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Abstract

We present the first blind signature scheme that is efficient and provably secure without random
oracles under concurrent attacks utilizing only two rounds of short communication. The scheme is based
on elliptic curve groups for which a bilinear map exists and on extractable and equivocable commitments.
The unforgeability of the employed signature scheme is guarranteed by the LRSW assumption while the
blindness property of our scheme is guarranteed by the Decisional Linear Diffie Hellman assumption.

We prove our construction secure under the above assumptions as well as the DCR and DLOG as-
sumptions in the concurrent attack model of Juels, Luby and Ostrovsky from Crypto ’97. Our construc-
tion is the first scheme that instantiates the security definition of Juels et al. with an efficient construction
in the standard model. We consider various modifications to our basic protocol that inlude a blind sig-
nature scheme with revokable blindness as well as a blind signature that incorporates a “public-tagging”
mechanism. The latter extension of our scheme gives rise to a partially blind signature with the same
efficiency and security properties as our basic scheme.
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1 Introduction

Blind signatures were introduced by Chaum in [Cha82] and proved to be a most useful cryptographic scheme
that has been the basis of many complex cryptographic constructions including e-cash systems and e-voting
schemes. Informally, a blind signature is a signature scheme that incorporates a signing protocol that allows
the signer to sign a document submitted by a user blindly, i.e., without obtaining any information about the
document itself.

It was observed early on (at least as early as [Dam88], see also [PW91]) that blind signatures contain an
instance of a secure function evaluation protocol in the following sense: the user possesses a private inputm
and a public-inputpk which is the verification key of a digital signature algorithm, and the signer possesses
a private inputsk which is the signing-key of the digital signature algorithm; with this setup the user and the
signer should execute a probabilistic secure function evaluation protocol that will allow the user to compute
σ, a signature onm underpk, without revealingm to the signer and without the signer revealingsk to
the user. Given the complexity of general secure function evaluation though, [Yao86, GMW87], in early
work on blind signatures this paradigm was not very motivating. A more motivating paradigm was found
in divertible zero-knowledge proofs [OO89, Oka92, CDP94] and many blind signatures were subsequently
designed in this line of reasoning [PS96, PS97, Poi98, AO00, AO01, Abe01] as well as the first attempt to
give provably secure constructions (in the random oracle model) was due to [PS96].

Regarding provably secure constructions, Pointcheval and Stern [PS96], presented secure blind signa-
tures with three communication moves (essentially 2-rounds since these protocols have the signer go first
which typically is a server) that were proven secure in the random oracle model under the discrete-logarithm
assumption assuming only logarithmically many messages were transmitted by the user. This result was later
improved to polynomially many messages but 5 communication moves [Poi98] and the round complexity
was finally decreased to 3 moves (essentially 2 rounds) and polynomially many messages in [AO01, Abe01].
A single round protocol was presented in [BNPS01] assuming the RSA inversion oracle assumption. We
stress that all these results were proven secure in the random oracle model.

Concurrency in the context of blind signatures was put forth by Juels, Luby and Ostrovsky [JLO97]
who presented the first security model for blind signatures that takes into account that the adversary may
launch many concurrent sessions of the blind signing protocol (operating as either the user or the signer).
Concurrency is particularly important in the context of blind signatures since in implementations of blind
signatures in e-voting and e-cash schemes, see e.g., [Cha82, FOO92, Kim04], the signer is in fact a multi-
threaded server that accepts many concurrent sessions of users that are executing the signing protocol. Thus,
it is of crucial importance to consider the security of blind signatures when(1) a malicious signer attempts
to defeat the blindness of many concurrently joining users, and(2) a coalition of malicious users attempts to
extract information about the signing key of the multi-threaded signer server. Juels et al. [JLO97] demon-
strated the feasibility of concurrently secure blind signatures by providing a construction based on generic
secure function evaluation. Naturally, this protocol was not efficient, but it was the first instantiation of a
secure blind signature (and in fact in the concurrent setting) that did not require random oracles. Till today
this (inefficient) construction remains the only blind signature known that is secure in the concurrent setting
without random oracles. More recently, with respect to blind signatures without random oracles Camenisch
et al. [CKW04] considered a weaker model than that of [JLO97] that only allowed sequential attacks and
presented an 8-move blind signature scheme based on the Strong-RSA assumption leaving as open problem
the possibility of achieving concurrent security.

We conclude this brief overview on the blind signature primitive by observing that to date noefficient
blind signature construction is known that is provably secure in the model of Juels et al. without random
oracles; providing an efficient scheme was discussed in [JLO97] and was left as an open problem. We settle
this open question in this work.
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1.1 Our Main Contribution

We present an efficient construction for a blind signature scheme utilizing only two rounds of communication
and a full proof of security of this construction in the concurrent model of Juels et al. [JLO97]. The two
round interaction between the user and the signer in the signing protocol requires overall communication
not exceeding 2 Kbytes (about 10.5 Kbits to be precise) for a full signature generation. In the process of
presenting our security proof we in fact reformulate and use the [JLO97] model in a stronger fashion since
we allow the adversary to select the public-key of the underlying signature in the blindness attack (whereas
in previous work such key was assumed part of the trusted setup). Achieving this level of efficiency while
simultaneously maintaining provability in the strong model of [JLO97] required the careful composition of
a number of cryptographic primitives. As our underlying digital signature scheme (i.e., the type of signature
that is obtained by users) we use the elliptic curve based signature scheme of Camenisch and Lysyanskaya
[CL04] (henceforth called a CL signature). We also employ a variant of Linear Encryption, an encryption
scheme that was originally introduced in the context of group signatures by Boneh, Boyen and Shacham
[BBS04] for the purpose of designing group signatures. Here we find a novel use of this primitive in the
context of blind signatures. In addition to these primitives, our construction makes essential use of discrete-
logarithm equivocal commitments based on Pedersen commitments and extractable commitments based on
Paillier encryption [Pai99].

The central idea of our construction is to use a variant of Linear Encryption to produce a very efficient
secure function evaluation protocol for CL signatures that proceeds roughly as follows: the user selects
on the fly a key for the encryption scheme and encrypts her message with it. The signer upon receiving
this encryption takes advantage of the homomorphic properties of the encryption to blindly transform the
ciphertext into a randomized encryption of a CL signature and then transmits the resulting rerandomized
ciphertext back to the user. We make an essential use of the homomorphic properties of the underlying
encryption since it is based on those that we manage the efficient generation of non-adversarial randomness
between the mutually distrustful players. Finally, in order to prove security under concurrent attacks the
homomorphic encryption based interaction needs to be paired with an extractable commitment for the user’s
special Linear Encryption ciphertext. Further simulation requirements require an equivocable commitment
to be used for ensuring that no information leakage occurs from the user to the signer.

Note that the resulting signature from the signing protocol is about half the size of an RSA based Chaum
blind signature. Table1 compares the round complexity of our construction in comparison to previous blind
signature schemes. The construction is proven to satisfy the two properties of [JLO97] model as follows: the
blindness property is ensured under the Decisional Composite Residuosity assumption of [Pai99] and the
Decision Linear Diffie-Hellman assumption of [BBS04]. The unforgeability property is proven under the
LRSW assumption of [LRSW99] and the discrete-logarithm assumption over prime order modular groups.

1.2 Extensions and Variants

We present a variant of our construction where the blindness property is strengthened and relies only on the
Decision Linear Diffie-Hellman assumption. The requirement for the DCR assumption is transferred to the
unforgeability property. In this stronger blindness variant of our scheme it is ensured that the message that
is submitted by the user is hidden only with a public-key that is in the control of the user and is short-lived
(i.e., used only for a single signing protocol as opposed to throughout the life-time of the common-reference
string). Thus blindness, while still claimed in the computational sense, it is only based on user-selected
secrets.

The second variant of our scheme we modify the blindness property but in the opposite direction. In this
case, we include a trusted third party in the blind signature setup, that is capable of removing the blindness
of a user given a signing protocol transcript. We call this capability “blindness revocation” and is a useful
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paper # of signatures # of moves properties model setting
[PS96] Log(ploy) 3 plain ROM sequential
[PS97] Log(poly) 3 plain ROM sequential
[AO00] Log(poly) 3 partial ROM sequential
[Poi98] ploy 5 plain ROM sequential
[Abe01] poly 3 plain ROM sequential
[AO01] poly 4(2-round) fair ROM concurrent
[BNPS01] poly 2(1-round) plain ROM concurrent
[JLO97] poly poly plain plain concurrent
[CKW04] poly 8(4-round) plain plain sequential
Our Scheme poly 4(2-round) plain/partial plain concurrent

Table 1: Comparison of present work to previous blind signatures

property in cases where for arbitration purposes the confidentiality of a certain signing transcript must be
lifted. The trusted third party operation, provides a type of fairness mechanism for blind signatures, cf.
[SPC95].

Finally we provide an extension of our scheme that allows the public-tagging of blindly signed messages,
i.e., all messages that are obtained by the users also contain a publicly known tag that is decided prior
to the signing protocol execution. This extension is essentially equivalent to a partially blind signature
construction, a notion that was formalized in [AF96]. In a partially blind signature every message is tagged
with a public-string that is produced jointly by the user and the signer. The blindness property is restricted
to hold only for blind signatures with same tag. Partial blindness is important as it allows the signer to reuse
the same public-key for a variety of different blind signature functionalities.

