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Abstract

Mercurial commitments were introduced by Chase et al. [8] and form a key building block for construct-
ing zero-knowledge sets (introduced by Micali, Rabin and Kilian [27]). Unlike regular commitments, which are
strictly binding, mercurial commitments allow for certain amount of (limited) freedom. The notion of [8] also
required that mercurial commitments should be equivocable given a certain trapdoor, although the notion is in-
teresting even without this condition. While trivially implying regular (trapdoor) commitments, it was not clear
from the prior work if the converse was true: Chase et al. [8] gave several constructions of mercurial commit-
ments from various incompatible assumptions, leaving open if they can be built from any (trapdoor) commitment
scheme, and, in particular, from any one-way function. We give an affirmative answer to this question, by giving
two simple constructions of mercurial commitments from any trapdoor bit commitment scheme. By plugging in
various (trapdoor) bit commitment schemes, we getall the efficient constructions from [27, 8], as well as several
immediate new constructions.

Our results imply that (a)mercurial commitments can be viewed as surprisingly simple variations of regular
(trapdoor) commitments(and, thus, can be built from one-way functions and, more efficiently, from a variety
of other assumptions); and (b)the existence of zero-knowledge sets is equivalent to the existence of collision-
resistant hash functions(moreover, the former can be efficiently built from the latter and trapdoor commitments).
Of independent interest, we also give a stronger and yet much simpler definition of mercurial commitments than
that of [8] (which is also met by our constructions). Overall, we believe that our results eludicate the notion of
mercurial commitments, and better explain the rational following the previous constructions of [27, 8].
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1 Introduction

Commitment schemes are important cryptographic primitives. They allow one party to commit to some valuev so
thatv is kept secret from the rest of the world (this is calledhiding), and yet everybody knows that the valuev is
uniquely defined at the timev was committed (this is calledbinding). In particular, binding ensures that the party
cannot announce the commitment first, and then decide later how to open it depending on the circumstances. In this
sense, commitment schemes force the party to fully decide on what he is committing to.

In Eurocrypt 2005, Chase et al. [8] introduced an intriguing variant of commitments calledmercurial commit-
ments. The main difference comes from the fact that mercurial commitments allow for a small, and yet noticeable
relaxation of the strict binding property of regular commitments. Namely, they allow for a two-stage opining pro-
tocol. In thesoft-open stagethe committer can claim that “if I committed to anything at all, then this value ism”,
while in the hard-opening stage he would indeed declare that “Yes, I really committed to the valuem.” In partic-
ular, any committed valuec can either be both soft- and hard-opened only to one (correct!) messagem, or can be
soft-opened to arbitrary messages, but then it cannot be hard-opened at all! Moreover, the committer must decide
before forming the commitment which one of the two cases suits him better: to commit to only one value, or not to
commit to anything at all. Although this is seemingly not much better than regular commitments, the extra freedom
of the committing party comes from the fact that by showing a soft-opening of his commitment to some valuem,
the receivers still cannot tell ifm was really committed to byc, or if c was simply a “non-commitment” to anything
(and the committer might be just going around and soft-openingc to arbitrary valuesm′). The receivers are sure,
however, that it is impossible to hard-openc to anym′ 6= m.

Chase et al. [8] distilled the above natural primitive to abstract away a relatively complicated (but efficient!)
construction ofzero-knowledge setsby Micali et al. [27]. Such ZK sets allow one to commit to some secret setS
over some universe, and then to be able to non-interactively prove statements of the formx ∈ S andx 6∈ S, and
yet no other information (which cannot be deduced from the inclusions/exclusions above) aboutS is leaked — not
even its size! With the abstraction of mercurial commitments, Chase et al. [8] obtained an elegant and easy-to-
follow general “explanation” of the construction from [27]. Namely, they showed that the construction of [27] is
an instance of a general construction of ZK sets fromanymercurial commitment scheme and any collision-resistant
hash function.

PLAIN VS . TRAPDOOR MERCURIAL COMMITMENTS. We remark that to match a very strong zero-knowledge
definition of ZK sets from [27], Chase et al. [8] had to require that mercurial commitments satisfy the following
“equivocation” property: there exists some trapdoor informationmsk (ordinarily not available to anybody) which
enables one to completely destroy all the binding properties of mercurial commitments. Namely, usingmsk one
can construct fake commitments, which look just like regular commitments and yet can be soft- or hard-opened
to completely arbitrary values. (This is very similar to the notion of regulartrapdoor commitments[4], where the
knowledge of the corresponding trapdoor key can enable somebody to create fake regular commitments which can be
opened to any message.) As already observed by [8], this strong equivocation property does not seem to be inherent
for the “plain” primitive of mercurial commitments, but they chose to insist on this extra property since it was need
for their main application. Since we believe that mercurial commitments are also interesting without equivocation, in
our results we will distinguish betweenplain andtrapdoormercurial commitments. (Although our results described
below will hold equally naturally for either case.) Indeed, we observe that one can define a weaker notion of ZK
sets, which we informally callindistinguishable sets, which have the same functionality as ZK sets, but the privacy
property is relaxed to only state that for any two sets and any sequence of inclusion/exclusion assertions which does
not “separate” these sets, seeing the proofs of the corresponding assertions does not allow one to distinguish between
these two sets. (This is somewhat similar to the distinction between witness indistinguishable [16] and ZK proofs
[20].) And then it is easy to see that the same generic construction from [8] would give indistinguishable sets when
applied to plain mercurial commitments. To summarize, we believe that both plain and trapdoor mercurial commits
are useful and deserve investigation.
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M INIMAL ASSUMPTIONS FORMERCURIAL COMMITMENTS. Having introduced a new cryptographic primitive,
it is always very important to understand where it lies in the hierarchy of cryptographic assumptions. Towards this
goal, [8] gave a general construction of (trapdoor) mercurial commitments from non-interactive zero-knowledge
proofs (NIZK) for NP (which are known, for example, to be implied by trapdoor permutations). However, this
construction is mainly of theoretical interest, since it is very inefficient in practice. They also gave a more efficient1

construction of mercurial commitments from an even stronger assumption of claw-free permutations [21]. On the
other hand, [8] observed that (trapdoor) mercurial commitments are similar and trivially imply (trapdoor) regular
commitments,2 although they pointed out some important differences as well. Thus, the following two questions
were left open:

Question 1: What minimal cryptographic assumptions are sufficient for plain/trapdoor mercurial commitments?

Question 2: Can plain/trapdoor mercurial commitments be (efficiently) built from plain/trapdoor commitments?

Our first result resolves these questions in a surprisingly simple fashion. We show a very simple and efficient
construction of (bit) plain/trapdoor mercurial commitments from any bit plain/trapdoor regular commitment. The
construction is a very simple generalization of the claw-free construction from [8], but since trapdoor commitments
are (in principle) equivalent to one-way functions, we get

Theorem 1 There exists a simple and efficient construction of bit plain/trapdoor mercurial commitments from bit
plain/trapdoor regular commitments. In particular, mercurial commitments of either kind exist if and only if one-way
functions exist.

EFFICIENCY? Having resolved the question of feasibility, we can turn to the question of efficiency. Of course,
we can plug in various efficient bit trapdoor commitment schemes to our previous construction, but this will only
result in bit-by-bit constructions for long messages, which is pretty inefficient for practical use (e.g., for the ZK
sets application). On the other hand, Chase et al. [8] gave two efficient constructions for long messages based on
specific number-theoretic constructions (discrete log and factoring; the discrete log construction was implicit in
[27]). Examining these constructions, one can see that that there seems to be some kind of similarity between them,
although it is not obvious exactly where this similarity comes from. Also, it is relatively hard to understand why
each construction is really secure, without going into the details of the proof. Motivated by this, we ask

Question 3: Is there an efficient and yet reasonablygeneral construction of plain/trapdoor mercurial commit-
ments, which would abstract and explain the efficient number-theoretic constructions from [8]?

