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Abstract. The possibility of building dedicate hash function based on
Feistel structure is discussed in this paper. Feistel Structure is known as
a good structure for building block cipher. Replacing the right half bits
input with round function transformation of the left half bits input in
the first round, and outputting only right half byte of last round bits,
the Feistel structure become a n-bit to n-bit transformation instead of a
2n-bit to 2n-bit transformation, and is not invertible, the new structure
is called ”FL-Structure”, a function with FL-structure is called ”FL-
function”. A block cipher E with round function F has Feistel structure,
satisfy avalanche effect and has no related key, then the FL-function
C with round function F is preimage resistance, second premiage resis-
tance and collision resistant. The conclusions are that FL-structure is
good structure for build dedicate hash function and more stronger de-
sign criteria are required for key schedule algorithm than block cipher
design.
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1 Introduction

A hash function is a function H : {0, 1}∗ → {0, 1}n for a fixed positive integer
n and with the property that H(x) is easy to compute for all x ∈ {0, 1}∗ for
any person. A cryptographic hash function is a hash function with collision
resistant. A hash function uses a secret parameter (the key) then called a Message
Authentication Code or MAC.

The main ideas of the recent attacks[12][3][6] on hash functions are differen-
tial attack and were known in block ciphers years ago, which let us think the
attacks against block ciphers and hash functions are similar. The design crite-
ria of block ciphers, as strong avalanche criterion and strong diffusion ensure
that neutral bits cannot exist. Block ciphers received much attention and had
an interesting framework and also Block cipher cryptanalysis techniques were
partially used against hash functions. Related-key attacks were initially viewed
as a secondary kind of attack, and their merge with differential cryptanalysis was
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late and slow[7]. More and more attentions have been paid on much attention
of Hash functions to be designed by the same technology as block ciphers with
same principles and design criteria were receive .

The possibility of building dedicate hash function based on Feistel structure
is discussed in this paper. Feistel Structure is known as a good structure for
building block cipher. Replacing the right half bits input with round function
transformation of the left half bits input in the first round, and outputting only
right half byte of last round bits, the Feistel structure become a n-bit to n-bit
transformation instead of a 2n-bit to 2n-bit transformation, and is not invert-
ible, the new structure is called ”FL-Structure”, a function with FL-structure
is called ”FL-function”. A block cipher E with round function F has Feistel
structure, satisfy avalanche effect and has no related key, then the FL-function
C with round function F is preimage resistance, second premiage resistance and
collision resistant. The conclusions are that FL-structure is good structure for
build dedicate hash function and more stronger design criteria are required for
key schedule algorithm than block cipher design.

The paper is organized as follows. Specification of FL-Function and FL-
Structure are given in section2. The collision resistant properties of FL-function
are given in section3. The security of against block cipher attack are described
in section4 and section6 is our conclusions.

2 The Feistel Like Structure

A Feistel structure is a general way of constructing block ciphers from simple
functions. The original idea was used in the block cipher, invented by Horst
Feistel.The security of the Feistel structure is not obvious, but analysis of DES[9]
has shown that it is a good way to construct ciphers. And some new ciphers
based on Feistel structure of SPN function have been discussed recently and no
weakness is found in Feistel structure itself.

Let Feistel structure be adopted in a block cipher E(XL
(0)‖XR

(0),K) with the
round function F and the round number R, XL

(r), X
R
(r) be the left and the right

halves of the rth round outputs, xL
(0), x

R
(0) are input plaintext, XL

(R), X
R
(R) be

output ciphertexts and K(r) is round key. Let function C with round function F
input ’plaintext’ X(0) and rth round output be X(r) and get ’ciphertext’ X(R+1),
if Y = C(X0,K) satisfy Eq.(1), Eq.(2)Eq.(3) then we call that the structure is
R + 1 round FL-Structure and the function C is FL-function. The contrast
between Feistel structure and FL-Structure is given in Fig.1.

