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Abstract

In this paper two important issues in theory of algebraic attacks are ad-
dressed. We first provide a theoretical framework for better understanding
of design rationale in construction of Boolean functions with maximum alge-
braic immunity. Based on these results, an iterative design of functions with
maximum possible algebraic immunity is proposed. In contrast to known con-
structions, our method generates balanced functions of maximum degree and
high nonlinearity, that is functions satisfying all main cryptographic criteria.
Additionally, functions in this class have a low implementation cost due to a
small number of terms in the ANF. Secondly, for a given Boolean function,
a novel algorithm for deciding the existence of annihilators of small degree is
presented. The algorithm utilizes the known methods in a slightly different
manner which results in a significantly reduced complexity of computation.

Keyword : Algebraic attacks, Algebraic Immunity, Annihilators, Stream
ciphers, Nonlinear combiner, Boolean function, Resiliency, Algebraic Degree.

1 Introduction

Boolean functions have important applications in so-called linear transition stream
ciphers based on nonlinear filtering of a single or several linear feedback shift regis-
ters (LFSR). Two main representatives for this class of ciphers are nonlinear filter
generators and nonlinear combiners [12]. Apart from already established crypto-
graphic criteria such as nonlinearity, algebraic degree, and resiliency, it turned out
that Boolean functions must also have a certain order of algebraic immunity. This
is due to recently introduced algebraic attacks based on the low degree annihilation
of Boolean functions [6, 8]. These attacks reflect the property of certain cipher
schemes for which the selection of a function f of high algebraic degree to prevent
Shannon’s attacks [15] and linear complexity attacks [12] is not a sufficient criterion
any longer. Instead of setting up a system of equations of degree determined by
the degree of function f (this is regarded as Shannon’s attack), the attacker can de-
rive a lower degree system provided the existence of a low degree function g, called
annihilator, such that fg = 0 or alternatively (1 + f)g = 0 [8, 11]. We will later
discuss in more depth how such an attack is practically performed.
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In [8], it was proved that for any Boolean function f in n variables there always
exists a function g of degree dn

2 e such that either fg = 0 or (1 + f)g = 0. Then the
minimum degree of nonzero annihilators of either f or 1+f is by definition algebraic
immunity [11]. The existence of functions for which we cannot find a further degree
reduction, that is a nonzero function g that annihilates either f or (1 + f) is of
degree strictly > dn

2 e was first pointed out in [11]. This is not an exceptional case
at all, and various computer simulations indicate that the algebraic immunity is
mainly concentrated in the range {dn

2 e − 1, dn
2 e}. Apparently, there was a need for

deterministic techniques to construct functions with maximum algebraic immunity.
This was the main cause for several construction methods that generate functions
with maximum algebraic immunity to appear recently [5, 9, 2, 10]. However, all
these methods fail to optimize other cryptographic criteria at the same time.

This work is mainly motivated by the fact that at the time being all the con-
struction methods fail to provide functions satisfying all important cryptographic
criteria. Thus we cannot generate strong cryptographic functions through design
methods. Moreover, for a relatively large input variable space (number of variables
n > 20) the complexity of known algorithms for determining the exact value of
algebraic immunity becomes infeasible in most of the cases.

Therefore, this paper deals with these two fundamental tasks in theory of alge-
braic attacks. In the first place, for the first time we exhibit a construction method
that generates functions with maximum algebraic immunity which also succeeds
to attain overall good cryptographic properties such as balancedness, high non-
linearity and maximum degree. This is achieved by developing useful theoretical
results on functions with maximum algebraic immunity. In connection to the dif-
ficulty of determining the exact value of algebraic immunity for large n > 20, we
propose a deterministic algorithm that repeatedly examine the existence of annihi-
lators for subfunctions of f (these subfunctions are regarded as restrictions of f to
a smaller variable space). Based on this, the question about the (non)existence of
annihilators of degree 6 d for function f can be answered with the computational
complexity which is expected to be much smaller compared to known algorithms.
The algorithm has therefore an important application when analyzing the algebraic
properties of Boolean functions.

The rest of the paper is organized as follows. In Section 2 basic definitions and
notations are introduced. Also, a classical application of algebraic attacks is treated
in greater details. A theoretical framework regarding the properties of functions
with maximum algebraic immunity is developed in Section 3. These results are then
used in Section 4 to derive a new construction method for generation of functions
with maximum algebraic immunity, with overall good cryptographic properties.
A novel algorithm for determining the existence of annihilators of degree 6 d is
discussed in Section 5. Section 6 concludes the paper.

