of all tapes including the
communication tape. The oracle us#5 (resp.st’?) to record the state @f” (resp.u/").

e Given (advance, p, msg), wherep € {L, R}, the oracleZ? recovers the state a#*, and simulates
the user instantiatioty” with msg till U* either terminates or returns a response to the signer. If
U” returns a response, thd@? returns this tad. The oracle will record the current stage, i.e.
stP = st”||st. Note that this kind of queries can be executed several times depending on the number
of rounds of the blind signature protocol.

e Given(terminate, msg”, msg’), the oracleZ? recovers the state’ (resp.st’’), and simulates the
user instantiatio/” (resp. U®) with msg” (resp. msg®) till UL (resp. ) either terminates or
returns an output. If both user instantiations return outputs, then the cetinles these outputs A,
otherwise returng.L, L).

Given any probabilistic polynomial timd we define its advantage as:

AdVEL}ind(/\) =

Pe [N 0 = 6 6 £ (0,15 (0r) < K1Y -5

and say that the blind signature scheme satisfies the blindness prop&fvg}jxd()\) is negligible in\.

Definition 3.3 (Unforgeability). We define an oraclé that is simulating concurrently an arbitrary of signer
instantiations. The oracle accepts two types of queries defined as follows:

8



e (start,msg). The oracleZ selects a session identifigid, and simulates the signer instantiatiSn
with msg till S either terminates or returns a response. If the signer instance returns a response to the
user,Z returns this with the session identifier as an answer to the oracle query. TheDladps a
database with the state S8ffor the session identifietid; the state includes all coin tosses&fand
the contents of all tapes including the communication tape.

e (advance, sid, msg). The oracleZ looks up the table of sessions and recovers the stafefof the
session with identifiesid (if sessionsid exists). Subsequentl¥, writes msg in the communication
tape of S and simulates it till it either terminates or returns a response to the user. If it returns a
message to the uséf,returns this as an answer to the oracle query. If no session id exists the oracle
returns “fail.”

The oracleZ has read/write access to a couritdrat counts the number that the oracle has successfully
terminated a signer session. Each time thaticcessfully terminates a signer session it increases the counter
lby 1.

An one-more forgery adversary against the blind signature is a polynomial-time probabilistic machine
A thatis given as inputl?, pk, t) where(t, 7) « K(1*) andpk, sk « GEN(1*). The adversary interacts
with Z(t, 7, pk, sk) and terminates by returning a sequencérof,o1), ..., (my, op) wherem; # m;,1 <
i <l.

We define the advantage dfin the above attack by
Advie  (\) = Pr[(VERIFY(pk,ms,03) = 1,1 <i <I)A (' > 1)]

unforge

and say that the blind signature scheme is unforgeallenif! forge(A) IS Negligible inA.

n

4 The Proposed Scheme

4.1 Setup and Generation of Keys

We start the description of our construction by describing the setup assumptions as well as the way that the
involved parties, the user and the signer generate their keys.

Common Information. This string ComInfo contains general information about each protocol execution
as well as a specific bilinear group parameierG, Gr, g, e) of size sufficiently large.

Common Reference String Next we describe how the common reference stririgS is selected. It
includes two partsCRS, and CRS». Letp andq be random primes for which,q > 2, p # q, |p| = |[q]
and gcdpq, (p — 1)(q — 1)) = 1. Letn = pq, andg = (1 + n). The public key is(n,g) while the
secret key is(p,q). SetCRS; = (n,g) and trapdoor; = (p,q). Select large prime®, ) such that

P =2Q+1, select, < Zp, 7o, 7w, Tu, Tv < Zg, and computéy, = h7M mod P, hy = h7W mod P,

hy = hJV mod P, hy = hlV mod P. SetCRSy = (har,hw,hy,hv,hy, P,Q), and trapdoory, =
(tm, ™w, Tu, Tv ). Now we haveCRS = (CRS1, CRS5), and discardrapdoor, trapdoor,. Two one-to-
one maps); : Zn — Zg andiyy : G — Zg are defined. For simplicity these maps will be included to
ComlInfo = (p,g,G,Gr, e;11,99).

Signer Parameters The signerS uses the algorithn@EN to generate his public and secret parameters
based onComlInfo. The signer selects, y — Z, and computes = g* andY = ¢¥. Then it is set that
PKg=(X,Y)andSKg = (x,y) is the key pair fosS.

We note that the parameters selected above are assumed to be long-lived, i.e., they will be used for many
executions of the signing protocol. On the other hand, the user has no long-lived parameters. Nevertheless,



as part of our signing protocol he will select some public and secret-key that will have the lifetime of one
signing protocol execution. We stress that this is not a necessity and each user may also keep his public-key
parameters the same across settings; in fact these parameters can be part of a PKI that all users are members
of. This will make the protocol time-complexity more efficient on the side of the user. We postpone further
consideration of this issue for the full version of the paper.

User Parameters. Each uset/ generates his key pair on the fly: he selekts — Z*, and setu,v € G

such that’ = v¢ = w. SetPKy = (u,v,w) as his public key and keep secrefiyk;; = (4,&) as his

secret key.

Choice of parameter lengths.The length of parameteys n, Q arel,, /n, ¢, respectively should be se-

lected so that the following are satisfied: (i) The DLDH assumption holds over the bilinear group parameter,
(i) The LSRW assumption holds over the bilinear group parameter, (iii) The discrete-logarithm (DLOG)
assumption holds over the grogg?.)?, (iv) The DCR assumption holds OVEr',. Based on the present

state of the art with respect to the solvability of the above problems, a possible choice of the parameters is
for examplel,, = 171 bits, £, = 1024 bits, {¢ = 1024 bits.

