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Abstract. Preneel,Govaerts, and Vandewalle[6] considered the 64 most
basic ways to construct a hash function H : {0, 1}∗ → {0, 1}n from a
block cipher E : {0, 1}n×{0, 1}n → {0, 1}n. They regarded 12 of those 64
schemes as secure. Black, Rogaway and Shrimption[4] provided a formal
and quantitative treatment of the 64 constructions considered by PGV
and prove that, in black-box model, there are 20 of those schemes that are
collision resistant. Here we consider those 64 schemes to construct a hash
function from FL-Cipher F : {0, 1}n × {0, 1}n → {0, 1}n[2]. We prove
that, in black-box model, 24 schemes of those 64 schemes are secure.
Nonetheless, we prefer format1 schemes to other format to construct a
hash function for given FL-Cipher.
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1 Introduction

Almost all known hash functions are based on a compression function with fixed
size input and called an ”iterated” hash function. The iterated hash functions
have been divided into four classes[3]: hash function based on a block cipher, hash
functions based on modular arithmetic, hash functions based on a knapsack and
dedicated hash functions.

Constructing a hash function based on block cipher is turning a block cipher
E : {0, 1}n×{0, 1}n → {0, 1}n in to a hash function H : {0, 1}∗ → {0, 1}n using
a compression function f : {0, 1}n × {0, 1}n → {0, 1}n derived from E. For v
a fixed n-bit constant, the compression function f has the form of 64 schemes
f(hi−1,mi) = Ea(b)⊕c where a, b, c ∈ {hi−1,mi, hi−1⊕mi, v}. Preneel,Govaerts,
and Vandewalle[6][6] discussed the probabilities of building a hash function using
those 64 schemes and made a conclusion that 12 of 64 schemes are secure. Black,
Rogaway and Shrimption[4] improved the result, where 20 of those 64 schemes
are secure.

We presented a new type of iterated hash function in paper[2], its compression
function F : {0, 1}n×{0, 1}n → {0, 1}n has modified Feistel Structure and block
cipher’s round function, we called the compression function ”FL-Cipher” and
called the iterated hash function ”FL-Construction hash function”. We proved
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that FL-Cipher is a good compression function and FL-Construction is a OWHF
and CRHF, in black-box model. Nonetheless, we only considered the condition
that the compressing function f : {0, 1}n × {0, 1}n → {0, 1}n is in format of
f(hi−1,mi) = F (hi−1,mi).

Here we consider those 64 schemes to construct a hash function from FL-
Cipher F : {0, 1}n × {0, 1}n → {0, 1}n. We prove that, in black-box model, 24
schemes of those 64 schemes are secure and those 24 schemes are divided into
4 class. Nonetheless, we prefer format1 schemes to other format to construct a
hash function for given FL-Cipher.

The paper is organized as follows. The mathematical preliminaries and no-
tation employed are described in section2. Specification of FL-Cipher and FL-
Construction are given in section3. The summary of our result is presented in
section4 and section5 is our conclusion.

2 Definition

2.1 The Feistel Like Structure

A Feistel structure is a general way of constructing block ciphers from simple
functions. The original idea was used in the block cipher, invented by Horst
Feistel. Let Feistel structure be adopted in a block cipher with round function f .
Let xL

(r), x
R
(r) be the left and the right halves of the r round inputs, The Feistel

structure of block cipher is written as:

xL
(r+1) = xL

(r) ⊕ f(xR
(r), k(r)) (1)

xR
(r+1) = xL

(r) (2)

The security of the Feistel structure is not obvious, but analysis of DES[7]
has shown that it is a good way to construct ciphers. And some new ciphers
based on Feistel structure of SPN function have been discussed recently and no
weakness is found in Feistel structure itself. In this section we give a modified
structure of Feistel named Feistel like structure and call FL-structure.