2 Preliminaries

We denote the Galois field of order 2n by F2n and the corresponding vector space
by Fn

2 . A Boolean function f : Fn
2 → F2 is usually represented via so called algebraic

normal form (ANF),

f(x1, . . . , xn) =
∑

u∈Fn
2

λu

(
n∏

i=1

xui
i

)
, λu ∈ F2 , u = (u1, . . . , un). (1)
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For the rest of this paper, if otherwise not stated, x will denote a vector containing
n input binary variables, that is x = (x1, . . . , xn) ∈ Fn

2 . The algebraic degree of f ,
denoted by deg(f) or sometimes simply d, is the maximal value of the Hamming
weight of u such that λu 6= 0. The set of all Boolean functions in n variables is
denoted by Bn, and functions of degree at most one are called affine functions. An
affine function with constant term equal to zero is called a linear function. The
support set of function f ∈ Bn, denoted by supp(f), is the set of input values where
f has a nonzero evaluation, that is,

supp(f) = {x ∈ Fn
2 | f(x) = 1}.

A function f is said to be balanced if it outputs equal number of zeros and ones, that
is #{x ∈ Fn

2 : f(x) = 1} = #{x ∈ Fn
2 : f(x) = 0}. The nonlinearity of an n-variable

function f is defined as the minimum distance from the set of all n-variable affine
functions,

Nf = ming∈An
(dH(f, g)), (2)

where dH denotes the Hamming distance, i.e. dH(f, g) = #{x ∈ Fn
2 | f(x) 6= g(x)}.

The notion of algebraic immunity (AI) of order d was introduced in [11] meaning
the ability of function f or (1 + f) not to admit aninhilation by any function of
degree < d. Using elementary arguments it was shown that AI(f) 6 dn/2e for any
f ∈ Bn, see [8]. The set of annihilators of f is denoted An(f) and the minimum
nonzero degree of functions in this set is d0(An(f)). A function f ∈ Bn whose
algebraic immunity attains the upper bound AI(f) = dn/2e is called a function
with maximum AI.

The main idea behind algebraic attacks on additive stream ciphers is that an-
nihilation of f or 1 + f by a low degree function g results in a system of nonlinear
equations with a relatively small number of terms. These attacks, though generic in
its nature, are applicable in a straightforward manner to so-called nonlinear com-
biners and filtering generators [12]. Assuming a known-plaintext attack this class
of ciphers is characterized by the fact that each output bit induces a multivariate
equation of certain degree in the secret key bits. Then in the case of the exis-
tence of annihilators of f or 1 + f of lower degree than f , the low degree system
of multivariate equations (given by degree of annihilators) may be set up which
substantially reduces the complexity of solving such a system. The new system
of equations is usually solved using so-called linearization technique, that is each
nonlinear equation is turned into linear one [8] by replacing nonlinear terms with
new variables.

When the system is overdefined, which means that the number of equations is
larger than the number of unknowns, it may be solved by Gaussian elimination.
Notice that the total complexity only depends on the state size of the cipher S and
the degree d of annihilator g. An approximate estimate for this complexity is given
as
(
S
d

)ω
in [8], where ω is the complexity of Gaussian elimination (usually one takes

ω = 3). For further understanding how these attacks work the reader is referred to
[11, 8] where a rather detailed description is given.

3 Optimizing algebraic immunity

Several construction methods [9, 5, 2, 10] providing functions with maximum al-
gebraic immunity have recently appeared. Nevertheless, all proposed techniques
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achieve the optimization of algebraic immunity at the price of rather severe degra-
dation of other cryptographic criteria such as degree and nonlinearity. It is hard to
believe that these classes of functions are suitable for cryptographic applications.

The purpose of this section is to identify some basic conditions that any function
with maximum AI must satisfy. It is an open problem to find relationship between
annihilators of f and (1+f). However, when f ∈ Bn is balanced (that is supp(f) =
2n−1) and n is odd, the following result could be derived.

Proposition 1 [4] When n is odd, a balanced function f ∈ Bn has a maximum
algebraic immunity, that is AI(f) = (n+1)/2, if and only if d0(An(f)) = (n+1)/2.