2 Preliminaries

2.1 Bilinear Groups

Let G = 〈g〉 is a cyclic group of prime orderp such thate : G × G → GT is a bilinear map, i.e., for all
u, v ∈ G anda, b ∈ Z, it holds thate(ua, vb) = e(u, v)ab ande is non-trivial, i.e.,e(g, g) 6= 1.

2.2 Digital Signature

A signature schemeDS = (GEN, SIGN, VERIFY) is defined by the three following algorithms:

- The key generation algorithmGEN. On input1λ, the algorithmGEN outputs a pair(pk, sk) of matching
public key and secret key.

- The signing algorithmSIGN. Given a messagem and a pair of matching public key and secret key
(pk, sk), SIGN generates the corresponding signatureσ.

- The verification algorithmVERIFY. Given a message-signature pair(m,σ) and a public keypk,
VERIFY test ifσ is a valid signature ofm with respect topk.

2.2.1 Camenisch-Lysyanskaya Signature

Camenisch and Lysyanskaya [CL04] constructed a plain signature (call it CL-signature for short) and proved
it secure in the standard model.
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- The key generation algorithmGENCL: generate the bilinear group parameter(p,G,GT , g, e); then
choosex, y ∈ Zp, and computeX = gx andY = gy; set secret key assk = (x, y) and public key as
pk = (p,G,GT , g, e;X,Y ).

- The signing algorithmSIGNCL: on input messagem, secret keysk = (x, y), and public keypk =
(p,G,GT , g, e;X,Y ), choose a randoma ∈ G, and output the signatureσ = (a, ay, ax+mxy).

- The verification algorithmVERIFYCL: on input public keypk = (p,G,GT , g, e;X,Y ), message
m, and signatureσ = (a, b, c), check whether the verification equationse(a, Y ) = e(g, b) and
e(X, a)e(X, b)m = e(g, c) hold.

We will use the CL-signature to construct blind signatures. The underlying assumption of CL-signatures
is called the LRSW assumption, which was introduced by Lysyanskaya et al. [LRSW99]. It was also shown,
in the same paper, that this assumption holds for generic groups.

Assumption 2.1 (LRSW Assumption).Given the bilinear group parameters(p, g,G,GT , e). LetX,Y ∈
G, X = gx, Y = gy. LetOX,Y (.) be an oracle that, on input a valuem ∈ Zp, outputs a triple(a, b, c) such
thatb = ay, andc = ax+mxy wherea

r← G. Then for all probabilistic polynomial time adversariesA,

Pr
[
x, y ∈ Zp;X = gx;Y = gy; (m,a, b, c)← AOX,Y :

m /∈ Q ∧m ∈ Zp ∧m 6= 0 ∧ a ∈ G ∧ b = ay ∧ c = ax+mxy

]
≤ ε

whereε is a negligible function in security parameterλ, andQ is the set of queries thatAmade toOX,Y (.).

2.3 Public-key Encryption

A public-key encryption schemePKE = (GEN, ENCRYPT, DECRYPT) is defined by the three following algo-
rithms:

- The key generation algorithmGEN. On input1λ, the algorithmGEN outputs a pair(pk, sk) of matching
public key and secret key.

- The encryption algorithmENCRYPT. Given a messagem and a public keypk, ENCRYPT generates a
ciphertextC of m.

- The decryption algorithmDECRYPT. Given a ciphertextC and the secret keysk, DECRYPT gives back
the plaintextm.

2.3.1 Linear Encryption

Boneh et al. [BBS04] proposed a variant of ElGamal encryption, called, Linear Encryption that is suitable
for groups over which the DDH assumption fails. We call it LE for short.

- The key generation algorithmGENLE : the public keypk is a triple of generatorsu, v, w ∈ G and the
secret keysk is the exponentsx, y ∈ Zp such thatux = vy = w.

- The encryption algorithmENCRYPTLE : to encrypt a messagem ∈ G, choose random valuesa, b ∈ Zp,
and output the triple(ua, vb,m · wa+b).

- The decryption algorithmDECRYPTLE : given an encryption(U, V,W ), we recover the plaintextm =
DECRYPTLE

sk (U, V,W ) = W
Ux·V y
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The Linear encryption is based on Decision Linear Diffie-Hellman assumption, which first introduced
by Boneh et al. [BBS04]. With g ∈ G as above, along with arbitrary generatorsu,v, andw of G, consider
the following problem:

Definition 2.2 (Decision Linear Diffie-Hellman Problem inG). Givenu, v, w, uα, vβ, wγ ∈ G as input,
output1 if α+ β = γ and0 otherwise.

It is believed that DLDH is a hard problem even in bilinear groups where DDH is easy. Now we define
the advantage of an algorithmA in deciding the DLDH problem inG as

AdvADLDH =
∣∣∣∣ Pr[1← A(u, v, w, uα, vβ , wα+β) : u, v, w ∈ G, α, β ∈ Zp]

− Pr[1← A(u, v, w, uα, vβ, χ) : u, v, w, χ,∈ G, α, β ∈ Zp]

∣∣∣∣
Assumption 2.3 (Decision Linear Diffie-Hellman Assumption).We say that the Decision Linear Diffie-
Hellman assumption holds inG if no PPT algorithmA has non-negligible advantageAdvADLDH.

2.3.2 Paillier Encryption

In our scheme we will employ the public-key encryption introduced by Paillier [Pai99]:
- The key generation algorithmGENPai : let p andq be random primes for whichp, q > 2, p 6= q,
|p| = |q| and gcd(pq, (p− 1)(q− 1)) = 1; let n = pq, π = lcm(p− 1, q− 1),K = π−1 mod n,
andg = (1 + n); the public key ispk = (n, g) while the secret key issk = (p, q).

- The encryption algorithmENCRYPTPai : the plaintext set isZn; given a plaintextm, choose a
randomζ ∈ Z∗

n, and let the ciphertext beM = ENCRYPTPai
pk (m, ζ) = gmζn mod n2.

- The decryption algorithmDECRYPTPai : given a ciphertextM , observe thatMπK = gm·πK ·
ζn·πK = gm·ζK mod n · ζn·πK mod nπ = gm mod n · ζ0 mod nπ = gm = 1 +mn mod n2. Thus, it is

possible to recoverm = (MπK mod n2)−1
n mod n.

The cryptosystem above has been proven semantically secure if and only if the Decisional Composite
Residuosity (DCR) assumption is true.

Assumption 2.4 (Decisional Composite Residuosity Assumption).There is no PPT distinguisher forn-th
residues modulon2. In other words, there is no PPT adversary that can distinguishZn

n2 from Z∗
n2 , where

Zn
n2

def= {z ∈ Z∗
n2 | ∃y ∈ Z∗

n2 : z = yn mod n2}.

2.4 Commitment

A commitment scheme is a two-stage interactive protocol between two parties, thecommitterholding a
messagem and a random stringr, and thereceiver. In the first stage, called the commit-stage, the committer
gives some information derived fromm, r to the receiver such that (1) the receiver can not obtain any
information aboutm, i.e. the commitment ishidingand (2) the committer cannot change his mind aboutm
later, i.e. the commitment isbinding. In the second stage, called the open-stage, the committer sendsm, r
to the receiver, who verifies thatm, r match the communication of the first stage. In general, the committer
will use an algorithmcommitpk which is keyed by a public keypk to computec ← commitpk(m, r), and
sendc to the receiver; to open the commitment, the committer just sendsm, r to the receiver who checks
if c = commitpk(m, r). The hiding property means givenc the receiver does not learnm, and the binding
property means the committer cannot change his mind by computingm′, r′ such thatc = commitpk(m′, r′)
andm′ 6= m.
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2.4.1 Extractable Commitment

In an extractablecommitment, there is a trapdoor informationexpk is associated to each public keypk
which allows the trapdoor owner to computem from anycommitpk(m, r). In our bind signature scheme,
the user sendŝm, the blinded form of his messagem to the signer, and the signer manipulatesm̂ into a
scrambled signaturêσ. When the user getŝσ, he will transformσ̂ into a blind signatureσ for the message
m. The user should also commit tom when sendinĝm, by sending the signer a corresponding commitment
commitpk(m, r) for m. Obviously, the user should be restricted to choose bothm̂ andcommitpk(m, r)
consistently over samem. When we prove the unforgeability of the scheme, the adversary controls a mul-
titude of users that run concurrent blinding sessions with the signer. In this case, we want to be able to
simulate the adversary and attack the unforgeability of the underlying signature. While it is possible to use
rewinding to extractm from the commitment and then simulate the remaining part with suchm this solution
is not suitable in the concurrent setting. Using an extractable commitment properly paired with the remain-
ing components of our scheme we extractm without rewinding (by setting things up such that the simulator
knows the trapdoorexpk).

2.4.2 Equivocal Commitment

In an equivocablecommitment, there is a trapdoor informationeqpk that is associated to each public key
pk which allows the committer to change his mind. As mentioned before, in our blind signature scheme,
we need a sound proof to guarantee that the blinded formm̂ and the commitmentcommitpk(m, r) are
corresponding to the same messagem. In the blindness attack against the scheme the signer is controlled by
the adversary and engages concurrent user sessions with the aim to extract information about the employed
messages. It follows that all interactions of the user during the signing protocol should be zero-knowledge.
We will employ Damg̊ard’s technique [Dam00] over a 3-moveΣ-protocol to ensure zero-knowledge: we
use the equivocable variant of a Pedersen multi-commitment [Ped91] to “wrap up” a general 3-move proof
of knowledge that the blinded form and the commitment are over same message.

