
Tight bound between nonlinearity and algebraiimmunityMikhail LobanovMeh. & Math. DepartmentMosow State University119992 Mosow, Russiaemails: misha msu�mail.ruAbstratWe obtain tight bound between nonlinearity and algebrai immunityof a Boolean funtion and onstrut balaned funtions that ahive thisbound for all possible values of parameters.Boolean funtions have wide appliations in ryptography. Reently, alge-brai attaks against stream iphers were invented that applied the requirementof high algebrai immunity in ombinations with other requirements to Booleanfuntions exploited as nonlinear �lters in stream iphers (see, for example, [1, 5℄).One more ryptographi important property of Boolean funtions espeially im-portant in stream iphers is nonlinearity. In this respet the problem of relationsbetween nonlinearity and algebrai immunity of Boolean funtions has an inter-est.In [2℄ it was proved the lower bound for the nonlinearity of a Boolean funtionvia its algebrai immunity.In this paper we obtain stronger lower bound for the nonlinearity of aBoolean funtion via its algebrai immunity and onstrut balaned funtionsthat ahive this bound for all possible values of parameters.It is well known that a Boolean funtion has the only representation by apolynomial.De�nition 1. The degree of a Boolean funtion is the length of the longestterm in its polynomial (the number of variables in this term).De�nition 2. A Boolean funtion g over Fn2 is an annihilator of a Booleanfuntion f over Fn2 if fg = 0.Obviously, all annihilators of f form a linear subspae in the spae of allBoolean funtions of n variables. 1



De�nition 3. The algebrai immunity AI(F ) of a Boolean funtion f overFn2 is the degree of the Boolean funtion g over Fn2 where g is nonzero Booleanfuntion of minimum degree suh that fg = 0 or (f + 1)g = 0.It is known [1, 5℄ that for any f over Fn2 the inequality AI(f) � dn2 e holds.De�nition 4. The weight wt(x) of a vetor x in Fn2 is the number of onesin x.De�nition 5. The distane between Boolean funtions f1 and f2 is de�nedas d(f1; f2) =j fx 2 Fn2 j f1(x) 6= f2(x)g j.De�nition 6. The nonlinearity nl(f) of a Boolean funtion f over Fn2 isminl; deg(l)�1 d(f; l).De�nition 7. For any vetor u 2 Fn2 the valueWf (u) = Xx2Fn2 (�1)f(x)+<u;x>is alled the Walsh oeÆient of f at u.The nonlinearity is expressed via Walsh oeÆients by the next formula:nl(f) = 2n�1 � 12 maxu2Fn2 jWf (u)j:In [2℄ it was proved that if nl(f) < Pdi=0 �ni� then AI(f) � d + 1. This isequivalent to the lower bound of nonlinearitynl(f) � AI(f)�2Xi=0 �ni�:De�nition 8. A Boolean funtion f(x1; : : : ; xn) is alled self-dual if f(x1+1; x2 + 1; : : : ; xn + 1) = f(x1; : : : ; xn) + 1.It is easy to see that if f is self-dual then the fat that f has not a nonzeroannihilator of degree less than k follows that f+1 has not a nonzero annihilatorof degree less than k too. Therefore the minimum degrees of nonzero annihilatorsof funtions f and f+1 are the same. Thus, for the �nding of algebrai immunityof a self-dual funtion f it is suÆient to onsider only annihilators of thefuntion f .Lemma 1. Any annihilator g(x1; : : : ; xn) of the funtion l(x1; : : : ; xn),deg(l) = 1, an be represented in the formg(x1; : : : ; xn) = f(x1; : : : ; xn)(l(x1; : : : ; xn) + 1)where deg(f) = deg(g)� 1.Proof. Beause of aÆne equivalene without loss of generality it is possibleto assume l = x1 + 1.Consider the representation of g(x1; : : : ; xn) in the polynomial form. Sineall annihilators of a funtion form a linear spae, after the anellation of allterms that ontain x1 we must obtain the funtion g1(x2; : : : ; xn) suh that2