This means that for odd n and a balanced function f ∈ Bn, it is sufficient to show
that the minimum degree of nonzero annihilators of f is (n + 1)/2 and the same
minimum degree for annihilators of 1 + f is automatically obtained.

Let us consider a concatenation of two arbitrary functions f1, f2 ∈ Bn, commonly
denoted by f = f1||f2, and specified by

f(x1, . . . , xn, xn+1) = (1 + xn+1)f1(x) + xn+1f2(x) =
= xn+1{f1(x) + f2(x)}+ f1(x).

For shortness of notation we sometimes use f = xn+1{f1 + f2}+ f1. Obviously any
annihilator g ∈ Bn+1 of f can be written as

g = xn+1{g1 + g2}+ g1, (3)

where g1, g2 ∈ Bn annihilate f1 respectively f2. Note that it as allowable to take
either g1 or g2 to be a zero function. The following relation is then deduced in [4],

AI(f) =
{

min(AI(f1), AI(f2)) + 1, AI(f1) 6= AI(f2);
AI(f1) or AI(f1) + 1, AI(f1) = AI(f2);

Then selecting f1, f2 ∈ Bn with maximum AI(fi) = (n+1)/2 (n being odd) the
algebraic immunity of function f = f1||f2 satisfies AI(f) ∈ {(n+1)/2, (n+1)/2+1}.
On the other hand, AI(f) 6 (n + 1)/2 and therefore any f1, f2 ∈ Bn of maximum
AI for odd n, gives a maximum AI function f = f1||f2 ∈ Bn+1. Moreover, the
equation (3) implies the following.

Lemma 1 Let n be odd, and let f be a function whose subfunctions f1, f2 ∈ Bn are
arbitrary functions having AI(fi) = (n + 1)/2. Then there must exist some g1 and
g2 of degree (n+1)/2 which annihilates f1 respectively f2 (alternatively annihilating
1 + f1 and 1 + f2) such that deg(g1 + g2) < (n + 1)/2.

Note that taking f1 and f2 with maximum AI is sufficient but not necessary
condition. One might for instance consider f1, f2 ∈ Bn (for odd n) such that
AI(fi) = (n+1)/2−1 and still obtain f = f1||f2 which has optimized AI = (n+1)/2.
The following theorem is the key result for the iterative construction of functions
with maximum AI given in the next section.

Theorem 1 Let f1 ∈ Bn be a balanced maximum AI function, that is AI(f1) = dn
2 e.

Then the AI of f2(x) = f1(x) + x1 · · ·xn satisfies,

AI(f2) ∈ {
⌈n

2

⌉
− 1,

⌈n

2

⌉
}.
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Proof. Assume the existence of nonzero annihilator g2 of f2 of degree < dn
2 e − 1.

Then,
f2(x)g2(x) = 0 =⇒ f1(x)g2(x) = x1 · · ·xng2(x),

where the product x1 · · ·xng2(x) is either 0 or x1 · · ·xn depending on the parity of
the number of terms in the ANF of g2. If this parity is even then x1 · · ·xng2(x) = 0,
hence g2 of degree < dn

2 e − 1 is annihilator of f1, a contradiction. Then assuming
the ANF of g2 is of odd parity,

f1(x)g2(x) = x1 · · ·xn.

Multiplying the above equation with (1 + xi) for any i ∈ [1, n] gives,

(1 + f1(x))g2(x)(1 + xi) = 0,

that is the function g2(x)(1 + xi), which is of degree < dn
2 e, annihilates 1 + f1, a

contradiction again. This means that the minimum degree of nonzero annihilators
of f2 is either dn

2 e − 1 or dn
2 e.

To prove the assertion it remains to show that 1+f2 does not admit annihilators
of degree less than dn

2 e − 1. On contrary, assume g2 is an annihilator of 1 + f2 of
degree < dn

2 e − 1. Then (1 + f2(x))g2(x) = 0 gives,

(1 + f1(x))g2(x) = x1 · · ·xng2(x).

Similarly to above, the even parity of g2’s ANF implies a contradiction (g2 cannot
annihilate (1 + f1)). For the ANF of g2 of odd parity we get,

(1 + f1(x))g2(x) = x1 · · ·xn,

which again, after multiplying the above equation with (1+xi), gives a contradiction.
Thus, AI(f2) ∈ {dn

2 e − 1, dn
2 e} as stated.