3 Formal Model for Blind Signatures

In this section, we revisit in detail the formal model for blind signatures as introduced in [JLO97].

3.1 Blind Signature Scheme

Definition 3.1 (Blind Signature Scheme).A blind digital signature scheme is a four-tuple, consisting of
two interactive Turing machines (S, U) and two algorithms (GEN,VERIFY). HereS denotes the signer, and
U the user.

• GEN(1λ) is a probabilistic polynomial time key-generation algorithm which takes as an input a security
parameter1λ and outputs a pair(pk, sk) of public and secret keys.

• S(pk, sk) andU(pk,m) are a pair of polynomially time bounded probabilistic interactive Turing
machines, where both machines have the following tapes: read-only input tape, write-only output
tape, a read/write work tape, a read-only random tape, and two communication tapes, a read-only and
a write-only tape. They are both given on their input tapes as a common input apk produced by a
key generation algorithm. AdditionallyS is given on his input tape a corresponding secret keysk
andU is given on his input tape a messagem, where the length of all inputs must be polynomial in
the security parameter1λ of the key generation algorithm. BothU andS engage in the interactive
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protocol of some polynomial number of rounds. At the end of this protocolS outputs eithercompleted
or not-completedandU outputs eitherσ or⊥.

• VERIFY(m,σ, pk) is a deterministic polynomial time algorithm, which outputs1 or 0.

The correctness requirement for the above is that for any messagem, and for all random choices of
the key generation algorithm, if bothS andU follow the protocol thenS always outputscompleted,
and if the output of the user isσ then theVERIFY(m,σ, pk) = 1.

3.2 Blindness and Unforgeability

The security properties for blind signatures defined in [JLO97] are blindnessandunforgeability . Below
we revisit their model and we give more detailed definitions for blindness and unforgeability.

We stress that our formal model is stronger compared to that of [JLO97] as it does allow for adversarial
selection of the public-key of the signing algorithm in a blindness attack; on the contrary, [JLO97] assumed
a trusted selection for public and signing keypk, sk in their formulation of the blindness attack.

The two players of the signing protocol will have an additional inputt that will include two components,
ComInfo andCRS . ComInfo will include some joint information that has been decided in advance, e.g.,
some modular group that the players wish to use, or other public-information. The stringCRS will contain
some public-elements that will be used in the scheme. The two componentsComInfo andCRS that will be
jointly denoted byt will be generated by a procedureK that will produce the valuest, τ . The valueτ will
be contain possibly some trapdoor information and will only be available to the simulator of the protocol.

Definition 3.2 (Blindness). Let φ
r← {0, 1} (note: φ will be a random bit which is kept secret from the

adversary). We define an oracleIφ which simulates two user instantiationsUL andUR (note: an adversary
A will be communicating with this oracle trying to predictφ).

• Given 〈challenge,m0,m1, pk〉, the oracleIφ simulatesUL (resp. UR) with public-key pk and
messagemφ (resp.m1−φ). The oracleIφ keeps a database with the state of each user instantiation;
the state includes all coin tosses of the user instantiation and the contents of all tapes including the
communication tape. The oracle usesstL (resp.stR) to record the state ofUL (resp.UR).

• Given 〈advance, ρ,msg〉, whereρ ∈ {L,R}, the oracleIφ recovers the state ofstρ, and simulates
the user instantiationUρ with msg till Uρ either terminates or returns a response to the signer. If
Uρ returns a response, thenIφ returns this toA. The oracle will record the current statest, i.e.
stρ = stρ||st. Note that this kind of queries can be executed several times depending on the number
of rounds of the blind signature protocol.

• Given〈terminate,msgL,msgR〉, the oracleIφ recovers the statestL (resp.stR), and simulates the
user instantiationUL (resp. UR) with msgL (resp. msgR) till UL (resp. UR) either terminates or
returns an output. If both user instantiations return outputs, then the oraclereturns these outputstoA,
otherwise returns(⊥,⊥).

Given any probabilistic polynomial timeA we define its advantage as:

AdvAblind(λ) =
∣∣∣∣Pr

[
AIφ(t,τ)(1λ, t) = φ : φ r← {0, 1}; (t, τ)← K(1λ)

]
− 1

2

∣∣∣∣
and say that the blind signature scheme satisfies the blindness property ifAdvAblind(λ) is negligible inλ.

Definition 3.3 (Unforgeability). We define an oracleI that is simulating concurrently an arbitrary of signer
instantiations. The oracle accepts two types of queries defined as follows:
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• 〈start,msg〉. The oracleI selects a session identifiersid, and simulates the signer instantiationS
with msg till S either terminates or returns a response. If the signer instance returns a response to the
user,I returns this with the session identifier as an answer to the oracle query. The oracleI keeps a
database with the state ofS for the session identifiersid; the state includes all coin tosses ofS, and
the contents of all tapes including the communication tape.

• 〈advance, sid,msg〉. The oracleI looks up the table of sessions and recovers the state ofS for the
session with identifiersid (if sessionsid exists). Subsequently,I writesmsg in the communication
tape ofS and simulates it till it either terminates or returns a response to the user. If it returns a
message to the user,I returns this as an answer to the oracle query. If no session id exists the oracle
returns “fail.”

The oracleI has read/write access to a counterl that counts the number that the oracle has successfully
terminated a signer session. Each time thatI successfully terminates a signer session it increases the counter
l by 1.

An one-more forgery adversary against the blind signature is a polynomial-time probabilistic machine
A that is given as input〈1λ, pk, t〉 where〈t, τ〉 ← K(1λ) andpk, sk ← GEN(1λ). The adversaryA interacts
with I(t, τ, pk, sk) and terminates by returning a sequence of(m1, σ1), ..., (ml′ , σl′) wheremi 6= mj , 1 ≤
i 6= j ≤ l′.
We define the advantage ofA in the above attack by

AdvAunforge(λ) = Pr[(VERIFY(pk,mi, σi) = 1, 1 ≤ i ≤ l′) ∧ (l′ > l)]

and say that the blind signature scheme is unforgeable ifAdvAunforge(λ) is negligible inλ.

4 The Proposed Scheme

4.1 Setup and Generation of Keys

We start the description of our construction by describing the setup assumptions as well as the way that the
involved parties, the user and the signer generate their keys.

Common Information. This stringComInfo contains general information about each protocol execution
as well as a specific bilinear group parameter(p,G,GT , g, e) of size sufficiently large.

Common Reference String. Next we describe how the common reference stringCRS is selected. It
includes two parts,CRS 1 andCRS 2. Let p andq be random primes for whichp, q > 2, p 6= q, |p| = |q|
and gcd(pq, (p − 1)(q − 1)) = 1. Let n = pq, andg = (1 + n). The public key is〈n, g〉 while the
secret key is〈p, q〉. SetCRS 1 = 〈n, g〉 and trapdoor1 = 〈p, q〉. Select large primesP,Q such that
P = 2Q+1, selecthr

r← ZP , τM , τW , τU , τV
r← ZQ, and computehM = hτMr mod P , hW = hτWr mod P ,

hU = hτUr mod P , hV = hτVr mod P . SetCRS 2 = 〈hM , hW , hU , hV , hr, P,Q〉, and trapdoor2 =
〈τM , τW , τU , τV 〉. Now we haveCRS = (CRS 1,CRS 2), and discardtrapdoor1, trapdoor2. Two one-to-
one mapsψ1 : Zn → ZQ andψ2 : G → ZQ are defined. For simplicity these maps will be included to
ComInfo = 〈p, g,G,GT , e;ψ1, ψ2〉.
Signer Parameters. The signerS uses the algorithmGEN to generate his public and secret parameters
based onComInfo. The signer selectsx, y

r← Z∗
p and computesX = gx andY = gy. Then it is set that

PKS = 〈X,Y 〉 andSKS = 〈x, y〉 is the key pair forS.

We note that the parameters selected above are assumed to be long-lived, i.e., they will be used for many
executions of the signing protocol. On the other hand, the user has no long-lived parameters. Nevertheless,
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as part of our signing protocol he will select some public and secret-key that will have the lifetime of one
signing protocol execution. We stress that this is not a necessity and each user may also keep his public-key
parameters the same across settings; in fact these parameters can be part of a PKI that all users are members
of. This will make the protocol time-complexity more efficient on the side of the user. We postpone further
consideration of this issue for the full version of the paper.

User Parameters.Each userU generates his key pair on the fly: he selectsδ, ξ
r← Z∗

p, and setu, v ∈ G
such thatuδ = vξ = w. SetPKU = 〈u, v, w〉 as his public key and keep secretlySKU = 〈δ, ξ〉 as his
secret key.

Choice of parameter lengths.The length of parametersp, n, Q are`p, `n, `Q, respectively should be se-
lected so that the following are satisfied: (i) The DLDH assumption holds over the bilinear group parameter,
(ii) The LSRW assumption holds over the bilinear group parameter, (iii) The discrete-logarithm (DLOG)
assumption holds over the group(Z∗

P )2, (iv) The DCR assumption holds overZ∗
n2 . Based on the present

state of the art with respect to the solvability of the above problems, a possible choice of the parameters is
for examplè p = 171 bits,`n = 1024 bits,`Q = 1024 bits.

4.2 Signing Protocol

We give a high-level description before going to the details:

- First, both the user and the signer obtain the public inputsComInfo, CRS , andPKS , the signer gets
the private inputSKS , and the user gets the private input messagem.