g1l = g1(x1 + 1) = 0. Sine g1 does not depend on x1 we have g1 = 0. Hene,any term of g ontains x1, theng(x1; : : : ; xn) = x1f(x1; : : : ; xn) = (l + 1)fwhere deg(f) = deg(g)� 1.�Lemma 2. Let l(x1; : : : ; xn) be a Boolean funtion, deg(l) = 1. Thenall annihilators of the funtion l of degree at most t form the linear spae ofdimension Pt�1i=0 �n�1i �.Proof. Beause of an aÆne equivalene, it is possible to assume l = x1 +1.Consider an arbitrary annihilator g(x1; : : : ; xn) of the funtion l(x1; : : : ; xn)suh that deg(g) � t. Consider the representation of g(x1; : : : ; xn) in the polyno-mial form. Sine all annihilators of a funtion form a linear spae, after the an-ellation of all terms that ontain x1 we must obtain the funtion g1(x2; : : : ; xn)suh that g1l = g1(x1+1) = 0. Sine g1 does not depend on x1 we have g1 = 0.Hene, any term of g ontains x1, theng(x1; : : : ; xn) = x1f(x2; : : : ; xn)where deg(f) � t� 1.In addition, any funtion g(x1; : : : ; xn) = x1f(x2; : : : ; xn), wheref(x2; : : : ; xn) is an arbitrary Boolean funtion of n � 1 variables and of de-gree at most t � 1, is an annihilator of l of degree at most t. It follows thestatement of Lemma. �Remark. The proof of the next lemma it is possible to �nd in [4℄ but wegive it here beause of its simpliity.Lemma 3. If f is a Boolean funtion over Fn2 and AI(f) > k, thenkXi=0 �ni� � wt(f) � n�k�1Xi=0 �ni�:Proof. We look for an annihilator of the funtion f by the method ofindeterminate oeÆients:g = a0 + nXi=1 aixi + X1�i<j�n aijxixj + � � �+ X1�i1�:::�ik�n ai1:::ikxi1 : : : xik ;deg(g) � k.The funtion g is an annihilator of f if and only if f(x) = 1 follows g(x) = 0.Then in order to provide AI(f) > k, it is neessary that obtained homogeneoussystem of linear equations on a0; a1; a2; : : : has the only zero solution. For thisit is neessary that the number of unknowns does not exeed the number ofequations. The number of equations is wt(f) whereas the number of unknownsis Pki=0 �ni�. Hene, the left inequality is proved. Applying the same reasoningto f + 1 we obtain the right inequality. �3



Theorem 1. Let f(x1; : : : ; xn) be a Boolean funtion over Fn2 and AI(f) =k. Then nl(f) � 2n�1 � n�kXi=k�1�n� 1i � = 2 k�2Xi=0 �n� 1i �: (1)Proof. For k = 1 our bound gives nl(f) � 0. Assume k � 2.Represent the nonlinearity of the funtion f in the form nl(f) = 2n�1 � �2where � = maxu2Fn2 jWf (u)j.If maxu2Fn2 jWf (u)j is ahieved at zero vetor, then f or f+1 has the weight2n��2 . Then in aordane with Lemma 3 we have2n � �2 � k�1Xi=0 �ni�:Therefore, � �Pn�ki=k �ni� � 2Pn�ki=k�1 �n�1i �. From here we obtain the requiredbound on the nonlinearity.If maxu2Fn2 jWf (u)j is not ahieved at zero vetor, then there exists thefuntion l(x1; : : : ; xn); deg(l) = 1, suh that d(f; l) = 2n��2 . The funtionsf and l have the same values at 2n+�2 vetors. Suppose that among thesevetors there exist exatly � vetors