Our second and main result gives a surprisingly general answer to this question. Namely, we present a con-
struction which directly transforms a plain/trapdoor bit commitmentC into an efficient and (typically) multi-bit
plain/mercurial commitmentC′. Namely, we still base it on general plain/trapdoor commitment, just like in The-
orem 1. However, a small catch is that we will need to assume an extra property fromC (see Section 2.1 for a
definition ofΣ-protocol):

Theorem 2 AssumeC is a plain/trapdoor bit commitment which has an efficientΣ-protocol Π proving that one
knows a witnessd that a given (regular) commitmentc can be opened to0.3 Then one one can construct an efficient
plain/trapdoor mercurial commitmentC′ whose message space is equal to the challenge space ofΠ.

Thus, to get message-efficient constructions, it will be important to design “challenge-efficient”Σ-protocols for
our plain/trapdoor commitment schemes. While suchΣ-protocol’sΠ in principle (see Theorem 4 below) can always
be built from one-way functions, in general this will not outperform the simple construction in Theorem 1. However,

1The construction is efficient when committing to a bit. To commit to longer messages, one has to use it in a bit-by-bit fashion.
2Both plain and trapdoor commitments are known to be equivalent to the minimal assumption of one-way functions; see Section 2.2.
3As explained in Section 4 proving this theorem, we will need a slight extra property (*) from suchΣ-protocols, but it will always hold in

any practical construction we are aware of. So we omit it from this statement.
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the utility of this transformation comes from the fact that all number-theoretic (trapdoor) bit commitment schemes
have very efficientΣ-protocols, and usually with rich challenge spaces. Plugging in various such commitment
schemes with efficient protocols, we get many efficient constructions of mercurial commitments. In particular, both
the discrete log and the factoring construction of [8] become special cases of our general transformation, when
applied to an appropriate commitment scheme! And several new constructions can be obtained as well (e.g., from
RSA and Paillier [30] assumptions, as well as new discrete log and factoring constructions; see Section 4.1). More
generally, we also believe that our construction is much easier to understand and sheds more light on why the
previous number-theoretic constructions where built in this way.

SIMPLER DEFINITION. As another small contribution, bystrengtheningthe definition of trapdoor mercurial
commitments as compared to the definition of [8], we considerably simplified the equivocation property of mercurial
commitments. Since our constructions all satisfy the stronger definition, and it results in easier and shorter proofs,
we believe our strengthening is justified and could be of independent interest.

IMPLICATION TO ZK SETS. Recall that indistinguishable/ZK sets can be efficiently constructed from any
plain/trapdoor mercurial commitment scheme and a collision-resistant hash function (CRHF). Chase et al. [8] also
made a simple observation that ZK sets imply the existence of CRHFs. Using Theorem 1, Theorem 2, and the fact
that CRHFs imply both one-way functions (and, thus, plain/trapdoor commitments) and efficientplain commitment
schemes [12, 24], we immediately obtain:

Theorem 3 The existence of ZK (and, thus, indistinguishable) sets is equivalent to the existence of CRHFs. In fact,
ZK sets can beefficiently constructed from CRHFs and trapdoor bit commitment schemes, while indistinguishable
sets can be efficiently constructed using CRHFs alone (by also building commitments out of them). Moreover, the
constructions become even more efficient if the commitment scheme in question has a challenge-efficientΣ-protocol
needed for Theorem 2.

2 Definitions

2.1 Σ-Protocols

Let R = {(x,w)} be someNP-relation (i.e., it is efficiently testable to see if(x,w) ∈ R and |w| ≤ poly(|x|)).
We usually callx the input, andw — the witness (forx). Consider a three move protocol run between a PPT
proverP , with input (x,w) ∈ R, and a PPT verifierV with input x, of the following form. P chooses a random
stringrp, computesa = Start(x,w; rp), and sendsa to V . V then chooses a random stringe (called “challenge”)
from some appropriate domainE (see below) and sends it toP . Finally, P responds withz = Finish(x,w, e; rp).
The verifierV then computes and returns a bitb = Check(x, a, e, z). We require thatStart, Finish, andCheck be
polynomial-time algorithms, and that|e| ≤ poly(|x|). Such a protocol (given by proceduresStart,Finish,Check) is
called aΣ-ProtocolforR if it satisfies the following properties, called completeness, special soundness, and special
honest-verifier zero-knowledge:

• Completeness:If (x,w) ∈ R then the verifier outputsb = 1 (with all but negligible probability).

• Special Soundness:There exists a PPT algorithmExtract, called the (knowledge) extractor, such that it is
computationally infeasible to produce an input tuple(x, a, e, z, e′, z′) such thate 6= e′ both lie in the proper
“challenge” domain,Check(x, a, e, z) = Check(x, a, e′, z′) = 1, and yetExtract(x, a, e, z, e′, z′) fails to output
a witnessw such that(x, w) ∈ R. Intuitively, if some prover can correctly respond to two different challenges
e ande′ on the same first flowa, then the prover must “know” a correct witnessw for x (in particular,x has a
witness).

• Special HVZK: There exists a PPT algorithmSimul, called the simulator, such that for any(x,w) ∈ R and
for any fixed challengee, the following two distributions are computationally indistinguishable. The first dis-
tribution (x, a, e, z) is obtained by running an honest proverP (with some fresh randomnessrp) against a ver-
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ifier whose challenge is fixed toe. The second distribution(x, a, e, z) is obtained by computing the output
(a, z) ← Simul(x, e) (with fresh randomnessrs). Intuitively, this says that for any a-priori fixed challengee, it
is possible to produce a protocol transcript computationally indistinguishable from an actual run with the prover
(who knowsw).

It is easy to see that the standard zero-knowledge protocol for the Hamiltonian Cycle [15, 22] language is a (binary
challenge)Σ-protocol. Therefore,

Theorem 4 ([22, 15]) AnyNP-relationR has a (binary challenge)Σ-protocol if secure commitment schemes exist
(in particular, if one-way functions exist).

Of course, we will see and crucially exploit the fact that many natural specific languages have much more efficient
Σ-protocols (see below). We also notice that, aside from computational efficiency, a good quality measure for a given
Σ-protocol is the size of its challenge spaceE (the larger the better). One reason for this dependency comes because
the special soundness property easily implies that if a malicious prover does not “know” a valid witnessw for x,
then he can succeeds in fooling the verifier with probability at most (only negligibly better than)1/|E|. In our
application, we will also see that the large size ofE will also naturally translate to more efficient solutions, and we
will therefore strive to use “challenge-efficient”Σ-protocols.

GENERALIZATIONS. First, we will allowR to depend on some honestly generated public parameterpk (known
to everybody after generation); e.g. the standard discrete-log relation would beRp,g(x,w) = 1 if and only if
x = gw mod p, where the primep and the generatorg could be randomly generated. In this case the corresponding
properties of theΣ-protocol should computationally hold over the choice of such parameters. However, for one of
our applications we will require an even stronger technical property. Namely, we will say that a family of relations
{Rpk} has aΣ-protocol which isstrongly hiding w.r.t. instance generation procedureP if the special HVZK
property holds even in the following experiment.P produces(pk, x, w, I), wherepk is the public key forR, x
is the input,w is the witness, andI is some side information available to attacker. Then we either give to the
distinguisher a tuple(I, pk, x, a, e, z) obtained by having the prover run the real protocol withx andw, or where
(a, z) is produced by the simulatorSimulpk(x, e). To put it differently, the side informationI does not help the
distinguisher to break the special HVZK property. We notice that, essentially all of the practicalΣ-protocols known
(including all the ones we will actually consider) will satisfy the statistical HVZK property, in which case they will
be strongly-hiding w.r.t. anyP. Also, the generic protocol from Theorem 4 will also be strongly-hiding w.r.t. any
efficient procedureP which only depends on the public parameters of the commitments used inside the protocol.
This, once again, includes essentially all interesting procedures (including the specific one we will need later). In
other words, for all practical purposes this extra property is just a technicality we need for the proof to go through.