The concatenation of functions with maximum AI may be extended to consider
f = f1||f2||f3||f4 ∈ Bn+2, where each fi ∈ Bn has maximum AI. Using the shortened
notation (fi denoting fi(x)), the ANF of function f is given by:

f = xn+1xn+2(f1 + f2 + f3 + f4) + xn+1(f1 + f2) + xn+2(f1 + f3) + f1.

A similar expression is then valid for any annihilator g of f ,

g = xn+1xn+2(g1 + g2 + g3 + g4) + xn+1(g1 + g2) + xn+2(g1 + g3) + g1, (4)

where gi is arbitrary annihilator of fi (including the trivial annihilation gi = 0).
Let gi denote any minimum degree nonzero annihilator of fi ∈ Bn. If deg(gi) = d
then we also use,

gi(x) = gd
i (x) + gd−1

i (x) + · · ·+ g0
i (x),

where each gr
i , for 0 6 r 6 d, contains only degree r monomial terms. Then in

connection to the representation of annihilator g of f given in (4), the following
simple property is obtained.

Lemma 2 Let f = f1||f2||f3||f4, where fi ∈ Bn are functions with maximum AI.
Then if there exists g such that deg(g) < dn

2 e+1 then deg(gi) = dn
2 e for all i ∈ [1, 4]

and furthermore,

gd
1 = gd

2 = gd
3 = gd

4 ;
4∑

i=1

gd−1
i = 0. (5)
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Proof. Assuming deg(g) < dn
2 e+ 1 gives that,

4∑
i=1

gd
i = 0

4∑
i=1

gd−1
i = 0 gd

1 + gd
2 = 0 gd

1 + gd
3 = 0,

and the result easily follows.

The result of Lemma 2 is a useful tool for establishing the algebraic properties of
given function. Showing that subfunctions f1, . . . , f4 of maximum AI are chosen so
that conditions in Lemma 2 cannot be satisfied for neither f nor 1+ f is equivalent
to proving that f = f1||f2||f3||f4 has a maximum AI.

It is well-known that the algebraic immunity is invariant under composition with
linear permutation, which is in particular true for a permutation of subfunctions
f1, . . . , f4. Therefore the AI of function f1||f2||f3||f4 is the same as for f1||f3||f2||f4

for instance. This fact will be frequently used later to simplify some proofs and
therefore it is given in the form of statement.

Lemma 3 The algebraic immunity of f is invariant under composition with linear
permutation, and in particular it is invariant under permutation of its subfunctions.

4 Construction of functions with maximum AI

The results introduced in the previous section will now contribute in proposing
some recursive constructions of functions with maximum algebraic immunity. The
existence of such functions is strongly supported by computer simulations (at least
for a relatively small variable space n 6 15). The goal is to investigate the possibility
of concatenating four suitable functions, say f1, . . . , f4 ∈ Bn in order to generate a
function with maximum AI on Fn+2

2 .
In what follows we use a single function f1 ∈ Bn from which we derive f2, f3, f4

by suitable modifications.

Construction 1 Let f1 ∈ Bn be a balanced function with maximum AI, n odd. Let
the ANF of f1 contain even number of terms. Then the function f = f1||f2||f3||f4 ∈
Bn+2 has maximum AI for the following choice of f2, f3 and f4:

f2 = f1 + x1x2 · · ·xn; f3 = f1; f4 = 1 + f1 + x1x2 · · ·xn.

Moreover, the ANF of f is given by,

f(x1, . . . , xn+2) = xn+1xn+2 + x1 · · ·xn+1 + f1(x1, . . . , xn).

Proof. We show that deg(g) > dn
2 e + 1 for any nonzero annihilator g of either f

or 1 + f . The equations f1g1 = 0 and f2g2 = 0 give,

f1(x)(g1(x) + g2(x)) = x1 · · ·xng2(x) = 0 or x1 · · ·xn, (6)

depending on the parity of the ANF of g2. As f1 has maximum AI, then either
g1 = 0 or deg(g1) > dn

2 e. We have to consider several cases depending on the choice
of gi.

i) Setting g1 = 0 implies g3 = 0, as due to the term xn+2(g1 + g3) we would
have deg(g) > dn

2 e+ 1. Then assuming g1 = g3 = 0, a nonzero choice of g2 implies
the following. If deg(g2) > dn