x where f(x) = 1, then there exist exatly2n�1 � wt(f)� �2 + � vetors where f = 0 and l = 1.Then wt(f(l + 1)) = wt(f)� � (2)and wt((f + 1)l) = 2n�1 � wt(f) � �2 + �: (3)The right side in (2) is dereasing in � whereas the right side in (3) is inreasingin �. The equality as ahieved for � = wt(f)� 2n�2 + �4 . It follows thatmin(wt(f(l + 1)); wt((f + 1)l)) � 2n�2 � �4 :If wt(f(l + 1)) < wt((f + 1)l) then de�ne f1 = f; l1 = l + 1, otherwise de�nef1 = f + 1; l1 = l.Input the funtion f2 = f1l1. Then wt(f2) � 2n�2 � �4 .We look for annihilators g of the funtion f2 of degree at most k � 2 by themethod of indeterminate oeÆients:g = a0 + nXi=1 aixi + X1�i<j�n aijxixj + � � �+ X1�i1�:::�ik�2�nai1:::ik�2xi1 : : : xik�2 :A funtion g is the annihilator of f if and only if f(x) = 1 follows g(x) = 0.Hene, we obtain the homogeneous system of at most 2n�2� �4 linear equa-tions on Pk�2i=0 �ni� unknowns. The spae of solutions of this system has thedimension at least Pk�2i=0 �ni�� (2n�2 � �4 ).4



By Lemma 2 the dimension of the spae of annihilators of the funtion l1 ofdegree at most k � 2 is Pk�3i=0 �n�1i �.If Pk�2i=0 �ni� � (2n�2 � �4 ) > Pk�3i=0 �n�1i � then there exists the funtion f3,deg(f3) � k � 2, suh that f2f3 = 0 but f3l1 6= 0. Then f3l1 is the annihilatorof f1, in addition deg(f3l1) � k � 1 that ontradits to AI(f) = k.It follows Pk�2i=0 �ni�� (2n�2 � �4 ) �Pk�3i=0 �n�1i �,�4 � 2n�2 � 12 n�k+1Xi=k�2 �n� 1i �+ 2n�2 � 2n�1 � 12 n�k+1Xi=k�1 �ni�! ;�4 � 12  n�k+1Xi=k�1 ��n� 1i ���n� 1i� 1��� n�k+1Xi=k�2 �n� 1i �! = 12 n�kXi=k�1�n� 1i �:Therefore, nl(f) � 2n�1 �Pn�ki=k�1 �n�1i �.�Corollary 1. If n odd and AI(f(x1; : : : ; xn)) = �n2 � thennl(f) � 2n�1 ��n� 1n�12 �: (4)Note that in [4℄ it was onstruted the funtion of odd number n of variableswith the algebrai immunity �n2 � and nonlinearity nl(f) = 2n�1 � �n�1n�12 �. OurCorollary 1 lari�es that this funtion ahieves our bound (4), i. e. amongall funtions with maximum possible algebrai immunity this funtion has theworst possible nonlinearity. The alulation of its nonlinearity in [4℄ is quitediÆult and takes some pages. Now the lower bound for the funtion from [4℄follows immediately from our Corollary 1. At the same time the upper boundfor the nonlinearity of the funtion from [4℄ will follow from our Theorem 2 sinethis funtion is a partiular ase of our funtions fn;k appeared in the proof ofour Theorem 2. Note also that in [3℄ for the onstruted there the funtion fwith odd number n of variables and the algebrai immunity �n2 � it was provedthe lower bound of nonlinearity nl(f) � 2n�1 � �n�1n�12 � that oinides with ourbound in Corollary 1 for all funtions with suh number of variables and suhalgebrai immunity.Corollary 2. If n even and AI(f(x1; : : : ; xn)) = �n2 � thennl(f) � 2n�1 ��nn2�:Note that in [4℄ the bound of our Corollary 2 was proved for very narrowlass of funtions.Theorem 2. The bound (1) in Theorem 1 is unimprovable for any n andany k � dn2 e. Moreover, for any admissible parameters n and k there exists abalaned funtion that ahieves this bound.5