As a second, orthogonal generalization, we can also consider “auxiliary-input”Σ-protocols, where in order to
run the protocol, the proverP might need some extra informationaux satisfying some property (which, presumably
can be generated together with(x,w)), in addition tow. Notice,w alone is enough to allow for verification that
(x,w) ∈ R, soaux is only needed by the prover to fulfill his completeness requirement (in particular, the simulator
does not need to knowaux and special soundness and HVZK stay the same as before).

EFFICIENT Σ-PROTOCOLS. We briefly survey the following efficientΣ-protocols which we will use in the sequel.
(The exact details will not be crucial for our purposes, so we will not present them here.) We notice that most of
them will be unconditional: the security assumption behind the relation (such as discrete log) will be used later in the
application; for example, in claiming that the hypothetical extraction of the witness contradicts the corresponding
assumption.
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The SchnorrΣ-protocol [32] allows one to unconditionally prove the knowledge of the discrete log in cyclic
groups of prime order. A less known fact [18, 9] is that (a slightly modified)4 Schnorr protocol also works over the
subgroup of quadratic residuesQn overZ∗

n, wheren is the product of two safe primes. Interestingly, unlike in prime
order groups, where the special soundness holds unconditionally, here it will hold computationally under the strong
RSA assumption. In both of these cases the challenge space is exponential.

Very similar to Schnorr protocol, Gilliou-Quisquater (GQ) [23] protocol proves the knowledge of thee-th root
overZ∗

n (i.e., solution to RSA), wheregcd(e, ϕ(n)) = 1 andn is the produce of two safe primes. Here, however,
the challenge space should be smaller than the exponente, so this protocol is challenge-efficient only ife is large
(which is typically required when this protocol is used).

The Fiat-Shamir protocol is an unconditional binary-challengeΣ-protocol proving the knowledge of the square
root overZ∗

n, wheren is the product of two primes. One way to make it challenge-efficient is to repeat it in parallel,
but this is computationally inefficient. A better way is to use the elegant technique of Ong-Schnorr [29], at the
expense of working over the set of quadratic residuesQn, requiringn to be a Blum integer, and, more crucially,
requiring an auxiliary witness to the prover. Namely, in order to make the challenge space to be of size2`, the prover
not only needs to know a square root of the inputx ∈ Qn, but also the2`-root rootu ∈ Qn of x (which is well
defined whenn is a Blum integer): see Lemma 3.1 in [1] explicitly stating the special soundness of this protocol. Of
course, to run this protocol in practice one would first picku and then setw = u2`−1

mod n (by repeated squaring)
andx = w2 mod n.

All the above mentioned protocols have statistical special HVZK, so they always satisfy strong-hiding. To sum-
marize, natural relations arising from well established cryptographic assumptions have very computationally and
challenge-efficientΣ-protocols.

2.2 Commitments and Trapdoor Commitments

COMMITMENTS. A (non-interactive) commitment scheme consists of four efficient algorithms:C = (Com-Gen,
Com,Open,Ver). The generation algorithmCom-Gen(1k), wherek is the security parameter, outputs a public
commitment keypk (possibly empty, but usually consisting of public parameters for the commitment scheme).
Given a messagem from the associated message spaceM (e.g., {0, 1}k, although we will mainly concentrate
on bit commitments),Compk(m; r) (computed using the public keypk and additional randomnessr) produces a
commitment stringc for the messagem. We will sometimes omitr and writec ← Compk(m). Similarly, the
opening algorithmOpenpk(m; r) (which is supposed to be run using the same valuer as the commitment algorithm)
produces a decommitment valued for c. Finally, the verification algorithmVerpk(m, c, d) accepts (i.e., outputs
1) if it thinks the pair(c, d) is a valid commitment/decommitment pair form. We require that for allm ∈ M,
Verpk(m,Compk(m; r),Openpk(m; r)) = 1 holds with all but negligible probability.

We remark that without loss of generality we could have assumed that the opening algorithm simply outputs its
randomnessr as the decommitment, and the verification algorithm simply checks ifc = Compk(m; r). However,
we will find our more general notation more convenient for our purposes. When clear form the context, we will
sometimes omitpk from our notation. Regular commitment schemes have two security properties:

• Hiding: No PPT adversary (who knowspk) can distinguish the commitments to any two message of its choice:
Compk(m1) ≈ Compk(m2). That is,Compk(m) reveals “no information” aboutm.

• Binding: Having the knowledge ofpk, it is computationally hard for the PPT adversaryA to come up with
c,m, d, m′, d′ such that(c, d) and(c, d′) are valid commitment pairs form andm′, butm 6= m′ (such a tuple is
said to cause acollision). That is,A cannot find a valuec which it can open in two different ways.

4In particular, the prover works over the integers instead of overZ|Qn|, since he does not know|Qn|. Because of that the special HVZK
guarantee is statistical here rather than perfect.
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Commitments are known to be theoretically equivalent to one-way functions [28, 25]. However, efficient commit-
ments can be built from collision-resistant hash functions [12, 24], and many number-theoretic assumptions (such
as factoring, discrete log and RSA, and Paillier [30]; see below). In fact, most of these number-theoretic construct
give a stronger kind of commitment — called trapdoor commitment — which we explain next.

TRAPDOOR COMMITMENTS. A (non-interactive) trapdoor commitment scheme consists of six efficient algo-
rithms: C = (TrCom-Gen,Com,Open,Ver,Fake,Equiv). The generation algorithmTrCom-Gen(1k), wherek is
the security parameter, outputs a public commitment keypk and and a secrettrapdoor keysk. Oncepk is fixed, the
meaning ofCom, Open andVer is exactly the same as for regular commitments. In particular, we will require that
these algorithms satisfy the usual hiding and binding properties of the commitment schemes.

The trapdoor keysk is used in the algorithmsFake andEquiv to break the binding property of commitments.
Namely,Fakesk(; r) (which takes no input except for randomnessr) produces “fake” commitmentc, initially not
associated to any messagem. On other other hand, for any messagem, Equivsk(m; r) (which is supposed to
be run using the same valuer as the fake commitment algorithm) produces a “fake decommitment” valued for
c = Fakesk(; r). In particular, we require that such fake(c, d) still satisfy the verification equation: for allm ∈ M,
Verpk(m,Fakesk(; r),Equivsk(m; r)) = 1 holds with all but negligible probability. Even stronger, we require that

• Equivocation: for any m ∈ M (chosen by the adversary), a “true” commitment tuple(m,Compk(m; r),
Openpk(m; r)) should look computationally indistinguishable (overr) from the fake tuple(m,Fakesk(; r),
Equivsk(m; r)). More importantly, we require that these distributions should look indistinguishable even if the
distinguisher knows not only the commitment keypk, but alsothe trapdoor keysk (we will explain the rational
for this shortly)!

We notice that equivocation easily implies that trapdoor commitments satisfy the usual hiding property of com-
mitments (since all commitmentsCompk(m) are indistinguishable from a single distributionFakesk()): in fact, this
indistinguishability holds even if the distinguisher knowssk! Thus, binding and equivocation are enough to argue
the security of trapdoor commitment schemes.