2 e then deg(g) > dn
2 e+ 1 due to xn+1(g1 + g2) in (4).
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So we assume deg(g2) < dn
2 e. By Theorem 1, the minimum degree of nonzero g2 is

dn
2 e − 1. Then for even parity of the ANF of g2, the equation (6) becomes,

f1(x)(0 + g2(x)) = 0,

contradicting that f1 is of maximum AI. So we must assume that the ANF of g2

is of odd weight, that is f1(x)g2(x) = x1x2 · · ·xn. This is impossible as f1 has an
even number of terms in its ANF. To summarize, taking g1 = 0 leads now to the
only remaining case g1 = g2 = g3 = 0 and g4 6= 0. By Theorem 1, AI(f4) > dn

2 e−1,
and therefore deg(g) > dn

2 e+ 1 due to term xn+2xn+1g4(x).

ii) Clearly, if g1 6= 0 then also g2 6= 0, as taking g2 = 0 gives deg(g) > dn
2 e + 1

due to term xn+1(g1(x) + 0) in (4). Also from equation (4), nonzero g1, g2 6= 0
must also satisfy deg(g1 + g2) < dn

2 e, as otherwise deg(g) > dn
2 e + 1. The case

f1(x)(g1(x) + g2(x)) = 0 in equation (6), gives annihilator of f1 of degree < dn
2 e, a

contradiction. Thus, we must have

f1(x)(g1(x) + g2(x)) = x1x2 · · ·xn,

contradicting the assumption that the ANF of f1 is of even parity. Therefore
d0(An(f)) = dn

2 e+ 1, that is maximum degree is achieved.
It remains to prove that the same is true for annihilators of 1 + f . But the

conditions of Proposition 1 are satisfied so we have that AI(f) = dn
2 e+ 1.

The choice of subfunctions of f and representation of f as,

f = xn+1xn+2(f1 + f2 + f3 + f4) + xn+1(f1 + f2) + xn+2(f1 + f3) + f1,

give the ANF of f as stated.

4.1 Cryptographic properties of the new maximum AI class

The main cryptographic properties of the class of functions proposed in Construc-
tion 1 are summarized below.

Theorem 2 The function f ∈ Bn+2 in Construction 1 satisfies the following:

i) f is a balanced function on Fn+2
2 of maximum degree, that is deg(f) = n + 1.

ii) If the nonlinearity of f1 is Nf1 , then Nf ∈ {2n + 2Nf1 , 2
n + 2Nf1 ± 2}. Fur-

thermore, if nonlinearity of f1 reaches the bent concatenation bound, i.e. Nf1 =
2n−1 − 2

n−1
2 , then

Nf ∈ {2n+1 − 2
n+1

2 , 2n+1 − 2
n+1

2 ± 2}.

Proof. i) f is clearly balanced due to the choice of its subfunctions. From the
ANF of f we have deg(f) = n + 1.
ii) It is well-known that the nonlinearity of f ′ = f1||f1||f1||1+f1 is Nf ′ = 2n+2Nf1 ,
see for instance [3]. Since our method only differs in complementation of two bits
in the truth table of f ′, then the statement is obvious.
In particular, when Nf1 = 2n−1 − 2

n−1
2 then Nf ′ = 2n + 2Nf1 = 2n+1 − 2

n+1
2 , so

that the nonlinearity of f is as claimed.
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Remark 1 The only cryptographic criterion that is not covered by this construction
is resiliency.1 Though the function f cannot be resilient function (this would violate
Siegenthaler’s upper bound on the degree [16] given by deg(f) 6 n − t − 1 for any
t-resilient f) one may show that assuming f1 is t-resilient function then f(x) +
l(x) is only slightly unbalanced for any linear function l(x) having at most t linear
terms. More precisely, the correlation coefficient ε (that measures susceptibility to
correlation attacks) is equal to ε = 0.5 + 2/2n for linear functions of at most t
terms. This is a small deviation from the ideal value ε = 0.5 in the case of resilient
functions.