Proof. Show that the bound (1) in Theorem 1 is unimprovable presenting forany n and any k � dn2 e the balaned funtion f(x1; : : : ; xn) suh that AI(f) = kand nl(f) = 2n�1 �Pn�ki=k�1 �n�1i �.De�ne the funtion fn;k by the next way:fn;k(x1; : : : ; xn) = 8<: 0; if wt(x1; : : : ; xn) < k;1; if wt(x1; : : : ; xn) > n� k;x1; if k � wt(x1; : : : ; xn) � n� k:Now prove that for any n and any k � dn2 e we have AI(fn;k) = k andnl(fn;k) = 2n�1 �Pn�ki=k�1 �n�1i �.It is easy to see that f(x1 + 1; x2 + 1; : : : ; xn + 1) = f(x1; : : : ; xn) + 1, i. e.fn;k is a self-dual funtion. Hene, the funtion fn;k is a balaned funtion.Sine fn;k is self-dual, in order to prove AI(f) � k, it is suÆient to provethat fn;k + 1 has not a nonzero annihilator of degree less than k.Write the possible annihilator g of the funtion f +1 of degree at most k�1by means of indeterminate oeÆients:g = a0 + nXi=1 aixi + X1�i<j�n aijxixj + � � �+ X1�i1�:::�ik�1�nai1:::ik�1xi1 : : : xik�1 :The funtion g is the annihilator of fn;k + 1 if and only if f(x) + 1 = 1 fol-lows g(x) = 0. We obtain the system of homogeneous linear equations on theoeÆients of the funtion g: g(x1; : : : ; xn) = 0for all vetors x suh that wt(x) � k � 1.Sine g(0; : : : ; 0) = 0, we have a0 = 0. Sine g(x) = 0 if wt(x) = 1, we haveai = a0 = 0. Applying the indution on the weight of vetors we obtain that alloeÆients of g are zeros, hene, g � 0. Thus, AI(fn;k) � k. At the same timeit is easy to see that g(x1; : : : ; xn) = (x1 + 1) : : : (xk + 1) is the annihilator offn;k of degree k. Therefore, AI(fn;k) = k.Calulate the Walsh oeÆient of the funtion fn;k at the vetor (1; 0; : : : ; 0)using the self-duality of fn;k:Wfn;k (1; 0; : : : ; 0) = X(x1;:::;xn)2Fn2 (�1)fn;k(x1;:::;xn)+x1 == 2n � 2wt(fn;k(x1; : : : ; xn) + x1) == 2n � 2(wt(fn;k(0; x2; : : : ; xn)) + wt(fn;k(1; x2 : : : ; xn) + 1)) == 2n � 4wt(fn;k(0; x2; : : : ; xn)) = 2n � 4 n�1Xi=n�k+1�n� 1i � = 2 n�kXi=k�1�n� 1i �:6



Hene, nl(fn;k) � 2n�1 �Pn�ki=k�1 �n�1i �. Above we proved that AI(fn;k) =k, hene, by Theorem 1 we have nl(fn;k) � 2n�1 �Pn�ki=k�1 �n�1i �, it followsnl(fn;k) = 2n�1 �Pn�ki=k�1 �n�1i �.�The author is deeply grateful to his sienti� supervisor Prof. Yuriy Taran-nikov for the formulation of the problem, attention to the work and valuableadvies.Referenes[1℄ N.Courtois and W.Meier. Algebrai attaks on stream iphers with linearfeedbak. In Anvanes in Cryptology | EUROCRYPT 2003, number 2656in Leture Notes in Computer Siene, pages 345{359. Springer-Verlag,2003.[2℄ D.K.Dalai, K.C.Gupta and S.Maitra. Results on Algebrai Immunity forCryptographially Signi�ant Boolean Funtions. Indorypt 2004, Chennai,India, Deember 20{22, pages 92{106, volume 3348 in Leture Notes inComputer Siene, Springer-Verlag, 2004.[3℄ D.K.Dalai, K.C.Gupta and S.Maitra. Cryptographially Signi�antBoolean Funtions: Constration and Analysis in terms of Algebrai Immu-nity. FSE 2005, pages 98{111, volume 3557 in Leture Notes in ComputerSiene, Springer-Verlag, 2005.[4℄ D.K.Dalai, S.Maitra, S.Sarkar. Basi Theory in Constrution of BooleanFuntions with Maximum Possible Annihilator Immunity. CryptologyePrint arhive (http://eprint.iar.org/), Report 2005/229.[5℄ W.Meier, E.Pasali and C.Carlet. Algebrai attaks and deomposition ofBoolean funtions. In Advanes in Cryptology | EUROCRYPT 2004,number 3027 in Leture Notes in Computer Siene, pages 474{491.Springer-Verlag, 2004.
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