Definition 1. Let f be round function, x(r) be the rth round inputs, x(1) be the
input sequence, then the FL-Structure is defined as Eq.(3), Eq.(4).

x(2) = f(x(1), k(1)) (3)

x(r+1) = x(r−1) ⊕ f(x(r), k(r)) (4)

Put simply, the standard Feistel network takes a function from n bits to n bits
and produces an invertible function from 2n bits to 2n bits. FL-Structure takes
a function from n bites to n bites and produces a one-way function from n bits
to n bites. Figure illustration is given in Fig.1.
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Fig. 1. Construct Between Feistel Structure and FL-Sreucture

2.2 The FL-Construction

A block cipher is a map E : {0, 1}n × {0, 1}κ → {0, 1}n for each k ∈ {0, 1}κ,
where the round function of E is a map of f : {0, 1}n × {0, 1}κ → {0, 1}n, the
functions Ek(·) = E(·, k) is transformation on {0, 1}n. If E is a permutation
then E−1 is its inverse, where E−1

k (y) is the string x such that Ek(x) = y. We

write x
$← S for the experiment of choosing a random element from the finite

set S and calling it x. An adversary is an algorithm with access to one or more
oracles.

Definition 2 (Block(n, κ)). Let E be block cipher E : {0, 1}n × {0, 1}κ →
{0, 1}n, f be round function, Block(n, κ) is the set of all block cipher with form
of E, where E has form of Eq(5) and its round function f is a permutation.

x(r+1) = f(x(r), k(r)), r = 1, ..., R (5)

Definition 3 (FL-Cipher). Let E ∈ Block(n, κ) be a A block cipher, let f be
round function of E and let R be rounds of E. Then we called F is FL-Cipher
based on E, if y = F (x, k) has the form of that:

x(2) = f(x(1), k(1)) (6)

x(r+1) = x(r−1) ⊕ f(x(r), k(r)), r = 1, ..., R′ (7)

Definition 4 (Feistel Cipher and FL-Cipher). Let F be FL-Cipher hash
function with round function f and rounds R, F : {0, 1}n × {0, 1}κ → {0, 1}n,
Ẽ : {0, 1}2n × {0, 1}κ → {0, 1}2n be Feistel block cipher with round function f

and rounds R, then we call that F is instance of Ẽ.

Definition 5 (FL-Construction). Let Feist(n, κ) be the set of all FL-Cipher
F : {0, 1}n ×{0, 1}κ → {0, 1}n with no weak hash key. We call the iterated hash
function is a FL-Construction hash function, if the iterated hash function H’s
compression function is a FL-Cipher and denoted HF .
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2.3 Definition of Collision Resistant

There are many kinds of descriptions and notations about hash function, we use
the descriptions given by John Black[4].

To quantify the collision resistance of a hash function HF , we instantiate the
compression function by a randomly chosen F ∈ Feist(n, κ) with round function
f . An adversary A is given oracles for F (·, ·) and wants to find a collision for HF

that is, M, M ′ where M 6= M ′ but HF (M) = HF (M ′). We look at the number
of queries that the adversary makes and compare this with the probability of
finding a collision.

Definition 6 (Collision resistance[4]). Let HF be a FL-Construct hash func-
tion, HF : Feist(n, κ)×D → R, and let A be an adversary. Then the advantage
of A in finding collisions in HF is the real number

Advcoll
HF

(A) = Pr[F $← Feist(n, κ); (M, M ′) ← AF :

M 6= M ′ ∧HF (M) = HF (M ′)].

For q ≥ 1 we write Advcoll
HF

(q) = maxA{Advcoll
HF

(A)} where the maximum is
taken over all adversaries that ask at most q oracle queries. Other advantage
functions are silently extended in the same way.

Definition 7 (Conventional definition of a OWF[4]). Let HF be hash func-
tion, HF : Feist(n, κ)×D → R, and let l be a number such that {0, 1}l ⊆ D. Let
A be an adversary. Then the advantage of A in inverting HF on the distribution
induced by applying HF to a random l-bit string is the real number.

Advowf
HF

(A) = Pr[F $← Feist(n, κ);M $← ({0, 1}n)l;σ $← HF (M);

M ′ ← AF (σ) : HF (M ′) = σ].

We also define the advantage of an adversary in finding collisions in a FL-
Cipher. Naturally (k, m) and (k′,m′) collide under F if they are distinct and
F (k, m) = F (k′,m′).

Definition 8 (Collision resistance of FL-Cipher). Let F be a FL-Cipher
F : {0, 1}n × {0, 1}κ → {0, 1}n, and let A be an adversary. Then the advantage
of A in finding collisions in F is the real number.

Advcoll
F (A) = Pr[F $← Feist(n, κ); ((m, k), (m′, k′)) ← AF :

(m 6= m′ ∨ k 6= k′) ∧ Fk(m) = Fk′(m′)].