We briefly give the rational of why we need such a strong equivocation property. This is done for the purposes
of composition. Indeed, we would like to argue that given several “real” pairs(c, d), we can replace all of them
by the corresponding “fake” pairs(c′, d′), without anybody “noticing”. However, the standard left-to-right hybrid
argument requires us to be able to generate not only the “real left-pairs”(c, d), which we can do usingpk, but also
“fake right-pairs”(c′, d′), and this we cannot do without the knowledge ofsk. Requiring the indistinguishability to
hold even with the knowledge ofsk resolves this problem, and gives us all the natural composition properties.

CONSTRUCTIONS. There are many constructions of trapdoor commitments (and each of them also gives a regular
commitment, of course). For example, efficient trapdoor commitments exist based on a variety of number-theoretic
assumptions: factoring [26, 31], discrete log [3, 4]), RSA (combining [15, 23]), Paillier [5, 11]. In fact, some of
these schemes (e.g., those based on discrete log and RSA) are special cases of a beautiful general construction by
Feige and Shamir [15]. This constructionefficientlytransforms anyΣ-protocol corresponding to a “hard” language
in NP into a trapdoor commitment scheme. In particular, since we mentioned that all ofNP has suchΣ-protocols if
one-way functions exists (see Theorem 4), and the latter also imply that some languages inNP are “hard”, one can in
principle construct a trapdoor commitment schemefrom any one-way function(see sec. 4.9.2.3 of [19]). We note that
the message space for the resulting trapdoor commitment will be exactly the challenge space of the corresponding
Σ-protocol, which, once again, demonstrates why we want to construct challenge-efficientΣ-protocols.5 Quite
interestingly, this constructionof trapdoor commitments will be somewhat reminiscent to our main construction
from trapdoor commitments (possessing a certainΣ-protocols; see Section 4), although this seems to be more of a

5Of course, since both of our generic mercurial commitment constructions only usebit commitments, even binaryΣ-protocol’s for hard
languages easily suffice for our main purpose.
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coincidence.6

We also mention another, less general construction [26] of trapdoor commitments from claw-free permutation
pairs [21]. This construction is only efficient for bit trapdoor commitments (which, once again, are sufficient for
us). Looking at various known claw-free permutation constructions (e.g., see [13] for such a list), we immediately
get efficient bit trapdoor commitment constructions from various assumptions, such as the already mentioned con-
structions from factoring [26], Paillier [11] and the bit-version of the discrete log construction of [3, 4]. In regards
to discrete log, we finally mention the following “ad-hoc” construction of trapdoor bit commitments which we will
later use. The public key consists of two random generatorsg andh = gx of some prime orderq cyclic groupG,
where the discrete log is hard (herex is a random non-zero element ofZq), while the trapdoor key isx. To commit to
0, one computesgr0 (for random non-zeror0 ∈ Zq), while to commit to1 one similarly computeshr1 . The openings
arer0 andr1, respectively. To break binding one needs to satisfygr0 = hr1 , which means that one can compute
x = r0r

−1
1 mod q (and this contradicts discrete log). On the other hand, ifx is known, it is trivial to open a “fake”

commitmenthr1 both to1 (by simply presentingr1) and to0 (by presentingr1x mod q).

2.3 Mercurial Commitments

We now define mercurial commitments introduced by Chase et al. [8]. Our definition will be similar, butstronger
than the definition from [8]. There are two reasons for making the change. First, all the efficient construction in [8]
and here will anyway satisfy the stronger definition. More importantly, by making our definition stronger we will
also make it noticeably simpler (and shorter!) than the definition of [8]. More detailed comparison will be given
later in the section.

PLAIN MERCURIAL COMMITMENTS. Such commitment schemes consist of seven efficient algorithms:C =
(MCom-Gen, HCom, HOpen, HVer, SCom, SOpen, SVer). The first four algorithms(MCom-Gen, HCom, HOpen,
HVer) follow the syntax (and the functionality!) of regular commitment schemes (see Section 2.2). Namely, gen-
eration algorithmMCom-Gen(1k), wherek is the security parameter, outputs a public mercurial commitment key
mpk. Given a messageM ∈M, thehard-commitalgorithmHCommpk(M ;R) produces ahard-commitmentstring
C for M . We will sometimes writeC ← HCommpk(M). Similarly, thehard-openingalgorithmHOpenmpk(M ;R)
(which is supposed to be run using the same valueR as the hard-commit algorithm) produces ahard-decommitment
valueπ for C. Finally, thehard-verificationalgorithmHVermpk(M,C, π) accepts (i.e., outputs1) if it thinks π
proves thatC is indeed a valid hard-commitment toM . We require that for allM ∈M, HVermpk(m, HCommpk(M ;R),
HOpenmpk(M ;R)) = 1 holds with all but negligible probability.

We now turn to the novel “soft algorithms”. Thesoft-commitalgorithmSCommpk(;R) produces asoft-commitment
stringC (to no message in particular!). We will sometimes writeC ← SCommpk(). Thesoft-openingalgorithm
SOpenmpk(M, flag;R), whereM ∈ M andflag ∈ {H, S} now produces asoft-decommitmentτ to M , which
should supposedly convey information that “if the commitment produced usingR can be hard-opened at all, then it
would open toM ”. A bit more precisely (but see more below), ifflag = H, thenτ is supposed to “correspond” to the
hard-commitmentC = HCommpk(M ;R), and ifflag = S, thenτ is a fake soft-decommitment “corresponding” to
the soft-commitmentC = SCommpk(;R). Either one of these cases is verified using thesoft-verificationalgorithm
SVermpk(M,C, τ), which outputs1 if it thinks thatC could potentially be hard-opened toM in the future (which,
intuitively, should be the case only whenτ was produced from a hard-commitment). Specifically, we require that for
all M ∈ M, SVermpk(M, HCommpk(M ;R), SOpenmpk(M, H;R)) = 1 holds with all but negligible probability,
and similarlySVermpk(M, SCommpk(;R), SOpenmpk(M, S;R)) = 1 holds with all but negligible probability.

We notice that in many cases (including all our constructions) the soft-decommitmentτ to a hard-commitmentC

6Perhaps partially explained by the fact that mercurial commitment are trapdoor commitments with several very special properties (see
Section 2.3). Correspondingly, in our main construction we will need “hard” languages also satisfying some special properties. Somehow
remarkably, though, these extra properties have more or less led us to trapdoor commitments themselves! See Section 4.
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will consist of some proper part of the hard-decommitmentπ, and, correspondingly, the soft-verification algorithm
will perform a proper subset of the tests performed by the hard-verification algorithm. For a lack of better name, we
call such natural mercurial commitmentsproper.

SECURITY. The binding property of plain mercurial commitments consists of two requirements, stating that a valid
hard- or soft-opening ofC to someM implies thatC can not be then hard-opened to any other messageM ′ 6= M :

• Mercurial Binding: Having the knowledge ofmpk, it is computationally hard for the PPT adversaryA to come
up with C,M, π, M ′, π′ (resp.C,M, τ,M ′, π′) such thatπ (respectively,τ ) is a valid hard- (respectively soft-)
decommitment ofC to M andπ′ is a valid hard-decommitment ofC to M ′, butM 6= M ′ (such a tuple is said to
cause ahard (respectivelysoft) collision). That is,A cannot find a valueC which it can hard- or soft-open in one
way and then hard-open in a different way.

We remark that for proper mercurial commitments it suffices to prove that no soft collisions can be found.

As for the analog of the hiding property, we require that not only hard-commitments to someM look indistin-
guishable from soft-commitments (to “nothing”), but this continues to hold even if they are both soft-opened toM
(notice that by the mercurial binding property, the hard-commitment toM cannot be soft-opened to anything other
thanM ).