4.2 Signing Protocol

We give a high-level description before going to the details:

- First, both the user and the signer obtain the public inglss.Info, CRS, andPKg, the signer gets
the private inputS K g, and the user gets the private input message

- Then the user generates his key g&;, S Ky ) for Linear Encryption, and keepsK; secret; the
user generates a Paillier-ciphertext for messagahich is used as an extractable commitment; the
user generates a Linear Encryption ciphertextfowhich will be signed by the signer.

- To guarantee that the ciphertext and commitment are consistent, the user interleaves within the proto-
col execution a 3-movE-protocol with the signer that shows the consistency. This protocol employs
an equivocal commitment scheme to allow for concurrent zero-knowledge argumetgefo().

- When the signer verifies the 3-move protocol successfully, he will transform the Linear Encryption
ciphertext using his signing keyks and appropriately rerandomize it. This will result in the encryp-
tion of an essential component of a CL-signature.

- Finally, the user transforms the CL-signature from the signer into a blind signature for message
This takes advantage of the homomorphic property of the CL-signature, in particular, the fact that the
scheme is malleable and a signature holder can refresh the randomness of the signature.

We outline the high-level blind signature generation protocéligure 1 A detailed description is shown in
Figure 2 Note thatd < p, i.e. \g < £,. For example\q = 160 bits, \; = 160 bits.

4.3 Signature Verification

Given a message-signature pait; o), wheres = (a, b, ¢) , the verification algorithm is based on the two
verification equations below(a,Y) = e(g,b) ande(X, a)e(X,b)™ = e(g, ¢).

4.4 Correctness and Security

The correctness and security of our scheme is capturddhbgrem 4.1Theorem 4.3Theorem 4.4

10



u S

(PKy,SKy) « GENFE (1)
M « ENCRYPTY% (m)
(W,U, V) « ENCRYPTL® (m)
PKy,M,(W,U,V),commitment

challenge

response,decommitment

use the homomorphic propertie
of Linear Encryption and CL-
signature to compute an encryp
tion of the signature: ¢/ «
SIGN“L(W, U, V)

2

decrypto’ into the signature:
o « DECRYPT*# (o)

Figure 1: Overview of our blind signature generation protocol.

4.4.1 Correctness

Theorem 4.1 (Correctness).If the signer and the user follow the signature generation protocol, the result-
ing signature satisfies the verification with provability 1.

Proof. First, we check the correctness of the verification forfhprotocol.
Ty = gk mod n? = g®0t4m (s - 1$)" mod n?
= (g*s7) - (g™s7)? mod n? = g*0s7M? mod n?,
Tw = gkoqpkatks — gsotdm,,(s2+s3)+d-(la+13)
— (050w52+53) . (emwlg+l3)d — 980w32+53Wd,
Ty =ul? =wus2tdl — 52 . (u2)d = 45207,

TV — ,Uk3 — v53+d~l3 — ,US3 . (,Ulz)d — ,U53 Vd'
Then we check the correctness of the CL-signature.
a = (a) =0",
= (V) = (6v)" = (") = o,
c = W'UVE) = (WHgrw'ats) /(U™val2)? (Vv's)6)
= ((W/(U Vg))xy 67 - (w'ats / (u¥2uts)))
— (( )x . 9 )tt’ (ett’)mxy—‘r:c — gmryta
So,e(a,Y) = e(g,b) ande(X,a)e(X,b)™ = e(g, ¢). O

4.4.2 Unforgeability

In this subsection, we prove the unforgeability of our scheme. We first build a useful lemma which guarantee
that the user will use the same plaintext in the Linear Encryption and in the Paillier encryption based on the
three-move proof. Consider a commitment scheme will fix the plaintexts. The lemma will still hold when

we use the Pedersen multi-commitment to wrap up the three-move proof assuming the DLOG assumption.

11



Com[nfo = <p797G7GT7631/117¢2>
CRS = <n?g; hMahW7hU7hVahT7Pa Q)
PKg = (X.Y)

MSG = (m), m € [0,2%]

ComlInfo = (p,g,G,Gr, e; Y1, 2)
CRS = (n,g; har, hw, hu, hy, by P, Q)
PKg=(X,Y),SKs = (z,y)

(PKy, SKy) « GENLE (1)
PKy = (u,v,w), SKy = (4,§)

ko < £[0,2%FM+5] 1) kg & 7

t o, 3, ko, ks & Zp, 0 < G, 1 < Zg
M = g™} mod n?

W =gmwleth U=yl V=1

T = g"k? mod n?

Ty = OFowkatks T = k2 T, = phs
tar = U1(Twm), tw = Y2 (Tw)

tu = ¢2(Tv), tv = ¥2(Tv)

com = RY AW hi hiY kT mod P

Sozko—d'm(inZ)
s1=ki-I1;%modn

So =kyg —d-ly modp
s3 =ks—d-lgmodp

a i (<a’);, b>: ), ¢ = (W' /(UDVE))t
VERIFY(m, o) =7 1

PKy,M,0,(W,U,V),com

(s0,51,52,83), (T, Tw , T, Tv )

a’ b (WU V)

d & {0,110

M E? Z:Q

so € (0,200 At

ta = ¥1(Th), tw = P2(Tw)

ty = ¥a(Ty), tv = ¢a(Ty)

com =" R R hiY hiY kT mod P
Ty =" g®0s7 M9 mod n?

TW _? 050w52+53wd

TU :? u52Ud' TV :7 Us;;vd
Ol EZ,

a/ _ (e)t ,b/ — (ey)t

W' = (nyezcwl;—&-lg)t’

U = (Uacyul;)t’, V= (ny,vlg)t’

output(m; o)

Figure 2: Blind signature generation protocol.
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Based on the lemma, we can simulate the signer sucessfully and reduce the unforgeability to the unforge-
ability of the CL-signature, which is based on the LRSW assumption. Therefore, our unforgeability is based
on both the LRSW and the DLOG assumption.