Definition 9 (One Way of FL-Cipher). Let F be FL-Cipher hash function,
F : {0, 1}n × {0, 1}κ → {0, 1}n, and let A be an adversary. Then the advantage
of A in inverting F on the distribution induced by applying F is the real number.

Advowf
F (A) = Pr[F $← Feist(κ, n); k $← {0, 1}κ;m $← {0, 1}n;σ $← Fk(m);

m′ ← AF (σ) ∨ k′ ← AF (σ) : Fk(m) = Fk(m′) ∨ Fk(m) = Fk′(m)].
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Definition 10 (Inverting random points of FL-Cipher). Let F be FL-
Cipher hash function, F : {0, 1}n×{0, 1}κ → {0, 1}n, and let A be an adversary.
Then the advantage of A in inverting F is the real number.

Advinv
F (A) = Pr[F $← Feist(κ, n);σ $← {0, 1}n;

(m, k) ← AF (σ) : Fk(m) = σ].

3 Specification of FL-Cipher

3.1 Properties of Feistel Block Cipher and FL-Cipher

Let F : {0, 1}n × {0, 1}n → {0, 1}n be a FL-Cipher, Ẽ : {0, 1}2n × {0, 1}n →
{0, 1}2n be a Feistel block cipher and F is instance of Ẽ. Let Pr[k, m

$←
{0, 1}n; y ← {0, 1}n : fk(m) = y] means the probability of random selected

y satisfy equation fk(m) = y for a constant m and k, Pr[k, m
$← {0, 1}n; y $←

{0, 1}n : fk(m) = y] means the probability of a selected y satisfy equation
fk(m) = y for a constant m and k. There are some notations which will be used
in following descriptions. Let (m1‖m2) be concatenate of m1 and m2, Ri(m,n)
is the right n bits of sequence m and ∆k(m) be Ẽk(m‖fk(m)). Let (3‖y) be
(01...0n−211‖y).

Definition 11 (No Weak Hash Key). Let F be FL-Cipher, F : {0, 1}n ×
{0, 1}n → {0, 1}n, and F is instance of Ẽ : Ẽk(m‖m′) = (y′‖y), if there are

Pr[m,m′, y, y′ $← {0, 1}n; k ← {0, 1}n : Ẽk(m‖m′) = (y′‖y)] · 2n = O(1) (8)

we call the Ẽ has no weak hash key.

Definition 12 (No Weak Hash Key). Let F be FL-Cipher, F : {0, 1}n ×
{0, 1}n → {0, 1}n, and F is instance of Ẽ : Ẽk(m‖m′) = (y′‖y), if there are

max(Pr[m, y
$← {0, 1}n; k ← {0, 1}n : Ri(Ẽk(m‖fk(m)), n) = y]) · 2n = O(1)

(9)
we call the FL-Cipher F has no weak hash key.

Lemma 1. For a permutation Ẽk : Ẽk(m‖m′) = (y′‖y) and its inverse Ẽ−1
k :

Ẽk(y‖y′) = (m′‖m), we have

1. Pr[k, y, y′ $← {0, 1}n; (m,m′) ← {0, 1}n : Ẽk(m‖m′) = (y′‖y)] = 2−2n;

2. Pr[m, k,m′ $← {0, 1}n; (y, y′) ← {0, 1}n : Ẽ−1
k (y′‖y) = (m‖m′)] = 2−2n;

Lemma 2. For block cipher Ẽ : Ẽk(m‖m′) = (y′‖y) and its inverse Ẽ−1
k :

Ẽk(y‖y′) = (m′‖m), if Ẽ has no weakness, we have
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1. max(Pr[k, y,m′ $← {0, 1}n;m ← {0, 1}n : Ri(Ẽk(m‖m′), n) = y] · 2n) =
O(1);

2. max(Pr[k, y,m′ $← {0, 1}n; y′,m ← {0, 1}n : Ri(Ẽ−1
k (y′‖y), n) = m‖m′] ·

2n) = O(1);