X(1) = f(X(0),K(1)) (1)

X(r+1) = X(r−1) ⊕ f(X(r),K(r+1)), r = 1, ..., R (2)

Y = X(R+1) (3)

Put simply, the standard Feistel network takes a function from n bits to n
bits and produces an invertible function from 2n bits to 2n bits. FL-Structure
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Fig. 1. Contrast Between Feistel Structure and FL-Sreucture

takes a function from n bites to n bites and produces an one-way function from
n bits to n bites. Or the FL-structure is a Feistel structure with left half bits of
input is all zero and output the only right half of output.

3 Collision Resistance of FL-Function

The notations of the paper are described as follows:

– E : {0, 1}2n×{0, 1}κ → {0, 1}2n is Feistel structured block cipher with round
function F , rounds R + 1 and round key K(1), ..., K(R+1);

– C : {0, 1}n × {0, 1}κ → {0, 1}n is FL-Function with round function F and
rounds R + 1, and round key K(1), ..., K(R+1);

– (m1‖m2):Concatenate of m1 and m2;
– R(m,n): the right n bits of sequence m;
– L(m,n): the left n bits of sequence m;

– x
$← S: The experiment of choosing a random element from the finite set S;

– E−1: The inverse of E, where E is a permutation;
– x = E−1

k (y): The string x such that Ek(x) = y;
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– #[y $← S; k, m ← S : y = Ek(m)]: The number of m, k in S satisfy y =
Ek(m) for given y;

– P [y $← S; k, m ← S : y = Ek(m)]: For given y, for all x and k in S and do
the encryption y = Ek(m) and the probability of find the value satisfying
the equation;

– PM [y $← S; k, m ← S : y = Ek(m)]
4
= max

y∈S
P [y $← S; k, m ← S : y = Ek(m)];

– 0̃:n-bit binary, all bits are 0;
– S : S

4
= {0, 1}n;

– T1
4
= max #[m, y

$← {0, 1}n; k ← {0, 1}n : R(Ek(0̃‖m), n) = y];

– T2
4
= max #[k, y

$← {0, 1}n;m ← {0, 1}n : R(Ek(0̃‖m), n) = y];

– T3
4
= max #[k, y

$← {0, 1}n; y′ ← {0, 1}n : E−1
k (y′‖y) = (0̃‖m)].

Definition 1 (Strict avalanche effect of plaintext). [1] Each Ciphertext bit
should change with a probability of one half whenever a single ciphertext bit is
complemented.

Definition 2 (Strict avalanche effect of key). Each ciphertext bit should
change with a probability of one half whenever a single key bit is complemented.

Definition 3 (No Similar Key). Block cipher E : {0, 1}2n×{0, 1}n → {0, 1}2n

max#[m,m′, y, y′ $← {0, 1}n; k ← {0, 1}n : Ek(m‖m′) = (y′‖y)] = 2 (4)

Call the Feistel block cipher E has no similar key.

Lemma 1. In block cipher E: T2 ≡ T3.

Proof. Let k, y and different m1, ..., mT2 satisfy R(Ek(0̃‖mi), n) = y, i ≤ T2, we
get values L(Ek(0̃‖m1), n), ..., L(Ek(0̃‖mT2), n), E is permutation that means
L(Ek(0̃‖mi), n) 6= L(Ek(0̃‖mj), n), i 6= j which implies T2 ≥ T3. On the contrary
T3 ≥ T2. ut

Lemma 2. In black box model, for Feistel Cipher E:

P [k, y
$← {0, 1}n; y′ ← {0, 1}n : E−1

k (y′‖y) = (0̃‖m)] = 1/2n (5)

Proof. #[k $← {0, 1}n; y, y′ ← {0, 1}n : L(E−1
k (y′‖y), n) = (0̃‖m)] = 2n.