This is the first time that a construction comprising most of the cryptographic
criteria has been proposed. More importantly, the method is recursive so we can
generate infinite sequences of functions with maximum AI and overall good cryp-
tographic properties. To use the construction in a recursive manner the resulting
function f ∈ Bn+2 should have an even number of terms in its ANF. This is satisfied
by the construction as,

f(x1, . . . , xn+2) = xn+1xn+2 + x1 · · ·xn+1 + f1(x1, . . . , xn),

and therefore if the ANF of f1 has an even number of terms so does f . To construct
a function f ′ ∈ Bn+4 with maximum AI from maximum AI function f ∈ Bn+2 the
following subfunctions of f ′ are used,

f1 = f ; f2 = f + x1 · · ·xn+2; f3 = f ; f4 = 1 + f + x1 · · ·xn+2.

Note that the nonlinearity of the functions in this class is well approximated
by the bent concatenation bound if the recursion is initiated by f1 ∈ Bn such that
Nf1 = 2n−1−2

n−1
2 . In the worst case after the first iteration Nf = 2n+1−2

n+1
2 −2

for the function f ∈ Bn+2. Then after some i iterative steps, the nonlinearity of
f (i) ∈ Bn+2i in the worst case is given by Nf(i) > 2n′−1− 2

n′−1
2 − 2i for n′ = n+2i.

Example 1 Let us take a balanced f1 ∈ B11 with maximum AI(f1) = 6, and Nf1 =
992. Then after two iterations we get f ∈ B15 satisfying AI(f) = 8, deg(f) = 14,
Nf > 16252. Note that the bent concatenation bound for n = 15 is 16256, while the
best known nonlinearity for f ∈ B15 is Nf = 16276 but such f is not balanced, see
[13, 14].

It is worth noticing that the ANF of functions in this class in general contains a
relatively small number of terms. This is especially true if we start with f1 on a
small input space. Then in each step of iteration the number of terms is increased
by two. Using the same notation as above the ANF of function f (i) ∈ Bn+2i will
contain #ANF(f1) + 2i terms, where #ANF(f1) denotes the number of terms for
the initial function f1.

For instance, starting with function f1 ∈ B7 that has 30 terms we can generate
a maximum AI function in 15 variables containing only 38 terms in its ANF. This
is advantageous feature of the construction since Boolean functions are commonly
employed as filtering functions in the context of low complexity circuit environment,
thus function should have a sparse ANF from the implementation point of view.

Open Problem 1 Is there any particular class of attacks that might exploit the
sparseness of functions in this class ?

1A function f ∈ Bn is said to be resilient of order t if and only if f(x) + l(x) is a balanced
function for any linear function l(x) having at most t linear terms.
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4.2 Other construction possibilities

An alternative construction method is based on a similar modification of the fol-
lowing design f (2) = f1||1 + f1||1 + f1||f1. The difference to the method given in
Construction 1 is that the function f (2) is (t + 2)-resilient if f1 is t-resilient and
nonlinearity of f (2) is given by Nf(2) = 4Nf1 which is strictly less than 2n + 2Nf1 .
Thus the higher resiliency order is traded-off against lower nonlinearity.2

Construction 2 Let f1 ∈ Bn be a function with maximum AI , and let the ANF
of f1 contain even number of terms. Then the function f = f1||f2||f3||f4 is also
optimized AI function for the following choice of f2, f3 and f4:

f2 = 1 + f1 + x1x2 · · ·xn; f3 = 1 + f1; f4 = f1 + x1x2 · · ·xn.

Moreover, the ANF of f is given by,

f(x1, . . . , xn+2) = xn+2 + x1 · · ·xn+1 + f1(x1, . . . , xn).

Proof. We give a somewhat shortened proof that deg(g) > dn
2 e + 1 for any

nonzero annihilator g of either f or 1 + f . Since by Lemma 3 the AI is invariant
under permutation of subfunctions we consider f ′ defined by,

f ′1 = f1; f ′2 = f1 + x1x2 · · ·xn; f ′3 = 1 + f1; f ′4 = 1 + f1 + x1x2 · · ·xn.