Proof. Let p
4
= maxk,y,m′ Pr[m ← {0, 1}n : Ri(Ẽk(m‖m′), n) = y] and let when

m′ = i′, k = j, y = t we get the max probability, that means for block cipher
Ẽ we can find two plaintext (i1‖i′) and (i2‖i′) that Ẽj(i1‖i′) and Ẽj(i2‖i′) has
only 2n − p bits different. From the design criteria of block cipher we know p
should be satisfy p = O(1). ut

Lemma 3. For block cipher Ẽ : Ẽk(m‖m′) = (y′‖y) and its inverse Ẽ−1
k :

Ẽk(y‖y′) = (m′‖m), if Ẽ has no weakness and has no weak hash key, we have

1. max(Pr[m, y, m′ $← {0, 1}n; k ← {0, 1}n : Ri(Ẽk(m‖m′), n) = y] · 2n) =
O(1);

2. max(Pr[m, y, m′ $← {0, 1}n; y′, k ← {0, 1}n : Ẽ−1
k (y′‖y) = (m‖m′)] · 2n) =

O(1);

Lemma 4. For block cipher Ẽ : Ẽk(m‖m′) = (y′‖y) and its inverse Ẽ−1
k :

Ẽk(y‖y′) = (m′‖m), if Ẽ has no weakness, m and Ri(Ẽk(m‖fk(m))) are inde-
pendent, then we have

1. max(Pr[k, y, m′ $← {0, 1}n;m ← {0, 1}n : Ri(Ẽk(m‖m′), n)⊕m = y] · 2n) =
O(1);

2. max(Pr[k, y, m′ $← {0, 1}n; y′,m ← {0, 1}n : Ẽ−1
k (y′‖(y ⊕ m)) = m‖m′] ·

2n) = O(1);

Proof.

Pr[k, y,m′ $← {0, 1}n;m ← {0, 1}n : Ri(Ẽk(m‖m′), n)⊕m = y]

=
2n−1∑

i=0

Pr[k, y,m′ $← {0, 1}n;m ← {0, 1}n : Ri(Ẽk(m‖m′), n) = y ⊕ i,m = i]

if m and Ri(Ẽk(m‖fk(m)) are independent then

=
2n−1∑

i=0

Pr[k, y,m′ $← {0, 1}n;m ← {0, 1}n : Ri(Ẽk(m‖m′), n) = y ⊕ i]Pr[m = i]

= Pr[k, y,m′ $← {0, 1}n;m ← {0, 1}n : Ri(Ẽk(m‖m′), n) = y ⊕ i]
2n−1∑

i=0

Pr[m = i]

⇒ max(Pr[k, y,m′ $← {0, 1}n;m ← {0, 1}n : Ri(Ẽk(m‖m′), n)⊕m = y] · 2n)

= max(Pr[k, y,m′ $← {0, 1}n;m ← {0, 1}n : Ri(Ẽk(m‖m′), n) = y]).ut
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Lemma 5. For block cipher Ẽ : Ẽk(m‖m′) = (y′‖y) and its inverse Ẽ−1
k :

Ẽk(y‖y′) = (m′‖m), if Ẽ has no weakness, k and Ri(Ẽk(m‖fk(m))) are inde-
pendent, then we have

1. max(Pr[m, y, m′ $← {0, 1}n; k ← {0, 1}n : Ri(Ẽk(m‖m′), n)⊕ k = y] · 2n) =
O(1);

2. max(Pr[m, y, m′ $← {0, 1}n; k, y′ ← {0, 1}n : Ẽ−1
k (y′‖(y⊕k)) = m‖m′]·2n) =

O(1);

Lemma 6. For block cipher Ẽ : Ẽk(m‖m′) = (y′‖y) and its inverse Ẽ−1
k :

Ẽk(y‖y′) = (m′‖m), if Ẽ has no weakness, m, k and Ri(Ẽk(m‖fk(m))) are
independent, then we have

1. max(Pr[y, m′ $← {0, 1}n;m, k ← {0, 1}n : Ri(Ẽk(m‖m′), n) ⊕m ⊕ k = y] ·
2n) = O(1);

2. max(Pr[y, m′ $← {0, 1}n;m, k, y′ ← {0, 1}n : Ẽ−1
k (y′‖(y⊕k)) = m‖m′]·2n) =

O(1);

Proof.