• Mercurial Hiding: No PPT adversary (who knowsmpk) can find a messageM ∈M for which it can distinguish
a random “real” hard-commitment/soft-decommitment tuple(M, HCommpk(M ;R), SOpenmpk(M, H;R)) from
a random “fake” soft-commitment/soft-decommitment tuple(M, SCommpk(;R), SOpenpk(M, S;R)).

(TRAPDOOR) MERCURIAL COMMITMENTS. Such commitment schemes consist of ten efficient algorithms:
C = (TrMCom-Gen, HCom, HOpen, HVer, SCom, SOpen, SVer,MFake, HEquiv, SEquiv). The generation algo-
rithm TrMCom-Gen(1k), wherek is the security parameter, outputs a public mercurial commitment keympk and
and a secret mercurialtrapdoor keymsk. Oncempk is fixed, the meaning ofHCom, HOpen, HVer, SCom, SOpen
andSVer is exactly the same as for plain mercurial commitments. In particular, we will require that these algorithms
satisfy the usual mercurial hiding and binding properties of the plain mercurial commitment schemes.

The trapdoor keymsk is used in the algorithmsMFake, HEquiv and SEquiv to break the binding property
of commitments. The algorithmMFakemsk(;R) is somewhat similar in spirit to the soft-commitment algorithm
SCommpk and produces “fake” commitmentC, initially not associated to any messageM . The meaning of the
other two algorithmsHEquivmsk(M ;R) andSEquivmsk(m;R) is also similar to that of the corresponding algo-
rithmsHOpenmpk, SOpenmpk, except theyalwaysoperate on the fake commitmentsC not really associated to any
message. Specifically,HEquiv(M ;R) produces a supposedly valid hard-openingπ (calledhard-fake) of the fake
commitmentC = MFake(;R) to M , while SEquiv(M ;R) produces a supposedly valid soft-openingτ (calledsoft-
fake) of the fake commitmentC = MFake(;R) to M . In particular, we require that for allM ∈ M, HVermpk(M,
MFakempk(;R), HEquivmpk(M ;R)) = 1 holds with all but negligible probability, and similarlySVermpk(M,
MFakempk(;R), SEquivmpk(M ;R)) = 1 holds with all but negligible probability. While the ability to soft-fake
such bogus commitments is consistent with the previous ability of soft-opening, the ability to hard-fake them cer-
tainly contradicts the binding property that we had, and this is exactly the function of the trapdoor keymsk!

Somewhat similar to the equivocation property of trapdoor commitments, we require that trapdoor mercurial
commitments satisfy three related equivocation conditions. In each of them we say that no efficient distinguisherA
can non-negligibly tell apart the corresponding “real” from the corresponding “ideal” game,even if it is given the
trapdoor keymsk at the beginning of each real or ideal game. In the following, the valueR is always random.

• HH Equivocation: The real game consists ofA choosingM ∈ M and getting back(M, HCommpk(M ;R),
HOpenmpk(M ;R)); while the ideal game consists ofA choosingM ∈M and getting back(M,MFakemsk(;R),
HEquivmsk(M ;R)).
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• HS Equivocation: The real game consists ofA choosingM ∈ M and getting back(M, HCommpk(M ;R),
SOpenmpk(M, S;R)); while the ideal game consists ofA choosingM ∈M and getting back(M,MFakemsk(;R),
SEquivmsk(M ;R)).

• SS Equivocation: The real game consists ofA getting the valueC = SCommpk(;R), then choosingM ∈
M, and finally getting the valueSOpenmpk(M, S;R); while ideal game consists ofA getting the valueC =
MFakempk(;R), then choosingM ∈M, and finally getting the valueSEquivmpk(M ;R).

Notice that similar-looking SH condition does not make sense in the real life (due to mercurial binding). Next,
HS and SS Equivocations easily imply the Mercurial Hiding property, so it does not need to be checked. Also, for
proper mercurial commitments it is easy to see that HH equivocation implies HS equivocation, so it is enough to
check only HH and SS Equivocations.

RELATION TO THE ORIGINAL DEFINITION IN [8]. The main difference from [8] is in the equivocation property,
which is considerably simpler to state and understand in our case. Moreover, it is alsostrongerthan the definition
of [8]. Essentially, the latter definition consists of playing an arbitrary composition of HH, HS and SS Equivocation
games either in the real, or in the ideal world,7 but where the distinguisherA is not given the trapdoor keymsk. In
this scenario the usual hybrid argument does not work (sinceA cannot simulate stuff in the ideal world by himself),
so one cannot reduce the composed game to the one of the three atomic HH, SE or SS games. As a result, one has
to build a full-fledged simulator, and formally argue that it fools the distinguisher. In contrast, in our scenario the
hybrid argument easily works, so the security of our 3 atomic games easily implies the security of the composed
gameeven if the distinguisher knowsmsk.

KNOWN CONSTRUCTIONS. Chase et al. [8] gave several elegant constructions of (trapdoor) mercurial commit-
ments from the following assumptions:

• Non-interactive zero-knowledge proofs (NIZK) for NP [2, 14] and unconditionally-binding commitment schemes.
However, this construction is mainly of theoretical interest, since all knownNIZK constructions (especially for
all of NP) are extremely inefficient. Interestingly, it also doesnot satisfy our stronger definition. However, we
believe that this is not a problem, since in the sequel we will provide more general constructions (from one-way
functions) which satisfy our stronger definition and are still more efficient than this construction.8

• Claw-free permutations [21].This construction give only bit mercurial commitment, and will be a special case
of our first general construction from bit trapdoor commitments.

• Discrete log.This is a “distillation” of the original construction implicitly used in [27]; it supports long messages
and is pretty efficient. It will be a special case of our second construction when used with the corresponding
discrete-log based bit trapdoor commitment.

• Factoring.This is a new construction which supports long messages and is relatively efficient. It will be a special
case of our second construction when used with the corresponding factoring-based bit trapdoor commitment.

7There is one other, more syntactic strengthening that we had to make in order to simplify the definition. Namely, in the more general
definition of [8] one could have syntactically unrelated real and ideal experiments for generatingmpk, so it did not make sense to givemsk
toA in the real game. In contrast, we insist that the public key generation even in the real world can be carried by generating both the public
and the trapdoor key. While slightly more restrictive, since (1) all our efficient constructions satisfy this restricted notion of key generation
and (2) it considerably simplifies (and alsostrengthens) the definition, we feel it is very justified.

8We remark, however, that theNIZK construction has the advantage of being in the commonrandom string(CRS) model, as opposed to
the commonparametermodel that we use. This means that its public key is computationally indistinguishable from random. We notice that
by using (non-interactive) trapdoor commitmentsin the CRS model, — which can be built from one-waypermutations(see [7]) or specific
number-theoretic assumptions (such as discrete log), — our constructions will also give CRS-based mercurial commitments (even satisfying
our stronger definition). The recent independent work of Catalano and Visconti [7] shows how to base mercurial commitments on one-way
functionsin the CRS model, but only using the weaker definition of [8]. It is open how to satisfy our stronger definition in the CRS model
assuming only one-way functions.
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IMPLICATIONS TO (TRAPDOOR) COMMITMENTS. It is simple to see that by “ignoring” all the “soft” algorithms
of a secure plain/trapdoor commitment scheme, we immediately get a plain/trapdoor regular commitment scheme.
(Concentrating, for example, on a slightly more complicated “trapdoor case”,HCom plays the role ofCom, HOpen
— of Open, HVer — of Ver, MFake — of Fake, andHEquiv — of Equiv.) In the following, we show two simple
constructions proving that the converse of this statement is true as well.

3 General Construction from (Trapdoor) Bit Commitments

As advocated in the introduction, we will first consider the construction of plain mercurial bit commitments from
regular bit commitments, and then argue that the same construction extends to the trapdoor case as well.