From f ′1g1 = 0 and f ′2g2 = 0 we have,

f1(x)(g1(x) + g2(x)) = x1x2 · · ·xng2(x) = 0 or x1 · · ·xn, (7)

depending on the parity of the ANF of g2.
i) Taking g1 = 0 implies g3 = 0. Thus if g1 = g3 = 0 then deg(g2) < dn

2 e.
Then the both case in (7) gives a contradiction, similarly as in the proof of Con-
struction 1. Thus g1 = 0 leads to g1 = g2 = g3 = 0 and g4 6= 0. By Theorem 1,
AI(f4) > dn

2 e − 1, and therefore deg(g) > dn
2 e+ 1 due to term xn+2xn+1g4(x).

ii) Clearly, g1 6= 0 implies g2 6= 0 if deg(g) < dn
2 e + 1. Also we must have

deg(g1+g2) < dn
2 e, as otherwise deg(g) > dn

2 e+1. The case f1(x)(g1(x)+g2(x)) = 0
in equation (7), gives a contradiction. Thus, we must have

f1(x)(g1(x) + g2(x)) = x1x2 · · ·xn,

contradicting the assumption on the parity of ANF of f1.
It remains to prove that the same is true for annihilators of 1 + f ′. Since 1 + f ′ is
only a permutation of the subfunctions of f ′, by Lemma 3 the minimum degree of
annihilators of 1+ f ′ is the same as for f ′. The same is true for original function f .
The choice of subfunctions of f gives the ANF of f as stated.

The function f ∈ Bn+2 defined in Construction 2 is a balanced function of
maximum degree deg(f) = n+1. Also, assuming that the nonlinearity of f1 is Nf1 ,
then Nf ∈ {4Nf1 , 4Nf1 ± 2}. The necessary conditions for the recursive use of the

2We cannot speak about such a trade-off for function f in Construction 2 as f is not a resilient
function in a strict sense. Nevertheless, ε = 0.5 + 1

2n−1 for any f(x) + l(x), l(x) being linear
function of at most t + 2 terms.
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construction are satisfied by noting that the ANF of f1 of even parity implies even
parity of,

f(x1, . . . , xn+2) = x1 · · ·xn+1 + xn+2 + f1(x1, . . . , xn).

Note that there is no restriction on the evenness of n in Construction 2. We believe
that the design methods of functions with maximum AI described above do not
exhaust the possibilities of finding more good classes based on a similar approach.

5 A fast algorithm for finding annihilators of small
degree

Security estimates for stream cipher schemes that employ nonlinear filtering of a
single or several LFSR’s strongly depend on the choice of nonlinear function f :
Fn

2 → F2. Due to time-memory trade-off attacks for these schemes the state size of
the cipher is commonly taken to be twice as large as key length. For a standard
key length k = 128 and the state size S = 256, an application of algebraic attack
(approximating the complexity of the attack as

(
S

AI(f)

)3
) is less than exhaustive key

search for AI(f) 6 7. Noticing that AI(f) 6 dn
2 e, this implies that the input space

of Boolean function must be at least n = 15.
The basic approach to check the existence of annihilators of degree d is to form

the matrix of size supp(f) ×
∑d

i=0

(
n
i

)
(see [8]), where the columns of this matrix

correspond to evaluation of all monomials of degree up to d restricted to supp(f),

1, x1, . . . , xn, x1x2, . . . , x1 · · ·xd, . . . , xn−d+1 · · ·xd, x ∈ supp(f).

The Gaussian elimination on the above defined matrix for a balanced function f
induces the complexity of

2n−1
( d∑

i=0

(
n

i

))2

,

which for the critical value d = 7 gives “infeasible” computational complexity > 250

for n > 18.
In [11], two algorithms (called Algorithm 1 and Algorithm 2) were proposed for

finding low degree annihilators. The both algorithms are faster than the straight-
forward approach based on Gaussian elimination. The estimated computational
complexity for Algorithm 2 is of order 1

8

(
n
d

)3 to decide the existence of annihilators
of degree at most d (except for the cases d 6 5 with somewhat improved perfor-
mance). Here again, the computational complexity for d = 7 becomes larger than
250 for n > 22.

Any function g, being an annihilator of f : Fn
2 → F2, may be viewed as concate-

nation of subfunctions g[τ ],

g(y, x) =
∑

τ∈Fn−k
2

( n−k∏
i=1

(yi + τi + 1)
)
g[τ ](x), (8)

where g[τ ] : Fk
2 → F2 is any annihilator of f[τ ] for f represented as,

f(y, x) =
∑

τ∈Fn−k
2

( n−k∏
i=1

(yi + τi + 1)
)
f[τ ](x). (9)

10



The next proposition makes the basis for a novel algorithm for determining the
existence of annihilators to be described later.