Pr[y, m′ $← {0, 1}n;m, k ← {0, 1}n : Ri(Ẽk(m‖m′), n)⊕m⊕ k = y]

=
2n−1∑

i=0

2n−1∑

j=0

Pr[y, m′ $← {0, 1}n;m, k : Ri(Ẽk(m‖m′), n) = y ⊕ i⊕ j, m = i, k = j]

if m, k and Ri(Ẽk(m‖fk(m)) are independent then

=
2n−1∑

i=0

Pr[y, m′ $← {0, 1}n;m, k ← {0, 1}n : Ri(Ẽk(m‖m′), n) = y ⊕ i]Pr[m = i]

= Pr[y, m′;m, k : Ri(Ẽk(m‖m′), n) = y ⊕ i⊕ j]
2n−1∑

i=0

Pr[m = i]
2n−1∑

j=0

Pr[k = j].ut

Let make definitions of that

p1m
4
= max

k,y
(Pr[k, y

$← {0, 1}n;m ← {0, 1}n : Ri(Ẽk(m‖fk(m)), n) = y])

p1y
4
= max

k,m,y
(Pr[k, m, y

$← {0, 1}n; y′ ← {0, 1}n : Ri(Ẽ−1
k (y′‖y), n) = m‖m′])

p2m
4
= max

m,y
(Pr[m, y

$← {0, 1}n; k ← {0, 1}n : Ri(Ẽk(m‖fk(m)), n) = y])

p2y
4
= max

m,y
(Pr[m, y

$← {0, 1}n; y′, k ← {0, 1}n : Ẽ−1
k (y′‖y) = (m‖fk(m))])

p
4
= ( max(p1m, p1y, p2m, p2y)) · 2n.
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Lemma 7. Let F be FL-Cipher, F : {0, 1}n × {0, 1}κ → {0, 1}n, and let F is
instance of Ẽ, if F has no weak hash key and there is no weakness in block cipher
Ẽ, then we have

Pr[σ $← {0, 1}n;m, k ← {0, 1}n : Ri(∆k(m), n) = σ] ≤ p/2n (10)

Pr[σ $← {0, 1}n;m, k, y ← {0, 1}n : Ẽ−1
k (y‖σ) = (m|fk(m)] ≤ p/2n (11)

Pr[m, k
$← {0, 1}n;m′ ← {0, 1}n : Ri(∆k(m), n) = Ri(∆′, n)] ≤ p1m/2n (12)

Pr[m, k
$← {0, 1}n; y ← {0, 1}n : Ẽ−1

k (y‖Ri(∆k(m), n)) = m′‖fk(m′)] ≤ p1y/2n

(13)

Pr[m, k
$← {0, 1}n; k′ ← {0, 1}n : Ri(∆k(m), n) = Ri(∆k′(m), n)] ≤ p2m/2n

(14)

Pr[m, k
$← {0, 1}n; k′, y ← {0, 1}n : Ẽ−1

k′ (y‖Ri(∆k(m), n)) = m‖fk′(m)] ≤ p2y/2n

(15)
Pr[m, k,m′, k′ ← {0, 1}n : Ri(∆k(m), n) = Ri(∆k′(m′), n)] ≤ p2/2n (16)

Pr[m, k,m′, k′, y ← {0, 1}n : E−1
k′ (y‖Ri(∆k(m), n)) = m′‖fk′(m′)] ≤ p2/2n

(17)

Proof. the proof of Eq(10)

Pr[σ $← {0, 1}n;m, k ← {0, 1}n : Ri(∆k(m), n) = σ]
≤ max(max

σ,m
Pr[k : Ri(∆k(m), n) = σ]),max

σ,k
Pr[m : Ri(∆k(m), n) = σ])

= max(p1m, p2m)/2n ≤ p/2n.

the proof of Eq(11)

Pr[σ $← {0, 1}n;m, k, y ← {0, 1}n : Ẽ−1
k (y‖σ) = (m|fk(m))] = 1/2n

≤ max(max
σ,m

Pr[k, y : Ẽ−1
k (y‖σ) = (m|fk(m))]),max

σ,k
Pr[m, y : Ẽ−1

k (y‖σ) = (m|fk(m))])

= max(p1y, p2y)/2n ≤ p/2n.

the proof of Eq(12)

Pr[m, k
$← {0, 1}n;m′ ← {0, 1}n : Ri(∆k(m), n) = Ri(∆′, n)]

= Pr[y, k
$← {0, 1}n;m′ ← {0, 1}n : Ri(∆′, n) = y]