Lemma 4.2. In the blind signature generation protocol, a PPT adversary can generate a valid proof with
the signer such that ‘
logy DECRYPTLY (W, U, V) # DECRYPT! (M) mod p.

only with probability2=*°.

Proof. Definem = DECRYPT'*(M). Paillier encryption is 1-1 OVeL:,, so it is well-defined andh € Z,.
Also M € Zy, can be written ad/ = ¢™I} mod n? for somel; € 7.

Similarly, definem’ = log, DECRYPTX# (W, U, V). Recalld € G and the order ofs is primep. So
0 is a generator ofs, and we can gef”™ = DECRYPT!®(W,U,V) andm’ € Z,. Alsou,v € G are
generators ofz, andU,V € G can be written a§/ = u/2, V = v!3 for somely, I3 € Zy. Note that
DECRYPTLE(W, U, V) = 3. SOW = g™ UOVE = 0 w2018 = gm'wl2tls,

Now we assume that there is a PPT adversary who can generate a valid proof with the signer such that
m # m’ mod p. Up to now we have equations:

m # m’ mod p m € Zn,m' €7y 1)
M = g™I" mod n? heZ, (2)
W = 0" wlatls lo,l3 € 7y (3)
U = 2 (4)
V =1l (5)
We have assumed that the proof is valid. So all verification equations hold:
Ty = gSOS’l‘Md mod n? (6)
Ty = Gows2Tsspyd 7
TU = us? Ud (8)
Ty = vV 9)

From equations (2) and (6) we have
Ty = gSOSTMd mod n? = gsos'l‘(gml'l‘)d mod n? = gso+dm(sllf)" mod n?

By the similar way, we can géfyy = us2td2 Ty, = ypsstdls and Ty, = gsotdm’y(s2tdiz)+(ss+dls)  Now
we call

ko def S0 + dm mod n (20)
ley 2 5119 mod n (11)
ko % 55+ dly mod p (12)
ks % 55 + dis mod p (13)
K, % 50+ dm/ mod p (14)

Considerged(n,p) = 1. From the equations (10), we can gt = sy + dm + An, whereA € Z.
Sokg — so — dm = An. Recallsy € £[0,2*+ M+ H] andky € £[0, 2%+ g € {0,1}, and
m € [0,2%]. So,ky — so — dm € £[0,2%tM+6e+2] and A = 0 becausée, > ¢, + \o + A1 + 3. So,
ko = sg + dm.

From the equation (11), we can lgf = so + dm’' + Bp whereB € Z. So,ky — k{, = d(m —m') — Bp.
Recallp { (m —m’). We can find suclB only in the case op | (ko — k) — d(m — m'), which is with
negligible probability2—*c. In other words, the adversary can only find satisfigds) to develop the proof
with probability 2o,
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Based on the argument above, we know that, except negligible probabifity the adversary cannot
develop a valid proof withn # m’ mod p.

We can prove the lemma with a general commitment scheme because a commitment scheme will fix the
parametergy, k1, ko, ks, k{, m, m/, 11, l2, 13 in equations (10-14).We can similarly argue that the adversary
has only negligible probabilitg=*¢ to develop a valid proof. Now the lemma will hold based on the
assumption that the commitment uses. O

Theorem 4.3 (Unforgeability). The proposed scheme (5! + 1)-unforgeable if both the LRSW and the
DLOG assumptions hold.

Proof. In this part, we will show under LRSW assumption, no PPT adversary dsen achieve “one-
more” forgery. Let(p, g, G, G, e; X, Y') be the input instance of LRSW problem. If a PPT udesbtains

I + 1 valid message-signature pairs aftéimes successful executions with the signer, we can construct a
simulator which will output a valid paifm*, (a*, b*, c*)), wherem* is not queried to the oracl@x y.

1. The simulator defines two 1-1 maps, ¥ as in the key-generation algorithm of the proposed scheme,
and setsComiInfo = (p,g,G,Grp,e,11,12). The simulator set®Kg = (X,Y). The simulator
generatesCRSy = (has, hw, hu, hy, he, P,@) as in the key-generation algorithm, and discards
the correspondingrapdoors = (Tpr, 7w, Tu, Tv); the simulator generate€RS; = (n,g) as in
the key-generation algorithm, and keeps the correspondingloor; = (p,q); the simulator sets
CRS = (CRS1, CRS5). The simulator supplies the adversary withmInfo, CRS, PKg.

2. The oracleZ will be queried by A which operates like that in one of the two cases below:

Case 1: A queriesZ with (start, msg), wheremsg = {PKy, M,0,(W,U,V),com}. The oracleZl
will create a session identityid and set the corresponding state = L ; the oracleZ will
simulates the signe$ with msg till S either terminates or returns a respomsg to the user;
the oracleZ records the current state éin. If S returnsrsp thenZ returns this with the session
identity to A4, i.e. Z return{sid, d} to A.