Proposition 2 Any Boolean function f ∈ Bn is a degree non-decreasing function
with respect to the degrees of its subfunctions. That is, for any 1 6 k 6 n− 1 and,

f(y, x) =
∑

τ∈Fn−k
2

( n−k∏
i=1

(yi + τi + 1)
)
f[τ ](x); (y, x) ∈ Fn−k

2 × Fk
2 ,

we have the following relation,

deg(f) > max
τ∈Fn−k

2

deg(f[τ ]).

Proof. Let k = n− 1. This means that f = f1||f2, that is,

f(x1, . . . , xn) = xn(f1(x) + f2(x)) + f1(x),

where x stands for (x1, . . . , xn−1). It is easily verified that deg(f) > maxi=1,2 deg(fi).
But the same is true for f1 and its subfunctions, holding also for f2 as well. Thus,
however we decompose f into subfunctions from a smaller space the assertion above
always holds.

Corollary 1 Let f ∈ Bn be any Boolean function. If f admits annihilators of
degree d, then all subfunctions of f defined on some smaller variable space must
admit annihilators of degree at most d.

The interpretation of this result is that nonexistence of annihilators of degree at
most d for any subfunction of f (these subfunctions defined on a smaller variable
space) implies the nonexistence of annihilators of degree d for function f as well.
Computer simulations suggest that only a negligible small fraction of functions have
algebraic immunity less than dn

2 e− 1. Thus, a primary goal of the algorithm below
is to confirm the nonexistence of annihilators of degree 6 d when d is significantly
less than dn

2 e. For practical applications the case d = 7 is of special importance as
in this case the cipher is protected against standard algebraic attacks3.

Let pi < 1 denote the probability that a k-variable subfunction fi of f ∈ Bn

has an annihilator of degree 6 d, where d < dk
2 e. Then the total probability that

all 2n−k subfunctions admit annihilators of degree 6 d becomes p2n−k

i which for
reasonably small pi tends to zero. This immediately gives a faster method than
known algorithms for d relatively small compared to n, and in particular for d = 7.
For instance, “infeasible” computational complexity of 250 for n = 22 and d = 7
applying the Algorithm 2 in [11] becomes,

Compl. = 27 × 1
8

(
15
7

)3

= 242,

when the same algorithm is repeatedly applied to 27 subfunctions of f , each sub-
function being a 15-variable function.

3It might be a good idea to consider slightly larger d, e.g. d = 8 to introduce protection against
fast algebraic attacks [7, 1].
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Note that the estimate above corresponds to the worst case scenario, as in the
best case our algorithm may terminate after only checking the first subfunction
resulting in the best case complexity,

Compl. =
1
8

(
15
7

)3

= 235.

However if algorithm does not terminate, in a sense that all subfunctions admit
annihilators of degree 6 d, it simply increases k ← k + 1 and the same procedure
is repeated. For the same example above it is quite unlikely that any 17-variable
function admits annihilators of degree d = 7. Then the complexity of the algorithm
is most likely to be,

Compl. =
1
8

(
17
7

)3

= 239.

Figure 1 summarizes the formal steps of the algorithm. Note that the algorithm
is most likely to terminate without increasing k in step 6.

Input: A function f ∈ Bn, and annihilator degree d < dn
2 e.

1. Set k = 2d + 1, and i = 0.

2. While i < 2n−k − 1, let (x(i)
k+1, . . . , x

(i)
n ) ∈ Fn−k

2 be a binary repre-
sentation of i.

3. Check whether f(x1, . . . , xk, x
(i)
k+1, . . . , x

(i)
n ) admits nontrivial an-

nihilation of degree 6 d.

4. If NO, OUTPUT: No annihilators of degree 6 d, TERMINATE.

5. If YES, go to 2 and increase i← i + 1.

6. If i = 2n−k − 1 then go to 1 and k ← k + 1.

7. OUTPUT: There are annihilators of degree 6 d.

Figure 1: Fast annihilator algorithm.

6 Conclusions

In this paper we have addressed two important issues in theory of algebraic attacks.
We have set out a method for designing Boolean functions, which for the first time
unifies all important cryptographic criteria. The only criterion that is not covered
by the construction is resiliency. Nevertheless, apart from the fact that resiliency
is not decisive criterion for certain stream cipher schemes, correlation coefficient is
shown to be extremely small ε = 0.5 + 1/2n−1 which for reasonably large n (say
n > 16) makes the correlation attacks quite likely impractical. We believe that the
technique presented here may be further developed to yield more classes of functions
with maximum AI.
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