≤ max
σ,k

Pr[m : Ri(∆k(m), n) = σ])

= p1m/2n.
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the proof of Eq(16)

Pr[m, k,m′, k′ ← {0, 1}n : Ri(∆k(m), n) = Ri(∆k′(m′), n)]

⇔
2n−1∑

i=0

Pr[m, k,m′, k′ ← {0, 1}n : Ri(∆k(m), n) = i, Ri(∆k′(m′), n) = i]

⇔
2n−1∑

i=0

Pr[m, k : Ri(∆k(m), n) = i]Pr[m′, k′ : Ri(∆k′(m′), n) = i]

≤
2n−1∑

i=0

max(Pr[m, k : Ri(∆k(m), n) = i])2

≤ p2/2n.ut

3.2 Collision Resistance of FL-Cipher

In this section we discuss the hash properties of FL-Cipher.

Theorem 1 (Inverting random points of FL-Cipher). Let F be FL-Cipher
hash function, F : {0, 1}n × {0, 1}κ → {0, 1}n, and let A be an adversary. Then
the advantage of A in inverting F is Advinv

F (q) ≤ pq/2n−1.

Proof. Let an adversary A for F , adversary A takes oracle F and input σ and,
when successful, it outputs k, m and have

F (m, k) = σ ⇔ Ri(Ẽk(m‖fk(m)), n) = σ

Since we have

Pr[σ $← {0, 1}n;m, k ← {0, 1}n : Ri(∆k(m), n) = σ] ≤ p/2n

Pr[σ $← {0, 1}n;m, k, y ← {0, 1}n : Ẽ−1
k (y‖σ) = (m|fk(m)] ≤ q/2n

So we have Advowf
F (q) ≤ pq/2n−1. ut

Theorem 2 (One Way Property of FL-Cipher). Let F be FL-Cipher with
round function f , F : {0, 1}n × {0, 1}n → {0, 1}n, then Advowf

F (q) ≤ pq/2n−1.

Proof. Let an adversary A for F : adversary A takes oracle F and input m, k, σ
and, when successful, it outputs m′ or k′ such that F (m, k) = F (m′, k) or
F (m, k) = F (m, k′). If adversary A find m′ such that F (m, k) = F (m′, k) then

F (m, k) = F (m′, k) ⇔ Ri(Ẽk(m‖fk(m)), n) = Ri(Ẽk(m′‖fk(m′)), n)

For block cipher Ẽ,

Pr[m, k
$← {0, 1}n;m′ ← {0, 1}n : Ri(∆k(m), n) = Ri(∆′, n)] ≤ p/2n (18)
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Pr[m, k
$← {0, 1}n; y : Ẽ−1

k (y‖Ri(∆k(m), n)) = m′‖fk(m′)] ≤ p/2n (19)
For any i ∈ [1..q], let Ci be the event that the randomly selected mi from {0, 1}n,
where mi 6= mj such that F (m, k) = F (mi, k). Since Pr(Ci) ≤ p/(2n − i). we
thus have Pr(c1 ∨ ... ∨ cq) ≤ pq/2(n−1).

If adversary A find k′ such that F (m, k′) = F (m, k) then

F (m, k) = F (m, k′) ⇔ Ri(∆k(m), n) = Ri(Ẽk′(m‖fk′(m)), n)

For block cipher Ẽ, since there is no weak key, then

Pr[m, k
$← {0, 1}n; k′ ← {0, 1}n : Ri(∆k(m), n) = Ri(∆k′(m), n)] ≤ p/2n (20)

Pr[m, k
$← {0, 1}n; k′, y : Ẽ−1

k′ (y‖Ri(∆k(m), n)) = m‖fk′(m)] ≤ p/2n (21)

Similar as description of F (m, k) = F (m′, k), we get Advowf
F (q) ≤ pq/2n−1. ut

Theorem 3 (Collision resistance of FL-Cipher). Let F be a FL-Cipher
F : {0, 1}n × {0, 1}κ → {0, 1}n, then Advcoll

F (q) ≤ p2q/2n−1

Proof. Let an adversary A for F , adversary A takes oracle F and , when suc-
cessful, it outputs k, m and k′,m′ such that F (m, k) = F (m′, k′)