#[y, y′ ← {0, 1}n] = 22n,#[m ← {0, 1}n] = 2n,
for a constant k and y, ∀y′ ∈ {0, 1}n, P [L(E−1

k (y′‖y), n) = 0] = 1/2n. ut

Lemma 3. If block cipher E has no similar key, and in black box model:

P [m, y
$← {0, 1}n; k ← {0, 1}n : R(Ek(0̃‖m), n) = y] = 1/2n−1 (6)
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Proof. #P [m, y, y′ $← {0, 1}n; k ← {0, 1}n : R(Ek(0̃‖m), n) = y′‖y] = 2.
#[m ← {0, 1}n] = 2n, for constant k and y, ∀k ∈ {0, 1}n

P [R(Ek(0̃‖m), n) = y] = 2/2n. ut
A compression function of collision-resistant hash function is a function

H(M, V ) that satisfies the following conditions where M is Message block and
V is initial vector or output of previous round iteration:

– The input M can be of fixed length and the result H has a fixed length.
– Given H and an input M , the computation of H(M) must be ’easy’.
– preimage-resistance: Given a Y in the image of H, it is ’hard’ to find a

message M such that H(M) = Y (one-way).
– second preimage-resistance: Given M and H(M) it is ’hard’ to find a message

M ′ 6= M such that H(M ′) = H(M).
– collision-resistance: It is ’hard’ to find two distinct messages M and M ′ such

that H(M) = H(M ′)).

If FL-function C(m, k) or C(k, m) is a hash compression function, the proper-
ties of preimage-resistance, second preimage-resistance, and collision are written
in following modes:

– preimage-resistance:
PM [k, y

$← {0, 1}n;m ← {0, 1}n : y = C(m, k)] < ε

PM [m, y
$← {0, 1}n; k ← {0, 1}n : y = C(m, k)] < ε

PM [y $← {0, 1}n; k, m ← {0, 1}n : y = C(m, k)] < ε
– second preimage-resistance:

PM [k1,m1
$← {0, 1}n;m2 ← {0, 1}n : C(m2, k1) = C(m1, k1)] < ε

PM [k1,m1
$← {0, 1}n; k2 ← {0, 1}n : C(m1, k1) = C(m1, k2)] < ε

PM [k1,m1
$← {0, 1}n;m2, k2 ← {0, 1}n : C(m1, k1) = C(m2, k2)] < ε

– collision-resistance:
PM [m1, k1, k2 ← {0, 1}n : C(m1, k1) = C(m1, k2)] < ε
PM [m2, k1, k2 ← {0, 1}n : C(m1, k1) = C(m2, k1)] < ε
PM [m1,m2, k1, k2 ← {0, 1}n : C(m1, k1) = C(m2, k2)] < ε.

Lemma 4. For block cipher E we have:

– PM [k, y
$← {0, 1}n;m ← {0, 1}n : R(Ek(0̃‖m), n) = y] ≤ 2−nT2;

– PM [m, y
$← {0, 1}n; k ← {0, 1}n : R(Ek(0̃‖m), n) = y] ≤ 2−nT1;

– PM [y $← {0, 1}n;m, k ← {0, 1}n : R(Ek(0̃‖m), n) = y] ≤ 2−n max{T1, T2}.
Proof.

– There are two ways to get the correct value m for given k,y, first way is
for all m ∈ {0, 1}n, check equation R(Ek(0̃‖m), n) = y being hold or not,
another way is for all y′ ∈ {0, 1}n, check the left half output of E−1

k (y′‖y) is
zero or not. Since
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max#[k, y
$← {0, 1}n;m ← {0, 1}n : R(Ek(0̃‖m), n) = y] = T2;

max#[k, y
$← {0, 1}n; y′ ← {0, 1}n : E−1

k (y′‖y) = (0̃‖m)] = T3;
the maximum success probability of first way is 2−nT3, that of second way
is 2−nT2. We have:
PM [k, y

$← {0, 1}n;m ← {0, 1}n : R(Ek(0̃‖m), n) = y] ≤ 2−nT2.
– There are two ways to get the correct value k for given m,y, first way is

that for each k ∈ {0, 1}n, check R(Ek(0̃‖m), n) equals y or not, another way
is that for each y′ ∈ {0, 1}n and a random k ∈ {0, 1}n, check the left half
output of E−1

k (y′‖y) is zero or not.