BUILDING PLAIN MERCURIAL COMMITMENTS. AssumeC = (Com-Gen,Com,Open,Ver) is a regular bit
commitment scheme. Define plain mercurial commitmentC′ = (MCom-Gen, HCom, HOpen, HVer, SCom, SOpen,
SVer) for a bit b ∈ {0, 1} as follows (we setMCom-Gen = Com-Gen and letpk be the corresponding public key):

• HCompk(b; (r0, r1)): output(c0, c1) = (Compk(b; r0),Compk(1 − b; r1)). Notice, commitment to0 changes its
place from left to right depending onb.

• HOpenpk(b; (r0, r1)): output(d0, d1) = (Open(b; r0),Open(1− b; r1)).
• HVerpk(b, (c0, c1), (d0, d1)): accept if and only ifVerpk(b, c0, d0) = Verpk(1− b, c1, d1) = 1.

• SCompk(; (r0, r1)): output(c0, c1) = (Compk(0; r0),Compk(0; r1)).
• SOpenpk(b, flag; (r0, r1)): irrespective offlag ∈ {H, S}, outputd = Open(0; rb).
• SVerpk(b, (c0, c1), d): accept if and only ifVerpk(0, cb, d) = 1.

The correctness of the scheme is obvious. Intuitively, mercurial commitment tob = 0 looks(0, 1), to 1 — (1, 0),
and the fake —(0, 0). Since the soft-opening of the hard commitment only opens the corresponding left or right0,
the fake commitment can indeed be soft-opened in both way, by honestly opening the appropriate left of right0. On
the other hand, seeing a hard-opening of some commitmentC = (c0, c1) (to some bitb) opens to1 one of the two
regular commitments, while the subsequent soft-opening ofC to (1− b) would then open this regular commitment
to 0, which contradicts binding. Below, we formalize this is a straightforward manner.

Mercurial Binding. Since the mercurial commitment is proper, we only need to rule out soft collisions. For
that, assume the attacker can find a soft collision. By symmetry, let us assume that1 is the softly-opened message,
and0 is the hardly-opened one). So we denote this collision byC = ((c0, c1), d0, d1, d

′
1) whereVer(0, c0, d0) =

Ver(1, c1, d1) = Ver(0, c1, d
′
1) = 1. But thenc1 can be opened to both0 and1, a contradiction to the binding

property ofC.
Mercurial Hiding. Assume firstb = 0. Then, the “real” hard-commitment/soft-decommitment tuple(HCom(0; (r0, r1)),

SOpen(0, H; (r0, r1)) looks like(Com(0; r0),Com(1; r1),Open(0; r0)), while the corresponding “fake” tuple(Fake(; (r0, r1)),
SOpen(0, S; (r0, r1)) looks like(Com(0; r0),Com(0; r1),Open(0; r0)). Clearly, such distribution are indistinguish-
able if Com(0) cannot be distinguished fromCom(1), which follows from the hiding property ofC. A similar
argument holds forb = 1 as well.

TRAPDOORCASE. The extension to the trapdoor case is simple as well. We now have additional algorithmsFake
andEquiv for trapdoor commitments, and need to build the corresponding algorithmsMFake, HEquiv andSEquiv
for mercurial commitments.

• MFakesk(; (r0, r1)): output(Fakesk(; r0),Fakesk(; r1)).
• HEquivsk(b; (r0, r1)): output(Equivsk(b; r0),Equivsk(1− b; r1)).
• SEquivsk(b; (r0, r1)): outputEquivsk(0; rb).
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Correctness is obvious from definition. As for hiding, we only need to argue HH and SS Equivocability (since this
is a proper mercurial commitment). Both are simple corollaries of the regular Equivocation properties of trapdoor
commitments.

HH Equivocation.Let us assumeb = 0, sinceb = 1 is symmetric. Then(HCom(0; (r0, r1)), HOpen(0; (r0, r1)))
is equal toDreal = (Com(0; r0),Com(1; r1),Open(0; r0),Open(1; r1)), while(MFake(; (r0, r1)), HEquiv(0; (r0, r1)))
is equal toDideal = (Fake(; r0),Fake(; r1),Equiv(0; r0),Equiv(1; r1)). Sincer0 and r1 are independent, this
amount to two independent applications of the regular Equivocation property to bits0 and1, respectively. Notice,
though, already for this simple hybrid argumentwe are using the fact that the attacker knows the trapdoor keysk! To
be precise, we must first consider a hybrid distributionDhyb = (Fake(; r0),Com(1; r1),Equiv(0; r0),Open(1; r1)),
and then showDreal ≈ Dhyb (here we only needpk to sample(Com(1; r1),Open(1; r1))) andDhyb ≈ Dideal (here
weneedsk to sample(Fake(; r0),Equiv(0; r0))).

SS Equivocation.In the real experiment, the attacker is first getting(Com(0; r0),Com(0; r1)), then he has to
choose a bitb, after which he getsOpen(0; rb). In the ideal game, the attacker is getting(Fake(; r0),Fake(; r1)),
then he has to choose a bitb, after which he getsEquiv(0; rb). By symmetry, the choice ofb does not mat-
ter here, so we can assumeb = 0, so it suffices to argue(Com(0; r0),Com(0; r1),Open(0; r0)) ≈ (Fake(; r0),
Fake(; r1),Equiv(0; r0)). Once again, this follow by the hybrid argument, by considering an intermediate distri-
bution (Fake(; r0),Com(; r1),Equiv(0; r0)) and using the fact that in the second hybrid the attacker can compute
(Fake(; r0), Open(0; r0)).

COMPARISON TO [8]. The above construction is a very simple generalization of the one in [8], who used
the following family of trapdoor bit commitments [26] obtained from any family of claw-free permutations [21]
(f0, f1). Informally, recall that these are pairs of permutations where one cannot find a “claw”(r0, r1) satisfying
f0(r0) = f1(r1); also it is assumed that there exists a trapdoorf−1

0 allowing one to invertf0 (in our application, we
will not need a similar trapdoor forf1). Now, to trapdoor commit to a bitb we can samplefb(rb) (decommitment is
rb), while the knowledge of the trapdoorf−1

0 provides easy fake pairs: the fake commitmentc = f1(r1) (for random
r1) can be opened to0 by giving r0 = f−1

0 (c)), and to1 — by giving r1.

We remark, though, that the equivocability proof of our extension is indeed considerably shorter, — which is what
it should be for such a simple construction! — than the corresponding proof [8]. Also, our construction implies
mercurial commitments from other bit commitments which are not necessarily induced by claw-free permutations,
such as the general construction of [15] from anyΣ-protocol for a hard language, the factoring construction of [31],
the Paillier construction of [5] or the ad hoc(gr0 , hr1)-construction mentioned in Section 2.2 (and, of course, the
one-way function construction from Theorem 4).

4 Efficient Construction from (Trapdoor) Bit Commitments with Σ-Protocols

The problem with the previous generic construction is the fact that it only allows one to commit to one bit. Of course,
we can always commit to many bits by following the “bit-by-bit” approach, but this is inefficient. Alternatively, we
can try to utilize a multi-bit plain/trapdoor commitment scheme in the previous construction, but it is easy to see
that the resulting length of the commitment will be linearly proportional to the number ofmessagesthat we want to
commit to. This essentially means that setting this number to2 — as we did in Section 3 — and doing the bit-by-bit
composition is the best we can do if we try to extend the previous approach.