F (m, k) = F (m′, k′) ⇔ Ri(∆k(m), n) = Ri(Ẽk′(m′‖fk′(m′)), n)

For block cipher Ẽ, since there is no week key, we have

Pr[m, k,m′, k′ ← {0, 1}n : Ri(∆k(m), n)Ri(∆k′(m′), n)] ≤ p2/2n

Pr[m, k,m′, k′, y ← {0, 1}n : E−1
k′ (y‖Ri(∆k(m), n)) = m′‖fk′(m′)] ≤ p2/2n

So we have Advcoll
F (q) ≤ p2q/2n−1 ut

3.3 Collision Resistant of Compression Functions

Theorem 4. (Hash Properties of format-1)Let F be FL-Cipher hash function,
F : {0, 1}n × {0, 1}κ → {0, 1}n, and let h be compression function h(m, k) =
F (m, k), A be an adversary. Then the adversary A have Advinv

h (q) = pq/2n−1,
Advowf

h (q) ≤ pq/2n−1, Advcoll
h (q) ≤ p2q/2n−1.

Theorem 5. (Hash Properties of format-2)Let F be FL-Cipher hash function,
F : {0, 1}n × {0, 1}κ → {0, 1}n, and let h be compression function h(m, k) =
F (m, k) ⊕m, A be an adversary. If m and Ri(Ẽk(m‖fk(m))) are independent,
then the adversary A have Advowf

h (q) ≤ pq/2n−1, Advcoll
h (q) ≤ p2q/2n−1.

Theorem 6. (Hash Properties of format-3)Let F be FL-Cipher hash function,
F : {0, 1}n × {0, 1}κ → {0, 1}n, and let h be compression function h(m, k) =
F (m, k) ⊕ k, A be an adversary. If k and Ri(Ẽk(m‖fk(m))) are independent,
then the adversary A have Advowf

h (q) ≤ pq/2n−1, Advcoll
h (q) ≤ p2q/2n−1.

Theorem 7. (Hash Properties of format-4)Let F be FL-Cipher hash function,
F : {0, 1}n × {0, 1}κ → {0, 1}n, and let h be compression function h(m, k) =
F (m, k)⊕k⊕m, A be an adversary. If m, k and Ri(Ẽk(m‖fk(m))) are indepen-
dent, then the adversary A have Advowf

h (q) ≤ pq/2n−1, Advcoll
h (q) ≤ p2q/2n−1.
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3.4 Collision Resistance of FL-Construction

In this section we discuss the security of FL-Construction.

Theorem 8. If F : Feist(n, n)× ({0, 1}n × {0, 1}n) → {0, 1}n is a FL-Cipher,
f : {0, 1}n × {0, 1}n) → {0, 1}n is a compression of FL-Construction hash func-
tion Hf , and f has a form of format1∼4, if f is one way and collision resistant
then the FL-Construction hash function Hf is OWHF and CRHF.

Lemma 8 (Instance of Damg̊ard-Merkle[5]). Let f be a compression func-
tion from FL-Cipher with form of format1∼4, and the compression function of
FL-Construction hash function Hf be f , Then Advcoll

Hf
(q) ≤ Advcoll

f (q) for all q.

Lemma 9 (Instance of Lai-Massey[9]). Let f be a compression function
from FL-Cipher with form of format1∼4, and the compression function of FL-
Construction hash function Hf be f . Then Advowf

HF
(q) ≤ Advowf

F (q) for all q.

4 Collision Resistance of PGV Schemes

There are 64 most basic ways to construct a hash function H : {0, 1}∗ → {0, 1}n

from a block cipher E : {0, 1}n × {0, 1}n → {0, 1}n. Preneel,Govaerts, and
Vandeawalle present that among those 64 schemes 12 are secure, and Joha Black,
Rogaway, and Shrimpton prove that in a black-box model 20 scheme among
those 64 are collision-resistant. There are also 64 basic ways to construct a hash
function H : {0, 1}∗ → {0, 1}n from a FL-Cipher F : {0, 1}n×{0, 1}n → {0, 1}n.

The security of 64 PGV schemes is summarized in tables 1 , and the functions
are numbered as Joha[4].

5 Conclusion

We discussed the probability of building a FL-Construction hash function from
FL-Cipher with PGV modes. We make a conclusion that format1 is the best
way to build a FL-Construction hash function.
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