Case 2:A queriesZ with (advance, sid, msg), wheremsg = {(so, s1, s2, $3), (Tns, Tw, Tv, Tv, )}
The oracleZ will simulate the signe§ with msg and previous statet. TheS checks if all equa-
tions hold:com = A\ AW hiV 1Y hI mod P, Ty = g* s} M% mod n?, Ty, = 0wz +ss e,
Ty = USQUd, Ty = US3Vd, wheret,, = 1/11(TM), tw = ¢2(Tw), ty = QIZ)Q(TU), ty =
¥o(Ty ). If nottrue, terminates. Otherwise, because we use Pedétsd@] multi-commitment
which is based on the DLOG assumption, from the lemma above, we can obtainuhder
{6, W, U, V'} by decryptingn from M, and the oracl€ can generate an identically distributed
response{a’, b, W' U', V'} to A by simulatingOxy with m: S uses the trapdoor informa-
tion trapdoor; = (p,q) to decryptM into m = DECRYPT, , (M), and returnsn to the
oracleZ. The oracleZ simulatesOx y with inputm mod p which returns(a, b, c). The or-
acleZ computess’ = a, b = b, W' = cw2t5, U/ = 2, V' = o5, wherel}, 1} & 7,
and sends them tol. Here (W' ,U’, V') is in fact the ciphertext of over A’s public key
(u,v,w). We claim{a’,t/, W' U’ V'} is identically distributed to the protocol answer, i.e.
{a,b, cw2ts ulz W15} ~ {(0), (0¥, (W*¥erwlatls)! (Urvy2)t  (V*¥')!'}. Note that
(a,b,c) is the response froMyy. So,a is a random element ifs, b = a¥, ¢ = a* ™V,
Based on the lemma, and equation (1), we kb= 0w, U = u2, V = o3, We can
Compute(nyemwl’z—l-l’S)t/ — ((Qmwl2+l3)myezwll2+l§)t, — ((G)t’)z—l—mzyw(l21y+l’2)t/+(l3my+lg)t"
(nyulg)t’ _ ((ulg)xyulé)t/ _ u(lz:cy-i-lg)t’, (nyvzg)t’ — ((Ulg)xyvlg)t’ — p(Bzy+is)t  Recall
t', 1,15 are randomly selected. So we can repléice(loxy + I5)t', (Isxy + I5)t' with a, 14, 14,
which means that the two probability distributions are identical.
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3. A outputs message-signature pairs.

Now assume tha#l can break the scheme, which meafian generat¢ message-signature pairs
(mi;07),(mb;03), ..., (m); o) withm; # mjandl’ > 1. Sincel’ —1 > 1, at least one message, say,
is not queried to oracl® x y, though(my,; of,) is a valid pair. In other word, we can construct a valid pair
(m§; ofy), wheremy, is not in query history. This breaks the LRSW assumption.
O

4.4.3 Blindness

In this subsection, we show the blindness of our scheme. Start from the blindness model, we define Game
0; we slightly change Game 0 by simulating the left user instantiation by Redisgtrick in Game 1; and

then we slightly change Game 1 again and do the similar simulation for the right user instantiation in Game

2. The statistical distance of the probability distribution of Game 0 and Game 1, and of Game 1 and Game
2 are negligible.

Now we slightly change Game 2 by simulating the left user instantiation with inputting a random mes-
sage (not one of the messages selected by the adversary) to the Paillier encryption in Game 3; then do the
similar simulation for the right user instantiation in Game 4. Both distances between Game 2 and Game 3,
and Game 3 and Game 4 akdvpcg Which is negligible under the DCR assumption.

Similarly, we slightly change Game 4 into Game 5 by simulating the left user instantiation with inputting
a random message to the linear encryption; then change Game 5 into Game 6 by similar way for the right
instantiation. Again the distances between Game 4 and Game 5, and Game 5 and GaAdvp, &€
which is negligible under the DLDH assumption.

Theorem 4.4 (Blindness).The proposed scheme is blind if both the DLDH assumption and the DCR as-
sumption hold.

Proof. We use the sequential games technique to prove this part, and define(gyéhmween the adversary
A and the oracldj‘.Zﬁ which simulates two user instantiation: the left @t and the right oné/*, where
j=0,1,...,6. Also we defines; to be the event that = ¢’ in G7'.

Game 0O:
Follow the blindness model, we can define Game 0 as below:

Gp'(1%)

1. ¢ < {0,1};

2. (ComlInfo, CRS,PKg,SKg) < GEN(1"); setPubInfo = (ComlInfo, CRS, PKg)
3. ¢ — Azg)(l)‘, PubInfo);

4. if ¢ = ¢ thenl;

HereZ{ is defined as:

- Given (challenge, mq,m1), the oracleZ] simulates/” (resp. U™) with m, (resp. mi_,). The
oracIeIg’ keeps a database with the state of each user instantiation; the state includes all coin tosses
of the user instantiation and the contents of all tapes including the communication tape. Here the
oracle usest! (resp.st’) to record the state @i” (resp.U™).

- Given (advance, p, msg), Wherep € {L, R}:
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— If msg = L, thenI(‘f recovers the state 6f”, and simulates the user instantiati@gf till /°
either terminates or returns a response to the sign&¥. iéturns a responsep, thenIg returns
rsp to A. The oracle will record the current statg i.e. st” = st”||st. Letm be the simulated
message fat”, i.e.m = mg for p = L andm = m;_4 for p = R, we have,

(@) (PK}, SKf,) «— GENEE(1%)
(b) ko & £[0,2%0F M) 1y Ky &7 ¢, 15, ko, ks < Zy, 7 & Zg, 0 < G.
(c) M «— ENCRYPT g (m, )
(d) (W,U,V) « ENCRYPTéfmInfO’PK[,} (m, 0,1s,13)
(e) Ths < ENCRYPTL g (Ko, k1)
N (Tw, Ty, Ty) ENCRYPTéEmInf()’PKg(kO,9,k2, k3)
(g) com = hf/[l(TM)h"é);(TW)h@(i2(TU)h$2(TV)h; mod P
(h) rsp = {PKy,M,0,(W,U, V), com}
— If msg = {d}, thenIg’ recovers the state 6f?, and simulates the user instantiatigf with

msg till UP either terminates or returns a respomsge to the signer. 1£4/” returns a response
TSP, thenI(‘f returnsrsp to A. The oracle will record the current statg i.e. st” = st?||st.