Instead, in this section we present our main construction which will directly transforms a plain/trapdoor bit com-
mitmentC into an efficient and (potentially) multi-bit plain/mercurial commitmentC′. However, we will need to
assume an extra property fromC: there exists an efficientΣ-protocolΠ proving that one knows a witnessd that a
given commitmentc can be opened to0. In this case, the message space ofC′ will be the challenge space of the
correspondingΣ-protocol. Thus, ifΠ will be challenge-efficient, we would get a direct, large-message mercurial
commitmentC′.
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CONSTRUCTION. AssumeC = (Com-Gen,Com,Open,Ver) is a regular bit commitment scheme such that there
exists aΣ-protocolΠ = (Start,Finish,Extract,Simul) for the relation (family)Rpk = {(c, d) | Verpk(0, c, d) = 1}.
Recall, this means that the verifier only gets a commitmentc, and the prover also gets, as a witness, a valid opening
d of c to 0. Also, assumeM is the challenge space forΠ.

We then define plain mercurial commitmentC′ = (MCom-Gen, HCom, HOpen, HVer, SCom, SOpen, SVer) for
message spaceM as follows (we setMCom-Gen = Com-Gen and letpk be the corresponding public key):

• HCompk(m; (rs, r1)): let c1 = Compk(1; r1) be a commitment to1, and(a1, z1) = Simulpk(c1,m; rs) be a fake
first and last messages ofΠ which (here incorrectly) claim thatc1 is a commitment to0 on challengem. Output
(c1, a1).

• HOpenpk(m; (rs, r1)): let c1 = Compk(1; r1) and (a1, z1) = Simulpk(c1,m; rs) be as before. Setd1 =
Openpk(1; r1) and output(d1, z1).
• HVerpk(m, (c1, a1), (d1, z1)): accept if and only ifVerpk(1, c1, d1) = 1 (d1 is correct decommitment to1) and

Checkpk(c1, a1,m, z1) = 1 (the fake transcript on challengem thatc1 is a commitment to0 looks good).

• SCompk(; (rp, r0)): let c0 = Compk(0; r0) be a commitment to0, d0 = Openpk(0; r0) be the corresponding open-
ing, anda0 = Startpk(c0, d0; rp) be a real first messages ofΠ which (correctly!) claims thatc0 is a commitment
to 0.9 Output(c0, a0).

• SOpenpk(m, H; (rs, r1)): let c1 = Compk(1; r1) and (a1, z1) = Simulpk(c1,m; rs) be the fake transcript on
challengem thatc1 is a commitment to0. Outputz1.

• SOpenpk(m, S; (rp, r0)): let c0 = Compk(0; r0), d0 = Openpk(0; r0), a0 = Startpk(c0, d0; rp), and z0 =
Finishpk(c0, d0,m; rp) be the correct last flow to challengem. Outputz0.

• SVerpk(m, (c, a), z): accept if and onlyCheckpk(cb, a, m, z) = 1 (the transcript(a,m, z) stating thatc is a
commitment to0 is correct).

Intuitively, the honest hard-committer is supposed to send a commitmentc to 1, but fake the transcript that he
in fact committed to0. On the other hand, a lying soft-committer can simply send a commitmentc to 0, and now
can (honestly!) respond to any challenge/messagem that he gets subsequently, which allows him to soft-open the
first flow to any messagem.10 The binding security of this scheme comes from the fact that a hard-opening ofc to
1, coupled with two soft-opening of the first flowa, must enable one to extract a legal witness, which is the hard-
opening ofc to 0, thus contradicting the binding ofC. Similarly, the hiding property of the commitment coupled
with the zero-knowledge property ofΣ-protocols imply that, without the hard-opening ofc (which will tell if c is a
commitment to0 or 1), the real and fake behavior cannot be told apart. More formally,

Mercurial Binding.Since our commitment is proper, we only need to rule our soft collisions. This means that the
attacker can find a commitment value(c, a), a decommitmentd1 proving thatc is a commitment to1, two messages
m 6= m′, and two valid responsesz andz′ claiming thatc is a commitment to0. By the special soundness of the
Σ-protocol, we get thatExtract(c, a,m, z,m′, z′) must be equal to a valid decommitmentd0 of c to 0. But then we
found a way to openc to both0 and1 (via d0 andd1), contradicting the binding property ofC.

Mercurial Hiding. Take any message/challengem. Then, the “real” hard-commitment/soft-decommitment tuple
for m looks like is given by three values(c = Com(1; r1), (a, z) = Simul(c,m; rs)). Since our commitment
is hiding, andSimul(c,m) is publicly computable, we get that the above distribution is indistinguishable from
(c = Com(0; r0), (a, z) = Simul(c,m; rs)). Now, sincec has a proper witnessd0 = Open(0; r0), the special
HVZK property ofΠ states that the distribution on(a, z) looks indistinguishable than the one obtained by a running

9Notice, here the prover actually knows the valuer0, and not justd0. So for efficiency reasons we might consider auxiliary-inputΣ-
protocols whereP ’s witness is actuallyr0 itself. We will return to this point later.

10Is might appear peculiar that we require an honest party to cook-up a fake proof in order to succeed, while having a dishonest party
perform such a proof correctly! Here, however, the primitive we build legally allows a dishonest party to look “slightly like an honest party”.
So the we force the honest party to do something slightly bad which might be “matched” by a good action of a dishonest party.
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a real protocol on inputc, witnessd0 and challengem. But this means that the above distribution is indistinguishable
from (c = Com(0; r0), a = Start(c, d0; rp), z = Finish(c, d0,m; rp)), which is exactly the triple corresponding to
the “fake” soft-commitment/soft-decommitment procedures.

TRAPDOOR CASE. Recall, we now have additional algorithmsFake andEquiv for trapdoor commitments, and
need to build the corresponding algorithmsMFake, HEquiv and SEquiv for mercurial commitments. As a new
technical property about theΣ-protocol, however, we will have to assume thatΠ = Πpk is strongly hiding w.r.t. a
particular parameter generation procedureP (see Section 2.1). The parameter generation procedure we will need
generates random keys(pk, sk)← Com-Gen(1k), picks a randomr, computesc = Fakesk(; r), d0 = Equivsk(0; r),
d1 = Equivsk(1; r), and sets the side information to(sk, d1), the input to bec , and the witness to bed0. As
explained in Section 2.1, this is more of a technicality which seems to be always satisfied in any non-pathological
scenario arising in practice. We call this property (*), and can now describe the claimed extension.

• MFakesk(; (rp, r)): let c = Fakesk(; r) be a fake commitment,d0 = Equivsk(0; r) be its fake opening to0, and
a0 = Startpk(c, d0; rp) be a correct first flow of theΣ-protocol. Output(c, a0).
• HEquivsk(m; (rp, r)): let c = Fakesk(; r), d0 = Equivsk(0; r), anda0 = Startpk(c, d0; rp) be as before. Compute

the fake openingd1 = Equivsk(1; r) of c to 1, and the correct last messagez0 = Finishpk(c, d0,m; rp). Output
(d1, z0).
• SEquivsk(m; (rp, r)): let c = Fakesk(; r), d0 = Equivsk(0; r), anda0 = Startpk(c, d0; rp) be as before. Compute

the correct last messagez0 = Finishpk(c, d0,m; rp) and outputz0.

Correctness is obvious from definition. As for hiding, we only need to argue HH and SS Equivocability (since
this is a proper mercurial commitment).

HH Equivocation.Take any messagem. Then(HCom(m; (rs, r1)), HOpen(m; (rs, r1))) is equal toDreal =
(c1, d1, a1, z1), wherec1 = Com(1; r1), d1 = Open(1; r1), and(a1, z1) = Simul(c1,m; rs)). SinceSimul(c1,m)
is a public transformation, the Equivocability ofC implies that the above distribution is indistinguishable from
(c = Fake(; r), d1 = Equiv(1; r), a1, z1), where(a1, z1) = Simul(c,m; rs). We are almost done, except we need to
replace the above(a1, z1) by (a0, z0) obtained by running an honest execution ofΠ with witnessd0 = Equiv(0; r).
This is almost exactly the HVZK property, except we formally need to use the strong hiding property (*) described
above. Indeed, in addition to the inputc and the public parameterpk, which are allowed in the usual HVZK property,
here the distinguisher also knows two extra pieces of information: the trapdoor keysk (given to him at the beginning
of the game) and the fake decommitmentd1 = Equiv(1; r). This is why we needed to to assume that this extra
information does not violate the HVZK property.