- Then the user generates his key pair(PKU , SKU ) for Linear Encryption, and keepsSKU secret; the
user generates a Paillier-ciphertext for messagem which is used as an extractable commitment; the
user generates a Linear Encryption ciphertext form which will be signed by the signer.

- To guarantee that the ciphertext and commitment are consistent, the user interleaves within the proto-
col execution a 3-moveΣ-protocol with the signer that shows the consistency. This protocol employs
an equivocal commitment scheme to allow for concurrent zero-knowledge argument (cf. [Dam00]).

- When the signer verifies the 3-move protocol successfully, he will transform the Linear Encryption
ciphertext using his signing keySKS and appropriately rerandomize it. This will result in the encryp-
tion of an essential component of a CL-signature.

- Finally, the user transforms the CL-signature from the signer into a blind signature for messagem.
This takes advantage of the homomorphic property of the CL-signature, in particular, the fact that the
scheme is malleable and a signature holder can refresh the randomness of the signature.

We outline the high-level blind signature generation protocol inFigure 1. A detailed description is shown in
Figure 2. Note thatd < p, i.e.λ0 < `p. For exampleλ0 = 160 bits,λ1 = 160 bits.

4.3 Signature Verification

Given a message-signature pair(m;σ), whereσ = 〈a, b, c〉 , the verification algorithm is based on the two
verification equations below:e(a, Y ) = e(g, b) ande(X, a)e(X, b)m = e(g, c).

4.4 Correctness and Security

The correctness and security of our scheme is captured byTheorem 4.1, Theorem 4.3, Theorem 4.4.
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U S

(PKU , SKU )← GENLE (1λ)
M ← ENCRYPTPai(m)
〈W,U, V 〉 ← ENCRYPTLE (m)

PKU ,M,〈W,U,V 〉,commitment
−−−−−−−−−−−−−−−−−−−−→

challenge
←−−−−−−−−−−−−−−−−−−−−

response,decommitment
−−−−−−−−−−−−−−−−−−−−→

use the homomorphic properties
of Linear Encryption and CL-
signature to compute an encryp-
tion of the signature: σ′ ←
SIGNCL(W,U, V )

σ′

←−−−−−−−−−−−−−−−−−−−−
decryptσ′ into the signature:
σ ← DECRYPTLE (σ′)

Figure 1: Overview of our blind signature generation protocol.

4.4.1 Correctness

Theorem 4.1 (Correctness).If the signer and the user follow the signature generation protocol, the result-
ing signature satisfies the verification with provability 1.

Proof. First, we check the correctness of the verification for theΣ-protocol.

TM = gk0kn
1 mod n2 = gs0+d·m(s1 · ld1)n mod n2

= (gs0sn1) · (gmsn1)d mod n2 = gs0sn1M
d mod n2,

TW = θk0wk2+k3 = θs0+d·mw(s2+s3)+d·(l2+l3)

= (θs0ws2+s3) · (θmwl2+l3)d = θs0ws2+s3W d,
TU = uk2 = us2+d·l2 = us2 · (ul2)d = us2Ud,
TV = vk3 = vs3+d·l3 = vs3 · (vl2)d = vs3V d.

Then we check the correctness of the CL-signature.

a = (a′)t = θtt
′
,

b = (b′)t = (θy)tt
′
= (θtt

′
)y = ay,

c = (W ′/(U ′δV ′ξ))t = ((W xyθxwl
′
2+l′3)/((Uxyul

′
2)δ(V xyvl

′
3)ξ))tt

′

= ((W/(U δV ξ))xy · θx · (wl′2+l′3/(uδl
′
2vξl

′
3)))tt

′

= ((θm)xy · θx · 1)tt
′
= (θtt

′
)mxy+x = amxy+x

So,e(a, Y ) = e(g, b) ande(X, a)e(X, b)m = e(g, c).

4.4.2 Unforgeability

In this subsection, we prove the unforgeability of our scheme. We first build a useful lemma which guarantee
that the user will use the same plaintext in the Linear Encryption and in the Paillier encryption based on the
three-move proof. Consider a commitment scheme will fix the plaintexts. The lemma will still hold when
we use the Pedersen multi-commitment to wrap up the three-move proof assuming the DLOG assumption.
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U S
ComInfo = 〈p, g,G,GT , e;ψ1, ψ2〉 ComInfo = 〈p, g,G,GT , e;ψ1, ψ2〉
CRS = 〈n, g;hM , hW , hU , hV , hr, P,Q〉 CRS = 〈n, g;hM , hW , hU , hV , hr, P,Q〉
PKS = 〈X,Y 〉 PKS = 〈X,Y 〉, SKS = 〈x, y〉
MSG = 〈m〉,m ∈ [0, 2`p ]

(PKU , SKU )← GENLE (1λ)
PKU = 〈u, v, w〉, SKU = 〈δ, ξ〉

k0
r← ±[0, 2λ0+λ1+`p ], l1, k1

r← Z∗
n

t, l2, l3, k2, k3
r← Zp, θ

r← G, r
r← ZQ

M = gmln1 mod n2

W = θmwl2+l3 , U = ul2 , V = vl3

TM = gk0kn
1 mod n2

TW = θk0wk2+k3 , TU = uk2 , TV = vk3

tM = ψ1(TM ), tW = ψ2(TW )
tU = ψ2(TU ), tV = ψ2(TV )
com = htM

M htW

W htU

U htV

V hr
r mod P

PKU ,M,θ,〈W,U,V 〉,com
−−−−−−−−−−−−−−−−−−−−→

d
r← {0, 1}λ0

d
←−−−−−−−−−−−−−−−−−−−−

s0 = k0 − d ·m(in Z)
s1 = k1 · l−d

1 mod n
s2 = k2 − d · l2 mod p
s3 = k3 − d · l3 mod p

〈s0,s1,s2,s3〉,〈TM ,TW ,TU ,TV ,r〉
−−−−−−−−−−−−−−−−−−−−→

M ∈? Z∗
n2

s0 ∈? ±[0, 2λ0+λ1+`p+1]
tM = ψ1(TM ), tW = ψ2(TW )
tU = ψ2(TU ), tV = ψ2(TV )
com =? htM

M htW

W htU

U htV

V hr
r mod P

TM =? gs0sn1M
d mod n2

TW =? θs0ws2+s3W d

TU =? us2Ud, TV =? vs3V d

t′, l′2, l
′
3

r← Zp

a′ = (θ)t′ , b′ = (θy)t′

W ′ = (W xyθxwl′2+l′3)t′

U ′ = (Uxyul′2)t′ , V ′ = (V xyvl′3)t′

a′,b′,〈W ′,U ′,V ′〉
←−−−−−−−−−−−−−−−−−−−−

a = (a′)t, b = (b′)t, c = (W ′/(U ′δV ′ξ))t

σ = 〈a, b, c〉
VERIFY(m,σ) =? 1
output(m;σ)

Figure 2: Blind signature generation protocol.
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Based on the lemma, we can simulate the signer sucessfully and reduce the unforgeability to the unforge-
ability of the CL-signature, which is based on the LRSW assumption. Therefore, our unforgeability is based
on both the LRSW and the DLOG assumption.

Lemma 4.2. In the blind signature generation protocol, a PPT adversary can generate a valid proof with
the signer such that

logθ DECRYPT
LE(W,U, V ) 6= DECRYPTPai(M) mod p.

only with probability2−λ0 .

Proof. Definem = DECRYPTPai(M). Paillier encryption is 1-1 overZ∗
n2 , so it is well-defined andm ∈ Zn.

AlsoM ∈ Z∗
n2 can be written asM = gmln1 mod n2 for somel1 ∈ Z∗

n.
Similarly, definem′ = logθ DECRYPTLE(W,U, V ). Recallθ ∈ G and the order ofG is primep. So

θ is a generator ofG, and we can getθm
′

= DECRYPTLE(W,U, V ) andm′ ∈ Zp. Also u, v ∈ G are
generators ofG, andU, V ∈ G can be written asU = ul2 , V = vl3 for somel2, l3 ∈ Zp. Note that
DECRYPTLE(W,U, V ) = W

Uδ ·V ξ . SoW = θm
′
U δV ξ = θm

′
ul2δvl3ξ = θm

′
wl2+l3 .

Now we assume that there is a PPT adversary who can generate a valid proof with the signer such that
m 6= m′ mod p. Up to now we have equations:

m 6= m′ mod p m ∈ Zn,m
′ ∈ Zp (1)

M = gmln1 mod n2 l1 ∈ Z∗
n (2)

W = θm
′
wl2+l3 l2, l3 ∈ Zp (3)

U = ul2 (4)
V = vl3 (5)

We have assumed that the proof is valid. So all verification equations hold:

TM = gs0sn1M
d mod n2 (6)

TW = θs0ws2+s3W d (7)
TU = us2Ud (8)
TV = vs3V d (9)

From equations (2) and (6) we have

TM = gs0sn1M
d mod n2 = gs0sn1(g

mln1)
d mod n2 = gs0+dm(s1ld1)

n mod n2

By the similar way, we can getTU = us2+dl2 , TV = vs3+dl3 , andTW = θs0+dm′
w(s2+dl2)+(s3+dl3). Now

we call

k0
def= s0 + dm mod n (10)

k1
def= s1l

d
1 mod n (11)

k2
def= s2 + dl2 mod p (12)

k3
def= s3 + dl3 mod p (13)

k′0
def= s0 + dm′ mod p (14)

Considergcd(n, p) = 1. From the equations (10), we can letk0 = s0 + dm + An, whereA ∈ Z.
So k0 − s0 − dm = An. Recalls0 ∈ ±[0, 2λ0+λ1+`p+1], andk0 ∈ ±[0, 2λ0+λ1+`p , d ∈ {0, 1}λ0 , and
m ∈ [0, 2`p ]. So,k0 − s0 − dm ∈ ±[0, 2λ0+λ1+`p+2], andA = 0 becausèn � `p + λ0 + λ1 + 3. So,
k0 = s0 + dm.