max#[m, y
$← {0, 1}n; k ← {0, 1}n : R(Ek(0̃‖m), n) = y] ≤ T1;

max#[m, y, k
$← {0, 1}n; y′ ← {0, 1}n : R(Ek(0̃‖m), n) = y] ≤ T1;

the maximum success probability of that is 2−nT1

– To get the correct value k and m, we should suppose one of k and m is
constant, first way is for a random m ∈ {0, 1}n, check all k ∈ {0, 1}n,
another way is for a random selected k ∈ {0, 1}n, check all m ∈ {0, 1}n. we
have:
PM [y $← {0, 1}n;m, k ← {0, 1}n : R(Ek(0̃‖m), n) = y] ≤ 2−n max{T1, T2}.

ut
Lemma 5. If block cipher E satisfy the strict avalanche effect:

– PM [m1, k
$← {0, 1}n;m2 ← {0, 1}n :

R(Ek(0̃‖m1), n) = R(Ek(0̃‖m2)), n)] ≤ 2−n(T2 − 1);
– PM [m, k1

$← {0, 1}n; k2 ← {0, 1}n :
R(Ek1(0̃‖m), n) = R(Ek2(0̃‖m), n)] ≤ 2−n(T1 − 1);

– PM [m1, k1
$← {0, 1}n;m2, k2 ← {0, 1}n :

R(Ek1(0̃‖m1), n) = R(Ek1(0̃‖m1), n)] ≤ 2−n(max{T1, T2} − 1);

Proof.

– There are two ways to get the correct value m2, first way is checking the
equation R(Ek(0̃‖m1), n) = R(Ek(0̃‖m2), n) being hold or not, for all m2 ∈
{0, 1}n. Another way is that for all y′ ∈ {0, 1}n, checking the output of
E−1

k (y′‖R(Ek(0̃‖m1), n)) satisfying the relation m′ = Fk(m) or not where
if the block cipher E is designed in strict avalanche effect then the value
Ek(0̃‖m1) gives no information about correct y′.

max#[k, y
$← {0, 1}n;m ← {0, 1}n : R(Ek(0̃‖m), n) = y] = T2;

max#[k, y
$← {0, 1}n; y′ ← {0, 1}n : E−1

k (y′‖y) = (0̃‖m)] = T3;
The probability of getting the correct value m2 is 2−n(T2 − 1).

– There are two ways to get the correct value k2, first way is checking the
equation R(Ek1(0̃‖(m1)), n) = R(Ek2(0̃‖m2), n) being hold or not, for each
k2 ∈ {0, 1}n. Another way is for each y′ ∈ {0, 1}n and a random select
k2 checking the equation E−1

k2
(y′‖R(Ek1(0̃‖m1), n)) being satisfied or not. If

Block cipher E satisfying strict avalanche effect of key, the select of k2 are
not influenced by k1. Since
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max#[m, y
$← {0, 1}n; k ← {0, 1}n : Re(Ek(0̃‖m), n) = y] ≤ T1;

max#[m, y, k
$← {0, 1}n; y′ ← {0, 1}n : Re(Ek(0̃‖m), n) = y] ≤ T1;

the probability of getting the correct value m2 is 2−n(T1 − 1);
– To get the correct value k2 or m2, we should suppose one of k2 and m2 is

unchanged, first way is for a random m ∈ {0, 1}n, check all k ∈ {0, 1}n, an-
other way is for a constant k ∈ {0, 1}n, check all k ∈ {0, 1}n. The maximum
complexity of the checking is 2−n(max{T1, T2} − 1).

ut
Lemma 6. If block cipher E satisfy the strict avalanche effect:

– PM [m1, k,m2 ← {0, 1}n : R(Ek(0̃‖m1), n) = R(Ek(0̃‖m2)), n)]
≤ 2−nT2(T2 − 1)/2;

– PM [m, k1, k2 ← {0, 1}n : R(Ek1(0̃‖m), n) = R(Ek2(0̃‖m), n)]
≤ 2−nT1(T1 − 1)/2;

– PM [m1, k1,m2, k2 ← {0, 1}n : R(Ek1(0̃‖m1), n) = R(Ek2(0̃‖m2), n)]
≤ 2−n(max{T1(T1 − 1), T2(T2 − 1)} − 1)/2;

Proof.