SS Equivocation.In the real soft-commit/soft-open experiment, the distinguisher (who knowssk) is first getting
c0 = Com(0; r0) and the correct first flow of theΣ-protocol showing thatc0 is indeed a commitment to0 (using
witnessd0 = Open(0; r0)). He then chooses a messagem, and gets a correct third flow to messagem. To put
differently, he simply plays the role of (malicious) verifier in the honest run of theΣ-protocol on pair(c0, d0). Notice
that the distinguisher’s view can be perfectly simulated using some public probabilistic procedureAsk(c0, d0). Using
the equivocation property ofC, the resulting distribution should be indistinguishable fromAsk(c, d0), wherec =
Fake(; r) andd0 = Equiv(0; r). But, once again, it is easy to see that this view is exactly what the attacker gets in
the ideal soft-commit/soft-open experiment.

GENERALIZATION . We already noticed in Footnote 9 that in the above definition of soft-commitment, the Prover
actually knows the entire randomnessr0 and not just a witnessd0 = Open(0; r0). This, of course, is of any value
only in a very few schemes wherer0 6= d0. However, it will come up in one of our examples (see Section 4.1). To
accommodate this extension, we can considerΣ-protocol’s where the prover needs all ofr0 for the completeness of
the protocol (special soundness is still only ford0). For plain mercurial commitments, this is all we need to change.
For the trapdoor variant, however, we will need an extra property from our trapdoor commitment scheme in regards
to equivocation. Namely, in the fake commitment algorithm we need to be able to equivocatec = Fake(; r) to 0
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by obtaining not only a good looking valued0, but the entire randomnessr0. To put differently, we will need to
assume a trapdoor commitment which allows one to equivocate not only the decommitment values, but the entire
randomness. Once this is ensured, we can easily support auxiliary inputΣ-protocols.

4.1 Examples

Below we briefly give several efficient instantiations of our construction, by applying it to several efficient trapdoor
commitment schemes with challenge-efficientΣ-protocols. As we will see, our examples will coverall the previous
efficient schemes, and several more, all as part of one general framework. Except for the first two examples —
which are exactly the schemes from [8] — for the remaining schemes we will just briefly mention which trapdoor
commitment andΣ-protocol to use, since the remaining details are obvious and not very illuminating.

DISCRETE LOG CONSTRUCTION FROM[8, 27]. We will consider the ad-hoc scheme from Section 2.2, where
Com(0; r0) = gr0 , Com(1; r1) = hr1 , and the trapdoorsk = logg h (herer0, r1 6= 0). We need aΣ-protocol to
prove the knowledge ofr0 = logg(c), wherec is the claimed commitment to0. Of course, a natural thing to do is
to take Schnorr protocol, but this will result in a slightly different (but equally efficient) scheme than what we are
after. Instead, we will use a bit less esthetic but equally effectiveΣ-protocol. In the first flow the prover sends a
valueT = gt (for randomt), he gets challengem, and responds withz = (t−m)/r0 mod q (which is defined since
r0 6= 0). The verifier checks ifgmcz = T (indeed,m + r0z = t, as needed). It is simple to see that this is indeed
a Σ-protocol for the knowledge of the discrete log, and that by plugging it into our construction we get exactly the
discrete log construction from [8, 27].

We also remark what we could use a better known discrete-log commitmentCom(0) = gr0 , Com(1) = hgr1 ,
coupled with either SchnorrΣ-protocol, or the one presented above. We will get yet another (equally efficient)
solution.

FACTORING CONSTRUCTION FROM[8]. This will use the generalization of our constriction to use auxiliary inputs,
as explained at the end of the previous section. To motivate the construction, though, let us start with a well-known
factoring-based trapdoor bit commitment from a corresponding claw-free permutation pair: the public parameter is
a random squareU , andCom(0; r0) = r2

0 mod n, Com(1; r1) = Ur2
1 mod n (the trapdoor is the square root ofU ).

Here we need aΣ-protocol for the knowledge of the square root. As we mentioned in Section 2.1, using Fiat-Shamir
protocol [17] is not communication- or challenge-efficient. Instead, we use the auxiliary input Ong-Schnorr protocol
[29]. For that one need to know2`-th square root ofCom(0), so we modifyCom(0; r0) = r2`

0 mod n (but leave
Com(1; r1) = Ur2

1 mod n). W‘e notice, that although the decommitment to0 is “only” the square rootd0 = r2`−1

0 ,
and notr0 itself, the fake commitment should enable us to extract (usingsk) the2`-th root fromc0, and not just a
mere square root. Of course, this is easy to achieve by definingFake(; r) = r2`

, and “fully opening” it to0 by giving
r, and to1 — by giving r2`−1

/
√

U . With these changes we getpreciselythe factoring construction from [8].

We also notice that by using a different claw-free permutation(r2
0, 4r2

1) [21] defined over the so called Williams
integers, we can slightly simplify the scheme and setU = 4.

NEW RSA-BASED CONSTRUCTION. Here we could use the RSA-based trapdoor commitmentCom(0; r0) =
re
0 mod n, Com(1; r1) = yre

1 mod n, wherey is a public parameter, whosee-th root is the trapdoor key. Here we
simply need theΣ-protocol proof of knowledge of thee-th root, which is just the GQ protocol [23]. To have the
protocol to be challenge-efficient, though, we will need to use a relatively largee.

ANOTHER FACTORING CONSTRUCTION. We can use the following factoring-based commitment of [31] (slightly
modified for easierΣ-protocols and specialized to bits). The public key isn = p, q, wherep = 2p′ + 1, q = 2q′ + 1
are safe primes, and all the operations are performed in the subgroupQn of quadratic residues whose generatorg
is also part of parameters. Notice,|Qn| = p′q′. Let C be a large enough constant (anything larger thann will
do). ThenCom(0; r0) = gC+r0 mod n, Com(1; r1) = gr1 mod n (herer0, r1 are random from0 to n (which is
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statistically close toϕ(n), which is the “true range” we are aiming for). The trapdoor is the value|Qn| = p′q′. In
this case theΣ-protocol we need to again the one of knowledge of discrete-log, but in the groups of unknown order.
As mentioned before, such (computationally sound) protocol is given by [18, 9].

PAILLIER -BASED SCHEME. Finally, we mention another trapdoor commitment based on the hardness of finding
n-th roots overZn2 (wheren is the the product of two safe primes, for simplicity), which is implicit in [11]. LetS
be the subgroup ofn-th powers modulon2

Here where we have a generatorg in the subgroupS of n-th powers inZ∗
n2 , and itsn-th rootu will be the trapdoor.

Next,Com(0; r0) = rn
0 mod n2, Com(1; r1) = grn

1 mod n2 (herer0, r1 ∈ Z∗
n). This scheme is perfectly hiding and

computationally binding assuming it is hard to taken-th root overZn2 , and could be viewed as yet another claw-free
based construction. TheΣ-protocol for commitment to0 is simply theΣ-protocol for knowing then-th root. This
protocol is very similar to the GQ protocol and is formally analyzed by [10].

5 Conclusions

We believe that our results eludicate the notion of mercurial commitments, put them in their place on the map of
cryptographic assumptions, and better explain the rational following the previous constructions of [27, 8]. We hope
that mercurial commitments will find more interesting applications in the future.
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