From the equation (11), we can letk′0 = s0 +dm′ +Bp whereB ∈ Z. So,k0−k′0 = d(m−m′)−Bp.
Recallp - (m −m′). We can find suchB only in the case ofp | (k0 − k′0) − d(m −m′), which is with
negligible probability2−λ0 . In other words, the adversary can only find satisfiedk0, k

′
0 to develop the proof

with probability2−λ0 .
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Based on the argument above, we know that, except negligible probability2−λ0 , the adversary cannot
develop a valid proof withm 6= m′ mod p.

We can prove the lemma with a general commitment scheme because a commitment scheme will fix the
parametersk0, k1, k2, k3, k

′
0,m,m

′, l1, l2, l3 in equations (10-14).We can similarly argue that the adversary
has only negligible probability2−λ0 to develop a valid proof. Now the lemma will hold based on the
assumption that the commitment uses.

Theorem 4.3 (Unforgeability). The proposed scheme is(l, l + 1)-unforgeable if both the LRSW and the
DLOG assumptions hold.

Proof. In this part, we will show under LRSW assumption, no PPT adversary userA can achieve “one-
more” forgery. Let(p, g,G,GT , e;X,Y ) be the input instance of LRSW problem. If a PPT userA obtains
l + 1 valid message-signature pairs afterl times successful executions with the signer, we can construct a
simulator which will output a valid pair(m∗, 〈a∗, b∗, c∗〉), wherem∗ is not queried to the oracleOX,Y .

1. The simulator defines two 1-1 mapsψ1, ψ2 as in the key-generation algorithm of the proposed scheme,
and setsComInfo = 〈p, g,G,GT , e, ψ1, ψ2〉. The simulator setsPKS = 〈X,Y 〉. The simulator
generatesCRS 2 = 〈hM , hW , hU , hV , hr, P,Q〉 as in the key-generation algorithm, and discards
the correspondingtrapdoor2 = 〈τM , τW , τU , τV 〉; the simulator generatesCRS 1 = 〈n, g〉 as in
the key-generation algorithm, and keeps the correspondingtrapdoor1 = 〈p, q〉; the simulator sets
CRS = (CRS 1,CRS 2). The simulator supplies the adversary withComInfo,CRS , PKS .

2. The oracleI will be queried byA which operates like that in one of the two cases below:

Case 1:A queriesI with 〈start,msg〉, wheremsg = {PKU ,M, θ, 〈W,U, V 〉, com}. The oracleI
will create a session identitysid and set the corresponding statest = ⊥; the oracleI will
simulates the signerS with msg till S either terminates or returns a responsersp to the user;
the oracleI records the current state inst. If S returnsrsp thenI returns this with the session
identity toA, i.e. I return{sid, d} toA.

Case 2:A queriesI with 〈advance, sid,msg〉, wheremsg = {〈s0, s1, s2, s3〉, 〈TM , TW , TU , TV , r〉}.
The oracleI will simulate the signerS with msg and previous statest. TheS checks if all equa-
tions hold:com = htMM htWW htUU h

tV
V h

r
r mod P , TM = gs0sn1M

d mod n2, TW = θs0ws2+s3W d,
TU = us2Ud, TV = vs3V d, wheretM = ψ1(TM ), tW = ψ2(TW ), tU = ψ2(TU ), tV =
ψ2(TV ). If not true, terminates. Otherwise, because we use Pedersen [Ped91] multi-commitment
which is based on the DLOG assumption, from the lemma above, we can obtain them under
{θ,W,U, V } by decryptingm fromM , and the oracleI can generate an identically distributed
response{a′, b′,W ′, U ′, V ′} to A by simulatingOXY with m: S uses the trapdoor informa-
tion trapdoor1 = 〈p, q〉 to decryptM into m = DECRYPTPai

trapdoor1
(M), and returnsm to the

oracleI. The oracleI simulatesOX,Y with inputm mod p which returns〈a, b, c〉. The or-
acleI computesa′ = a, b′ = b, W ′ = cwl

′′
2+l′′3 , U ′ = ul

′′
2 , V ′ = vl

′′
3 , wherel′′2 , l

′′
3

r← Zp,
and sends them toA. Here 〈W ′, U ′, V ′〉 is in fact the ciphertext ofc overA’s public key
〈u, v, w〉. We claim{a′, b′,W ′, U ′, V ′} is identically distributed to the protocol answer, i.e.
{a, b, cwl′′2+l′′3 , ul

′′
2 , vl

′′
3 } ≈ {(θ)t′ , (θy)t′ , (W xyθxwl

′
2+l′3)t

′
, (Uxyul

′
2)t

′
, (V xyvl

′
3)t

′}. Note that
〈a, b, c〉 is the response fromOX,Y . So,a is a random element inG, b = ay, c = ax+mxy.
Based on the lemma, and equation (1), we knowW = θmwl2+l3 , U = ul2 , V = vl3 . We can
compute(W xyθxwl

′
2+l′3)t

′
= ((θmwl2+l3)xyθxwl

′
2+l′3)t

′
= ((θ)t

′
)x+mxyw(l2xy+l′2)t′+(l3xy+l′3)t′ ,

(Uxyul
′
2)t

′
= ((ul2)xyul

′
2)t

′
= u(l2xy+l′2)t′ , (V xyvl

′
3)t

′
= ((vl3)xyvl

′
3)t

′
= v(l3xy+l′3)t′ . Recall

t′, l′2, l
′
3 are randomly selected. So we can replaceθt

′
, (l2xy + l′2)t

′, (l3xy + l′3)t
′ with a, l′′2 , l

′′
3 ,

which means that the two probability distributions are identical.
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3. A outputs message-signature pairs.

Now assume thatA can break the scheme, which meansA can generatel′ message-signature pairs
(m∗

1;σ
∗
1), (m

∗
2;σ

∗
2), . . . , (m

∗
l′ ;σ

∗
l′) withmi 6= mj andl′ > l. Sincel′− l ≥ 1, at least one message, saym∗

O,
is not queried to oracleOX,Y , though(m∗

O;σ∗O) is a valid pair. In other word, we can construct a valid pair
(m∗

O;σ∗O), wherem∗
O is not in query history. This breaks the LRSW assumption.

4.4.3 Blindness

In this subsection, we show the blindness of our scheme. Start from the blindness model, we define Game
0; we slightly change Game 0 by simulating the left user instantiation by Damgård’s trick in Game 1; and
then we slightly change Game 1 again and do the similar simulation for the right user instantiation in Game
2. The statistical distance of the probability distribution of Game 0 and Game 1, and of Game 1 and Game
2 are negligible.

Now we slightly change Game 2 by simulating the left user instantiation with inputting a random mes-
sage (not one of the messages selected by the adversary) to the Paillier encryption in Game 3; then do the
similar simulation for the right user instantiation in Game 4. Both distances between Game 2 and Game 3,
and Game 3 and Game 4 areAdvDCR which is negligible under the DCR assumption.

Similarly, we slightly change Game 4 into Game 5 by simulating the left user instantiation with inputting
a random message to the linear encryption; then change Game 5 into Game 6 by similar way for the right
instantiation. Again the distances between Game 4 and Game 5, and Game 5 and Game 6 areAdvDLDH

which is negligible under the DLDH assumption.

Theorem 4.4 (Blindness).The proposed scheme is blind if both the DLDH assumption and the DCR as-
sumption hold.

Proof. We use the sequential games technique to prove this part, and define gamesGA
j between the adversary

A and the oracleIφj which simulates two user instantiation: the left oneUL and the right oneUR, where
j = 0, 1, . . . , 6. Also we defineSj to be the event thatφ = φ′ in GA

j .

Game 0:

Follow the blindness model, we can define Game 0 as below:

GA
0 (1λ)

1. φ
r← {0, 1};

2. (ComInfo,CRS , PKS , SKS)← GEN(1λ); setPubInfo = (ComInfo,CRS , PKS)
3. φ′ ← AIφ

0 (1λ,PubInfo);
4. if φ = φ′ then1;

HereIφ0 is defined as:

- Given 〈challenge,m0,m1〉, the oracleIφ0 simulatesUL (resp. UR) with mφ (resp. m1−φ). The
oracleIφ0 keeps a database with the state of each user instantiation; the state includes all coin tosses
of the user instantiation and the contents of all tapes including the communication tape. Here the
oracle usesstL (resp.stR) to record the state ofUL (resp.UR).

- Given〈advance, ρ,msg〉, whereρ ∈ {L,R}:
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– If msg = ⊥, thenIφ0 recovers the state ofstρ, and simulates the user instantiationUρ till Uρ

either terminates or returns a response to the signer. IfUρ returns a responsersp, thenIφ0 returns
rsp toA. The oracle will record the current statest, i.e. stρ = stρ||st. Letm be the simulated
message forUρ, i.e.m = mφ for ρ = L andm = m1−φ for ρ = R, we have,

(a) (PKρ
U , SK

ρ
U )← GENLE (1λ)

(b) k0
r← ±[0, 2λ0+λ1+`p ], l1, k1

r← Z∗
n, t, l2, l3, k2, k3

r← Zp, r
r← ZQ, θ

r← G.