– To get the correct value k,m1 and m2, one way is checking the equation
R(Ek(0̃‖m1), n) = R(Ek(0̃‖m2), n) being hold or not, second way is check-
ing L(E−1

k (y′‖R(Ek(0̃‖m1), n)) being satisfied or not.

max#[k, y
$← {0, 1}n;m ← {0, 1}n : R(Ek(0̃‖m), n) = y] = T2;

max#[k, y
$← {0, 1}n; y′ ← {0, 1}n : E−1

k (y′‖y) = (0̃‖m)] = T3; the maxi-
mum probability of the result is 2−n{T2(T2 − 1)/2.

– similarly the maximum probability is max 2−n{T1(T1 − 1)/2.
– similarly the maximum probability is 2−n max{T1(T1 − 1)/2, T2(T2 − 2)/2.

ut
Theorem 1 (Preimage-resistance). In black box model, Block cipher E sat-
isfy avalanche effect, then the FL-function is Preimage-resistant.

Theorem 2 (Second Preimage-resistance). In black box model, Block ci-
pher E satisfy avalanche effect, then the FL-function is second Preimage-resistant.

Theorem 3 (Collision resistance). In black box model, Block cipher E satisfy
avalanche effect, then the FL-function is collision resistant.

4 Design Principle of FL-Function

The hash function is far more sensitive to defects on designing than that of block
cipher, for finding a weak key in block cipher does not result in failure of the
block cipher, but finding a weak key in hash function always means finding a
collision that results in the failure of the hash function. In some point of view,
the FL-function is a special instance of block cipher, so the attacks against block
cipher should be considered.
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Attacks on block cipher The FL-function is a Feistel cipher of left half bits
of input with zero. If the Feistel cipher is designed to be immune against attacks
on block cipher, then the FL-function be immune against those attacks.

Key Schedule In block cipher design, the key schedule algorithm is design
with strict avalanche in itself, where influences of each key on plaintext are
considered, influences of different key on same plaintext is ignored. But in hash
function design, the influences of different keys on same plaintext is as important
as the influences of one key on different plaintext.

Input Modes The compression function of hash function H(V, M) needs two
input value, one of which is output of previous round output and one of which
is the expansion of plaintext. FL-function F (m, k) also has two input value
plaintext and key. From the discussion given in previous section, the security
of two ways are same. If we select the key in F as plaintext, then in hashing
procedure we can compute the compression and key schedule at the same time.

5 FL-Construction Hash Function

In the previous sections we discussed the possibility of build a compression func-
tion using a Feistel structure. If we concatenate the FL-function and Feistel
Cipher, we build a new hash function that has many advantage contrast with
MD-construction[11].

Definition 4. Let E is a feistel cipher,expanded message are M1, ..., Mq :

H1 = R(EM1(0, IV ), n)

Hi = E(Mi), i = 1, ..., q

h(x) = R(Hq, n)

we call the hash function Feistel Hash function.

Figure illustration is given in Fig.2.

Theorem 4 (Preimage-resistance). In black box model, Feistel E satisfy
avalanche effect, then Feistel hash function is preimage-resistance.

Theorem 5 (Second Preimage-resistance). In black box model, Feistel E
satisfy avalanche effect, then Feistel hash function is second Preimage-resistance.

Theorem 6 (Collision resistance). In black box model, Feistel E satisfy avalanche
effect, then Feistel hash function is collision resistant.

Proof. Since the Feistel itself is a FL-function, so we have the conclusion. ut
Theorem 7. Feistel hash function is immune against Multi collision[2]

Theorem 8. Feistel hash function is immune against extension attack.

It is clear that the FL-Hash function is not immune against fix point attack,
that should be considered in design principle of E function.
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Fig. 2. Contrast Between MD-Construction and FL-Construction

6 Conclusion

In this paper we present a new way to construct hash function. Security of
FL-Function relies on the security of Feistel structure, round function and key
schedule algorithm. And the design of FL-function require more considers than
block cipher design, but the criteria of design block cipher all can be used in
design. If we can design a secure hash function based on FL-structure then we
design a more secure block cipher.
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