Herersp is in the form Of{<80, S1, 892, S3>, <71]\47 Tw, Ty, Ty, T’>}, Where(TM, Tw, Ty, Ty, 7’> is
recovered from the previous statesof, and(sg, s1, s2, s3) is generated asy = ko—d-m € Z,
S1 :kl-ll_dmod n,so = ko —d-ls modp, s3=ks—d-Il3 mod p.

- Given (terminate, msg”, msg™), the oracleZ recovers the state” (resp.st?), and simulates the
user instantiatio/” (resp. U®) with msg” (resp. msg™) till U (resp. ) either terminates or
returns an output. If both user instantiations return outputs, and the outputs are valid blind signatures
for mg, m1, then letrsp = (0¢, 01) be the valid signatures. Otherwise t8p be (L, L). The oracle

returnsrsp to A.
Heremsg? is in form of {a', ¥/, (W', U’, V')}, ando; is in form of (a, b, ¢) which are generated as:
a = (a/)t, b= (b/)t, c= (W//(Ulévlf))t_

Game 1:

We modify Gg! into G{* by changing step 2 into:

2. (ComInfo, CRS1, PKg,SKs) « GEN(1}); CRSy = (hyr, hw, hu, hv, by, P,Q) generated as:
h, z Lp, TV, TW,TU, TV z ZQ, hy = 1M mod P, hyy = hIW mod P, hy = hJV mod P,
hy = hIY mod P. Keeptrapdoory = (Tar, 7w, TU, Tv) Secretly. LetCRS = (CRS,, CRS2), and
setPubInfo = (ComlInfo, CRS, PKg).

and changing into Z7. Note thatZ? is same ag except that

- Given(advance, p, msg), wherep € {L, R}. If p = R, Zf operates identically a’ég; butifp =L,
If works as follows:

—If msg = 1, thenIf5 recovers the state af’, and simulates the user instantiatigh till 2/~

either terminates or returns a response to the signigt: teturns a responsep, thenIf returns
rsp to A. The oracle will record the current state i.e. st = st”||st. Letm = m,, we have,

(@) (PKE, SKE) < GENEE(12)
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(b) L & Z%, 1o, 13 < Zp, T < Zp, 0 < G.
(c) M «— ENCRYPTig (m, 1)
(d)y (W,U,V) « ENCRYPTéfmInfO’PKg (m, 0,12,13)
(e) com = hT
() rsp = {PK}5,M,0,(W,U, V), com}
— If msg = {d}, thenIf’ recovers the state of”, and simulates the user instantiati@h with
msg till U either terminates or returns a respomse to the signer. 1£4/” returns a response
sp, thenIf returnsrsp to A. The oracle will record the current statg i.e. st = st||st.

(@) so < £[0,200F M) o) E 7% 55,55 & 7Ly,

(b) Ty = g*0s7M? mod n?

(©) Tw = gow2rsW, Ty = u2U%, Ty = v*s3V4

d) r=7—(rar - V1(Tar) + 1w - 2 (Tw) + 7 - Y2 (Ty) + v - Y2(Tv)) mod Q
(€) rsp = {(s0, 51,52, 83), (Tna, Tw, Ty, Ty, 1) }

Game 2:
We modify G{* into G5! by changing[f’ into z;i Note thath is same aif) except that :

- Given (advance, p, msg), wherep € {L, R}. If p = L, Z{ operates identically &&’; but if p = R,
Ig) operates similarly as the cage= L with m = m;_g4, i.e. runs the same operations for the right
user instantiatioty %,

Game 3:
We modify G4 into Gg,j‘ by changing[§5 into Ig’. Note thatlg’ is same aig) except that

- Given (challenge, mg, m1), the oracIeI:,‘f) randomly selectsng, m, from the message space and
simulateg/” (resp.U%) with m,, or g (resp.mq_g or ;).

- Given(advance, p, msg), wherep € {L, R}. If p = R, I?‘f operates identically a’éf; butifp =L,
If works as follows:

—If msg = 1, thenI?‘fS recovers the state 6t”, and simulates the user instantiatigh till ¢/~
either terminates or returns a response to the signét- teturns a responsep, thenI§5 returns
rsp to A. The oracle will record the current statg i.e. st = st%||st. Letm = mg, m = my,
we have,

(8) (PKE, SKE) — GENFE (1)

(b) ll = Zﬁ, t,lg,lg <L Zp, T & ZQ, 0 <i G.

(c) M « ENCRYPTZ (i, ;)

(d)y (W,U,V) « ENCRYPTéfmInfO’PKg (m, 0,12,13)
(e) com = hT

(f) rsp = {PK}, M, 0, (W,U,V),com}

— If msg = {d}, thenI§5 recovers the state af~, and simulates the user instantiatigh with
msg till U™ either terminates or returns a respomsg to the signer. 124/* returns a response
rsp, thenIf returnsrsp to A. The oracle will record the current statg i.e. st” = st”||st.
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(@) so < £[0,220TNF0], 5 & T, 55,53 & Z,

(b) T = gSOSrl‘Md mod n?

(©) Tw = 65w+ Wi, Ty = ys2U4, Ty — ps77d

d) r=71— (- 01(T57) + 7w - 2(Tw) + 70 - Y2(Tu) + v - P2(Tv)) mod Q
() rsp = {(s0, s1, 82, 83), (Typ, Tw, Tu, T, m) }

Game 4.
We modify G4! into G7' by changingZ{ into Z{. Note thatZ{ is same ag except that

- Given(advance, p, msg), wherep € {L,R}. If p = L, ij’ operates identically aEff; butif p = R,
ij operates similarly as the cage= L with m = my, m = m_g4, i.e. runs the same operations for
the right user instantiatiot .