(c) M ← ENCRYPTPai
CRS1

(m, l1)

(d) 〈W,U, V 〉 ← ENCRYPTLE
ComInfo,PKρ

U
(m, θ, l2, l3)

(e) TM ← ENCRYPTPai
CRS1

(k0, k1)

(f) 〈TW , TU , TV 〉 ← ENCRYPTLE
ComInfo,PKρ

U
(k0, θ, k2, k3)

(g) com = h
ψ1(TM )
M h

ψ2(TW )
W h

ψ2(TU )
U h

ψ2(TV )
V hrr mod P

(h) rsp = {PKU ,M, θ, 〈W,U, V 〉, com}

– If msg = {d}, thenIφ0 recovers the state ofstρ, and simulates the user instantiationUρ with
msg till Uρ either terminates or returns a responsersp to the signer. IfUρ returns a response
rsp, thenIφ0 returnsrsp toA. The oracle will record the current statest, i.e. stρ = stρ||st.
Herersp is in the form of{〈s0, s1, s2, s3〉, 〈TM , TW , TU , TV , r〉}, where〈TM , TW , TU , TV , r〉 is
recovered from the previous state ofstρ, and〈s0, s1, s2, s3〉 is generated as:s0 = k0−d·m ∈ Z,
s1 = k1 · l−d1 mod n, s2 = k2 − d · l2 mod p, s3 = k3 − d · l3 mod p.

- Given〈terminate,msgL,msgR〉, the oracleIφ0 recovers the statestL (resp.stR), and simulates the
user instantiationUL (resp. UR) with msgL (resp. msgR) till UL (resp. UR) either terminates or
returns an output. If both user instantiations return outputs, and the outputs are valid blind signatures
for m0, m1, then letrsp = (σ0, σ1) be the valid signatures. Otherwise letrsp be(⊥,⊥). The oracle
returnsrsp toA.

Heremsgρ is in form of {a′, b′, 〈W ′, U ′, V ′〉}, andσi is in form of (a, b, c) which are generated as:
a = (a′)t, b = (b′)t, c = (W ′/(U ′δV ′ξ))t.

Game 1:

We modifyGA
0 into GA

1 by changing step 2 into:

2. (ComInfo,CRS 1, PKS , SKS) ← GEN(1λ); CRS 2 = 〈hM , hW , hU , hV , hr, P,Q〉 generated as:
hr

r← ZP , τM , τW , τU , τV
r← ZQ, hM = hτMr mod P , hW = hτWr mod P , hU = hτUr mod P ,

hV = hτVr mod P . Keeptrapdoor2 = 〈τM , τW , τU , τV 〉 secretly. LetCRS = (CRS 1,CRS 2), and
setPubInfo = (ComInfo,CRS , PKS).

and changingIφ0 into Iφ1 . Note thatIφ1 is same asIφ0 except that

- Given〈advance, ρ,msg〉, whereρ ∈ {L,R}. If ρ = R, Iφ1 operates identically asIφ0 ; but if ρ = L,
Iφ1 works as follows:

– If msg = ⊥, thenIφ1 recovers the state ofstL, and simulates the user instantiationUL till UL

either terminates or returns a response to the signer. IfUL returns a responsersp, thenIφ1 returns
rsp toA. The oracle will record the current statest, i.e. stL = stL||st. Letm = mφ, we have,

(a) (PKL
U , SK

L
U )← GENLE (1λ)
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(b) l1
r← Z∗

n, t, l2, l3
r← Zp, τ

r← ZQ, θ
r← G.

(c) M ← ENCRYPTPai
CRS1

(m, l1)

(d) 〈W,U, V 〉 ← ENCRYPTLE
ComInfo,PKL

U
(m, θ, l2, l3)

(e) com = hτr
(f) rsp = {PKL

U ,M, θ, 〈W,U, V 〉, com}

– If msg = {d}, thenIφ1 recovers the state ofstL, and simulates the user instantiationUL with
msg till UL either terminates or returns a responsersp to the signer. IfUL returns a response
rsp, thenIφ1 returnsrsp toA. The oracle will record the current statest, i.e. stL = stL||st.

(a) s0
r← ±[0, 2λ0+λ1+`p ], s1

r← Z∗
n, s2, s3

r← Zp
(b) TM = gs0sn1M

d mod n2

(c) TW = θs0ws2+s3W d, TU = us2Ud, TV = vs3V d

(d) r = τ − (τM · ψ1(TM ) + τW · ψ2(TW ) + τU · ψ2(TU ) + τV · ψ2(TV )) mod Q
(e) rsp = {〈s0, s1, s2, s3〉, 〈TM , TW , TU , TV , r〉}

Game 2:

We modifyGA
1 into GA

2 by changingIφ1 into Iφ2 . Note thatIφ2 is same asIφ1 except that :

- Given〈advance, ρ,msg〉, whereρ ∈ {L,R}. If ρ = L, Iφ2 operates identically asIφ1 ; but if ρ = R,
Iφ2 operates similarly as the caseρ = L with m = m1−φ, i.e. runs the same operations for the right
user instantiationUR.

Game 3:

We modifyGA
2 into GA

3 by changingIφ2 into Iφ3 . Note thatIφ3 is same asIφ2 except that

- Given 〈challenge,m0,m1〉, the oracleIφ3 randomly selects̃m0, m̃1 from the message space and
simulatesUL (resp.UR) with mφ or m̃0 (resp.m1−φ or m̃1).

- Given〈advance, ρ,msg〉, whereρ ∈ {L,R}. If ρ = R, Iφ3 operates identically asIφ2 ; but if ρ = L,
Iφ3 works as follows:

– If msg = ⊥, thenIφ3 recovers the state ofstL, and simulates the user instantiationUL till UL

either terminates or returns a response to the signer. IfUL returns a responsersp, thenIφ3 returns
rsp toA. The oracle will record the current statest, i.e. stL = stL||st. Let m̃ = m̃0,m = mφ,
we have,

(a) (PKL
U , SK

L
U )← GENLE (1λ)

(b) l1
r← Z∗

n, t, l2, l3
r← Zp, τ

r← ZQ, θ
r← G.

(c) M̃ ← ENCRYPTPai
CRS1

(m̃, l1)

(d) 〈W,U, V 〉 ← ENCRYPTLE
ComInfo,PKL

U
(m, θ, l2, l3)

(e) com = hτr

(f) rsp = {PKL
U , M̃ , θ, 〈W,U, V 〉, com}

– If msg = {d}, thenIφ3 recovers the state ofstL, and simulates the user instantiationUL with
msg till UL either terminates or returns a responsersp to the signer. IfUL returns a response
rsp, thenIφ3 returnsrsp toA. The oracle will record the current statest, i.e. stL = stL||st.
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(a) s0
r← ±[0, 2λ0+λ1+`p ], s1

r← Z∗
n, s2, s3

r← Zp
(b) T

fM
= gs0sn1M̃

d mod n2

(c) TW = θs0ws2+s3W d, TU = us2Ud, TV = vs3V d

(d) r = τ − (τM · ψ1(TfM ) + τW · ψ2(TW ) + τU · ψ2(TU ) + τV · ψ2(TV )) mod Q
(e) rsp = {〈s0, s1, s2, s3〉, 〈TfM , TW , TU , TV , r〉}

Game 4:

We modifyGA
3 into GA

4 by changingIφ3 into Iφ4 . Note thatIφ4 is same asIφ3 except that

- Given〈advance, ρ,msg〉, whereρ ∈ {L,R}. If ρ = L, Iφ4 operates identically asIφ3 ; but if ρ = R,
Iφ4 operates similarly as the caseρ = L with m̃ = m̃1, m = m1−φ, i.e. runs the same operations for
the right user instantiationUR.

Game 5:

We modifyGA
4 into GA

5 by changingIφ4 into Iφ5 . Note thatIφ5 is same asIφ4 except that

- Given〈advance, ρ,msg〉, whereρ ∈ {L,R}. If ρ = R, Iφ5 operates identically asIφ4 ; but if ρ = L,
Iφ5 works as follows:

– If msg = ⊥, thenIφ5 recovers the state ofstρ, and simulates the user instantiationUL till UL

either terminates or returns a response to the signer. IfUL returns a responsersp, thenIφ5 returns
rsp toA. The oracle will record the current statest, i.e. stL = stL||st. Let m̃ = m̃0, we have,

(a) (PKL
U , SK

L
U )← GENLE (1λ)

(b) l1
r← Z∗

n, t, l2, l3
r← Zp, τ

r← ZQ, θ
r← G.

(c) M̃ ← ENCRYPTPai
CRS1

(m̃, l1)

(d) 〈W̃ , Ũ , Ṽ 〉 ← ENCRYPTLE
ComInfo,PKL

U
(m̃, θ, l2, l3)

(e) com = hτr

(f) rsp = {PKL
U , M̃ , θ, 〈W̃ , Ũ , Ṽ 〉, com}

– If msg = {d}, thenIφ5 recovers the state ofstL, and simulates the user instantiationUL with
msg till UL either terminates or returns a responsersp to the signer. IfUL returns a response
rsp, thenIφ5 returnsrsp toA. The oracle will record the current statest, i.e. stL = stL||st.