Game 5:
We modify G{! into GA by changingZ{ into zgi Note thatlg’ is same ag except that

- Given (advance, p, msg), wherep € {L, R}. If p = R, IZ operates identically &&]’; but if p = L,
Ig’ works as follows:

- If msg = 1, thenIg’ recovers the state 6f*, and simulates the user instantiatigh till 2/~
either terminates or returns a response to the signigt: teturns a responsep, thenIE‘f5 returns
rsp to A. The oracle will record the current state i.e. st” = st”||st. Letm = g, we have,
(8) (PK}, SKf) — GENFP(1%)

() Iy & Zk t,1a, 13 & Zp, 7 & Zg, 0 < G.

(c) M «— ENCRYPTZ& (i, 1)

(dy (W,U,V) « ENCRYPTéfmInmeKlL] (m, 0,12,13)
(e) com = hT

(f) rsp = {PKE, M,0,(W,U, V), com}

— If msg = {d}, thenfg’ recovers the state af”, and simulates the user instantiatigh with
msg till U” either terminates or returns a respomse to the signer. 1/~ returns a response
TSP, thenlg’ returnsrsp to A. The oracle will record the current statg i.e. st” = st”||st.

(@) so & £[0, 220N ] 5 Z 77, 59,53 < 7,

(b) T = gSOS’l‘Md mod n?

(C) TW = @50qS2T53 Wd, T[? = us? ﬁd, T‘7 = v331~/d

d) r=7—(mar - 1 (T7) + 7w - V2(Tii) + 70 - 2(T5) + 7v - 2(T5)) mod @
(e) rsp = {<807 51, 52, S3>7 <T]’\>f7 T/V[V/v Tfju Tf}) T>}

Game 6:
We modifng‘ into Gg‘ by changinglg? into z;f. Note thatzg is same aigf except that

- Given(advance, p, msg), wherep € {L,R}. If p = L, Ig’ operates identically aE?; butif p = R,
Ig operates similarly as the cage= L with m = m1, i.e. runs the same operations for the right user
instantiatiori/ .
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Compute the statistical distance:

We prove in Game 0 and Game 1, under the DLOG assumpfiansy] — Pr[S1]] is negligible. [Note:
the DLDH assumption is stronger than the DLOG assumption, i.e. if DLDH assumption holds, so does
DLOG assumption.] Observer that, for the probability distributions of the right user instantif#&hs
[UT)3 are identical. We still need to show for the left user instantiatipfiss, [1/]3, under the DLOG
assumption, the statistical distance of the probability distributions is negligible. First, we prove the statistical
distance ofsg]o and[sg]; are negligible. Observe that in both gamesc [0, 2%], kg € £[0, 2 0+t M +6],

d < {0,1}*. We can obtain that the statistical distance of the random variéghjgs= ko — d - m and

[so]1 & +£[0,2%+tM+6] is less thare~1~1. Then we can observe that]o and[s]1, [s2)o and[sa]1,

[s3]o and[s3]; are identically distributed. So the statistical distancésefsi, sq, s3]o and|[so, s1, s2, s3)1

is 2~*1~1, Note that by Damgrd’s trick [Dam0(, we use a Pedersen multi-commitment scheme (under
DLOG assumption) to transform a three-move HVSZK protocol into a SZK protocol. So under the DLOG
assumption, the statistical distance of the the two gam@sis !, i.e. | Pr[Sg] — Pr[S;]| < 271!

Use the similar argument, we can show in Game 1 and Garriers;] — Pr[So]| < 272!

Now we prove in Game 2 and Game 3, under the DCR assumpfiafiSe] — Pr[Ss]| is negligible.
Observer that, for the probability distributions of the right user instantiatigs,, [2/%]3 are identical,
and for the left user instantiatiori&”],, [14*]3, under he DCR assumption, the triplg¥|s, []TI]4 are
indistinguishable, which also leads thal, | and[75;]s, [r]2 and[r]s, are indistinguishable. Sdr[S2] —
Pr[Ss]| < Advpcr.

We can prove in Game 3 and Game 4, under the DCR assumpRoffs] — Pr[S,]| is negligible by
the similar argument as above: the probability distributions of the left user instantifibhs [1/*], are
identical, and the statistical distance of the probability distributions of the right user instanti@tidjs
[Tt are indistinguishable, which results|iRr[S3] — Pr[S4]| < Advpcr.

Next we prove in Game 4 and Game 5, under the DLDH assumgtiansSs] — Pr[Ss]| is negligible.
Observer that, for the probability distributions of the right user instantiafiéfig,, [/*']5 are identical, and
for the left user instantiation®/*|4, [/*]5, under he DLDH assumption, the triplg&, U, V4, [W U,Vls
are indistinguishable, which also leads tfifiy, 77, Tv]4 and [T5;, T, Ty ]s, [r]4 and [r]5, are indistin-
guishable. Sd)Pr[Szﬂ — PI‘[S5” < AdvppH.

We can prove in Game 5 and Game 6, under the DLDH assumpfefss] — Pr[Sg]| is negligible by
the similar argument as above: the probability distributions of the left user instantiébhs [U/"]¢ are
identical, and the statistical distance of the probability distributions of the right user instanti@iépas
[UF] are indistinguishable, which results|iRr[S5] — Pr[Ss]| < Advp|pH-

In Game 6 is not used, so the adversafiyhas only probability% to win the game, i.ePr[Sg] = 5

Based on the argument above, we can get

[Pr[So] — 3| = [Pr[So] — Pr[Se]| = | Z PrS;] = Pr[Sj]| < Z | Pr[S;] = PrSj]]

=2 M-l oMy AdVDcR + Advpcr + AdVDLDH + AdvpLpH
=2"M 4 2Advpcr + 2AdvpLpH

Under both the DLDH assumption and the DCR assumptiBn[,Sy| — %| is negligible. This completes
the proof of blindness.
O
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5 Extensions and Variants

5.1 Stronger Blindness

We present a variant of our scheme where we prove the blindness property only conditional on the DLDH
assumption without relying on the DCR assumption. We will still employ the DCR assumption but this will
be transferred to the unforgeability property. This modification strengthens the blindness property in the
following sense: in our basic construction blindness relies on the security of a long-lived parameter of the
system (the factorization of the moduliisas well as on DLDH. On the other hand, in the modified scheme
that we present on this paragraph, the blindness property relies only on the DLDH assumption which refers
to the short-lived keys for Linear Encryption that are generated by the user himself.