(a) s0
r← ±[0, 2λ0+λ1+`p ], s1

r← Z∗
n, s2, s3

r← Zp
(b) T

fM
= gs0sn1M̃

d mod n2

(c) T
fW

= θs0ws2+s3W̃ d, T
eU

= us2Ũd, T
eV

= vs3 Ṽ d

(d) r = τ − (τM · ψ1(TfM ) + τW · ψ2(TfW ) + τU · ψ2(TeU ) + τV · ψ2(TeV )) mod Q
(e) rsp = {〈s0, s1, s2, s3〉, 〈TfM , TfW , TeU , TeV , r〉}

Game 6:

We modifyGA
5 into GA

6 by changingIφ5 into Iφ6 . Note thatIφ6 is same asIφ5 except that

- Given〈advance, ρ,msg〉, whereρ ∈ {L,R}. If ρ = L, Iφ6 operates identically asIφ5 ; but if ρ = R,
Iφ6 operates similarly as the caseρ = L with m̃ = m̃1, i.e. runs the same operations for the right user
instantiationUR.
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Compute the statistical distance:

We prove in Game 0 and Game 1, under the DLOG assumption,|Pr[S0]− Pr[S1]| is negligible. [Note:
the DLDH assumption is stronger than the DLOG assumption, i.e. if DLDH assumption holds, so does
DLOG assumption.] Observer that, for the probability distributions of the right user instantiations[UR]2,
[UR]3 are identical. We still need to show for the left user instantiations[UL]2, [UL]3, under the DLOG
assumption, the statistical distance of the probability distributions is negligible. First, we prove the statistical
distance of[s0]0 and[s0]1 are negligible. Observe that in both gamesm ∈ [0, 2`p ], k0 ∈ ±[0, 2λ0+λ1+`p ],
d

r← {0, 1}λ0 . We can obtain that the statistical distance of the random variables[s0]0 = k0 − d ·m and
[s0]1

r← ±[0, 2λ0+λ1+`p ] is less than2−λ1−1. Then we can observe that[s1]0 and [s1]1, [s2]0 and [s2]1,
[s3]0 and [s3]1 are identically distributed. So the statistical distance of[s0, s1, s2, s3]0 and [s0, s1, s2, s3]1
is 2−λ1−1. Note that by Damg̊ard’s trick [Dam00], we use a Pedersen multi-commitment scheme (under
DLOG assumption) to transform a three-move HVSZK protocol into a SZK protocol. So under the DLOG
assumption, the statistical distance of the the two games is2−λ1−1, i.e. |Pr[S0]− Pr[S1]| ≤ 2−λ1−1

Use the similar argument, we can show in Game 1 and Game 2,|Pr[S1]− Pr[S2]| ≤ 2−λ1−1

Now we prove in Game 2 and Game 3, under the DCR assumption,|Pr[S2] − Pr[S3]| is negligible.
Observer that, for the probability distributions of the right user instantiations[UR]2, [UR]3 are identical,
and for the left user instantiations[UL]2, [UL]3, under he DCR assumption, the triples[M ]3, [M̃ ]4 are
indistinguishable, which also leads that[TM ]2 and[T

fM
]3, [r]2 and[r]3, are indistinguishable. So|Pr[S2]−

Pr[S3]| ≤ AdvDCR.
We can prove in Game 3 and Game 4, under the DCR assumption,|Pr[S3] − Pr[S4]| is negligible by

the similar argument as above: the probability distributions of the left user instantiations[UL]3, [UL]4 are
identical, and the statistical distance of the probability distributions of the right user instantiations[UR]3,
[UR]4 are indistinguishable, which results in|Pr[S3]− Pr[S4]| ≤ AdvDCR.

Next we prove in Game 4 and Game 5, under the DLDH assumption,|Pr[S4] − Pr[S5]| is negligible.
Observer that, for the probability distributions of the right user instantiations[UR]4, [UR]5 are identical, and
for the left user instantiations[UL]4, [UL]5, under he DLDH assumption, the triples[W,U, V ]4, [W̃ , Ũ , Ṽ ]5
are indistinguishable, which also leads that[TW , TU , TV ]4 and [T

fW
, T
eU
, T
eV
]5, [r]4 and [r]5, are indistin-

guishable. So|Pr[S4]− Pr[S5]| ≤ AdvDLDH.
We can prove in Game 5 and Game 6, under the DLDH assumption,|Pr[S5]− Pr[S6]| is negligible by

the similar argument as above: the probability distributions of the left user instantiations[UL]5, [UL]6 are
identical, and the statistical distance of the probability distributions of the right user instantiations[UR]5,
[UR]6 are indistinguishable, which results in|Pr[S5]− Pr[S6]| ≤ AdvDLDH.

In Game 6,φ is not used, so the adversaryA has only probability12 to win the game, i.e.Pr[S6] = 1
2 .

Based on the argument above, we can get

∣∣Pr[S0]− 1
2

∣∣ = |Pr[S0]− Pr[S6]| = |
5∑
j=0

Pr[Sj ]− Pr[Sj+1]| ≤
5∑
j=0
|Pr[Sj ]− Pr[Sj+1]|

= 2−λ1−1 + 2−λ1−1 + AdvDCR + AdvDCR + AdvDLDH + AdvDLDH

= 2−λ1 + 2AdvDCR + 2AdvDLDH

Under both the DLDH assumption and the DCR assumption,|Pr[S0]− 1
2 | is negligible. This completes

the proof of blindness.
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5 Extensions and Variants

5.1 Stronger Blindness

We present a variant of our scheme where we prove the blindness property only conditional on the DLDH
assumption without relying on the DCR assumption. We will still employ the DCR assumption but this will
be transferred to the unforgeability property. This modification strengthens the blindness property in the
following sense: in our basic construction blindness relies on the security of a long-lived parameter of the
system (the factorization of the modulusn) as well as on DLDH. On the other hand, in the modified scheme
that we present on this paragraph, the blindness property relies only on the DLDH assumption which refers
to the short-lived keys for Linear Encryption that are generated by the user himself.

In the modified scheme, we replace the Paillier encryptionM = gmln1 mod n2, whereg = (1 + n) with
a commitmentM = gm0 hl10 mod n2, whereg0, h0

r← Z∗
n2 . Note thatn is same as that in our basic scheme,

andn, g0, h0 are also included into the CRS.
Observe that this modification transforms the computationally hiding commitmentM into a perfectly

hiding commitment: the CRS contains the valuesg0 = (1 + n)α1βn
1 mod n2 andh0 = (1 + n)α2βn

2 mod n2

whereα1, α2
r← Zn andβ1, β2

r← Z∗
n. As a resultM = gm0 hl10 = (1 + n)α1m+α2l1(βm1 β

l1
2 )n mod n2. It

follows that, if l1 is randomly selected from[1..bn2

4 c] the commitmentC does reveal any information about
m in the information-theoretic sense.

When we prove the unforgeability, we can modify the CRS withg0 = (1 + n)βn
1 mod n2 andh0 =

βn
2 mod n2 whereβ1, β2

r← Z∗
n. NowM = gm0 hl10 = ((1 + n)βn

1)m(βn
2)l1 = (1 + n)m(βm1 β

l1
2 )n mod n2

which is a Paillier ciphertext overZ∗
n2 . So the simulator can use the corresponding trapdoor “open”M into

m which leads to a successful simulation.

5.2 Revokable Blindness

In this case we modify our scheme in the opposite direction: we introduce a trusted third partyT with the
key pair(PKT , SKT ) that is capable of receiving a transcript of the signing protocol and recovering the
message that was submitted for signing by the user, i.e., revoke the user’s blindness from a signing protocol
transcript.

In the new scheme, besides the actions taken by the user in the signing protocol, when the user sends
out the Paillier ciphertextM of m in parallel he sends the signer a ciphertextM̄ that encrypts the message
m under the public-keyPKT of the trusted third party; he couples this with a proof of equality of plaintexts
for the two ciphertextsM andM̄ that is AND-composed to the other proofs that the adversary performs in
the protocol.

When the trusted third party wants to revoke the blindness from a blind signing protocol transcript, he
just needs to “open”̄M intom by his secret keySKT .

In Figure 3, we give a detail description of such blind signature generation. In the key generation
algorithm, ComInfo, PKS , SKS are same as that in the basic scheme; we slightly change the Peder-
sen commitment scheme for 4 components into that for 5 components and change the CRS intoCRS =
〈n, g;hM , hM̄ , hW , hU , hV , hr, P,Q〉. The third partyT is associated with another Paillier encryption with
PKT = 〈n̄, ḡ〉, andSKT = 〈p̄, q̄〉, wherep̄ andq̄ are random primes and̄n = p̄q̄ such that̄p, q̄ > 2, p̄ 6= q̄,
|p̄| = |q̄|, gcd(p̄q̄, (p̄ − 1)(q̄ − 1)) = 1, and|n̄| = |n|. The secret keySKT = 〈p̄, q̄〉 which is only known
by T , and the public keyPKT = 〈n̄, ḡ〉 whereḡ = (1 + n̄).

The proposed blind signature with revocable blindness is based on the CL-signature, which is generated
as: select a randoma ∈ G and output the signatureσ = 〈a, ay, ax+xym〉. And when we obtain(m,σ)
which is generated by the signing protocol of the proposed scheme, we can verify it as:e(a, Y ) = e(g, b);
e(X, a)e(X, b)m = e(g, c).
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U S
ComInfo,CRS , PKS , PKT ComInfo,CRS , PKS , PKT

MSG SKS

(PKU , SKU )← GENLE (1λ)
PKU = 〈u, v, w〉, SKU = 〈δ, ξ〉
k0, k̄0

r← ±[0, 2λ0+λ1+`p ]
l1, k1

r← Z∗
n, l̄1, k̄1

r← Z∗
n̄

t, l2, l3, k2, k3, l̄2, l̄3, k̄2, k̄3
r← Zp

θ
r← G, r

r← ZQ

M = gmln1 mod n2

M̄ = ḡmln̄1 mod n̄2

W = θmwl2+l3 , U = ul2 , V = vl3

TM = gk0kn
1 mod n2

TM̄ = ḡk0kn̄
1 mod n̄2

TW = θk0wk2+k3 , TU = uk2 , TV = vk3

tM = ψ1(TM ), tM̄ = ψ1(TM̄ )
tW = ψ2(TW ), tU = ψ2(TU )
tV = ψ2(TV )

com = htM

M h
tM̄

M̄
htW

W htU

U htV

V hr
r mod P

PKU ,M,M̄,θ,〈W,U,V 〉,com
−−−−−−−−−−−−−−−−−−−−→

d
r← {0, 1}λ0

s0 = k0 − d ·m(in Z)
d

←−−−−−−−−−−−−−−−−−−−−
s1 = k1 · l−d

1 mod n
s2 = k2 − d · l2 mod p
s3 = k3 − d · l3 mod p

〈s0,s1,s2,s3〉,
−−−−−−−−−−−−−−−−−−−−−→

〈TM ,TM̄ ,TW ,TU ,TV 〉,r
M ∈? Z∗

n2 , M̄ ∈? Z∗
n̄2

s0 ∈? ±[0, 2λ0+λ1+`p+1]
tM = ψ1(TM ), tM̄ = ψ1(TM̄ )
tW = ψ2(TW ), tU = ψ2(TU )
tV = ψ2(TV )
com =? htM

M h
tM̄

M̄
htW

W htU

U htV

V hr
r mod P

TM =? gs0sn1M
d mod n2

TM̄ =? ḡs0sn̄1M̄
d mod n̄2

TW =? θs0ws2+s3W d

TU =? us2Ud, TV =? vs3V d

t′, l′2, l
′
3

r← Zp

a′ = (θ)t′ , b′ = (θy)t′

W ′ = (W xyθxwl′2+l′3)t′

U ′ = (Uxyul′2)t′ , V ′ = (V xyvl′3)t′

a = (a′)t, b = (b′)t
a′,b′,〈W ′,U ′,V ′〉

←−−−−−−−−−−−−−−−−−−−−
c = (W ′/(U ′δV ′ξ))t

σ = 〈a, b, c〉
VERIFY(m,σ) =? 1
output(m;σ)

Figure 3: The signing protocol of blind signature with revocable blindness.
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In the unforgeability attack, evenT can be corrupted by the adversary user, we can use the similar
argument as that in the proof ofTheorem 4.3: extractm fromM (or fromM̄ ); and then usem to complete
the simulation. The unforgeability then reduces to the unforgeability of the CL-signature [CL04] which is
based on the LRSW assumption, and the binding property of the Pedersen commitment which is based on
the DLOG assumption.

In the blindness attack, assumeT is not corrupted by the adversary signer. Under the DCR and the
DLDH assumptions, the adversary cannot distinguish the Paillier ciphertextsM,M̄ , the Linear Encryption
ciphertexts〈W,U, V 〉 for messagem from that for a random message, which allows us to develop the
blindness proof by the same way in the proof ofTheorem 4.4.

Based on the argument above, we can obtain the security theorem for the blind signature with revocable
blindness as below:

Theorem 5.1. Under the LRSW and the DLOG assumptions, the blind signature with revocable blindness
defined above is unforgeable even if the trusted third party can be corrupted by the adversary; Under
the DLDH and the DCR assumptions, the blind signature with revocable blindness defined above satisfies
blindness, assuming that the trusted third party is not corrupted by the adversary.

5.3 Public-Tagging and Partial blindness

We construct an extension of our blind signature that allows the “public-tagging” of a message that is blindly
signed. Public-tagging of blindly signed messages gives rise to what is called a partially blind signature
[AF96]: the signer knows a portion of the message that he is about to sign. Public-tagging is useful as
it allows the signer to keep the same public-key and issue blind signatures for different purposes (e.g., a
bank may issue e-coins that are publicly-tagged blind signatures, and the tagging will correspond to the
denomination, i.e., there will be a different tag for each coin denomination). It should be stressed that in
a blind signature with public tagging the blindness property is only enforced within blind signatures with
the same public-tag. The unforgeability property on the other hand remains identical. We develop a public-
tagging mechanism for our basic scheme. The key idea is the following: we replace the underlying digital
signature of [CL04] with the two message-block extended version (Scheme C for two messages in [CL04]).
In this signature messages are of the form〈m, info〉. The public informationinfo is included intoComInfo.
Hereinfo ∈ [0, 2`p ]. Note that the exact choice for the value ofinfo is negotiated by the signer and the user
outside of the signing protocol.

In the modified signature that we use, the public and secret-key of the signer are modified and the values
PKS = 〈X,Y 〉 andSKS = 〈x, y〉 they are substituted withPKS = 〈X,Y, Z〉, SKS = 〈x, y, z〉, where
X = gx, Y = gy, Z = gz. Signing a message〈m, info〉 corresponds to the following operation: select a
randoma ∈ G and output the signatureσ = 〈a, az, ay, ayz, ax+xym+xyz·info〉.

The modified signature has the following verification process: Given a message-signature pair(m, info;σ),
whereσ = 〈a,A, b,B, c〉 , we can verify it by the verification equations:e(a, Z) = e(g,A); e(a, Y ) =
e(g, b) ande(A, Y ) = e(g,B) ande(X, a)e(X, b)me(X,B)info = e(g, c).

The detailed partially blind signature generation is similar to our basic blind signature protocol (i.e., it
retains the 2-round structure with short communication) and is shown in detail inFigure 4.

Obviously, keepinginfo fixed across protocol executions it is straightforward to extract the blindness of
the above scheme in a similar fashion as in the basic primitive, which is also based on the DLDH and the
DCR assumptions. Unfogerability on the other hand reduces to the security of the Camenisch-Lysyanskaya
two message-block signature [CL04] which is also based on the LRSW assumption, and the binding property
of the Pedersen multi-commitment[Ped91] which is based on the DLOG assumption. Now we can obtain
the security theorem of the proposed scheme.
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Theorem 5.2. Under the LRSW and the DLOG assumptions, the proposed partially blind signature scheme
is unforgeable even if the public-tag is adversarially selected for each signature; Under the DLDH and the
DCR assumptions, the proposed scheme is blind for signatures with the same public-tag.
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U S
ComInfo = 〈p, g,G,GT , e;ψ1, ψ2; info〉 ComInfo = 〈p, g,G,GT , e;ψ1, ψ2; info〉
CRS = 〈n, g;hM , hW , hU , hV , hr, P,Q〉 CRS = 〈n, g;hM , hW , hU , hV , hr, P,Q〉
PKS = 〈X,Y, Z〉 PKS = 〈X,Y, Z〉, SKS = 〈x, y, z〉
MSG = 〈m〉,m ∈ [0, 2`p ]

(PKU , SKU )← GENLE (1λ)
PKU = 〈u, v, w〉, SKU = 〈δ, ξ〉

k0
r← ±[0, 2λ0+λ1+`p ], l1, k1

r← Z∗
n

t, l2, l3, k2, k3
r← Zp, θ

r← G, r
r← ZQ

M = gmln1 mod n2

W = θmwl2+l3 , U = ul2 , V = vl3

TM = gk0kn
1 mod n2

TW = θk0wk2+k3 , TU = uk2 , TV = vk3

tM = ψ1(TM ), tW = ψ2(TW )
tU = ψ2(TU ), tV = ψ2(TV )
com = htM

M htW

W htU

U htV

V hr
r mod P

PKU ,M,θ,〈W,U,V 〉,com
−−−−−−−−−−−−−−−−−−−−→

d
r← {0, 1}λ0

d
←−−−−−−−−−−−−−−−−−−−−

s0 = k0 − d ·m(in Z)
s1 = k1 · l−d

1 mod n
s2 = k2 − d · l2 mod p
s3 = k3 − d · l3 mod p

〈s0,s1,s2,s3〉,〈TM ,TW ,TU ,TV ,r〉
−−−−−−−−−−−−−−−−−−−−→

M ∈? Z∗
n2

s0 ∈? ±[0, 2λ0+λ1+`p+1]
tM = ψ1(TM ), tW = ψ2(TW )
tU = ψ2(TU ), tV = ψ2(TV )
com =? htM

M htW

W htU

U htV

V hr
r mod P

TM =? gs0sn1M
d mod n2

TW =? θs0ws2+s3W d

TU =? us2Ud, TV =? vs3V d

t′, l′2, l
′
3

r← Zp

a′ = (θ)t′ , A′ = (θz)t′

b′ = (θy)t′ , b′ = (θyz)t′

W ′ = (W xyθx+xyz·infowl′2+l′3)t′

U ′ = (Uxyul′2)t′ , V ′ = (V xyvl′3)t′

a′,A′,b′,B′,〈W ′,U ′,V ′〉
←−−−−−−−−−−−−−−−−−−−−

a = (a′)t,A = (A′)t,
b = (b′)t,B = (B′)t,
c = (W ′/(U ′δV ′ξ))t

σ = 〈a,A, b,B, c〉
VERIFY(m, info, σ) =? 1
output(m, info;σ)

Figure 4: Partially blind signature generation protocol.
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