In the modified scheme, we replace the Paillier encrypliba- g™ mod n?, whereg = (1 + n) with
a commitment\] = gg"bhf)l mod n?, wheregg, hg < Z,. Note thatn is same as that in our basic scheme,
andn, go, hg are also included into the CRS.

Observe that this modification transforms the computationally hiding commitieimto a perfectly
hiding commitment: the CRS contains the valggs= (1 +n)®1 3" mod n? andhy = (1 +n)*23} mod n?
wherea, ay & Z, andfy, B < Zi. As aresultM = githl = (1 + n)@rmtesli(gmaliyn mod n2, It
follows that, if/; is randomly selected fromi.. L”;j] the commitment does reveal any information about
m in the information-theoretic sense.

When we prove the unforgeability, we can modify the CRS wigh= (1 + n)3} mod n? andhy =
B3 mod n® wherepy, B < Zf. Now M = g'hlt = (14 n)B1)™(B5)" = (1 + n)™(67*44)" mod n?
which is a Paillier ciphertext ovef;,. So the simulator can use the corresponding trapdoor “opéirito
m which leads to a successful simulation.

5.2 Revokable Blindness

In this case we modify our scheme in the opposite direction: we introduce a trusted third paitly the

key pair(PKr,SKr) that is capable of receiving a transcript of the signing protocol and recovering the
message that was submitted for signing by the user, i.e., revoke the user’s blindness from a signing protocol
transcript.

In the new scheme, besides the actions taken by the user in the signing protocol, when the user sends
out the Paillier ciphertexd/ of m in parallel he sends the signer a ciphertékthat encrypts the message
m under the public-key’ K1 of the trusted third party; he couples this with a proof of equality of plaintexts
for the two ciphertexts/ and M that is AND-composed to the other proofs that the adversary performs in
the protocol.

When the trusted third party wants to revoke the blindness from a blind signing protocol transcript, he
just needs to “open}/ into m by his secret keys K.

In Figure 3 we give a detail description of such blind signature generation. In the key generation
algorithm, ComliInfo, PKg,SKg are same as that in the basic scheme; we slightly change the Peder-
sen commitment scheme for 4 components into that for 5 components and change the CRBdnto
(n,g; har, bz, hw, ho, by, by, P, Q). The third partyZ is associated with another Paillier encryption with
PKr = (n,g), andSKr = (p,q), wherep andq are random primes ard= pq such thap,q > 2, p # q,

Ip| = lq|, gedpa, (p — 1)(q — 1)) = 1, and|n| = |n|. The secret keys K+ = (p, q) which is only known
by 7, and the public ke’ K = (n, g) whereg = (1 + n).

The proposed blind signature with revocable blindness is based on the CL-signature, which is generated
as: select a random € G and output the signature = (a, a¥,a®*¥™). And when we obtair{m, o)
which is generated by the signing protocol of the proposed scheme, we can verify(ta8) = e(g, b);
e(X,a)e(X,b)"™ =e(g,c).
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ComlInfo, CRS,PKgs, PKr

ComlInfo, CRS,PKg, PKr

MSG SKg
(PKy,SKy) « GENIF (1)
PKy = (u,v,w), SKy = (4,§)
ko, ko < £[0,2%0FM1+6)
lky & 23,0y, by & 7
ta 127 lSa k?a kSv l_27 1_37 ];:23 ]23 ‘L Zp
0 G,r < Zg
M = g™} mod n?
M = g™} mod h?
W = gmwletls U =ul2, V =l
T = g"k? mod n?
Ty = gk mod A2
Ty = QFowkztks Ty = k2 | Ty = oks
ta = v1(Tnr), tar = ¥1(Tap)
tw = P2(Tw), tu = ¢2(Tv)
ty = ¥a(Tv) .

' F— PR PKy,M,M,0,(W,U,V),com
com = hyy b} hyy! hif hyY hy mod P

d < {0,1}*0

Sozko—d-m(inZ)

s1=ky -I;%modn
So =kyg —d-ly modp
s3 =ks —d-lgmodp

a=(a)t b= (V)"
e = (W' /(UPV*E))
o ={a,b,c)
VERIFY(m,0) =" 1

(50,51,52,53),

(Ts Ty, Tw , Tu , Tv ),

a’ b (WU V)

M e’z M €' 72,

so € £[0, 220 T

ta = V1(Tor), tar = 1 (Thy)

tw = 2(Tw), tu = ¥2(Tv)

ty = 2(Tv)

com =" R RN R hiY hiY hi mod P
Ty =7 g%0s7M? mod n?

Ty =" g% s7 M9 mod A2

TW _7 950w82+33Wd

Ty _7? USZUd, Ty =7 pssyd
15,1y < 7,

a = (0)" b = ()"

W' = (meezwl’2+lé)t’

U = (U:vyul;)t" V! = (Vryvlg)t'

output(m; o)

Figure 3: The signing protocol of blind signature with revocable blindness.
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In the unforgeability attack, evefi can be corrupted by the adversary user, we can use the similar
argument as that in the proof ®heorem 4.3extractm from M (or from M); and then usen to complete
the simulation. The unforgeability then reduces to the unforgeability of the CL-sign&ut] which is
based on the LRSW assumption, and the binding property of the Pedersen commitment which is based on
the DLOG assumption.

In the blindness attack, assurfieis not corrupted by the adversary signer. Under the DCR and the
DLDH assumptions, the adversary cannot distinguish the Paillier cipheftéxig, the Linear Encryption
ciphertexts(W, U, V') for messagen from that for a random message, which allows us to develop the
blindness proof by the same way in the proofibieorem 4.4

Based on the argument above, we can obtain the security theorem for the blind signature with revocable
blindness as below:

Theorem 5.1. Under the LRSW and the DLOG assumptions, the blind signature with revocable blindness
defined above is unforgeable even if the trusted third party can be corrupted by the adversary; Under
the DLDH and the DCR assumptions, the blind signature with revocable blindness defined above satisfies
blindness, assuming that the trusted third party is not corrupted by the adversary.

5.3 Public-Tagging and Partial blindness

We construct an extension of our blind signature that allows the “public-tagging” of a message that is blindly
signed. Public-tagging of blindly signed messages gives rise to what is called a partially blind signature
[AF96]: the signer knows a portion of the message that he is about to sign. Public-tagging is useful as
it allows the signer to keep the same public-key and issue blind signatures for different purposes (e.g., a
bank may issue e-coins that are publicly-tagged blind signatures, and the tagging will correspond to the
denomination, i.e., there will be a different tag for each coin denomination). It should be stressed that in
a blind signature with public tagging the blindness property is only enforced within blind signatures with
the same public-tag. The unforgeability property on the other hand remains identical. We develop a public-
tagging mechanism for our basic scheme. The key idea is the following: we replace the underlying digital
signature of CLO4] with the two message-block extended version (Scheme C for two messa@gaOM)[
In this signature messages are of the fdrm info). The public informatiorinfo is included intoCom.Info.
Hereinfo € [0, 2%]. Note that the exact choice for the valueinfo is negotiated by the signer and the user
outside of the signing protocol.

In the modified signature that we use, the public and secret-key of the signer are modified and the values
PKg = (X,Y)andSKg = (x,y) they are substituted witPKs = (X,Y, Z), SKg = (x,vy, z), where
X =g¢%Y = g¢¥, Z = g*. Signing a messagen, info) corresponds to the following operation: select a
randoma € G and output the signature= (a, a?, a¥, a¥?, a®T*ymtayzinfoy

The modified signature has the following verification process: Given a message-signature pe; o),
whereo = (a, A,b, B,c) , we can verify it by the verification equations(a, Z) = e(g, A); e(a,Y) =
e(g,b) ande(A,Y) = e(g, B) ande(X, a)e(X,b)"e(X, B)" = ¢(g, ¢).

The detailed partially blind signature generation is similar to our basic blind signature protocol (i.e., it
retains the 2-round structure with short communication) and is shown in deEagumne 4

Obviously, keepingnfo fixed across protocol executions it is straightforward to extract the blindness of
the above scheme in a similar fashion as in the basic primitive, which is also based on the DLDH and the
DCR assumptions. Unfogerability on the other hand reduces to the security of the Camenisch-Lysyanskaya
two message-block signatur@l[04] which is also based on the LRSW assumption, and the binding property
of the Pedersen multi-commitmeRgd9] which is based on the DLOG assumption. Now we can obtain
the security theorem of the proposed scheme.
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Theorem 5.2. Under the LRSW and the DLOG assumptions, the proposed partially blind signature scheme
is unforgeable even if the public-tag is adversarially selected for each signature; Under the DLDH and the
DCR assumptions, the proposed scheme is blind for signatures with the same public-tag.

23



COTTLI’I’LfO = <p,g,GaGT7€§1/f1,¢2; info)
CRS = (n,g; har, hw, hu, hy, by, P, Q)
PKs = (X.,Y,Z)

MSG = (m), m € [0,2%]

ComInfO = <P797G,GT763¢1,¢2; info>
CRS = (n,g; har, hw, hu, hv, by, P, Q)
PKs =(X,Y,Z), SKs = (x,y, 2)

(PKy, SKy) « GENF#(1%)
PKy = (u,v,w), SKy = (6,&)

ko & 4]0, 20T ] ]y k) & 7
t,l2,l3, kg,k3 L Zp, 9 <L G, T L ZQ
M = g™I} mod n?

W = 0mwletls U =yl V =ols

Ty = gFok} mod n?

Tw = Hkow’”*k?’, Ty = qu, Ty = vks
ta =1 (Tu), tw = Y2(Tw)

ty = 2 (Tv), tv = Y2(Tv)

com = RS AW hi¥ hiY kT mod P

Sozko—d'm(inZ)
51:k1~ll_dmodn
52:k27d~lgmodp
s3=ks—d-lsgmodp

a=(a), A= (A",
b= ( /)t, B = (B,)t,
c= (W'/(UPVe))!

o ={a,Ab,B,c)
VERIFY(m,info,0) =" 1

PKy,M,0,(W,U,V),com

(50,51,52,53),(Tnv, Tw , T, Tv )

o, ALY B (WU, V')

d < {0,1}%

M €’ Ly

so €7 &[0, 220ttt

ta = V1(Tr), tw = a2 (Tw)

ty = Y2(Tv), tv = a2 (Tv)

com =" WYY RIW RV BLY AT mod P
Ty =" g%0s7 M9 mod n?

Tw _? 950w52+53wd

TU 7 uS2 Ud, TV 7 U53Vd
vl Sz,

@ = (6), A = (5

b= (00" b = (07)"

W/ _ (Wwyem-‘rwyz-infowlé-&-lé)t
U = (Uwyullz)t', V! = (wa,vl/s)t'

’

output(m, info; o)

Figure 4: Patrtially blind signature generation protocol.
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